
D M Sharma, P Bhattacharyya and R Sangal. Proc. of the 16th Intl. Conference on Natural Language Processing, pages 239–248
Hyderabad, India, December 2019. ©2019 NLP Association of India (NLPAI)

239

Samajh-Boojh: A Reading Comprehension System in Hindi

Shalaka Vaidya∗1, Hiranmai Sri Adibhatla∗2, Radhika Mamidi3

Language Technologies Research Centre
Kohli Center on Intelligent Systems

International Institute of Information Technology - Hyderabad
1hello@shalakavaidya.me

2hiranmai.sri@research.iiit.ac.in
3radhika.mamidi@iiit.ac.in

Abstract

This paper presents a novel approach de-
signed to answer questions on a reading
comprehension passage. It is an end-to-
end system which first focuses on compre-
hending the given passage wherein it con-
verts unstructured passage into a struc-
tured data and later proceeds to answer
the questions related to the passage us-
ing solely the aforementioned structured
data. To the best of our knowledge, the
proposed model is first of its kind which
accounts for entire process of comprehend-
ing the passage and then answering the
questions associated with the passage. The
comprehension stage converts the passage
into a Discourse Collection that com-
prises of the relation shared amongst logi-
cal sentences in given passage along with
the key characteristics of each sentence.
This model has its applications in aca-
demic domain and query comprehension in
speech systems among others.

1 Introduction
The Samajh-Boojh1 system which we have
built focuses on the basic principles behind uti-
lization of rules in order to capture the seman-
tics of the given passage which is in the De-
vanagari script. The current trend is towards
incorporating machine learning in the ques-
tion answering models but they come with a
downside of requiring huge quantity and vari-
ety of training data to achieve decent accuracy.
Whereas the proposed model is rule-based and
hence eliminates the need for extensive train-
ing data while still providing 75% accuracy.

The Samajh-Boojh system answers 11 types
of questions (Table 1) using approximately 25

∗equal contribution
1Samajh-Understanding and Boojh-Analysis,

which translates to reading comprehension in Hindi.

rules. This sheds light on the fact that, with
substantially less number of rules a wide range
of questions can be answered. It is an exten-
sion to Prashnottar model (Sahu et al., 2012)
which could handle 4 types of questions using
4 rules. The system can be classified into two
parts, the comprehension part and the ques-
tion answering part, these two parts together
ensure that the system behaves similar to the
way humans approach the questions which are
asked based on reading comprehension pas-
sage. The comprehension part of the sys-
tem converts the given passage whose inherent
structure cannot be grasped by the machine
to a structured and machine extractable data
called Discourse Collection. The Discourse
Collection is then sent to the QA system as an
input along with the query to obtain the rel-
evant answer. This feature sets the proposed
model apart from the commonly used informa-
tion retrieval and extraction based techniques.

The Panchatantra collection2 comprising of
65 short stories was used to experiment on
the model. This dataset had variety of sto-
ries with different lengths. The questions on
each of these stories were framed by multiple
annotators and best of which were picked to
validate the system. The answers given by the
annotators were used as gold data to measure
the quality of the system.

2 Architecture and Design
The Samajh-Boojh System is broadly classi-
fied into two parts: comprehension part and
question answering part. The system works
similar to human approach of answering read-
ing comprehension questions. The system

2https://www.hindis-
ahityadarpan.in/2016/06/panchatantra-complete-
stories-hindi.html

240

takes passage and queries corresponding to the
passage as the input, and returns answers to
the questions. In subsequent sections we dwell
deeper into these parts and see how they func-
tion.

2.1 Reading Comprehension Part
The reading comprehension part of the sys-
tem is responsible for structuring the story
into a Discourse Collection which contains
the characteristics of the story. This struc-
ture is inspired by Thorndyke’s Story Gram-
mar (Thorndyke, 1977). Discourse Collection
is comprised of the following components:

Episode_Id: Unique key associated to
the sentence. Its incrementally assigned as
we parse the sentences. In Discourse Collec-
tion, we associate each logical sentence as an
episode.

Original_sentence: The WX version of
the logical sentence found in the story.

