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Introduction

Welcome to the proceedings of the system demonstrations session. This volume contains the papers
of the system demonstrations presented at the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the 10th International Joint Conference on Natural
Language Processing (AACL-IJCNLP) on December 4 - 7, 2020.

The AACL-IJCNLP 2020 demonstrations track invited submissions ranging from early research
prototypes to mature production-ready systems. We received 13 submissions this year, of which 7 were
selected for inclusion in the program (acceptance rate of 54%) after review by at least three members of
the program committee.

We would like to express our gratitude to the members of the program committee. The candidate papers
were selected by the demo chairs based on the feedback received by reviewers.

Demonstrations papers will be presented during the conference in dedicated demo sessions.

Best,

Douwe Kiela
Derek F. Wong
AACL-IJCNLP 2020 Demo Chairs
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Demonstration Chairs

Douwe Kiela, Facebook AI Research
Derek Wong, University of Macau
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Abstract

This article presents the AMesure platform,
which aims to assist writers of French ad-
ministrative texts in simplifying their writ-
ing. This platform includes a readability for-
mula specialized for administrative texts and
it also uses various natural language process-
ing (NLP) tools to analyze texts and highlight
a number of linguistic phenomena considered
difficult to read. Finally, based on the dif-
ficulties identified, it offers pieces of advice
coming from official plain language guides to
users. This paper describes the different com-
ponents of the system and reports an evalua-
tion of these components.

1 Introduction

In our current society, written documents play a
central role as an information channel, especially
in the context of communication between institu-
tions and their target audiences (Madinier, 2009).
Unfortunately, although efforts to raise the edu-
cation level of the population worldwide have in-
creased in recent decades, reports (OECD, 2016)
point out that a significant proportion of citizens
still have general reading difficulties. As regards
administrative texts, various reading issues have
been reported. For instance, Kimble (1992) re-
ported that, in a survey carried out in the US, 58%
of the respondents admitted to dropping out of an
administrative process due to the reading difficulty.

Administrations have been aware of this issue
for decades and have launched various initiatives
to address it, the most prominent of which is the
Plain Language movement. Plain language aims
to increase the accessibility of legal documents for
a general audience and has been shown to both
reduce costs and please readers (Kimble, 1996).
It has not only been promoted through various
campaigns (e.g. Plain English Campaign in the
UK) and writing guides (Gouvernement du Québec,

2006; Ministère de la Communauté française de
Belgique, 2010; European Union, 2011; Plain Lan-
guage Action and Information Network, 2011;
Cutts, 2020), but also incorporated in some legal
principles. However, its widespread application
is still undermined due to, for example, the efforts
required to train writers (Desbiens, 2008), or the ne-
cessity to persuade writers – especially legal ones –
to abandon their flowery style, which is seen as a
determinant of the image of expertise they project
in the reader’s mind (Adler, 2012). This second
reason, however, falls beyond the scope of the cur-
rent study, which aims to address the first reason,
i.e. writers’ training.

Recent research by Nord (2018) revealed that
although several plain language guides are avail-
able to assist writers of administrative texts in their
work, the guidelines provided in these guides are
not always followed by writers, mainly because
they are too vague and too numerous. To relieve
writers from the need to keep all these guidelines in
mind, we have designed a web platform, AMesure1,
aimed at automatically identifying clear writing is-
sues in administrative texts and providing simple
writing advice that is contextually relevant. In its
current state, the platform offers the three following
functionalities: (1) providing an overall readability
score based on a formula specialized to adminis-
trative texts; (2) identifying, in a text, linguistic
phenomena that are assumed to have a negative
effect on the comprehension of the text; (3) for the
phenomena detected in step 2, proposing simplifi-
cation advice found in plain language guides.

In the following sections, we first refer to some
related work (Section 2), before describing the NLP
analyses carried out to operate the system (Section
3.1). Then, we introduce the system and the way
suggestions are provided (Section 3.2). The paper

1The platform is freely available online at https://
cental.uclouvain.be/amesure/.
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concludes with a report about the system perfor-
mance (Section 4).

2 Related work

This work stands at the intersection between two
very different fields: writing studies – “the inter-
disciplinary science that studies all the processes
and knowledge involved in the production of pro-
fessional writings and their appropriateness for the
addressees” (Labasse, 2001) – and automatic text
simplification (ATS), a branch of NLP that aims
to automatically adapt difficult linguistic structures
while preserving the meaning to enhance text ac-
cessibility.

Relevant facts from writing studies have already
been covered in the introduction. As regards ATS,
the last few years have witnessed the publica-
tion of numerous interesting studies, reviewed by
Shardlow (2014), Siddharthan (2014), and Saggion
(2017). In brief, the field has mainly focused on
developing algorithms to automatically simplify
complex words (lexical simplification) and/or com-
plex syntactic structures (syntactic simplification).
It has first relied on rule-based approaches (Chan-
drasekar et al., 1996; Siddharthan, 2011) in which
a text is automatically parsed before being applied
simplification rules defined by experts. Later, ATS
has been assimilated to a translation task (the origi-
nal version is translated into a simplified version)
and addressed with statistical translation systems
(Specia, 2010; Zhu et al., 2010). As neural machine
translation has emerged under the impulse of deep
learning, the Seq2Seq model has become prevalent
for ATS too (Nisioi et al., 2017; Zhang and Lapata,
2017).

Some work has specifically focused on the is-
sue of lexical simplification, which involves dif-
ferent techniques. Lexical simplification is gen-
erally operated in four steps, the first one being
the identification of complex words. Some sys-
tems choose to consider all words as candidates
for substitution (Bott et al., 2012); others use a
list of complex words or machine learning tech-
niques for classification of complex words (Alar-
con et al., 2019). Once complex words have been
identified, the next step is the generation of sim-
pler synonyms for substitution, either by relying on
lexical resources (De Belder and Moens, 2010; Bil-
lami et al., 2018), getting candidates from corpora
(Coster and Kauchak, 2011), producing them with
embeddings (Glavaš and Štajner, 2015; Paetzold

and Specia, 2016) or, more recently, with BERT
(Qiang et al., 2020). In a next step, the candidates
are semantically filtered to fit the context and are
ranked according to their difficulty by classifiers
using various word characteristics (e.g. frequency,
embedding, morphemes, syllabic structures, etc.)
(Paetzold and Specia, 2017; Billami et al., 2018;
Qiang et al., 2020).

Although numerous ATS systems are described
in publications, we have found only four of them
that made their way through a web platform tai-
lored to writers’ needs. Scarton et al. (2010) devel-
oped a simplification web platform for Portuguese,
in which the user is able to either accept or reject
simplifications done by the system. Similarly, Lee
et al. (2016)’s system performs lexical and syn-
tactic simplifications for English and supports hu-
man post-editing. More recently, Falkenjack et al.
(2017) introduced TeCST, which is able to perform
simplification at different levels, depending on the
user. Finally, Yimam and Biemann (2018) imple-
mented a semantic writing aid tool able to suggest
context-aware lexical paraphrases to writers. None
of these tools, however, have focused on writers of
administrative texts, nor on French.

AMesure could also be related to the family
of writing assistants, such as Word or LibreOf-
fice. However, only a few of them provides writ-
ing advice based on specific criteria or plain lan-
guage guides. There are some examples of these
tools available for the general public in French:
(1) Plainly2; (2) Lirec3 which relies on the FALC
guidelines, an equivalent of the Easy-to-Read lan-
guage in French, tailored to people with a cognitive
disability; or (3) Antidote4, which offers various
writing advice to be clearer and includes five read-
ability indexes. These are however commercial
tools, whose scientific foundations are difficult to
know and to compare to.

3 The platform

AMesure aims to help writers to produce clear and
simple administrative texts for a general audience5.

For this purpose, it offers various diagnoses
about the reading difficulty of a text as well as

2https://www.labrador-company.fr/
outil-langage-clair/

3http://sioux.univ-paris8.fr/lirec/
4https://www.antidote.info/fr
5People with low reading levels require even more sim-

plified texts (with shorter sentences, no subordinated clauses,
etc.). This ”oversimplification” falls under the scope of the
Easy Language domain.
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advice on simpler ways of writing. Before moving
to the description of the platform in Section 3.2, we
first introduce the various NLP processes used to
analyse the text and annotate difficulties in Section
3.1.

3.1 The analysis of the text

As soon as a text is uploaded on the platform, it is
processed through various NLP tools to get a rich
representation of the text, on which further rule-
based processes are then applied. In a first step,
the text is split into sentences and POS-tagged with
MElt (Denis and Sagot, 2012), before being syntac-
tically parsed with the Berkeley parser adapted for
French (Candito et al., 2010). As a result, each sen-
tence is represented as a dependency tree, on which
we apply a set of handcrafted rules expressed in the
form of regular expressions using the Tregex (Levy
and Andrew, 2006) syntax. The rules currently im-
plemented (François et al., 2018) are able to iden-
tify four classes of complex syntactic structures:
passive clauses, relative clauses, object clauses, and
adverbial clauses. Identifying these four classes is
motivated by the characteristics of administrative
texts. Passive clauses and infinitive verbs are often
used in administrative texts to conceal the presence
of the writer (Cusin-Berche, 2003), while other
types of clause are used to provide the reader with
as many detailed information as possible (Cather-
ine, 1968). Parentheticals are also identified, as
they are prone to hinder the reading process.

In a second step, the tagged text is further pro-
cessed to carry out lexical analyses of the text. Dur-
ing this step, three types of lexical difficulties are
identified. Firstly, rare words are detected relying
on frequencies from Lexique3 (New et al., 2007),
based on a threshold set empirically.

Secondly, technical terms are detected with
some heuristics able to detect both simple terms
and multi-word terms – a task that remains a
challenge for current fully automatic approaches
(da Silva Conrado et al., 2014) – that are included in
a database. The database has been compiled from
three different sources: (1) the official lists from the
Belgian administration; (2) a list of terms extracted
from a corpus of 115 administrative texts follow-
ing the automatic extraction approach of Chung
(2003) and then manually validated; and (3) a book
describing various characteristics of the administra-
tive style and listing administrative terms (Cather-
ine, 1968). At the end of the collection phase, we

obtained 3,382 terms, some of which could, how-
ever, not be considered as difficult (e.g. academy,
degree, jury, trainee, etc.). We therefore filtered the
resource by excluding words found in the list of the
8000 simplest words in French (Gougenheim et al.,
1964). As result, the final term database amounts
to 2,481 entries.

Thirdly, abbreviations are automatically detected
as they are known to produce reading errors, espe-
cially when they are used by specialized writers
to communicate to non-specialized readers. For
instance, Sinha et al. (2011) report that the Joint
Commission on Accreditation of Healthcare Orga-
nizations estimated that 5% of medical errors are
due to abbreviations. In our system, abbreviations
are detected based on an abbreviation database,
collected from Belgian public authorities. The
database relate the extended version(s) of abbre-
viations (e.g. communauté française, Institutions
publiques de protection de la jeunesse) with the
corresponding abbreviated forms (e.g. comm. fr.;
IPPJ and I.P.P.J. respectively). The list provided
by public authorities was supplemented via a semi-
automatic extraction process applied to our corpus
of 115 administrative texts. This extraction process
was based on manual rules maximizing the recall,
in order to extract all forms prone to be abbrevi-
ations. Then, we filtered out all forms already in
our list and manually checked the remaining ones,
obtaining a final database with 2,022 entries.

3.2 Description of the platform

Leveraging the NLP analysis described above, the
AMesure platform provides four types of diagnoses
about texts to its users, as illustrated in Figure 1.
The first diagnosis (marked by the letter A in the
Figure 1) is a global readability score for the text.
It is computed by a readability formula, special-
ized for administrative texts, that we previously
developed (François et al., 2014). The output score
ranges from 1 (for very easy texts) to 5 (for very
complex texts) and is yielded by a support vector
machine classifier combining 10 linguistic features
of the text (e.g. word frequency, proportion of
complex words, type-token ratio, mean length of
sentence, ratio of past participle forms, etc.).

The second type of diagnosis (letter B in Fig-
ure 1) is more detailed and includes 11 readability
yardsticks, each corresponding to one linguistic
characteristic of the text known to affect reading.
The psycholinguistic rationales for the choice of
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these yardsticks have been discussed in length in
François (2011), who has defined a set of 344 vari-
ables. Among this set, we have retained 11 yard-
sticks based on a correlational analysis (François
et al., 2014). In the interface, the yardsticks are
organised according to three linguistic dimensions
of texts: lexicon, syntax, and textual aspects. The
five lexical yardsticks capture (1) the percentage of
difficult words, based on the list of 8000 simplest
words in French (Gougenheim et al., 1964); (2)
the number of rare words (see Section 3.1); (3) the
density of abbreviations (see Section 3.1); (4) the
proportion of unexplained abbreviations; and (5)
the number of technical words (see Section 3.1).
The four syntactic yardsticks include (1) the diffi-
culty of the syntactic structures estimated roughly
as the ratio of conjunctions and pronouns; (2) the
mean number of words per sentence; (3) the ra-
tio of structures considered as complex by plain
language guides among all syntactic structures de-
tected (see Section 3.1); and (4) the total number
of sentences. As regards the two textual yardsticks,
they include (1) a score corresponding to the level
of personalization of the texts (text using pronouns
at the first or at the second person are considered to
be more readable (Daoust et al., 1996)); and (2) a
score corresponding to the average intersentential
coherence of the text. It is measured as the average
cosine score between all adjacent sentences of the
text, each of them being represented as a vector in
a latent space (Foltz et al., 1998).

To render all these yardsticks more visual and
more understandable, we project each of them on a
five-degree scale, represented by colored feathers.
The more feathers a yardstick gets, the more com-
plex this linguistic dimension is supposed to be for
reading. To transform the yardstick values into a
five-degree scale, we applied the following method.
Our corpus of 115 administrative texts has been an-
notated by experts on a five-degree difficulty scale
(François et al., 2014). For each of our 11 yard-
sticks, we then estimated its Gaussian distribution
(mean and standard deviation) on the corpus for
each of the five levels. At running time, we simply
compute the probability of the yardstick score for
a given text to be generated by each of these five
Gaussians and assign it the level corresponding to
the higher probability.

The third type of diagnosis allows to directly
visualize the text in which all complex phenomena
annotated during the analysis step (see Section 3.1)

Figure 1: Result of a text analysis in AMesure.

are underlined, namely the three types of subordi-
nated clauses, passives, parentheticals, rare words,
abbreviations, and technical terms. For each of
these categories, AMesure allows the user to select
a tab showing only the respective phenomenon. It
also offers a global view of the text in which com-
plex sentences are highlighted in various shades
of yellow (see letter C in Figure 1): the darker the
yellow, the more difficult the sentence is to read.

Finally, the last functionality offers writing ad-
vice related to the complex phenomena detected
(letter D in Figure 1). Two forms of advice are
provided. On the one hand, we apply a list of 7
rules to filter out syntactic structures detected dur-
ing the NLP analysis that should not be considered
as complex. For instance, infinitive, participial, or
even object clauses can be very short (e.g. quand
on décide d’avoir un bébé or le logement qu’il
occupe) and are therefore not at all a burden for
reading. The filtering rules were defined based on
writing guidelines from three plain language guides
for French (Gouvernement du Québec, 2006; Min-
istère de la Communauté française de Belgique,
2010; European Union, 2011). We also extracted
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from these guides some pieces of advice that are
shown to users of the platform when a difficult syn-
tactic phenomenon is detected. Examples of advice
are: “This sentence has 50 words. Please avoid
sentences longer than 15 words” or “This sentence
has three subordinate clauses. Please avoid having
so many subordinate clauses in a sentence”. On
the other hand, we also offer simpler synonyms for
words detected as rare words or technical words.
The synonyms are taken from ReSyf (Billami et al.,
2018), a lexical resource in which synonyms are
ranked by difficulty. For now, we show the three
simpler synonyms found in ReSyf for a given dif-
ficult word, letting the user to pick the best one.
More advanced methods based on embeddings are,
however, considered at the moment to improve the
automatic selection.