Time: The time setting in which the
episode took place. If the Original_Sentence
doesn’t specify the time, this field is populated
from the previous episode’s Time value. De-
fault is ‘tbd: to be decided’

Location: The place in which the episode
took place. If the Original_Sentence doesn’t
specify the location, this field is populated
from the previous episode’s Location value.
Default is ‘tbd: to be decided’

Karta: The karta (doer) of the logical sen-
tence is given as the value. This is obtained
from the dependency parser3.

Karta_Adpos: The Adpos (adjective
and prepositions) associated with the Karta
to frame the answers during the question-
answering stage.

Karma: The karma of the logical sentence
is populated in this column.

Karma_Adpos: The Adpos (adjective
and prepositions) associated with the Karma
to frame the answers during the question-
answering stage.

Anaphora_Resolved_Sentences: The
logical sentence in which the anaphora is re-
placed with noun.

Root_Node_Sentences: The words of
the logical sentences are replaced with their

3https://bitbucket.org/iscnlp/parser/src/mas-
ter/README.rst

roots. For this we used the shallow parser 4.
Given: The sentence which is related to the

current sentence.
New: The current sentence which is having

the Given sentence as a prerequisite.
Parser_Output: The output of the de-

pendency parser.
The overview of the Reading Comprehen-

sion system is seen in Figure 1. The pas-
sage is given as the input to Logical Sen-
tence Module to break it into logical sen-
tences, the split passage is given as input to the
Discourse Generator module which contains
Graph Maker Module, Anaphora Res-
olution Module, Root Node Resolution
Module and Discourse Information Filler
Module. The final output of these four mod-
ules is the Discourse Collection which is the
output of comprehension system. The individ-
ual modules of the reading comprehension sys-
tem along with detailed working is explained
in the forthcoming sections.

Logical Sentences Module

Even though the passage can easily be split
into words, sentences and paragraphs when
given as the input, it’s a challenge to extract
the semantics. We break the sentences based
on the generic punctuation marks such as full
stop, comma, semicolon, question mark, ex-
clamation mark and conjunctions such as और,

िक, पर, कर, िफर, इसीिलए, तब, तो, क्योंिक, क्य

ू

ंिक,

लेिकन, परंतु, िकन्तु.
When splitting the sentences by the split

words, we noticed the tags were improper at
some instances. Example:
S1:राम घर जाना चाहता था पर नहीं जा पाया।

T1: Ram wanted to go home but couldn’t go.
S2:राम घोड़े पर बैठा था।

T2: Ram sat on the horse.
Here the word पर translates to ‘but’ and ‘on’,

we want to split the sentence into two parts
only in S1 and not in S2. The POS tags us-
ing Dependency Parser3 give ‘PSP’ tag, hence
making it difficult to differentiate on which पर

to split the sentences. To resolve this issue we
decided to see the context of the given split
word and then make the decision. The logic
for deciding whether to split or not is given

4http://ltrc.iiit.ac.in/analyzer/hindi/index.cgi

241

Passage Logical
Sentences

Graph
Maker

Root Node
Resolution

Discourse
Information
Filler

Discourse
CollectionDiscourse Generator

Anaphora
Resolution

Figure 1: Comprehension Design

below:
If the word before the split word is verb ie.
having POS tag as ‘VM’ or ‘VAUX’ then we
split the sentence into two parts and popu-
late the Discourse Collection with two episodes
each containing the split sentences as Origi-
nal_Sentences(OS).
In the Figure 2, we see in the sample passage
that apart from the full stops, the sentences
are split at ‘taba/तब’ and ‘para/पर’ resulting
in 5 episodes.

Graph Maker
The Original_Sentence which was populated
in Logical Sentence Module is sent through the
dependency parser 3 and the parser output is
stored in the Discourse Collection of the cor-
responding episode. From the parser output,
if there exits any k7t relation, it is stored in
the ‘Time’ slot of the episode. If there exists a
k7p relation, it is stored in the ‘Location’ slot
of the episode. The word with k1 relation is
stored in the ‘Karta’ slot of the episode along
with the ‘lwg__psp’ as case marker of the
Karta and word with relation ‘nmod__adj’ as
the Karta adjective, the case marker and ad-
jective with Karta word are called Karta_ad-
pos and stored in the corresponding episode.
The word with k2 relation is stored in Karma
slot of the episode. The child nodes of the
Karma in dependency tree who have the rela-
tions ‘lwg__psp’ and ‘nmod__adj’ are stored
as Karma_Adpos.