4 Evaluation of the system

To assess the performance of the various extraction
algorithms included in our platform, three linguists
manually annotated, in 24 administrative texts, the
following five phenomena: passive structures, rela-
tive clauses, object clauses, adverbial clauses, and
abbreviations6. The work of annotators was sup-
ported by guidelines focusing on difficult cases7.
At the end of the annotation process, the expert
agreement was evaluated using Fleiss’ kappa (see
Table 1). The agreement was high for the rather
easy tasks of annotating abbreviations and passive
clauses. Detecting subordinate clauses is, however,
a much more complex task, if only because it is
also necessary to identify the type of structures. A
common reference version was then built through
consensus-building.

This gold-standard version of the annotation was
manually compared to the output of AMesure for
the 24 texts in the test set. Table 1 reports the re-
sults of this evaluation in terms of recall, precision,
and F1-score for the different types of structures.
Performance for the detection of passive clauses,
relative clauses, adverbial clauses and abbrevia-
tions are satisfactory (F1 is above .8). By com-
parison, Zilio et al. (2017), who detect syntactic
structures in English, obtained a precision of 0.88

6The detection of rare words and complex technical terms
could not be assessed according to the same protocol as what
matters is the psychological relevance of their identification
for a given audience of readers. Further experiments with
subjects are required to assess these two dimensions.

7For instance, infinitive clauses led by a semi-modal auxil-
iary such as devoir (ought to) or pouvoir (can) were discussed,
as contradictory points of view can be found in grammars.

Phenomena R P F1 κ
Passive clauses 0.92 0.92 0.92 0.92
Subordinated clauses (all) 0.84 0.87 0.85 0.47

Relative clauses 0.83 0.88 0.86 /
Object clauses 0.56 0.42 0.48 /
Adverbial clauses 0.78 0.83 0.8 /

Abbreviations 0.73 0.9 0.8 0.97
Total (macro-average) 0.83 0.9 0.86 0.79

Table 1: Recall (R), precision (P), F1, percentage of
agreement and Fleiss’ κ scores for the five phenomena
detected in the platform.

and a recall of 0.62 for the relative clauses and a
recall of 0.66 and a precision of 0.94 for infinitive
clauses introduced by the particle ”TO”. Chinkina
and Meurers (2016) reached a recall of 0.83 and a
precision of 0.71 for relative clauses. However, our
system has trouble detecting object clauses, which
have a F1-score of only 0.48. Investigation of the
confusion matrix reveals that 77% of object clauses
(37 out of 48) are correctly detected by AMesure,
but 17 out of 37 are wrongly classified as adver-
bial clauses. This is a limited issue, as advice can
still be provided even if the system gets the type of
clause wrong.

5 Conclusion

We have presented the AMesure system, which
automatically analyzes the readability of French
administrative texts based on classic readability
metrics, but also on guidelines from plain language
books. The system is freely available through a web
platform and is aimed to help writers of adminis-
trative texts to produce more accessible documents
and forms. To that purpose, it offers a global read-
ability score for the texts, 11 readability yardsticks,
a detailed diagnosis in which difficult linguistic
words and syntactic structures are highlighted, and
some plain language advice. We also carried out a
manual evaluation of the system based on 24 admin-
istrative texts annotated by linguists. Performance
is satisfactory, except as regards the identification
of object clauses. More work is needed on this
category, especially to distinguish it from adver-
bial clauses. We also plan to improve the system
providing simpler synonyms by adding a seman-
tic filter based on embedding models. Finally, we
plan to conduct a study with real writers of admin-
istrative texts to measure the perceived usefulness
of AMesure as a whole, but also the usefulness of
each functionality.
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au choix et à la rédaction de textes pour
l’enseignement. Revue québécoise de linguistique,
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le cas des membres du centre d’expertise des grands
organismes. Langue, médiation et efficacité commu-
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S. Nisioi, S. Štajner, S. P. Ponzetto, and L.P. Dinu. 2017.
Exploring neural text simplification models. In Pro-
ceedings of ACL2017: Short Papers), pages 85–91.

A. Nord. 2018. Plain language and professional writ-
ing : A research overview. Technical report, Lan-
guage Council of Sweden.

OECD. 2016. Skills Matter : Further Results from the
Survey of Adult Skills. OECD Publishing, Paris.

G. Paetzold and L. Specia. 2016. Unsupervised lexical
simplification for non-native speakers. In Thirtieth
AAAI Conference on Artificial Intelligence.

G. Paetzold and L. Specia. 2017. Lexical simplification
with neural ranking. In Proceedings of EACL2017:
Short Papers, pages 34–40.

Plain Language Action and Information Network. 2011.
Federal plain language guidelines.

J. Qiang, Y. Li, Y. Zhu, Y. Yuan, and X. Wu. 2020. Lex-
ical simplification with pretrained encoders. In Pro-
ceedings of AAAI 2020, pages 8649–8656.

H. Saggion. 2017. Automatic text simplification. Syn-
thesis Lectures on Human Language Technologies,
10(1):1–137.

C. Scarton, M. Oliveira, A. Candido Jr, C. Gasperin,
and S. Aluı́sio. 2010. Simplifica: a tool for author-
ing simplified texts in brazilian portuguese guided
by readability assessments. In Proceedings of the
NAACL HLT 2010: Demonstration Session, pages
41–44.

M. Shardlow. 2014. A survey of automated text sim-
plification. International Journal of Advanced Com-
puter Science and Applications, 4(1):58–70.

A. Siddharthan. 2011. Text simplification using typed
dependencies: A comparison of the robustness of
different generation strategies. In Proceedings of the
13th European Workshop on Natural Language Gen-
eration, pages 2–11.

A. Siddharthan. 2014. A survey of research on text
simplification. ITL-International Journal of Applied
Linguistics, 165(2):259–298.

M. da Silva Conrado, A. Di Felippo, T.A.S. Pardo, and
S.O. Rezende. 2014. A survey of automatic term
extraction for brazilian portuguese. Journal of the
Brazilian Computer Society, 20(1):12.

S. Sinha, F. McDermott, G. Srinivas, and P.W.J.
Houghton. 2011. Use of abbreviations by healthcare
professionals: what is the way forward? Postgradu-
ate medical journal, 87(1029):450–452.

L. Specia. 2010. Translating from Complex to Sim-
plified Sentences. In Proceedings of Propor 2010.,
pages 30–39.

S.M. Yimam and C. Biemann. 2018. Demonstrating
par4sem-a semantic writing aid with adaptive para-
phrasing. In Proceedings of EMNLP 2018: System
Demonstrations, pages 48–53.

X. Zhang and M. Lapata. 2017. Sentence simplifica-
tion with deep reinforcement learning. In Proceed-
ings of EMNLP 2017, pages 584–594.

Z. Zhu, D. Bernhard, and I. Gurevych. 2010. A mono-
lingual tree-based translation model for sentence
simplification. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 1353–1361. Association for Computational
Linguistics.

L. Zilio, R. Wilkens, and C. Fairon. 2017. Using nlp
for enhancing second language acquisition. In Pro-
ceedings of RANLP 2017, pages 839–846.

7



Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
and the 10th International Joint Conference on Natural Language Processing: System Demonstrations, pages 8–13

December 4 - 7, 2020. ©2020 Association for Computational Linguistics

AUTONLU: An On-demand Cloud-based Natural Language
Understanding System for Enterprises

Nham Le 1,3 ∗ Tuan Manh Lai 2,3 ∗ Trung Bui 3 Doo Soon Kim 3

1 University of Waterloo, Ontario, Canada
2 University of Illinois at Urbana-Champaign, USA

3 Adobe Research, San Jose, USA

Abstract

With the renaissance of deep learning, neural
networks have achieved promising results on
many natural language understanding (NLU)
tasks. Even though the source codes of many
neural network models are publicly available,
there is still a large gap from open-sourced
models to solving real-world problems in en-
terprises. Therefore, to fill this gap, we intro-
duce AUTONLU, an on-demand cloud-based
system with an easy-to-use interface that cov-
ers all common use-cases and steps in devel-
oping an NLU model. AUTONLU has sup-
ported many product teams within Adobe with
different use-cases and datasets, quickly deliv-
ering them working models. To demonstrate
the effectiveness of AUTONLU, we present
two case studies. i) We build a practical NLU
model for handling various image-editing re-
quests in Photoshop. ii) We build powerful
keyphrase extraction models that achieve state-
of-the-art results on two public benchmarks.
In both cases, end users only need to write a
small amount of code to convert their datasets
into a common format used by AUTONLU.

1 Introduction

In recent years, many deep learning methods have
achieved impressive results on a wide range of
tasks, ranging from question answering (Seo et al.,
2017; Lai et al., 2018b) to named entity recogni-
tion (NER) (Lin et al., 2019; Jiang et al., 2019) to
intent detection and slot filling (Wang et al., 2018;
Chen et al., 2019). Even though the source codes of
many models are publicly available, going from an
open-sourced implementation of a model for a pub-
lic dataset to a production-ready model for an in-
house dataset is not a simple task. Furthermore, in
an enterprise, only few engineers are familiar with

∗Equal contributions. The work was conducted while the
first two authors interned at Adobe Research.

deep learning research and frameworks. There-
fore, to facilitate the development and adoption of
deep learning models within Adobe, we introduce a
new system named AUTONLU. It is an on-demand
cloud-based system that enables multiple users to
create and edit datasets and to train and test dif-
ferent state-of-the-art NLU models. AUTONLU’s
main principles are:

• Ease of use. AUTONLU aims to help users
with limited technical knowledge to train and
test models on their datasets. We provide GUI
modules to accommodate the most common
use-cases, from creating/cleaning a dataset to
training/evaluating/debugging a model.
• State-of-the-art models. Users should not

sacrifice performance for ease-of-use. Our
built-in models provide state-of-the-art per-
formance on multiple public datasets. AU-
TONLU also supports hyperparameter tuning
using grid search, allowing users to fine-tune
the models even further.
• Scalability. AUTONLU aims to be deployed

in enterprises where computing costs could be
a limiting factor. We provide an on-demand ar-
chitecture so that the system could be utilized
as much as possible.

At Adobe, AUTONLU has been used to train
NLU models for different product teams, ranging
from Photoshop to Document Cloud. To demon-
strate the effectiveness of AUTONLU, we present
two case studies. i) We build a practical NLU
model for handling various image-editing requests
in Photoshop. ii) We build powerful keyphrase ex-
traction models that achieve state-of-the-art results
on two public benchmarks. In both cases, end users
only need to write a small amount of code to con-
vert their datasets into a common format used by
AUTONLU.
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2 Related work

Closely related branches of work to ours are toolk-
its and frameworks designed to provide a suite of
state-of-the-art NLP models to users (Gong et al.,
2019; Akbik et al., 2019; Wang et al., 2019; Zhu
et al., 2020; Qi et al., 2020). However, several
of these works do not have a user-friendly inter-
face. For example, Flair (Akbik et al., 2019),
NeuronBlocks (Gong et al., 2019), and jiant
(Wang et al., 2019) require users to work with
command-line interfaces. Different from these
works, an end-user with no programming skill can
still create powerful NLU models using our sys-
tem. Furthermore, most previous works are not
explicitly designed for enterprise settings where
use-cases and business needs can be vastly differ-
ent from team to team. On the other hand, since
AUTONLU is an on-demand cloud-based system,
it provides more flexibility to end users.

In 2018, Google introduced AutoML Natural
Language1, a platform that enables users to build
and deploy machine learning models for various
NLP tasks. Our system is different from AutoML
in the following aspects. First, AutoML uses neural
architecture search (NAS) (Elsken et al., 2019) to
find the best model for the task of interest. As users
are not allowed to simply choose an existing archi-
tecture, the process can be time-consuming even for
simple tasks (e.g., 2∼3 hours). On the other hand,
AUTONLU provides a rich gallery of existing ar-
chitectures for NLU. In future work, we are also
planning to integrate NAS into AUTONLU. Sec-
ond, as a self-hosted solution, AUTONLU provides
product teams of Adobe with total control over
their datasets and trained models. This enhances
privacy and provides more flexibility at the same
time. For example, as of writing, there is no way to
download a trained model from AutoML to a local
machine to use it for a subsequent task. AUTONLU
supports it out-of-the-box.

3 AUTONLU

3.1 Components and architecture

Figure 1 shows the overall architecture of our sys-
tem. There are 3 main components:
• A web application that serves as the frontend

to the users. The most important component
of the application is a Scheduler that moni-

1https://cloud.google.com/
natural-language

Web app

Micro server

Model
On-demand Cluster

Scheduler
Cloud Storage 

System

Model

Model ID

Test 
input

Output

Figure 1: AUTONLU architecture. In the figure is the
dataflow when the user calls to the /test endpoint.

tors the status of the cluster, then assigns jobs
to the most appropriate instances, as well as
spawns more/shuts off instances based on the
workload to minimize the computing costs.
The user interface is discussed in more detail
in Section 3.3.
• A cloud storage system that stores datasets,

large pre-trained language models (e.g., BERT
(Devlin et al., 2018)), trained NLU models,
and models’ metadata. We use Amazon S3 as
our storage system, due to its versioning sup-
port and data transfer speed to EC2 instances.
• An on-demand cluster that performs the ac-

tual training and testing. While the Lambda
computing model seems to be a better fit at
first thought, after careful consideration, we
choose EC2 instances to prioritize user ex-
perience over some costs: in our setting, we
have multiple concurrent users with small to
medium datasets. If the training itself takes
only 10 minutes, any amount of wait time is
significant. By maintaining a certain number
of always-on instances, users will always have
instant interaction with the system without any
delay. Cluster’s instances are initiated using
prebuilt images, which we discuss in Section
3.2.

3.2 Instance image

Regardless of the underlying model, in each pre-
built image, an included webserver is configured to
serve the following endpoints:
• /train that connects to the training code of

the underlying model.
• /is free that returns various information

about the utilization of the instance (e.g, GPU
memory usage).
• /test that connects to the testing code of

the underlying model.
• /notebook that connects to the Jupyter Lab

notebook’s URL packaged in the image.
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Figure 2: Dataset view of AUTONLU.

Each image also exposes an SSH connection, au-
thenticated using LDAP. Experienced users can
also make use of the packaged TensorBoard to
monitor the training process.

3.3 User Interface
3.3.1 Dataset Tool
Public and internal datasets come in many different
formats, as they may have been collected for many
years and annotated in different ways. To mitigate
that, we develop an intermediate representation
(IR) that is suitable for many NLU tasks and write
frontends to convert common dataset formats to
said IR. We also provide a converter that converts
this IR back into other dataset formats, making
converting a dataset from one format to another
trivial. In our setting (an enterprise environment),
a dataset frontend converter is the only part that
may need to be written by an end-user, and we
believe that it is significantly simpler than building
the whole NLU pipeline.

Figure 2 shows the dataset view. Visualizing and
editing datapoints are straightforward, and do not
depend on the source/target dataset format (Figure
3). While it is not common to edit a public dataset,
the same is typically not true for internal datasets.
Internal datasets may need to be modified and ex-
panded based on business needs and use-cases.

3.3.2 Analysis Tool
We include TensorBoard in our prebuilt images to
display common training metrics. However, since
our main users are typically product teams with
limited experience in machine learning, we also
develop interactive views to analyze the trained re-
sults. For example, Figure 4 shows our interactive
confusion matrix view: rather than just knowing
that there are 14 instances in which a mention with

Figure 3: Edit/Add a datapoint.

Figure 4: An example interactive confusion matrix.

the label “Person” is misclassified as “Location”,
users can click on a cell in the matrix to see which
instances are misclassified. This is even more im-
portant for internal datasets: the errors may actually
be in the dataset instead of the model, and we can
catch it using this view. In fact, as we will demon-
strate in Section 4.1, we have caught many labeling
errors in our internal datasets using this tool.

3.3.3 Resource Management Tool
In most use-cases, AUTONLU automatically han-
dles resource management for the users. However,
if an advanced user wants to manually manage
instances’ life cycle, assign a task to a specific in-
stance, or to debug an instance, we provide a GUI
to do so as well. Concretely, we provide the follow-
ing functionalities:
• Create an instance with a desired hardware

configuration and docker image. By default,
AUTONLU creates an instance with 4 CPU
cores, 8 GBs of RAM, and 1 NVIDIA V100
GPU, which are all configurable to the user’s
desire. The default docker image is the one
containing all the supported models, but users
can choose from one of the prebuilt images
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that contains just a single model if that’s their
use-case.
• Assign a task to an instance. During training

and testing, users can choose whether to let
AUTONLU to distribute the task or to assign
the task to a specific instance: it is common
for a product team to reserve a few instances
for themselves and want to use just those in-
stances.
• Access an instance’s shell and files. Since

Ease-of-use is one of our core design princi-
ples, we package in all of our prebuilt images
a Jupyter Lab server, with the intention of us-
ing it as a lightweight IDE/shell environment.
While we also expose SSH connection to each
instance, we expect users to find the Jupyter
Lab a more friendly approach.

4 Case studies

4.1 NLU Models for Image-Editing Requests

One of the first clients of AUTONLU was the
Photoshop team, as we want to build a chat-
bot using their image-editing requests dataset
(Manuvinakurike et al., 2018; Brixey et al., 2018).
The dataset was collected in many years, annotated
both using Amazon Mechanical Turk and by our
in-house annotators. Cleaning this dataset is a chal-
lenge in itself, and in this case study, we aim to
create an effective workflow to train a state-of-the-
art model and clean the dataset at the same time.

We first convert the dataset into our IR, and train
a simple model using the fastest algorithm provided
by AUTONLU. This initial model provides us with
a rough confusion matrix, and we manually inspect
cells with the biggest values. Those cells give us an
insight into some systematic labeling errors, such
as in Figure 5. We then fix those labeling errors,
either by using the dataset interface in AUTONLU
, or by writing scripts. With this new dataset, we
retrain another model and repeat the process.

Once the fast model performance is comparable
to its performance on some public datasets, such
as ATIS (Hemphill et al., 1990), we switch to train
and fine-tune a bigger model. More specifically, we
employ a joint intent classification and slot filling
model based on BERT (Chen et al., 2019), which
is already implemented in AUTONLU. By the end
of this process, we end up with a powerful NLU
model, as reported in Table 1, and a cleaned dataset
that is useful for subsequent tasks. The NLU model
created using AUTONLU outperforms a compet-

True l a b e l : B−a d j u s t b r i g h t n e s s
Pred l a b e l : B−a d j u s t c o l o r
[ [ CLS ] l i g h t ## en t h e v e g e t a b l e s [ SEP ] ]
[ [ CLS ] make t h e d i r t d a r k e r i n brown

c o l o r [ SEP ] ]

Figure 5: 2 labeling errors captured by the interactive
confusion matrix near the end of the training-cleaning
process. The ## is the artifact from BERT tokenizer.

Model
Metrics

Intent SP SR SF1
JIS (2016) 0.832 0.850 0.726 0.783

RASA 0.924 0.833 0.605 0.701
AUTONLU 0.954 0.869 0.854 0.862

Table 1: Results on the image-editing requests dataset.
Intent accuracy, slot precision, slot recall, and slot F1
scores are reported. Scores of our models are averaged
over three random seeds.

ing model created using RASA (Bocklisch et al.,
2017) and a joint model of intent determination
and slot filling (JIS) (Zhang and Wang, 2016) by a
large margin.

4.2 Keyphrase Extraction Models

Keyphrase extraction is the task of automatically
extracting a small set of phrases that best describe
a document. As keyphrases provide a high-level
summarization of the considered document and
they give the reader some clues about its contents,
keyphrase extraction is a problem of great interest
to the Document Cloud team of Adobe. In this case
study, we aim to develop an effective keyphrase
extraction system for the team.

Similar to recent works on keyphrase extraction
(Sahrawat et al., 2020), we formulate the task as a
sequence labeling task. Given an input sequence of
tokens x = {x1, x2, ..., xn}, the goal is to predict
a sequence of labels y = {y1, y2, ..., yn} where
yi ∈ {B,I,O}. Here, label B denotes the begin-
ning of a keyphrase, I denotes the continuation
of a keyphrase, and O corresponds to tokens that
are not part of any keyphrase. This formulation is
naturally supported by our platform, as the task of
slot filling in NLU is basically a sequence label-
ing task. We first collect two public datasets for
keyphrase extraction: Inspec (Hulth, 2003) and SE-
2017 (Augenstein et al., 2017). We then convert
them to the common intermediate representation.
After that, we simply use AUTONLU to train and
tune models. We employ the BiLSTM-CRF archi-
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Model
Datasets

Inspec SE-2017
KEA (2005) 0.137 0.129

TextRank (2004) 0.122 0.157
SingeRank (2008) 0.123 0.155
SGRank (2015) 0.271 0.211

Transformer (2020) 0.595 0.522
BERT (AUTONLU) 0.596 0.537

SciBERT (AUTONLU) 0.598 0.544

Table 2: Results on Inspec and SE-2017 datasets. F1
scores are reported. Scores of our models are averaged
over three random seeds.

tecture (Huang et al., 2015) that is already available
in AUTONLU. We experiment with two different
pre-trained language models as the first embedding
layer: BERT (Devlin et al., 2018) and SciBERT
(Beltagy et al., 2019). Table 2 shows the results on
the datasets. We see that both models created us-
ing AUTONLU outperform previous models for the
task, achieving new state-of-the-art results. As AU-
TONLU can automatically perform hyperparame-
ter tuning using grid search, models produced by
AUTONLU typically have satisfying performance
(assuming that the selected underlying architecture
is expressive enough). It is worth noting that during
this entire process, the only code we need to write
is for converting the Inspec and SE-2017 datasets
to the IR.

5 Conclusion

In this work, we introduce AUTONLU, an on-
demand cloud-based platform that is easy-to-use
and has enabled many product teams within Adobe
to create powerful NLU models. Our design princi-
ples make it an ideal candidate for enterprises who
want to have an NLU system for themselves, with
minimal deep learning expertise. AUTONLU ’s
code is in the process to be open-sourced, and we
invite contributors to contribute. In future work,
we will implement more advanced features such as
transfer learning, knowledge distillation and neu-
ral architecture search, which have been shown to
be useful in building real-world NLP systems (Lai
et al., 2018a; Jiang et al., 2019; Lai et al., 2019,
2020; Klyuchnikov et al., 2020). Furthermore, we
will extend our system to have more advanced ana-
lytics features (Murugesan et al., 2019), and to bet-
ter support other languages (Nguyen and Nguyen,
2020).
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Abstract

Despite the growth of e-commerce, brick-and-
mortar stores are still the preferred destina-
tions for many people. In this paper, we
present ISA, a mobile-based intelligent shop-
ping assistant that is designed to improve shop-
ping experience in physical stores. ISA assists
users by leveraging advanced techniques in
computer vision, speech processing, and natu-
ral language processing. An in-store user only
needs to take a picture or scan the barcode of
the product of interest, and then the user can
talk to the assistant about the product. The
assistant can also guide the user through the
purchase process or recommend other similar
products to the user. We take a data-driven
approach in building the engines of ISA’s nat-
ural language processing component, and the
engines achieve good performance.

1 Introduction

Shopping in physical stores is a popular option
for many people. Each week, a lot of people en-
ter supermarkets in which they are immersed with
many different product choices. In many shopping
centers, customer service representatives (CSRs)
are employed to answer questions from customers
about products. However, a customer may experi-
ence long waiting time for assistance if all CSRs
are busy interacting with other customers. There-
fore, automated solutions can increase customer
satisfaction and retention.

In this paper, we introduce a mobile-based in-
telligent shopping assistant, ISA, which is based
on advanced techniques in computer vision, speech
processing, and natural language processing. A
user just needs to take a picture or scan the bar-
code of the product of interest. After that, the user
can ask ISA a variety of questions such as product

1 The work was conducted while the first author interned
at Adobe Research.

Figure 1: ISA assists users at physical stores

features, specifications and return policies. The as-
sistant can also guide the user through the purchase
process or recommend other similar products. This
work can be used as the first step in fully automat-
ing customer service in shopping centers. With
ISA, no CSRs will be needed as customers can
simply turn to their phones for assistance. We have
developed a fully functional prototype of ISA.

The rest of the paper is organized as follows.
Section 2 introduces some related work. Section 3
gives an overview of the design and implementa-
tion of the system. Finally, Section 4 concludes the
paper and suggests future directions.

2 Related Work

The most closely related branches of work to
ours are probably customer service chatbots for
e-commerce websites. For example, SuperAgent
(Cui et al., 2017) is a powerful chatbot that lever-
ages large-scale and publicly available e-commerce
data. The researchers demonstrate SuperAgent as
an add-on extension to mainstream web browsers.
When a user visits a product page, SuperAgent
crawls the information of the product from multi-
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Figure 2: The system overview of ISA

ple data sources within the page. After that, the
user can ask SuperAgent about the product. Un-
like SuperAgent, ISA is designed to assist users at
physical stores (Figure 1). In addition to natural
language processing techniques, ISA also needs
to use techniques in computer vision and speech
processing when interacting with the users.

3 System Description

3.1 Overview

When an in-store user wants to get more informa-
tion about a specific product, the user just needs to
take a picture or scan the barcode of the product.
The system then retrieves the information of the
product of interest from a database by using com-
puter vision techniques. After that, the user can ask
natural language questions about the product spec-
ifications to the system. The user can either type
in the questions or directly speak out the questions
using voice. ISA is integrated with both speech
recognition and speech synthesis abilities, which
allows users to ask questions without typing.

Figure 2 shows the system overview of ISA. As
the figure shows, a mobile client communicates
with the backend through a well-defined HTTP
REST API. This creates a separation between the
client and the server, which allows ISA to be scaled
without much difficulty. The backend consists of
three main components: 1) speech processing, 2)
computer vision, 3) natural language processing.
Users can chat with ISA in speech. The speech
recognition and speech synthesis are implemented
by calling third-party services. The computer vi-
sion component is responsible for recognizing the
products that the user is facing. Given an image

Intent Types Example Query
Product Specification QA How heavy is this chair?

Recommendation Show me some other items
Purchase I want to buy this.
Chit Chat How are you doing?

Table 1: Intent Types

of a product of interest, a fine-grained visual ob-
ject classification model will be used to identify
the product and retrieve its information. This task
is challenging because many products are visually
very similar (e.g., washers and dryers usually have
similar shape). Therefore, we enhance the com-
ponent with highly accurate standard algorithms
for barcode recognition. In case it is difficult for
the object classification model to identify the prod-
uct of interest accurately, the user can simply scan
the barcode of the product. Finally, the natural
language processing component is responsible for
generating a response from a text query or ques-
tion. We will next detail each part of the natural
language processing component in the following
sections.

3.2 Intent Recognition
When ISA receives a query from a user, the in-
tent recognition engine is used to determine the
intent of the query. Based on the recognized in-
tent, the appropriate domain-specific engine will
be triggered. We define four different types of in-
tent as shown in Table 1. Intent detection can be
naturally treated as a classification problem. In this
work we build a random forest model (Breiman,
2001) for the problem and it achieves good per-
formance. Other popular classifiers like support
vector machines (Haffner et al., 2003) and deep
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Figure 3: Answering questions regarding product spec-
ifications

neural network methods (Sarikaya et al., 2011) can
also be applied in this case.

We create a dataset of 500 different queries and
use it to build a random forest (RF) for intent classi-
fication. Approximately 2/3 of the cases are used as
training set, whereas the rest (1/3) are used as test
set, in order to estimate the model’s performance.
We create a bag-of-words feature vector for each
query and use it as input for the RF. The number
of trees in the forest is set to be 80. For each node
split during the growing of a tree, the number of
features used to determine the best split is set to
be

√
k where k is the total number of features of

the dataset. The accuracy of the trained RF model
evaluated on the test set is 98.20%.

3.3 Product Specification QA

The product specification QA engine is used to
answer questions regarding the specifications of a
product. For every product, there is a list of specifi-
cations in the form of (specification name, specifi-
cation value). We formalize the task of the engine
as follows: Given a question Q about a product P
and the list of specifications (s1, s2, ..., sM ) of P ,
the goal is to identify the specification that is most
relevant to the question Q. M is the number of
specifications of the product, and si is the sequence
of words in the name of the ith specification. In
this formulation, the task is similar to the answer
selection problem. ‘Answers’ shall be individual

Figure 4: ISA recommends similar products to the user

product specifications.

Previous methods for answer selection typically
relies on feature engineering, linguistic tools, or
external resources (Wang and Manning, 2010; Heil-
man and Smith, 2010; Yih et al., 2013; Yao et al.,
2013). Recently, with the renaissance of neural
network models, many deep learning based meth-
ods have been proposed to tackle the answer se-
lection problem (Rao et al., 2016; Zhiguo Wang,
2017; Bian et al., 2017; Shen et al., 2017; Tran
et al., 2018; Lai et al., 2018a; Tay et al., 2018;
Lai et al., 2018b,c; Rao et al., 2019; Lai et al.,
2019; Garg et al., 2019; Kamath et al., 2019; Laskar
et al., 2020). These deep learning based methods
typically outperform traditional techniques with-
out relying on any feature engineering or expen-
sive external resources. For example, the IWAN
model proposed in (Shen et al., 2017) achieves
competitive performance on public datasets such
as TrecQA (Wang et al., 2007) and WikiQA (Yang
et al., 2015).

Using Amazon Mechanical Turk, a popular
crowdsourcing platform, we create a dataset of
6,922 questions that are related to 369 specifica-
tions and 148 products listed in the Home Depot
website. We implement the IWAN model and train
the model on the collected dataset. The top-1 ac-
curacy, top-2 accuracy, and top-3 accuracy of the
model evaluated on a held-out test set are 85.60%,
95.80%, and 97.60%, respectively.
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Figure 5: The user purchased an office chair with 5%
discount

In production, given a question about a product,
the trained model is used to rank every specification
of the product based on how relevant the specifica-
tion is. We select the top-ranked specification and
use it to generate the response sentence using pre-
defined templates (Cui et al., 2017). An example
of the product specification QA engine’s outputs
is shown in Figure 3. The first question from the
user is matched to the product weight specifica-
tion, whereas the second question is matched to the
return policy specification.