Anaphora Resolution Module
We use the Original_Sentence from the
episode to resolve the anaphora and store it
in Anaphora_Resolved_Sentence(ARS) of the
corresponding episode. We used the algorithm
mentioned in Dakwale(2014) to resolve the
anaphora. This algorithm is a right fit as it

uses rules from the dependency parser3.
We see in Figure 2 that the the word ‘vaha/वह’
translates into rAma in episode 2 and billI in
episode 4 based on the context, ‘usE/उसे’ and
‘vO/वो’ are resolved into rAma in episode 2
and 5.

Root Node Resolution Module

The root of a word is important when we are
comparing two sentences. We convert each
word in Anaphora_Resolved_Sentence of the
episode into its root form and store it as
Root_Node_Sentence(RNS) for correspond-
ing episode. We used the IIIT Parser4 and
the output was parsed through the SSF for-
mat mentioned in Bharati(2007) and the root
form of the words were extracted.
In episode 2 the word ‘gaya’ changes to ‘ja’ in
Figure 2.

Discourse Information Filler

Discourse is when we look beyond the scope of
a sentence and use information between their
relation. Here we fill the ‘Given’ and ‘New’
values of the episode. The default values are
‘tbd: to be decided’. If the passage sentence
has split words mentioned in section 2.1, the
sentence is split into two episodes such that,
the second episode will contain the first split
sentence as ‘Given’ in its Discourse Collection
and second split sentence as the ‘New’. Our
assumption and complexity is limited to iden-
tifying a co-dependency between two sentences
if they are separated by split words.
The output of this stage will give the Dis-
course Collection. Episode 2 in the Figure 2,
has ‘Given’ and ‘New’ values populated since
it has the word ‘taba/तब’ (translation: then).

242

Passage:

rAma Eka acchA ladkA thA. vaha Eka
dina pAThaSAlA jA rahA thA taba usE
Eka billI dikhI. rAma usakE pAsa gayA
para vaha bhAga gaI aura vO dukhI hO gayA

Discourse Collection:

{
”0”: {

”OS”: ”rAma Eka acchA ladkA thA”,
”karta”: ”rAma”,
”kartaadj”: [”rAma”, ”acchA”],
”ARS”: ”rAma Eka acchA ladkA thA”,
”RNS”: ”rAma Eka acchA ladka thA”

}
”1”: {

”OS”: ” vaha Eka dina pAThaSAlA jA
rahA thA”,

”time”: ”din”,
”location”: ”pAThaSAlA”,
”karta”: ”rAma”,
”ARS”: ”rAma Eka dina pAThaSAlA jA

rahA thA”,
”RNS”: ”rAma Eka dina pAThaSAlA jA

rahA thA”
}

”2”: {
”OS”: ”usE Eka billI dikhI”,
”time”: ”din”,
”location”: ” pAThaSAlA”,
”karta”: ”billI”,
”given”: ” rAma Eka dina pAThaSAlA jA

rahA thA”,
”new”: ”rAma Eka billI dikhI”,
”ARS”: ”rAma Eka billI dikhI”,
”RNS”: ”rAma Eka billI dikha”
}

”3”: {
”OS”: ” rAma billI pAsa gayA”,
”time”: ”din”,
”location”: ” billI pAsa”,
”karta”:”rAma”,
”ARS”: ”rAma billI pAsa gayA”,
”RNS”: ”rAma billI pAsa jA”
}

”4”: {
”OS”: ”vaha bhAga gaI”,
”time”: ”din”,
”location”: ” billI pAsa”,
”karta”: ”rAma”,
”given”: ” rAma billI pAsa gayA”,
”new”: ”billI bhAga gaI”,
”ARS”: ”billI bhAga gaI”,
”RNS”: ”billI bhAga jA”
}

”5”: {
”OS”: ”vO dukhI hO gayA”,
”time”: ”din”,
”location”: ” billI pAsa”,
”karta”: ”rAma”,
”given”: ”billI bhAga gaI”,
”new”: ”rAma dukhI hO gayA”,
”ARS”: ”rAma dukhI hO gayA”,
”RNS”: ”rAma dukhI hO jA”
}

}

Figure 2: Discourse Collection
The passage and its corresponding discourse collection
is shown here. Only the populated values are shown,
rest all are ‘tbd-to be decided’ except for parser_out-
put. OS-original_sentence, ARS-Anaphora_Re-
solved_Sentence, RNS-Root_Node_Sentence

Question
Type Question Words

Karta ‘kisnE’ ‘kisakE’
‘kauna’ ‘kisasE’

Karma ‘kisakO’ ‘kisakI’
Time ‘kaba’ ‘samaya’ ‘dina’
Loc ‘kahA ’
Recipient ‘kisE’
Adj_Noun ‘kaisA’ ‘kaisI’
Intf ‘kitnA’ ‘kitnE’
Kya ‘kyA’
Kiske ‘kiskE’
Kiska ‘kiskA’ ‘kiskI’

GivenNew ‘kara’ ‘bAda’ ‘phalE’
‘kyoM’

Table 1: Types of Questions.

2.2 Question Answering Part

The Question-Answering part of this model
takes Discourse Collection which was output
of the Reading Comprehension part, as the in-
put along with the query related to the passage
and returns the answer as the output. The
brief overview of the system is shown in Fig-
ure 3. The query is fed in the Devanagari for-
mat and the answer is given in the same. The
working of this system is seen in following sec-
tions.

Question Analyzer Module
This module takes the Devanagari format of
the input query and returns the type of the
question along with key word relevant to the
query. This format is similar to that found in
QLL (Vargas-Vera et al., 2003).

We tag the questions based on the question
words into 11 major categories shown in Ta-
ble 1. This list can be expanded as per the
required answers from the question word. For
example,
Q1: गांव म

ें

िकतने मुगे

र्

रहते थे?

T1: How many chickens were there in the vil-
lage?
The answer expects the quantity of the chick-
ens. So, we place it into ‘Intf’ category

We now see each type of question in detail
and see how they are handled:
Karta: It involves the question words which
requires the answer as the doer. िकसने बदंर को

243

Query

Discourse
Collection

Question
Analyzer

Episode
Selector

Rule Based
NLG Answer

Figure 3: Question Answering Design

परशेान िकया? (Who troubled the monkey?)
Karma: The question which requires the an-
swer as the act of the sentence. बल्ी िकसको

िदखी? (Who saw the cat?)
Time: The question which expects the an-
swer as the time. सूरज कब घर आया? (When
did Suraj come home?)
Loc: The question word which requires an-
swers as the location. िकताब कहाँ राखी थी?

(Where was the book kept?)
Recipient: The question which expects the
answer of the receiver.िकसे चोट लगी थी? (Who
got injured?)
Adj_Noun: The question which requires the
answer as the adjective of particular noun.राम
कैसा लड़का था? (What kind of boy was Ram?)
Intf: Question which requires the answer as
the quantity of a particular entity. एक गांव म

ें

िकतने लोग थे? (How many people stayed in the
village?)
Kya: When the answer is supposed to de-
scribe or explain the situation. श्याम ने खाने

म

ें

क्या खाया? (What did Shyam have for his
meal?)
Kiske: When the question requires the en-
tities involved with mentioned subject as the
answer. सीता िकसके साथ खेल रही थी? (With
whom was Sita playing?)
Kiska: The question is seeking the possessive
trait of the entity mentioned. यह िकताब िकसकी

है? (Whose book is this?)
GivenNew: The question that gives an ac-
tivity and requests for the consequence of the
activity falls in category of GivenKnown. The
questions which describe an activity and ex-
pects the cause of the activity as the output,
it falls in category of NewKnown.
Example:
क