3.4 Recommendation

The recommendation engine is responsible for giv-
ing new suggestions and recommendations to users.
When a user wants to look for similar products (e.g.,
by saying “Are there any other similar products?”),
the engine will search the database for related prod-
ucts and then send the information of them to the
app for displaying to the user (Figure 4).

3.5 Purchase

The purchase engine is responsible for guiding the
user through the purchase process. When a user
wants to buy a specific product (e.g., by saying “I
would like to purchase this product.”), the engine
will first query the database for information such as
the product listing price, available discounts, and
user payment information. After that, the engine
will craft a special response message and send it
to the client app in the user’s mobile device. The
response message will instruct the app how to assist

the user through the purchase process or provide
personalized discounts if applicable (Figure 5).

3.6 Chit Chat

The chit chat engine is used to reply to greeting
queries such as “How are you doing?” or queries
that are off the subject such as “Is the sky blue?”.
Our approach to building the engine is based on
the sequence-to-sequence (seq2seq) framework
(Sutskever et al., 2014). The model consists of
two recurrent neural networks: an encoder and a
decoder. The encoder converts the input query into
a fixed size feature vector. Based on that feature
vector, the decoder generates the output response,
one word at a time. The model is integrated with
the global attention mechanism (Luong et al.,
2015) so that the decoder can attend to specific
parts of the input query when decoding instead of
relying only on the fixed size feature vector. We
collect about 3M query-response pairs from Reddit
and use them to train the seq2seq model. Examples
of the engine’s outputs are shown below:

Q: How are you doing?
A: I’m doing well.
Q: Is the sky blue?
A: Yes.

4 Conclusion and Future Work

In this paper, we present ISA, a powerful intelli-
gent shopping assistant. ISA is designed to achieve
the goal of improving shopping experience in phys-
ical stores by leveraging advanced techniques in
computer vision, speech processing, and natural
language processing. A user only needs to take a
picture or scan the barcode of the product of in-
terest, and then the user can ask ISA a variety of
questions about the product. The system can also
guide the user through the purchase decision or
recommend other similar products to the user.

There are many fronts on which we will be ex-
ploring in the future. Currently the product specifi-
cation QA engine answers only questions regarding
the specifications of a product. We will implement
engines for addressing other kinds of questions.
We will also extend ISA to better support other
languages and informal text (Nguyen and Nguyen,
2020; Nguyen et al., 2020; Martin et al., 2020). In
addition, we will conduct a user study to evaluate
our system in the future. Finally, we wish to extend
this work to other domains such as building an as-
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sistant for handling image editing requests (Brixey
et al., 2018).

5 Acknowledgments

The authors wish to thank Dr. Hung Bui (VinAI
Research) and Dr. Sheng Li (University of Georgia)
for their guidance and feedback on this project.

References
Weijie Bian, Si Li, Zhao Yang, Guang Chen, and

Zhiqing Lin. 2017. A compare-aggregate model
with dynamic-clip attention for answer selection. In
Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM
2017, Singapore, November 06 - 10, 2017, pages
1987–1990.

Leo Breiman. 2001. Random forests. Mach. Learn.,
45(1):5–32.

Jacqueline Brixey, Ramesh Manuvinakurike, Nham
Le, Tuan Lai, Walter Chang, and Trung Bui.
2018. A system for automated image editing
from natural language commands. arXiv preprint
arXiv:1812.01083.

Lei Cui, Furu Wei, Shaohan Huang, Chuanqi Tan,
Chaoqun Duan, and Ming Zhou. 2017. Superagent:
A customer service chatbot for e-commerce web-
sites. In Proceedings of ACL 2017, System Demon-
strations, pages 97–102. Association for Computa-
tional Linguistics.

Siddhant Garg, Thuy Vu, and Alessandro Moschitti.
2019. Tanda: Transfer and adapt pre-trained trans-
former models for answer sentence selection. arXiv
preprint arXiv:1911.04118.

P. Haffner, G. Tur, and J. H. Wright. 2003. Optimizing
svms for complex call classification. In Acoustics,
Speech, and Signal Processing, 2003. Proceedings.
(ICASSP ’03). 2003 IEEE International Conference
on, volume 1, pages I–632–I–635 vol.1.

Michael Heilman and Noah A. Smith. 2010. Tree edit
models for recognizing textual entailments, para-
phrases, and answers to questions. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, HLT ’10, pages
1011–1019, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Sanjay Kamath, B. Grau, and Y. Ma. 2019. Predicting
and integrating expected answer types into a simple
recurrent neural network model for answer sentence
selection. Computación y Sistemas, 23.

Tuan Lai, Trung Bui, Sheng Li, and Nedim Lipka.
2018a. A simple end-to-end question answering
model for product information. In Proceedings of

the First Workshop on Economics and Natural Lan-
guage Processing, pages 38–43, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Tuan Lai, Trung Bui, Nedim Lipka, and Sheng Li.
2018b. Supervised transfer learning for product in-
formation question answering. In 2018 17th IEEE
International Conference on Machine Learning and
Applications (ICMLA), pages 1109–1114. IEEE.

Tuan Lai, Quan Hung Tran, Trung Bui, and Daisuke
Kihara. 2019. A gated self-attention memory net-
work for answer selection. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5953–5959, Hong Kong,
China. Association for Computational Linguistics.

Tuan Manh Lai, Trung Bui, and Sheng Li. 2018c. A
review on deep learning techniques applied to an-
swer selection. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2132–2144, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Md Tahmid Rahman Laskar, Jimmy Xiangji Huang,
and Enamul Hoque. 2020. Contextualized embed-
dings based transformer encoder for sentence sim-
ilarity modeling in answer selection task. In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 5505–5514, Marseille,
France. European Language Resources Association.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Louis Martin, Benjamin Muller, Pedro Javier Or-
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Abstract

Creating high-quality annotated dialogue cor-
pora is challenging. It is essential to de-
velop practical annotation tools to support hu-
mans in this time-consuming and error-prone
task. We present metaCAT, which is an open-
source web-based annotation tool designed
specifically for developing task-oriented dia-
logue data. To the best of our knowledge,
metaCAT is the first annotation tool that pro-
vides comprehensive metadata annotation cov-
erage to the domain, intent, and span informa-
tion. The data annotation quality is enhanced
by a real-time annotation constraint-checking
mechanism. An Automatic Speech Recogni-
tion (ASR) function is implemented to allow
users to paraphrase and create more diversi-
fied annotated utterances. metaCAT is publicly
available for the community. 1

1 Introduction

The progress of the development of multi-turn
task-oriented dialogue systems has been largely
constrained by the availability of large-scale
high-quality data (Zhu et al., 2020). Due to
the complexity of annotating task-oriented dia-
logue data, a large number of errors have been
found in existing benchmark datasets, e.g., Multi-
WOZ (Budzianowski et al., 2018). Despite ongoing
efforts such as re-annotating the state tags based on
the original utterances in MultiWOZ 2.1 (Eric et al.,
2019) and introducing slot span annotations in Mul-
tiWOZ 2.2 (Zang et al., 2020), there is still much
room for improvement. Creating high-quality an-
notated dialogue corpora is highly challenging thus
necessitates a high level of human engagements.
It is essential to develop practical annotation tools
for supporting experts in this time-consuming and
error-prone task.

∗Corresponding author
1https://github.com/lexmen318/metaCAT

Although many NLP annotation tools exist,
LIDA (Collins et al., 2019) is the only one designed
specifically for annotating multi-turn task-oriented
benchmark dialogue datasets like MultiWOZ. As
a lightweight interactive dialogue annotator, LIDA
provides an end-to-end pipeline for converting raw
text to structured conversation data. It claims to
support machine learning-based annotation recom-
menders and provide an interface resolving inter-
annotators disagreements. LIDA is an easy-to-use
tool for tagging Boolean and String type slot values.
However, it lacks functionality for annotating com-
plex data. These data include enumeration, span
information, and multi-valued slot values for utter-
ance and other metadata such as domains, intents,
etc.

A critical step in ensuring data quality when
annotating is to perform real-time constraint-
checking. Retrospective inter-annotator disagree-
ment resolution (i.e., after an annotation task is
completed) is an option offered by LIDA. It is de-
sirable to design a function which provides real-
time constraint-checking to eliminate human errors.
For example, the slot value “dontcare” should be
avoided in the system’s annotation, because it can
only be applied to a user’s annotations. This high-
lights the need to introduce metadata to define the
scope of the annotation and, in the meantime, en-
force consistency between human inputs and un-
derlying constraints.

Data annotation task is time-consuming as there
are large amounts of typing actions involved. To
improve the efficiency of the annotation task, we
identify the need to integrate the Automatic Speech
Recognition (ASR) function to the annotation pro-
cess. By automatically converting speech to text,
ASR can speed up the data input process other-
wise done by keyboard typing. ASR can also be
used to create paraphrases of utterances, and as a
consequence, enhance the diversity of the spoken
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language. This is especially useful in scenarios
where manually collected dialogue corpora are rare
and expensive. Providing such diversity is regarded
as the key to increasing the robustness of dialogue
models trained with these data.

In this paper, we propose metaCAT, which is
a web-based task-oriented chatbot annotation tool
with complete management of users, tasks, datasets,
and dialogues. metaCAT extends LIDA by con-
tributing additional key useful features including:

• comprehensive metadata annotation coverage
to the domain, intent and span information
w.r.t. each dialogue turn;

• real-time annotation constraint-checking to
ensure data quality;

• ASR paraphrasing to speed up an annotator’s
data input process and increase the diversity
of utterances.

2 Related Work

Various annotation tools have been developed, tar-
geting NLP tasks in recent years. As depicted in
Collins et al. (2019), these tools are built for dis-
parate NLP tasks ranging from general text pro-
cessing (i.e., GATE (Cunningham et al., 2002))
to entity linking (e.g., INCEpTION (Klie et al.,
2018)). Among them, a number of dialogue anno-
tation tools are discussed below.

DialogueView (Yang and Heeman, 2005) is a
dialogue annotation tool developed for segment-
ing recorded dialogue into utterances, annotating
speech repairs, tagging speech acts, and segment-
ing dialogue into hierarchical discourse segments.
The focus is on dialogue segmentation; therefore
features for generating task-oriented dialogue data,
for example slot-value labeling, are not available.

TWIST (Pluss, 2012) supports turn segmentation
and content feature annotation. After highlighting
and creating new turn segments, users can assign
predefined content features to the targeted turn seg-
ment. The content feature includes descriptions
like “Objective”, “Subjective”, etc. However, there
is no means to support label classification and slot-
value annotation.

DART (Weisser, 2016) stands for Dialogue An-
notation and Research Tool, which is a research
environment enabling users to annotate and ana-
lyze dialogues automatically. DART was devel-
oped for linguistic research and analysis. DART

provides a convenient means for leveraging linguis-
tic resources to improve the annotation results and
test hypotheses. Only intent and enumeration slot
can be labeled via this tool. It is not designed to
create task-oriented dialogue data for training dia-
logue models, therefore lacking most of the related
features.

LIDA (Collins et al., 2019) claims to be the first
annotator capable of providing a full end-to-end
dialogue annotation pipeline. It is a web-based tool
designed specifically for task-oriented dialogue sys-
tems. It provides basic features to annotate the
Boolean or String type slot-value of each turn of
the dialogue. LIDA integrates with back-end ma-
chine learning models as annotation recommenders
to achieve semi-automatic annotating. It contains
a dedicated interface to resolve inconsistent an-
notations between different annotators. Despite
implementing several key features for annotating
task-oriented dialogue data, LIDA lacks functional-
ity supporting users to handle complex data anno-
tation, such as enumeration, span information and
multi-valued slot labeling. LIDA can only handle
inter-annotator disagreement resolution at the post-
editing stage. Real-time annotation error-checking
is out of the scope.

In this paper, we present metaCAT, which is de-
signed to fill the above gaps. Table 1 provides a
detailed comparison of the features and capabilities
provided by metaCAT and other dialogue annota-
tion tools.

3 System Overview

metaCAT consists of a front-end and a back-end.
The back-end is implemented with Flask providing
the RESTful service for data manipulation while
the front-end is developed with the VUE.js frame-
work. metaCAT uses MongoDB as a database.

The user interfaces for the administrator and an-
notators are developed independently as the roles
and privileges are different. The administrator is
responsible for uploading metadata and dialogue
data, assigning and monitoring the annotation tasks,
and downloading annotated data. Annotators are
responsible for the execution of annotating tasks
and paraphrasing tasks. All tasks are managed in
batches with each containing several to dozens of
dialogues. The intermediate results of annotation
are saved to MongoDB.

metaCAT defines a comprehensive annotation
ontology system for building task-oriented dia-
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Features metaCAT LIDA TWIST DART
Classification Labels YES YES NO YES
Edit Dialogues/Turns YES YES YES YES
Turn/Dialogue Segmentation YES YES YES YES
Recommenders YES YES NO NO
Annotation Metadata Import YES NO NO NO
Comprehensive Tagging YES Boolean/String Slot NO Intent/Enum. Slot
Paraphrasing (via ASR or Keyboard) YES NO NO NO
Real-time Constraint-Checking YES NO NO NO
Comprehensive Management YES Dialogue Only NO Dialogue Only
Multilingual Support YES NO NO NO

Table 1: A detailed comparison of the features offered by metaCAT and other dialogue annotation tools. “Com-
prehensive Tagging” indicates if a tool provides annotation for a comprehensive range of items including Ut-
terance/Domain/Intent/Slot/Span. “Comprehensive Management” refers to the management of a comprehensive
range of items including User/Task/Dataset/Dialogue. “Enum.” stands for enumeration.

logue data. We follow the way how SGD (Rastogi
et al., 2019) organizes metadata:

• General Domain: The general domain con-
tains intents with no slots, for example,
“Thank” or “Bye”;

• Service Domain: These domains involve spe-
cific intents with slots. An utterance usually
belongs to one service domain, but in some
rare cases it may contain two or more service
domains, such as an utterance booking “Hotel”
and “Taxi” at the same time;

• Intent: An utterance usually implies one or
more specific intents.

• Slot: Slots generally represent key informa-
tion carried with the intent.

The slots can be classified into enumeration type
and string type. An enumeration slot contains a list
of specific slot values without any span information.
A string slot is usually one word or short segment of
text taken from the utterance. Some special values
of a string slot exist without span information, e.g.,
“dontcare”. A slot usually corresponds to one value
but there are some slots containing multiple values,
such as names of two restaurants recommended by
the system.

In addition to offering a comprehensive meta-
data annotation ontology, metaCAT also supports
a dialogue paraphrasing feature, which requires
the annotators to paraphrase the utterances via key-
board or ASR before the annotation task. Figure 1
depicts the journey of the administrator and an-
notators in using metaCAT. A short video clip is

available in our YouTube channel 2 demonstrating
the system.

Figure 1: The journey of the administrator and annota-
tors using metaCAT.

3.1 Administrator Journey
Before creating annotation tasks, the administrator
needs to upload metadata of the dataset, which is
generated offline based on a provided template file
in JSON format. After the metadata is uploaded,
dialogue data for annotating can be imported. Cur-
rently, metaCAT supports the following formats of
dialogue data:

• Raw Format: It contains crowd-sourced raw
utterances from both the user side and the
system side without any annotation.

• Annotating Format: This is the same format
as the output file of metaCAT. It includes both
utterances and associated annotations. This
is the format used for annotating in metaCAT,
which may have been converted from formats
used in other annotating tools.

2https://youtu.be/07 PWD4 c4E
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Figure 2: Annotating Interface - to annotate “usr” and “sys” utterance. Note: 1 :menu bar; 2 : “usr” annotating
zone; 3 utterance zone; 4 : “sys” annotating zone; 5 : general intent selection; 6 : service domain selection;
7 : default intent selection; 8 :slot-value editing box; 9 :validating results; 10 :slot-value adding/deletion; 11 :slot
attached intent modification.

• Specific Format: Only one specific format is
supported currently, which is MultiWOZ for-
mat. It is automatically converted to metaCAT
format after uploaded.

• Paraphrasing Format: It applies to the para-
phrased utterances and related annotations.
Data format conversion is performed off-line
before paraphrasing.

The result data can be exported in three types of
format: annotating format, MultiWOZ format, and
paraphrasing format.

3.2 Annotator Journey

After registration, annotators can be assigned to an-
notating and/or paraphrasing tasks. By clicking the
assigned tasks, an annotator can access associated
dialogues via the main annotating and paraphrasing
interface.

3.2.1 Dialogue Annotating
As shown in Figure 2, the annotating interface is
activated by a user’s selection of the menu bar ( 1 ).
The annotating interface consists of a left “usr” an-
notating zone ( 2 ), a middle utterance zone ( 3 ) and
a right “sys” annotating zone ( 4 ). The following
steps are performed to annotate a dialogue turn:

• Utterance Editing: Manual editing may be
involved to fix typos or ASR-induced errors.

• Domain and Intent Selection: Both left and
right annotating zones provide annotators with
functions to select a general intent ( 5 ) of the
current utterance, e.g., “Thank” or “Bye”. The
service domain ( 6 ) and all related intents ( 7 )
for the current utterance can be assigned in
this zone.

• Slot Annotating: There are two ways to an-
notate a slot. A user can select a span of the ut-
terance text (i.e., a restaurant name) and drag
it to the slot-value editing box ( 8 ). The other
way is to click the slot-value editing box and
select one value from the opened drop-down
list box. For an enumeration slot, only the sec-
ond method is supported. For a string slot, the
first method is used by default and whether
the second method is available depends on the
specific slot-values defined in the metadata.

During annotating, metaCAT enables automati-
cal constraint-checking by validating the annotated
results against predefined constraints (shown as 9

in Figure 2). The constraint-checking is activated
under the circumstances depicted as below:

• Turn Switching: After an annotator finishes
one dialogue turn, the validation is performed.

• Validating or Saving: When the “Validate”
or “Save” button is clicked, metaCAT per-
forms validating for all turns of dialogues.
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Figure 3: A screenshot of the paraphrasing interface of metaCAT.

Task #Dialogue #Turn/Dialogue #Turn #Non-span-slot #Span-slot #Slot

LIDA
Expert 79 3.5 276.5 816.5 0 816.5
Novice 60 3.5 210 617 0 617

metaCAT
Expert 25 15.56 389 315.5 561.3 876.8
Novice 20 15.56 311.2 252.4 449 701.4

Table 2: Hourly annotated dialogues in the re-annotation of 100 dialogues sampled from MultiWOZ 2.1 using
metaCAT. “#” stands for “The number of”.

Task #Dialogue #Turn #Slot

ASR Exclusive 16.7 344.8 485.3
ASR Inclusive 28.6 612.4 863.7

Table 3: A comparison of paraphrasing and re-
annotation of a bespoke cross-domain dialogue dataset
with and without ASR during eight working hours. “#”
stands for “The number of”.

The validating process is designed to detect com-
mon annotating errors, e.g., repeated slots, repeated
slot-values, overlapped spans, and ill-matched in-
tents. The constraints are predefined or enforced
by the metadata definition.

3.2.2 Dialogue Paraphrasing
The paraphrasing interface (Figure 3) is similar to
the annotating interface with some minor differ-
ences. It is divided into two areas with the slot area
on the left-hand side and the utterance area on the
right side. The entire annotating operation includes
the following steps:

• Utterance Paraphrasing: The annotator
paraphrases the utterance using the colloquial
language keeping the basic semantics, intent
and slot unchanged.

• Slot Annotating: The annotator selects a
span of the utterance and drags it to the slot-
value editing box.

• Real-value Filling: For slots with real values,
the annotator needs to fill the values to the
corresponding slots after paraphrasing.

The validating process is basically the same as
that of the annotating task except for the under-

lying detecting rules. There is no need to detect
ill-matched intents, but the paraphrased utterance’s
integrity and diversity are checked quantitatively
using Levenshtein distance.

4 Evaluation

metaCAT is used to correct annotation errors in
MultiWOZ 2.1. One hundred dialogues are sam-
pled from the test set and imported into metaCAT
for evaluation. The benchmark data are those pub-
lished in LIDA (Collins et al., 2019) on a different
sample. Four annotators have been employed in
this task, two of whom were novice users and the
others are experienced annotators.

Table 2 captures the results of annotating a sam-
ple of MultiWOZ 2.1 using metaCAT on an hourly
basis. Expert metaCAT users produce an average
of 876.8 slot annotations, while novice users gen-
erate 701.4 annotations on average. Note that we
cannot directly compare the results with those pro-
duced in LIDA (Collins et al., 2019) as different
data are included in the experiment. However, the
hourly annotation rate of metaCAT for both novice
and expert users indicates an equivalent efficiency
to those of LIDA. Table 3 shows that the inclu-
sion of ASR increases the hourly annotation rate of
paraphrasing and re-annotation by 1.8 folds.

LIDA is not able to handle metadata therefore
dynamic domain switching is not available. Con-
trastively, It is easy to switch domain annotating
as metaCAT clearly defines metadata and captures
constraints among the domain, intent, slot and slot-
value. In addition, drag-and-drop is an efficient
way to handle span information annotation.
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5 Conclusion and Future Work

We present metaCAT, an open-source web-based
annotation tool designed specifically for task-
oriented dialogue datasets. It is the first annota-
tion tool providing a comprehensive metadata an-
notation to cover service domain, intent and span
information. metaCAT ensures data quality with
a real-time constraint-checking mechanism. An
ASR-inclusive paraphrasing function enables users
to generate more diversified utterances with anno-
tations. metaCAT can be used to enhance task-
oriented dialogue datasets (i.e., MultiWOZ 2.1)
with easy-to-use functionality.

Existing dialogue annotation tools focus on the
current turn of the dialogue, lacking inclusion of
related contexts. For instance, there is a need to
refer to the information from the previous turns
to annotate the term “the hotel” in a typical hotel
booking dialogue scenario. Apart from the above-
mentioned co-referencing annotation function, fu-
ture work will focus on designing other annotation
features to meet the community’s practical needs,
for example, annotations for sentiment and multi-
modal intent. Many open-domain conversations are
goal-driven with the intent to solve real-world prob-
lems, for example, for recommendation and search
purposes. Developing knowledge-grounded open-
domain conversation datasets becomes an emerging
trend (Gopalakrishnan et al., 2019) to regulate the
free-form data with facts and knowledge. meta-
CAT can be customized to annotate open-domain
dialogue datasets from this perspective.

Acknowledgments

We are grateful to colleagues from Huawei Tech-
nologies Co., Ltd. for insightful discussions and
technical supports.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
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Abstract

Processing maintenance logbook records is
an important step in the development of pre-
dictive maintenance systems. Logbooks of-
ten include free text fields with domain spe-
cific terms, abbreviations, and non-standard
spelling posing challenges to off-the-shelf
NLP pipelines trained on standard contempo-
rary corpora. Despite the importance of this
data type, processing predictive maintenance
data is still an under-explored topic in NLP.
With the goal of providing more datasets and
resources to the community, in this paper we
present a number of new resources available in
MaintNet, a collaborative open-source library
and data repository of predictive maintenance
language datasets. We describe novel anno-
tated datasets from multiple domains such as
aviation, automotive, and facility maintenance
domains and new tools for segmentation, spell
checking, POS tagging, clustering, and classi-
fication.

1 Introduction

Engineering systems are generating ever increasing
amounts of maintenance records often recorded in
the form of event logbooks. The analysis of these
records are aimed to improve predictive mainte-
nance systems reducing maintenance costs, help-
ing to prevent accidents, and saving lives (Jarry
et al., 2018). Predictive maintenance records are
collected in multiple domains such as aviation,
healthcare, and transportation (Tanguy et al., 2016;
Altuncu et al., 2018). In this paper, we present new
datasets in the aviation and automotive domains
listed in Table 2.

Maintenance record datasets generally contain
free text fields describing issues and actions, as in
the instances presented in Table 1. Most standard
NLP pipelines for pre-processing and annotation
are trained on standard contemporary corpora (e.g.

newspaper texts, novels) failing to address most
of the domain specific terminology, abbreviations,
and non-standard spelling present in maintenance
records. To help support research in this area, the
MaintNet1 platform, a collaborative open-source
library and data repository for predictive mainte-
nance data, has been developed (Akhbardeh et al.,
2020). In this paper, we present an evaluation of
the tools available at MaintNet, as well as two new
datasets included in the platform.

The main contributions of this paper are the fol-
lowing:

1. The creation of novel language resources (e.g.
abbreviation lists, datasets, and termbanks)
for technical language and predictive mainte-
nance data in the aviation, automotive, and
facility management domains. We present
two new datasets with aviation and automo-
tive safety records that have been recently col-
lected and annotated and are now available at
MaintNet.

2. The creation and development of manually
curated gold standards that can be used to
evaluate the performance of POS tagging and
clustering/classification on technical logbook
data.

3. The development and evaluation of a number
of Python (pre-)processing tools available at
MaintNet including stop word removal, stem-
mers, lemmatizers, POS tagging, and cluster-
ing. We carry out an evaluation of MaintNet’s
spell checkers and POS taggers comparing
them to off-the-shelf NLP packages such as
NLTK (Bird et al., 2009) and Stanford Core
NLP (Manning et al., 2014), as well as clus-
tering methods.

1Available at: https://people.rit.edu/
fa3019/MaintNet/
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ID Issue/Problem Date Action
111552 R/H FWD UPPER BAFL SEAL NEEDS

TO BE RESECURED
7/2/2012 INSTALLED POP RIVET TO RESE-

CURE R/H FWD BAF SEEAL.
111563 CAP SCREWE MISSING, L/H ENG #4

BAFLE
7/3/2012 INSTALLED NEW SCREW. CHKD ENG

111574 CYL #1 BAFFLE CRACKED AT SCREW
SUPPORT & FWD BAFL BELOWE #1

7/2/2012 FABRICATED PATCHES OF LIKE MA-
TERIAL & RIVETED IAW CESSN

111585 #3 FWD PUSH ROD TUBE GSK LEAK-
ING @ EGNINE

7/2/2012 REMOVED & REPLACED #3 FWD
PUSH ROD TUBE SEALS. LEAK CHE

Table 1: Four instances from one of MaintNet’s aviation datasets.

Domain Dataset Inst. Tokens Code Source
Aviation Maintenance 6,169 76,866 Avi-Main University of North Dakota Aviation Program

Accident 5,268 162,533 Avi-Acc Open Data by Socrata
Safety 25,558 345,979 Avi-Safe Federal Aviation Administration

Automotive Maintenance 617 4,443 Auto-Main Connecticut Open Data
Accident 54,367 242,012 Auto-Acc NYS Department of Motor Vehicles
Safety 5,456 137,038 Auto-Safe Open Data DC

Facility Maintenance 87,276 2,469,003 Faci-Main Baltimore City Maryland Preventive Maintenance

Table 2: Instances and tokens in each dataset in MaintNet. Two new datasets, (Avi-safe and Auto-Safe), displayed
in bold.

2 Related Work

Research in predictive maintenance systems re-
quires large, cleansed, and often annotated log-
book data gathered in domains such as web infor-
mation extraction, system maintenance (e.g., avia-
tion, wind turbines, automobiles), and healthcare
(e.g.electronic health records).

In the domain of healthcare, Altuncu et al. (2018)
analyzed health records of patient incidents pro-
vided by the UK National Health Service using a
deep neural network with word embedding. Tix-
ier et al. (2016) developed a system to analyze
injury reports applying POS tagging and term fre-
quency to extract keywords about injuries creat-
ing a dictionary of events to improve future safety
management. Savova et al. (2010) applied off-the-
shelf NLTK libraries on free-text electronic medi-
cal records for information extraction purposes.

In technical domains such as aviation, where
MaintNet provides a primary resource, Tanguy et al.
(2016) studied various available NLP techniques
such as topic modeling to process aviation incident
reports and extract useful information. They used
standard NLP libraries to pre-process the data and
then applied the Talismane NLP toolkit (Urieli,
2013) for incident feature extraction and training.

As to the problem of non-standard spelling,

Siklósi et al. (2013), proposed a method of correct-
ing misspelled words in clinical records by map-
ping spelling errors to a large database of correction
candidates. However, due to the large number of
abbreviations in medical records, they were limited
to specific terms and the normalization had to be
performed separately. de Amorim and Zampieri
(2013) proposed a dictionary-based spell correc-
tion algorithm using a clustering technique by com-
paring various distance metrics to aim to lower
the number of distance calculations while finding
or matching target words for misspellings. With
this in mind, in MaintNet we provide users with
tools developed to deal with domain-specific mis-
spellings and abbreviations.

3 MaintNet Features

In the next sub-sections we present the tools in
resources available in MaintNet divided into lan-
guage resources, pre-processing, and clustering,
In addition to that, MaintNet provides various dy-
namic webpages for users to communicate with
each other and with the project developers which
work similarly to a forum or message board. We
hope that MaintNet’s community participation fea-
tures will further facilitate discussion and research
in this under explored domain.
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3.1 Language Resources

MaintNet currently features seven English datasets
from the aviation, automotive, and facility main-
tenance domains, which are presented in Table 2.
This paper introduces two new datasets with avia-
tion and automotive safety records in bold. These
datasets were collected from the USA Federal Avi-
ation Administration and Open Data DC respec-
tively. The list of fields and data types in each
dataset is presented in Table 3.

Code Fields and Data Types
Avi-Main problem, action (text), ata chapter code

(int.), date opened/closed (date), identi-
fier/work order (int.)

Avi-Acc flight (date), type (text), summary of
incident (text), record/flight (int.)

Avi-Safe flight (date), indicated safety/damage
type (text), safety remarks (text), flight
phase (text), identifier number (int.)

Auto-Main problem, action (text), reason (text),
department (int.), date opened/closed
(date), identifier/job number (int.)

Auto-Acc reported accident (text), accident or
injury type (text), date issued (date),
record number (int.)

Auto-Safe request type (text), comment/report
(text), request identifier number (int.)

Faci-Main problem, action, problem type (text), lo-
cation (text), date opened/closed (date),
identifier/Work number (int.)

Table 3: Fields and data types in MaintNet’s datasets.

In Figure 1 we present a screenshot of one of Maint-
Net’s datasets, the Avi-Main dataset, that can be ac-
cessed and searched through the platform. Predic-
tive maintenance datasets are particularly hard to
obtain due to the sensitive information they contain.
Therefore, we work closely with the data providers
to ensure that all confidential and sensitive infor-
mation in all datasets remains anonymous. As a
collaborative platform, MaintNet will be expanded
with the collaboration from interested members of
the NLP community.