ु

छ लड़कों ने एक िबल्ी को तंग िकया और वह परशेान हो

गयी (Some boys troubled a cat and the cat got

Question
Type Output Format

Karta [‘Karta’]
Karma [‘Karma’]
Time [‘Time’]
Loc [‘Loc’]
Recipient [‘Recipient’]

Adj_Noun
[‘Adj_Noun’, one word
before the question
word]

Intf [‘Intf’, one word after
the question word]

Kya [‘Kya’]

Kiske [‘Kiske’, one word after
the question word]

Kiska [‘Kiska’]

GivenNew
[‘GivenNew’, the infor-
mation which is either
new or given]

Table 2: Output of the Question Analyzer.

angry)
Given Known:
िबल्ी तंग होने के बाद क्या ह

ु

आ? (What Happened
after the cat was troubled?), Given Info from
the question: िबल्ी तंग ह

ु

ई(Cat was troubled)
Here, the answer is expected to be the conse-
quences of cat being troubled.
New Known:
िबल्ी परशेान क्यों हो गयी? (Why was the cat an-
gry?), new info from the question: िबल्ी परशेान

ह

ु

ई (cat is angry) Here, the answer is expected
to address the reasons why the cat was angry.
The output of the question analyzer module
for above mentioned question types is shown
in Figure 2.

There is a preference order given to these
question types, in cases of when two words
belonging to two different classes (in Table 1)
exist in same query. The observed overlaps in-

244

clude: Time and Kya: in this case the question
type will be treated as Kya. Kya and Given-
New: in case of this overlap, the question type
will be treated as Kya.

Episode Selector Module
The input to this module is the output of the
Query Analyzer module (Table 2) and Dis-
course Collection(Figure 2) which is the out-
put of the Reading Comprehension stage of
our system. This is seen clearly in Figure
3. The episode is detected by using Jac-
card similarity between the Query(Q) and
Root_Node_Sentence(RNS) whose formula is
as follows:

Jaccard_Sim(Q,RNS) =
n(Q ∩RNS)

n(Q ∪RNS)

Where, n(Q ∩ RNS) is number of common
words in the Query and Root_Node_Sen-
tence and n(Q ∪RNS) is the total number of
words in Query and Root_Node_Sentence.

Algorithm 1 Weighted Jaccard Similarity
procedure JaccardSim(Q,RNS)

NounTags← {MNP,MNS,NN}
V erbTags← {VM}
V AuxTags← {V AUX}
AdTags← {JJ,RB}
Union← Q ∪RNS
Intersec← Q ∩RNS
JS ← 0
for all word ∈ Intersec do

switch POS(word) do
case ∈ AdTags

JS ← JS + 5

case ∈ V erbTagss
JS ← JS + 4

case ∈ NounTags
JS ← JS + 3

case ∈ V AuxTags
JS ← JS + 2

case default
JS ← JS + 1

end for
NormalisedJS ← JS/|Union|
return JS,NormalisedJS

end procedure

We have modified the formula to give better
results. The formula is our version of weighted

Jaccard similarity, wherein, we take the POS
tags of the words which are common between
the Query and the Root_Node_Sentence,
and give more weightage to the word if it
is less frequent, rather than focusing on
frequently occurring words, which don’t
capture the similarity between the Query and
Root_Node_Sentence such as prepositions.
We have given the priority to rare words
based on their POS word tags. Priorities of
POS tags as given as Adjective/Adverb >
Verb > Noun > Auxillary Verb > Others.
The respective POS tags from the parser are:
(JJ/RB) > (VM) > (NN/NNS/NNP) >
(V AUX) > Others. We call this as the
Jaccard_Score between the episode and
the Query, if we divide Jaccard_Score
by (Q ∩ RNS), we get Normalized_Jac-
card_Score.
After calculating the Jaccard_Score and the
Normalized_Jaccard_Score for each episode
in Discourse Collection, we take the episode
which has the highest Jaccard_Score, if two
episodes have highest Jaccard_Score, we
compare their Normalized_Jaccard_Score
and choose the higher valued episode as our
chosen episode. The pseudo code is given in
Algorithm 1.
The Output of this module is the
Episode_Id(from the Discourse Collec-
tion) which has maximum similarity to the
Query.