MaintNet further provides the user with domain
specific abbreviation dictionaries, morphosyntactic
annotation, and term banks validated by domain
experts. The morphosyntactic annotation contains
the POS tag, compound, lemma, and word stems.
Finally, the domain term banks contain a list of
terms that are used in each domain along with a
sample of usage extracted from the corpus.

3.2 Pre-processing and Tools

One of the bottlenecks of automatically processing
logbooks for predictive maintenance system is that
most of these datasets are not annotated with the
reason for maintenance or a categorization of the
issue type. To address this issue, we implemented
several pre-processing steps to clean and extract
as much information from logbooks as possible.
The pipeline is shown in Figure 2. The Python
scripts for all components in this pipeline are made
available through Maintnet.

The process starts with text normalization, in-
cluding lowercasing, stop word and punctuation re-
moval, and treating special characters with NLTK’s
(Bird et al., 2009) regular expression library, fol-
lowed by tokenization (NLTK tokenizer), stem-
ming (Snowball Stemmer), and lemmatization
(WordNet (Miller, 1992)). With use of the col-
lected morphosyntactic information, POS annota-
tion is carried out with the NLTK POS tagger. Term
frequency-inverse document frequency (TF-IDF) is
obtained using the gensim tfidf model (Rehurek and
Sojka, 2010). Our analysis of the logbooks found
that many of the misspellings and abbreviations
lead to incorrect or non-existent dictionary look
ups. To overcome this issue, we explored various
state-of-the-art spellcheckers including Enchant2,
Pyspellchecker3, Symspellpy4, and Autocorrect5.

Given the inaccuracy of existing techniques, we
developed methods of correcting syntactic errors,
typos, and abbreviated words using a Levenshtein
(Levenshtein, 1966). This method uses a dictionary
of domain specific words and maps the various
possible misspelled words into the correct format
by selecting the most similar word in the dictio-
nary. The Levenshtein algorithm was chosen over
other distance metrics (e.g., Euclidian, Cosine) as
it allows us to control the minimum number of
string edits and its widely used in spell checking
(de Amorim and Zampieri, 2013). The results of
our method compared to other spellchecking tech-
niques in random samples of 500 instances from
each of the 5 datasets is presented in Table 4.

The results are reported in terms of success
rate showing that the Levenshtein (Lev) algorithm

2https://www.abisource.com/projects/
enchant/

3https://github.com/barrust/
pyspellchecker

4https://github.com/wolfgarbe/SymSpell
5https://github.com/fsondej/

autocorrect
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Figure 1: A screenshot of one of MaintNet’s dataset webpages.

outperforms the Enchant (Ench), Pyspellchecker
(Spell), and Autocorrect (Auto) spell checkers.

Code Token Miss Ench Spell Auto Lev.
Avi-Main 3299 289 86% 61% 73% 98%
Avi-Safe 6059 828 84% 56% 68% 91%
Auto-Main 2599 266 69% 27% 49% 95%
Auto-Acc 2422 169 87% 59% 77% 97%
Faci-Main 7758 926 83% 63% 59% 93%

Table 4: Success rate of spell checkers on 500 instances
per dataset. Token stands for total tokens and Miss
stands for misspelled tokens.

WordNet was used to lemmatize the document,
however it requires defining a POS tagger param-
eter which we want to lemmatize (the wordNet
default is “noun”). As the maintenance instances
typically consist of verb, noun, adverb and adjec-
tive words that define a problem, action and occur-
rence, by using “verb” as the POS parameter, there
is an issue of mapping important noun words such
as “left” (e.g. left engine) to “leave” or “ground” to
“grind”. To resolve this issue, as we discussed in
3.1, we created an exception list using developed
morphosyntactic information for the WordNet lem-
matizer to ignore mapping words which could be
multiple parts of speech.

Finally, we have performed an extrinsic evalua-
tion of MaintNet’s pre-processing pipeline by eval-
uating its impact on POS tagging. To carry out this
evaluation, we randomly selected 500 instances of

the Avi-Main dataset to serve as our gold standard.
A North-American English native speaker working
in the project annotated the 500 instances using the
Penn Treebank tagset. We make this gold standard
available to the community in MaintNet.

We compared the performance of three available
POS taggers: NLTK (Bird et al., 2009), Stanford
CoreNLP (Manning et al., 2014) and TextBlob6

trained on the raw and pre-processed versions the
Avi-Main dataset and evaluated on raw and pre-
processed versions of the gold standard. We present
the results in Table 5 in terms of accuracy. Stanford
CoreNLP obtained the best results among the three
POS taggers with 91% and 87% accuracy on the
processed and raw versions of the data respectively.
The results show an improvement of 4% accuracy
in the performance of each of the three POS taggers
when annotating MaintNet’s pre-processed data
confirming the importance of these pre-processing
methods.

POS Tagger Raw Processed Difference
NLTK 77% 81% +4%
Stanford 87% 91% +4%
TextBlob 77% 81% +4%

Table 5: Results of three POS taggers annotating raw
and (pre-)processed versions of the gold standard.

6https://textblob.readthedocs.io/en/
dev/
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Figure 2: The components in MaintNet’s processing and information extraction pipeline: pre-processing, docu-
ment clustering, and evaluation.

3.3 Clustering

MaintNet also features implementations of popu-
lar clustering algorithms applied to logbook data
that are made freely available to the research com-
munity. The motivation behind this is that most
logbook data available is not annotated, which re-
quires a domain expert to group instances into cat-
egories. Clustering techniques were used to help in
this process.

We converted the terms and words into a numer-
ical representation using libraries such as tfidfvec-
torizer (ElSahar et al., 2017) resulting in a large
matrix of document terms (DT). We use truncated
singular value decomposition (SVD) (ElSahar et al.,
2017) known as latent semantic analysis (LSA),
to perform a linear dimensionality reduction. We
chose truncated SVD (LSA) over principal com-
ponent analysis (PCA) (ElSahar et al., 2017) in
our system, due to the fact LSA can directly be
applied to our tfidf DT matrix and it focuses on
document and term relationships where PCA fo-
cuses on a term covariance matrix (eigendecompo-
sition of the correlation). We experimented with
different 4 clustering techniques: k-means (Jain,
2010), Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) (Ester et al., 1996),
Latent Dirichlet Analysis (LDA) (Vorontsov et al.,
2015), and hierarchical clustering (Aggarwal and
Zhai, 2012). For comparison of the results, the
silhouette and inertia metrics (Fraley and Raftery,
1998) were used to determine the number of clus-
ters for k-means (both provided similar results),
and perplexity (Fraley and Raftery, 1998) and co-
herence (Vorontsov et al., 2015) scores were used

for LDA. DBSCAN and hierarchical clustering do
not require a predetermined number of clusters.

For evaluation, we used a standard measurement
of cluster cohesion including high intra-cluster sim-
ilarity and low inter-cluster similarity. We chose
3 different similarity algorithms including Leven-
shtein, Jaro, and cosine (Fraley and Raftery, 1998)
to calculate intra- and inter-cluster similarity. The
cosine similarity metric is commonly used and is
independent of the length of document, while Jaro
is more flexible by providing a rating of matching
strings. We collected human annotated instances
by a domain expert to serve as our gold standard,
and these are provided on MaintNet to encourage
research into improving unsupervised clustering of
maintenance logbooks.

Finally, Figure 3 shows the empirical analysis of
the four clustering techniques with and without our
additional data pre-processing steps (Levenshtein-
based dictionary spellchecking and the lemmatizer
list previously presented) on the Avi-Main dataset.
We examined the distribution of cluster sizes, the
number of clusters, and the number of outliers
(in the case of DBSCAN). Using a domain-based
spellchecker and the modified lemmatizer list im-
proved the purity and overall accuracy of the clus-
ters by increasing the means of intra-cluster sim-
ilarity and decreasing the means of inter-cluster
similarity.

The DBSCAN provided more accurate clusters
in comparison to other algorithms while also de-
tecting outliers, which could help identify if any
new issues are introduced to the maintenance logs
or if there are safety issues reported by the pilot
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Figure 3: Results of the clustering methods. From left to right, calculated mean and standard deviation of intra-
and inter-cluster similarity, cluster size distribution, number of clusters generated by each method and purity on
Avi-Main dataset.

during flight operation. K-means provided some-
what comparable results to DBSCAN, but it was
not able to detect outliers and determining the num-
ber of clusters (K) is challenging, especially as
this number may change over time as more issues
are reported. Hierarchical clustering performed
poorly, where similar issues were found to be dis-
tributed across different clusters. It was also more
computationally expensive than the other methods.
Clusters generated with LDA were better than hier-
archical clustering, however LDA clustered some
of the documents that contain the same equipment
with different types of issues description together,
resulting in clusters with a mixture of issue types.

4 Conclusion

In this paper we evaluate the tools available in
MaintNet, a collaborative open-source library for
predictive maintenance language resources. Maint-
Net provides technical logbook datasets on mul-
tiple domains: aviation, automotive, and facility
maintenance. A number of other important lan-
guage resources such as abbreviation lists, mor-
phosyntactic information lists, and termbanks have
been developed and are also available through the

platform. Text (pre-)processing tools developed in
Python were evaluated and are also made available.
These include spell checking, POS tagging, and
document clustering.

Finally, we performed an intrinsic evalua-
tion comparing the performance of several spell-
checkers on five of the seven datasets in MaintNet
and an extrinsic evaluation on raw and processed
versions of the Avi-Main dataset on POS tagging.
We showed an important increase in performance
for all taggers we tested when using data processed
with MaintNet’s pre-processing pipeline. For the
POS tagger comparison and clustering, we devel-
oped manually annotated gold standards which are
also made available through the platform.
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Abstract
We introduce FAIRSEQ S2T, a FAIRSEQ (Ott
et al., 2019) extension for speech-to-text (S2T)
modeling tasks such as end-to-end speech
recognition and speech-to-text translation. It
follows FAIRSEQ’s careful design for scalabil-
ity and extensibility. We provide end-to-end
workflows from data pre-processing, model
training to offline (online) inference. We
implement state-of-the-art RNN-based as
well as Transformer-based models and open-
source detailed training recipes. FAIRSEQ’s
machine translation models and language
models can be seamlessly integrated into
S2T workflows for multi-task learning or
transfer learning. FAIRSEQ S2T documen-
tation and examples are available at https:
//github.com/pytorch/fairseq/tree/

master/examples/speech_to_text.

1 Introduction

End-to-end sequence-to-sequence (S2S) modeling
has witnessed rapidly increased applications in
speech-to-text (S2T) tasks. It achieves state-of-the-
art performance on automatic speech recognition
(ASR) (Park et al., 2019; Synnaeve et al., 2019)
and leads to the recent resurgence of speech-to-
text translation (ST) research (Duong et al., 2016;
Bérard et al., 2016). ASR and ST are closely re-
lated. There are recent attempts to combine the
two tasks under the same S2S model architecture
via multi-task learning (Anastasopoulos and Chi-
ang, 2018; Liu et al., 2020). They also benefit
from each other via transfer learning (Bansal et al.,
2019; Wang et al., 2020b) and are able to lever-
age additional supervision from machine transla-
tion (MT) and language modeling (LM). When su-
pervised data is not abundant, self-supervised pre-
training (Schneider et al., 2019; Wu et al., 2020)
and semi-supervised training (Kahn et al., 2020;
Pino et al., 2020) lowers the requirements on super-
vision and improves model performance.

The increased connections among ASR, ST,
MT and LM has called for all-in-one S2S mod-
eling toolkits, and the use of large-scale unla-
beled speech data sets the scalability require-
ments. In this paper, we introduce FAIRSEQ S2T,
a FAIRSEQ (Ott et al., 2019) extension for S2T
tasks such as end-to-end ASR and ST. It follows
FAIRSEQ’s careful design for scalability and exten-
sibility. We provide end-to-end workflows from
data pre-processing, model training to offline (on-
line) inference. We implement state-of-the-art
RNN-based (Chan et al., 2016; Bérard et al., 2018)
and Transformer-based (Vaswani et al., 2017; Mo-
hamed et al., 2019) models and open-source de-
tailed training recipes. FAIRSEQ’s MT models and
LMs can be seamlessly integrated into S2T work-
flows for multi-task learning or transfer learning.
To facilitate model evaluation, we add a collection
of scorers as well as VizSeq (Wang et al., 2019) in-
tegration for visualized error analysis. FAIRSEQ

S2T documentation and examples are avail-
able at https://github.com/pytorch/fairseq/
tree/master/examples/speech_to_text.

With counterpart toolkits such as ESPNet (In-
aguma et al., 2020) and Lingvo (Shen et al., 2019),
FAIRSEQ S2T pursues the best integration, scala-
bility and reproducibility. A detailed comparison
of FAIRSEQ S2T with its counterparts can be found
in Table 1.

2 Features

Fairseq Models FAIRSEQ provides a collection
of MT models (Ng et al., 2019; Lewis et al., 2020)
and LMs (Liu et al., 2019; Conneau et al., 2020)
that demonstrate state-of-the-art performance on
standard benchmarks. They are open-sourced with
pre-trained models. FAIRSEQ also supports other
tasks such as text summarization, story generation
and self-supervised speech pre-training.
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ASR LM MT Non-Autoreg. Offline Online Speech Multi-node Pre-trained
MT ST ST Pre-training training models

ESPNet-ST X X X X X† X
Lingvo X X X X‡ X

OpenSeq2seq1 X X X X X
RETURNN2 X X X X X X

SLT.KIT3 X X X X
Tensor2Tensor4 X X X X X

OpenNMT5 X X X X X
Kaldi6 X X X

Wav2letter++7 X X X
fairseq S2T X X X X X X X X X

Table 1: Comparison of FAIRSEQ S2T with counterpart toolkits (as of July 2020). † Only available in version 2
(under development). ‡ Not publicly available. 1 Kuchaiev et al. (2018). 2 Zeyer et al. (2018). 3 Zenkel et al.
(2018). 4 Vaswani et al. (2018). 5 Klein et al. (2017). 6 Povey et al. (2011). 7 Pratap et al. (2018).

S2T extension FAIRSEQ S2T adds attention-
based RNN models (Chan et al., 2016; Bérard
et al., 2018) as well as the latest Transformer mod-
els (Vaswani et al., 2017; Mohamed et al., 2019) for
ASR and ST. It also supports CTC criterion (Graves
et al., 2006) for ASR. For the simultaneous ST set-
ting, it includes online models with widely used
policies: monotonic attention (Raffel et al., 2017),
wait-k (Ma et al., 2019), monotonic infinite look-
back attention (Arivazhagan et al., 2019b), and
monotonic multihead attention (Ma et al., 2020b).

Data Pre-Processing FAIRSEQ S2T extracts
Kaldi-compliant (Povey et al., 2011) speech fea-
tures (e.g. log mel-filter banks) automatically from
WAV/FLAC audio files via PyKaldi (Can et al.,
2018) or torchaudio1. Speech features can also
be pre-computed and stored in NumPy (Harris
et al., 2020) format. Optionally, raw audio files
or features files can be packed into ZIP archives
to improve I/O performance or facilitate file man-
agement. For further pre-processing, FAIRSEQ

S2T provides online speech data transforms, in-
cluding CMVN (cepstral mean and variance nor-
malization), speed perturbation (Ko et al., 2017)
and SpecAugment (Park et al., 2019). It also
has an open interface for user-defined transforms.
For text data, FAIRSEQ S2T does online tokeniza-
tion with a rich collection of tokenizers, includ-
ing Moses2, SentencePiece (Kudo and Richardson,
2018), subword-nmt3, byte-level BPE (Wang et al.,
2020a) and bytes (Li et al., 2019).

1https://github.com/pytorch/audio
2https://github.com/moses-smt/mosesdecoder
3https://github.com/rsennrich/subword-nmt

Data Configuration FAIRSEQ S2T gets raw au-
dio (feature) paths and target texts from manifest
files in TSV (tab-separated values) format, which
is similar to Kaldi-style scp files. Online speech
data transforms and other data-related settings (e.g.
tokenizer type and vocabulary) are defined by a
separate configuration file in YAML format.

Computation FAIRSEQ is implemented in Py-
Torch (Paszke et al., 2019) and it provides efficient
batching, mixed precision training (Micikevicius
et al., 2018), multi-GPU as well as multi-machine
training for computational efficiency on large-scale
experiments.

Evaluation Metrics FAIRSEQ S2T provides
common automatic metrics for ASR, ST and MT,
including WER (word error rate), BLEU (Papineni
et al., 2002) and chrF (Popović, 2015). It also
integrates SIMULEVAL (Ma et al., 2020a) for si-
multaneous ST/MT metrics such as AL (average
lagging) (Ma et al., 2019) and DAL (differentiable
average Lagging) (Cherry and Foster, 2019).

Visualization FAIRSEQ supports Tensorboard4

for monitoring holistic metrics during model train-
ing. It also has VizSeq (Wang et al., 2019) inte-
gration for sequence-level error analysis, where
speech and target/predicted text data are visualized
with alignments in Jupyter Notebook interface.

3 Experiments

We evaluate FAIRSEQ S2T models on English ASR
benchmark—LibriSpeech (Panayotov et al., 2015),
as well as multilingual ST benchmarks—MuST-
C (Di Gangi et al., 2019a) and CoVoST 2 (Wang

4https://github.com/tensorflow/tensorboard

34



De Nl Es Fr It Pt Ro Ru

Transformer1 17.3 18.8 20.8 26.9 16.8 20.1 16.5 10.5
Transformer2† 22.9 27.4 28.0 32.7 23.8 28.0 21.9 15.8

T-Sm 22.7 27.3 27.2 32.9 22.7 28.1 21.9 15.3
Multi. T-Md∗ 24.5 28.6 28.2 34.9 24.6 31.1 23.8 16.0

B
-B

as
e Offline 19.2 23.5 24.0 29.1 16.4 23.5 19.7 13.7

High Lat.‡ 18.6 (6.8) 22.9 (6.9) 22.3 (6.8) 28.4 (6.7) 15.4 (6.8) 22.6 (6.9) 19.1 (6.7) 12.9 (6.9)
Mid Lat.‡ 14.1 (5.4) 17.9 (5.4) 17.2 (5.5) 25.0 (5.3) 12.0 (5.5) 17.7 (5.8) 15.0 (5.6) 7.2 (5.8)
Low Lat.‡ 8.2 (2.9) 12.3 (2.8) 13.0 (3.0) 21.1 (2.8) 6.7 (2.9) 13.3 (2.9) 12.1 (2.9) 4.9 (2.7)

Table 2: FAIRSEQ S2T models on MuST-C. Test BLEU reported (for online models, AL is shown in parentheses).
1 Di Gangi et al. (2019). 2 Inaguma et al. (2020). † Applied additional techniques: speed perturbation, pre-trained
decoder from MT and auxiliary CTC loss for ASR pre-training. ‡ Online models using beam size of 1 (instead of
5). ∗ Trained jointly on all 8 languages.

Type Config. Params

B-Base
RNN†

512d, 3L enc./2L dec. 31M
B-Big 512d, 5L enc./3L dec. 52M

T-Sm Trans- 256d, 12L enc./6L dec. 31M
T-Md form- 512d, 12L enc./6L dec. 72M
T-Lg er‡ 1024d, 12L enc./6L dec. 263M

Table 3: FAIRSEQ S2T models for benchmarking. For
simplicity, we use the same (default) model hyper-
parameters and learning rate schedule across all experi-
ments. † Bérard et al. (2018). ‡ Vaswani et al. (2017).

Dev Test
Clean Other Clean Other

LAS† - - 2.8 6.8
Transformer‡ 2.5 6.7 2.9 7.0

B-Big 3.7 11.4 3.9 11.5
T-Sm 4.1 9.3 4.4 9.2
T-Md 3.5 8.1 3.7 8.1
T-Lg 3.3 7.7 3.5 7.8

Table 4: FAIRSEQ S2T models on LibriSpeech (using
default hyper-parameters and LR schedule). Dev and
test WER reported. † Park et al. (2019). ‡ Synnaeve
et al. (2019).

et al., 2020c). The model architectures used in
benchmarking can be found in Table 3.

3.1 Experimental Setup

For speech inputs, we extract 80-channel log mel-
filter bank features (25ms window size and 10ms
shift) with utterance-level CMVN applied. We re-
move training samples with more than 3,000 frames
for GPU memory efficiency. To alleviate overfit-
ting, we pre-train ST model encoders on English
ASR and adopt SpecAugment (without time warp-
ing): LD policy on LibriSpeech models and LB
policy on MuST-C and CoVoST 2 models. We av-

erage the last 10 checkpoints and use a beam size
of 5 for decoding. For ASR, we use 10K unigram
vocabulary (Kudo and Richardson, 2018) and re-
port WER. For ST, we use character vocabulary for
CoVoST 2 and 8K unigram vocabulary for MuST-C.
We report case-sensitive detokenized BLEU using
sacreBLEU (Post, 2018), except for Japanese and
Chinese translations (no word segmentation) where
we report character-level BLEU.

3.2 Speech Recognition (ASR)

LibriSpeech is a de-facto standard ASR bench-
mark that contains 1,000 hours of English speech
from audiobooks. Table 4 shows the dev and test
WER of our models on LibriSpeech clean and noisy
sets. Two popular architectures, RNN-based model
(“B-Big”) and Transformer based models (“T-Sm”,
“T-Md” and “T-Lg”), are evaluated. We can see
that both architectures are able to achieve com-
petitive performance (WER) to the state-of-the-art
ones (the upper section), while we use only default
model hyper-parameters and learning rate schedule
without any task-specific tuning.

3.3 Speech Translation (ST)

3.3.1 MuST-C
MuST-C contains up to around 500 hours of En-
glish speech from TED talks with translations in
8 European languages. Table 2 shows the test
BLEU of our Transformer-based models (“T-Sm”
and “Multi. T-Md”) and RNN-based models (“B-
Base”) on all the MuST-C language directions.
Compared with previous Transformer-based ap-
proaches (Di Gangi et al., 2019b; Inaguma et al.,
2020), our bilingual models achieve comparative
results to the state of the art without applying ad-
ditional techniques such as speed perturbation and
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Fr De Es Zh Tr Ar Sv Lv Sl Ta Ja Id Cy

X→En

B-Base 23.2 15.7 20.2 4.4 2.2 2.7 1.4 1.2 1.5 0.2 1.1 1.0 1.7
+ SSL? 23.1 16.2 20.2 4.8 3.2 3.8 3.7 2.3 2.2 0.2 1.6 1.6 2.2

Multi. B-Big† 26.6 19.5 26.3 4.4 2.1 0.3 1.3 0.6 1.4 0.1 0.6 0.3 0.9
T-Sm 26.3 17.1 23.0 5.8 3.6 4.3 2.7 2.5 3.0 0.3 1.5 2.5 2.7

Multi. T-Md† 26.5 17.5 27.0 5.9 2.3 0.4 0.5 0.6 0.7 0.1 0.1 0.3 1.9

En→X

B-Base - 12.5 - 20.0 6.7 9.1 18.1 8.7 11.6 7.4 25.6 15.2 18.9
Multi. B-Big‡ - 12.6 - 22.2 7.3 8.0 18.3 8.9 11.4 7.3 28.2 16.0 19.3

T-Sm - 16.3 - 25.4 10.0 12.1 21.8 13.0 16.0 10.9 29.6 20.4 23.9
Multi. T-Md‡ - 15.4 - 26.5 9.5 10.8 20.9 12.2 14.6 10.3 30.5 18.9 22.0

Table 5: FAIRSEQ S2T models on CoVoST 2. Test BLEU reported (character-level BLEU for Zh and Ja targets).
? Replaced mel-filter bank features with wav2vec ones (Schneider et al., 2019; Wu et al., 2020). † Trained jointly
on all 21 X-En directions with temperature-based (T=2) resampling (Arivazhagan et al., 2019a). ‡ Trained jointly
on all 15 En-X directions.

pre-trained decoder from MT. Moreover, our multi-
lingual model (trained on all 8 languages) outper-
forms all bilingual ones with large margins. Be-
sides traditional offline models, we also provide
simultaneous ST models: the lower section in Ta-
ble 2 presents the online models with wait-k pol-
icy, which was the baseline system in the IWSLT
2020 shared task on simultaneous ST (Ansari et al.,
2020). The results represent the best systems in
high (AL > 6), medium (6 ≥ AL > 3) and low
(AL ≤ 3) latency regimes, on which we can clearly
see the trade-offs between model performance and
prediction latency.

3.3.2 CoVoST 2

CoVoST 2 contains total 2,880 hours of read speech
in 22 languages from the open-source community,
with 21 X-En directions and 15 En-X directions.
We evaluate our models bidirectionally on 13 lan-
guages of them, including low-resource X-En direc-
tions: Zh, Tr, Ar, Sv, Lv, Sl, Ta, Ja, Id and Cy. We
observe from Table 5 that our Transformer-based
models (“T-Sm” and “T-Md”) outperforms RNN-
based ones (“B-Base” and “B-Big”) on all En-X
and X-En directions. The performance gap tends to
be larger when the training data is higher resource
(En-X directions, Fr-En, De-En and Es-En). Our
multilingual models perform reasonably well with
a universal model for over 15 X-En or En-X direc-
tions. They even have significant improvements on
some directions (e.g. at least 4 BLEU gain on Es-
En). For low-resource directions, we also evaluate
self-supervised speech features (Schneider et al.,

2019; Wu et al., 2020)5 as an alternative to the tra-
ditional log mel-filter bank features (“+ SSL”). We
find that self-supervised features bring consistent
gains and transfer well across different languages
(self-supervised model trained on English and fea-
ture extracted for non-English).

4 Conclusion

We introduce FAIRSEQ S2T, a FAIRSEQ exten-
sion for speech-to-text (S2T) modeling tasks such
as speech recognition and speech translation. It
includes end-to-end workflows and state-of-the-
art models with scalablity and extensibility de-
sign. It seamlessly integrates FAIRSEQ’s ma-
chine translation models and language models
to improve S2T model performance. FAIRSEQ

S2T documentation and examples are avail-
able at https://github.com/pytorch/fairseq/
tree/master/examples/speech_to_text.
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Abstract

Statistical significance testing centered on p-
values is commonly used to compare NLP sys-
tem performance, but p-values alone are insuf-
ficient because statistical significance differs
from practical significance. The latter can be
measured by estimating effect size. In this pa-
per, we propose a three-stage procedure for
comparing NLP system performance and pro-
vide a toolkit, NLPStatTest, that automates
the process. Users can upload NLP system
evaluation scores and the toolkit will analyze
these scores, run appropriate significance tests,
estimate effect size, and conduct power analy-
sis to estimate Type II error. The toolkit pro-
vides a convenient and systematic way to com-
pare NLP system performance that goes be-
yond statistical significance testing.

1 Introduction

In the field of natural language processing (NLP),
the common practice is to use statistical signifi-
cance testing 1 to demonstrate that the improvement
exhibited by a proposed system over the baseline
reflects meaningful differences, not happenstance
(Dror et al., 2018, 2020). The American Statistical
Association emphasizes that ‘‘a p-value, or statis-
tical significance, does not measure the size of an
effect or the importance of a result” (Wasserstein
and Lazar, 2016). In other words, statistical signifi-
cance is different from practical significance. The
latter is rarely discussed in the NLP field.

To address this issue, we propose a three-stage
procedure for comparing NLP system performance,
shown in Figure 1. The first stage is building an
NLP system and using prospective power analysis
to compute an appropriate sample size for test cor-
pus. The second stage is hypothesis testing. We

1Here we adopt the frequentist approach to hypothesis
testing. The debate over frequentist and Bayesian is beyond
the scope of this paper.

stress the need for data analysis to verify assump-
tions made by significance tests and the importance
of estimating the effect size and conducting power
analysis. The last stage is to report various results
produced by the second stage.

To automate the process, we provide a toolkit,
NLPStatTest. We introduce the three-stage
comparison procedure (§2), and then describe the
the main components (§3) and implementation de-
tails (§4) of NLPStatTest. We also present ex-
perimental results for running the system on both
real-world and simulated data (§5). Lastly, we com-
pare NLPStatTest with existing statistical test-
ing toolkits (§6).

2 Comparing NLP System Performance

In this section we briefly describe the three-stage
comparison procedure and define terms that are rel-
evant to NLPStatTest. More detail about Stage
2 can be found in §3-§4.

2.1 Building an NLP System
The first stage is to build an NLP system, run it
on test data, and compare the system output with a
gold standard. The output of this stage is a list of
numerical values such as accuracy or F-scores.
Definition 1 (Evaluation unit). Let (xj , yj) be
a test instance. An evaluation unit (EU) e =
{(xj , yj), j = 1, · · · ,m} is a set of test instances
on which an evaluation metric can be meaningfully
defined. A test set is a set of EUs.
Definition 2 (Evaluation metric). Given an NLP
system A, the evaluation metric M is a function
that maps an EU e to a numerical value:

MA(e) =M

(
{
(
ŷj , yj

)
, j = 1, · · · ,m}

)
(1)

where ŷj = A(xj) is the system output of A given
xj , and m is the size of e (i.e., the number of test
instances in e).
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Figure 1: The three-stage procedure for comparing NLP system performance. The pink flag boxes are the parame-
ters that users can either set or use the default values provided by NLPStatTest. The blue hexagons are system
output of NLPStatTest. α1 and α2 are the significance levels for normality test and statistical significance test
respectively. EU stands for evaluation unit.

An EU may contain one or more test instances.
For example, a BLEU score can be computed on
one or more sentences. The EU size affects sample
size, p-value, sample standard deviation, effect size
and so on. It is therefore one of the parameters that
users can set when using NLPStatTest.

2.2 The Comparison Stage
The second stage is the comparison stage which
has four steps (see the largest box in Figure 1).

2.2.1 Data Analysis
When we compare two NLP systems A and
B, the output of Stage 1 is a set of pairs,
{(MA(ei),MB(ei))}, where ei is the ith EU, and
MA(e) (similarly MB(e)) is defined in Equation 1.

Many statistical tests make certain assumptions
about the sample (e.g., normality for t test), so it is
important to conduct data analysis to verify those
assumptions in order to choose significance tests
that are appropriate for a particular sample. If the
sample does not follow any known distribution,
non-parametric tests should be used.
NLPStatTestwill estimate sample skewness

and test for normality. Then NLPStatTest will
choose a test statistic (mean or median) for users
and recommend a list of significance tests.