Rule Based Natural Language
Generator Module
This Module generates answer for a given
query. It takes the episode chosen by the
Episode Selector, Discourse Collection, and
the query as input and generates the answer
according to the query type.
Answer for various question types(Table 2) is
generated as follows:
Karta: We extract the Karta from the
Discourse_Collection for the chosen episode
along with Karta_Adpos(Karta_Adjective
and Karta_Case_Markers) and give the
answer as Karta_Adjective + Karta +
Karta_Case_Marker. The answer to the
question kIsnE zyAma kO kalama dI? [Karta
Question Type] answer will be rAma nE (refer
Figure 4).
Karma: We extract the Karma from the

245

dI

rAma zyAma kalama

nE kO

k1 k2
k4

intflwg_psp
lwg_psp

Eka

Figure 4: Karta, Recipient, Intf and Kya

banAyA

siMha
cUhE

dOstanE
kO

apnA

k1

k2
k2s

lwg_psp
lwg_psp

r6

Figure 5: Karma

Discourse_Collection for the chosen episode
along with Karma_Adpos(Karma_Adjective
and Karma_Case_Markers) and give the
answer as Karma_Adjective + Karma +
Karma_Case_Marker. If the ‘Karma’ slot
of the Discourse_Collection isn’t populated,
the Anaphora_Resolved_Sentence of the cho-
sen episode is returned. The answer to the
question siMha ne kiskO apnA dosta banAyA?
[Karma Question Type] answer will be cUhE
kO (refer Figure 5).
Time: If the Parser_Output of the given
episode contains the ‘k7t’ relation between two
nodes, then the child node is the output. If
there doesn’t exist any ‘k7t’ relation, then ‘k7’
relation is used and the child node is the an-
swer. If either of these aren’t existing, then
time is extracted from the ‘Time’ slot of the
Discourse_Collection of the given episode and
is displayed as the answer. The answer to
the question sIta kaba pathzAlA gayI? [Time
Question Type] answer will be subah (refer
Figure 6).
Loc: If the Parser_Output of the given
episode contains the ‘k7p’ relation between
two nodes, then the child node is the output.
If there doesn’t exist any ‘k7p’ relation, then
‘k7’ relation is used and the child node is the

sIta subah pathzAlA

gayI
k7p

k7t
k1

Figure 6: Loc and Time

answer. If either of these aren’t existing, then
location is extracted from the ‘Loc’ slot of the
Discourse_Collection of the given episode and
is the answer. The answer to the question sIta
kaha gayI? [Loc Question Type] answer will
be payhzAla (refer Figure 6).
Recipient: The main verb(MV) is extracted
from the Parser_Output of the Episode. If the
MV shares relation ‘k4’ with a child we return
that child as the answer. If there doesn’t exist
any child with ‘K4’ relation, we check for any
child nodes of the MV with ‘k4a’ relation and
return that as the answer. The answer to the
question rAma ne kisE kalama dI? [Recipient
Question Type] answer will be zyAma (refer
Figure 4).
Adj_Noun: From Table 2, we can see
that the output is the Noun whose Adjec-
tive is asked in the question. Let the Noun
whose adjective is asked be MN. We take
the Parser_Output of the chosen episode and
check for the child nodes of the MN who have
relation ‘nmod__adj’ and return the child
node as the answer. The answer to the ques-
tion kalama kaisI hai? [Adj_Noun Question
Type] answer will be suNdara (refer Figure 8).
Intf: From the 2, we can see that the
Noun(MN) whose quantity is asked is returned
along with the classification of the question.
To get the answer we take the Parser_Out-
put of the chosen episode and search for the
MN, then we check for child nodes of MN
who have relation ‘intf’ with MN, lets call the
child ‘NounIntf’, we then check child nodes
who have relation ‘nmod__adj’ with MN, lets
call it ‘NounAdj’. If ‘NounIntf’ and ‘NounAdj’
exist, we return the answer as NounIntf +
NounAdj and MN as the answer. If ‘NounAdj’
doesn’t exist, we just return NounIntf + MN
as the answer. The answer to the question
rAma ne kitnE kalama dIyE? [Intf Question
Type] answer will be Eka (refer Figure 4).
Kya: We extract the Main Verb (MV) from