2.2.2 Statistical Significance Testing
The second step in Stage 2 is statistical significance
testing, using two mutually exclusive hypotheses:
the null hypothesis H0 and the alternative H1. To
compare two NLP systems, a (paired) two-sample
test is usually used, though one-sample testing of

pairwise difference is equivalent. NLPStatTest
currently only considers paired two-sample testing
for numerical data. Observations within a sam-
ple are assumed to be independent and identically
distributed (i.i.d.).

To run a significance test, users first choose
the direction of the test: left-sided, right-sided or
two-sided. Then, users specify the hypothesized
value of test statistic difference δ and the signifi-
cance level α, which is often set to 0.05 or 0.01
in the NLP field, and choose a test from the list.
NLPStatTest will calculate the p-value and re-
ject H0 if and only if p < α.

2.2.3 Effect Size Estimation

In most experimental NLP papers employing sig-
nificance testing, the p-value is the only quantity
reported. However, the p-value is often misused
and misinterpreted. For instance, statistical signifi-
cance is easily conflated with practical significance;
as a result, NLP researchers often run significance
tests to show that the performances of two NLP
systems are different (i.e., statistical significance),
without measuring the degree or the importance of
such a difference (i.e., practical significance).

Cohen (1990) noted “the null hypothesis, if taken
literally, is always false in the real world.” For in-
stance, because evaluation metric values of two
NLP systems on a test set are almost never exactly
the same, H0 that two systems perform equally
is (almost) always false. When H0 is false, the
p-value will eventually approach zero in large sam-
ples (Lin et al., 2013). In other words, no mat-
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ter how tiny the system performance difference is,
there is always a large enough dataset on which
the difference is statistically significant. Therefore,
statistical significance is markedly different from
practical significance.

One way to measure practical significance is
by estimating effect size, which is defined as the
degree to which the ‘phenomenon’ is present in
the population: the degree to which the null hy-
pothesis is false (Cohen, 1994). While the need
to estimate and report effect size has long been
recognized in other fields (Tomczak and Tomczak,
2014), the same is not true in the NLP field. We
include several methods for estimating effect size
in NLPStatTest (see §3.3).

2.2.4 Power Analysis

There are two types of errors in hypothesis testing:
Type I errors (false positives) and Type II errors
(false negatives). The Type I error of a signifi-
cance test, often denoted by α, is the probability
that, when H0 is true, H0 is rejected by the test.
The Type II error of a significance test, usually de-
noted by β, is the probability that under H1, H1

is rejected by the test. While Type I error can be
controlled by predetermining the significance level,
Type II error can be controlled or estimated by
power analysis.

Definition 3 (Statistical power). The power of a
statistical significance test is the probability that
under H1, H0 is correctly rejected by the test. The
power of a test is 1− β.

Higher power means that statistical inferences
are more correct and accurate (Perugini et al.,
2018). While power analysis is rarely used in the
NLP field, it is considered good or standard prac-
tice in some other scientific fields such as psychol-
ogy and clinical trials in medicine (Perugini et al.,
2018). We implement two methods of conducting
power analysis in NLPStatTest(see §3.4).

2.3 Reporting Test Results

Beyond the p-value, it is important to report other
quantities to make the studies reproducible and
available for meta-analysis, including the name of
significance test used, the predetermined signifi-
cance level α, effect size estimate/estimator, the
sample size, and statistical power.

3 System Design

NLPStatTest is a toolkit that automates the
comparison procedure. It has four main steps,
shown in the large box in Figure 1. To use
NLPStatTest, users provide a data file with the
NLP system performance scores produced in Stage
1. NLPStatTestwill prompt users to either mod-
ify or use the default values for the parameters in
the pink flags and then produce the output in the
blue hexagons. The users can then report (some of)
the output in Stage 3 of the comparison procedure.

3.1 Data Analysis

The first step of the comparison stage is data analy-
sis, and a screenshot of this step is shown in Figure
2. The top part (above the Run button in the purple
box) shows the input and parameters that the user
needs to provide, and the bottom part (below the
Run button in the green box) shows the output of
the data analysis step.

Figure 2: Screenshot of the data analysis step. The part
above the Run button are parameters that users can set,
and the part below is NLPStatTest output.
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3.1.1 The Input Data File
To compare two NLP systems,A andB, users need
to provide a data file where each line is a pair of nu-
merical values. There are two scenarios. In the first
scenario, the pair is (ui, vi), where ui = MA(ei)
is the evaluation metric value (e.g., accuracy or F-
score) of an EU ei given System A (see Equation
1), and vi =MB(ei).

In the second scenario, if ui and vi can be calcu-
lated as the mean or the median of the evaluation
metric values of test instances in ei, users can up-
load a data file where each line is a pair of (ak, bk),
where ak and bk are the evaluation metric values
of a test instance tk given System A and B, re-
spectively. Users then chooses the EU size m and
specifies whether the EU metric value should be
calculated as the mean or the median of the metric
values of the instances in the EU. NLPStatTest
will use m adjacent lines in the file to calculate
ui and vi. If users prefers to randomly shuffle the
lines before calculating ui and vi, they can provide
a seed for random shuffling.

3.1.2 Histograms and Summary Statistics
From the (ui, vi) pairs, NLPStatTest generates
descriptive summary statistics (e.g., mean, me-
dian, standard deviation) and histograms of three
datasets, {ui}, {vi}, and {ui−vi}, as shown in the
first table and the three histograms in Figure 2.

3.1.3 Central Tendency Measure
Many statistical tests (t test, bootstrap test based
on t ratios, etc) are based on the mean as the test
statistic, drawing inferences on average system per-
formance. However, when the data distribution is
not symmetric, the mean does not properly mea-
sure the central tendency. In that case, the median
is a more robust measure. Another issue associated
with mean is that if the distribution is heavy-tailed
(e.g., the t and Cauchy distributions), the sample
mean oscillates dramatically.

In order to examine the symmetry of the un-
derlying distribution, NLPStatTest checks the
skewness of {ui − vi} by estimating the sample
skewness (γ). Based on the γ value, we use the
following rule of thumb (Bulmer, 1979) to deter-
mine whether NLPStatTest would recommend
the use of mean or median as the test statistic for
statistical significance testing:

• |γ| ∈ [0, 0.5): roughly symmetric (use mean)

• |γ| ∈ [0.5, 1): slightly skewed (use median)

• |γ| ∈ [1,∞): highly skewed (use median)

3.1.4 Normality Test
To choose a good significance test for {ui−vi}, we
need to determine if the data is normally distributed.
If it is, t test is the most appropriate (and powerful)
test; if not, then non-parametric tests which do not
assume normality might be more appropriate.

If a distribution is skewed according to γ, there
is no need to run normality test as the data is not
normally distributed. For a non-skewed distribu-
tion, NLPStatTest will run the Shapiro-Wilk
normality test (Shapiro and Wilk, 1965), which is
itself a test of statistical significance. The user can
choose the significance level (α1 in Figure 1).

3.1.5 Recommended Significance Tests
Based on the skewness check and normality test
result, NLPStatTest will automatically choose
a test statistic (mean or median) and recommend a
list of appropriate significance tests (e.g., t test if
{ui − vi} is normally distributed).

3.2 Testing
In this step, the user sets the significance level (α2

in Figure 1) and chooses a significance test from
the ones recommended in the previous step. If the
test has any parameter (e.g., the number of trials for
bootstrap testing B), NLPStatTest will suggest
a default value which can be changed by users.
NLPStatTest will then run the test, calculate a
p-value (and/or provide a confidence interval), and
reject H0 if p < α2.

3.3 Effect Size
Effect size can be estimated by different effect size
indices, depending on the data types (numerical
or categorical) and significance tests. Dror et al.
(2020) defined effect size as the unstandardized dif-
ference between system performance, while Hauch
et al. (2012) and Pimentel et al. (2019) used the
standardized difference.
NLPStatTest implements the following four

indices. Once users select one or more,
NLPStatTest will calculate effect size accord-
ingly and display the results.

Cohen’s d estimates the standardized mean differ-
ence by

d =
û− v̂
σ̂

(2)

where v̂ and û are the sample means and σ̂ denote
standard deviation of u − v. Cohen’s d assumes
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normality and is one of the most frequently used
effect size indices. If Cohen’s d, or any other effect
size indices depending on σ̂, is used to estimate
effect size, the EU size will affect the standard
deviation and thus effect size estimate.

Hedges’ g adjusts the bias brought by Cohen’s d
in small samples by the following:

g = d ·
(
1− 3

4n− 9

)
(3)

where n is the size of {ui − vi}.

Wilcoxon r is an effect size index for the Wilcoxon
signed rank test, calculated as r = Z√

n
, where

Z =
W − n(n+ 1)/4√

n(n+1)(2n+1)
24 −

∑
t∈T t3−t
48

(4)

Here, W is the test statistic for Wilcoxon signed
rank test and T is the set of tied ranks.

Hodges-Lehmann Estimator (Hodges and
Lehmann, 1963) is an estimator for the median.
Let wi = ui − vi. The HL estimator for
one-sample testing is given by

HL = median

(
{(wi + wj)/2, i 6= j}

)
(5)

3.4 Power Analysis
Power (Definition 3) covaries with sample size,
effect size and the significance level α. In par-
ticular, power increases with larger sample size,
effect size, and α. There are two common types
of power analysis, namely prospective and retro-
spective power analysis, and NLPStatTest im-
plements both types.

3.4.1 Prospective Power Analysis
Prospective power analysis is used when planning
a study (usually in clinical trials) in order to decide
how many subjects are needed. In the NLP field,
when one constructs or chooses a test corpus for
evaluation, it will be beneficial to conduct this type
of power analysis to determine how big a corpus
needs to be in order to ensure that the significance
test reaches the desired power level.

In NLPStatTest, prospective power analysis
is a preliminary and optional step. The user needs
to provide the expected mean and standard devia-
tion of the differences between samples, the desired

power level, and the required significance level.
NLPStatTest will calculate the minimally re-
quired sample size for t test via a closed form,
assuming the normal distribution of the data.

Figure 3: Screenshot for retrospective power analysis.

3.4.2 Retrospective Power Analysis
Retrospective or post-hoc power analysis is usually
done after a significance test to determine the rela-
tion between sample size and power. There are two
scenarios associated with retrospective power anal-
ysis: When the values in {ui−vi} are from a known
distribution, one can use Monte Carlo simulation
to directly simulate from this known distribution.
To do this, one has to have an informed guess of
the desired effect size (i.e., mean difference) via
meta-analysis of previous studies.

When the distribution of the sample is unknown
a priori, one can resample with replacement from
the empirical distribution of the sample (a.k.a. the
bootstrap method (Efron and Tibshirani, 1993)) to
estimate the power.
NLPStatTest implements both methods.

Users can employ one or both; NLPStatTest
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will produce a figure that shows the relation be-
tween sample size and power, as in Figure 3.

4 Implementation Details

The NLPStatTest graphical user interface can
be run locally or on the Web. There is also a com-
mand line version. The graphical tool, the com-
mand line tool, the source code, a user manual,
a tutorial video are available at nlpstats.ling.
washington.edu. We recommend using an up-
dated Chromium-based browser.

The client-side web interface is written in
HTML, CSS, and JavaScript (with JQuery). The
server-side code is written in Python, using the
Flask web framework. YAML is used for configu-
ration files. KaTeX is used to render mathematical
symbols. The Python code uses the SciPy and
NumPy libraries to implement statistical tests and
Matplotlib to generate the histograms and graphs.

5 Experiment

To test the output validity and speed of
NLPStatTest, we run experiments using both
real and simulated data.

5.1 Real Data from WMT-2017

The WMT-2017 shared task (Bojar et al., 2017)
reported system performance results based on hu-
man evaluation scores; unpaired testing (Wilcoxon
rank-sum) was used because not many sentences
had human evaluation scores for both MT systems
that were being compared.

Figure 4: Heatmap of pairwise comparison for the 16
WMT-2017 Chinese-to-English MT systems. BLEU
scores and Wilcoxon signed-rank test are used. p-
values are adjusted via Bonferroni correction. Dark
green cells indicate statistical significance (p < 0.05);
light green cells indicate non-significance (p ≥ 0.05).

Because NLPStatTest currently implements
paired testing only, we use the Wilcoxon signed-
rank test (instead of Wilcoxon rank-sum test) and
the BLEU scores (instead of human evaluation
scores) when comparing MT systems. According
to Bojar et al. (2017), a set of 15 or more sentence-
level evaluation scores constitutes a reliable mea-
sure of translation quality; thus, we set the EU
size to be 15. We also reshuffled the scores before
grouping test instances into evaluation units.

Figure 4 shows the results of pairwise compar-
isons among all 16 Chinese-to-English MT systems
(120 system pairs in total). The heatmap is similar
to the comparison results in Bojar et al. (2017) (see
Figure 5 in that paper). The minor differences of
the two heatmaps are due to different evaluation
metrics (BLEU vs. human scores), the significant
tests (Wilcoxon signed-rank vs. Wilcoxon rank-
sum), and the numbers of EUs (more test sentences
have BLEU scores than human evaluation scores).

Figure 5: Plots of p-value against sample size. Figure
(a) and (b) use two samples with normal distribution,
while (c) and (d) use Beta distribution. H0 should be
true for (a) and (c) and false for (b) and (d). We run t
test for (a) and (b), and Wilcoxon signed-rank test for
(c) and (d). The red dotted line stands for the threshold
α = 0.05. The light purple shade depicts the range
of p-values. The solid blue line denotes the mean of
p-values for each sample size.

5.2 Simulated Data
We also run simulation experiments on
NLPStatTest to validate the testing re-
sults. Here, we conduct two-sided, paired testing,
varying sample size from 30 to 25,000, each
with 20 iterations of tests to obtain a range of
p-values. As shown in Figure 5, when H0 is true
(see Fig 5(a) and 5(c)), p-values range freely
in (0, 1). When H0 is false (see 5(b) and 5(d)),
p-values approach zero as sample size increases,
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as expected. The fast convergence to zero in 5(d)
may be due to the small variance of the differences
between the two Beta samples (≈ 0.046), even
though the difference between sample medians is
small (≈ 0.02). In contrast, 5(b) converges to zero
much more slowly due to the large variance.

6 Related Work

Dror et al. (2018) made an accompanying pack-
age available 2 for hypothesis testing. This pack-
age includes functionalities such as testing for
normality, t testing, permutation/bootstrap test-
ing, and using McNemar’s test for categorical
data. NLPStatTest implements all the afore-
mentioned tests except McNemar’s test. In addi-
tion, NLPStatTest offers data analysis, effect
size estimation, power analysis and graphical inter-
face.
NLPStatTest is based on the frequentist ap-

proach to hypothesis testing. Sadeqi Azer et al.
(2020) developed a Bayesian system3 which uses
the Bayes factor to determine the posterior proba-
bility of H0 being true or false.

7 Conclusion

While statistical significance testing has been com-
monly used to compare NLP system performance,
a small p-value alone is not sufficient because sta-
tistical significance is different from practical sig-
nificance. To measure practical significance, we
recommend estimating and reporting of effect size.
It is also necessary to conduct power analysis to en-
sure that the test corpus is large enough to achieve
a desirable power level. We propose a three-stage
procedure for comparing NLP system performance,
and provide a toolkit, NLPStatTest, to automate
the testing stage of the procedure. For future work,
we will extend this work to hypothesis testing with
multiple datasets or multiple metrics.
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