246

ud

kauvA
talAza

meM ki

pAnI

k7 k1

r6

lwg_psp lwg_psp

Figure 7: Kiske

suNdara

r6
kIkalam

rAma

hai

nmod_adj

k1

lwg_psp

Figure 8: Kiska, Adj_Noun

the Parser_Output of the Discourse Collection
of the chosen episode. We then check if either
of ‘k1s’, ‘pof’, ‘k2’ relations exist between the
MV and its children. If it exists, we check
if the child is mentioned in the question, if
it isn’t mentioned in the question, we return
child Node as the answer. If no child exists
with above mentioned relations or if it exists
and the child has occurred in the question it-
self then, we check if the ‘Given’ slot of the
discourse Collection is populated for the next
episode and return the value in ‘NEW’ slot of
the Discourse Collection as the answer. The
answer to the question rAmA nE kyA dIyA?
[Kya Question Type] answer will be kalama
(refer Figure 4).
Kiske: From Table 2, we observe that subject
whose entity is asked is known. We consider
this subject as Main Noun(MN), we check the
children of MN who have relation ‘k7’ and re-
turn it as the answer. If this relation doesn’t
exist, we check for children with ‘r6’ relation
and return it as the answer. ‘r6’ and ‘k7’
are called SambandhRelations in Panninian
Grammar (Bharati et al., 1995). The answer
to the question kauvA kiske talAza meM udA?
[Kiske Question Type] answer will be pAnI (re-
fer Figure 7).
Kiska: We extract the Main Verb(MV) from
the Parser_Output of the Discourse Collection

for the particular episode. We check the chil-
dren of MV which have relations in order, ‘k2’,
‘k7’, ‘r6’. The answer to the question yaha
kalama kiskI hai? [Kiska Question Type] an-
swer will be rAma (refer Figure 8).
GivenNew: We can see from Table 2, the in-
formation of GivenNew is given as the output
of the Query Analyzer step. If the question
is ‘Given Known’ (Refer 2.2), we choose the
episode based on the highest Jaccard similar-
ity (mentioned in 2.2) between the ‘Given’ slot
of the Discourse Collection and the query. The
Episode which gets the highest score, is the
chosen episode and we return the ‘New’ slot
value as the answer. Similarly for the ‘New
Known’ (Refer 2.2) we choose the episode
based on the ‘New’ slot and the answer is in
‘Given’ slot of the same episode. The answer
to the question jaba rAma billI kE pAsa gayA
taba kyA huA? [GivenKnown Question Type]
the answer is billI bhAga gaI. (refer Figure 2)
Default: In case an unknown question type
is encountered or no answer has been given
for the above question types, we return the
Anaphora_Resolved_Sentence of the chosen
episode as the answer.

3 Experiments

Panchatantra is a collection of fables. It
has five parts, Mitra-Bheda (The loss
of friends), Mitra-laabha (The winning
of friends), Kakolukiyam (on crows and
owls), Labdhapranasam(Losing what you
have gained) and Apariksitakarakam (Ill-
Considered actions). We have chosen a corpus
of 65 stories from the tales across all parts of
Panchantantra to test our system.

We collected the stories from the link men-
tioned in footnote2 and fixed the syntax (punc-
tuation and spellings). We annotated 440
questions for the above stories and assigned
the question types, the ideal episode to be se-
lected from the Discourse Collection and the
correct answer for each of the questions. While
annotating the questions, we made a conscious
effort to involve more questions in type ‘Kya’
and ‘GivenNew’ (refer Table 4), since they
are versatile concepts and we intended to test
them extensively against the rules we format-
ted as the other types are more or less intuitive
on the dependency parser tags3. We randomly

247

Story Original
Sentence

Anaphora
Resolved
Sentence

Root
Node
Sentence

1 3/7 5/7 5/7
2 7/11 7/11 11/11
3 3/6 3/6 4/6
4 3/5 4/5 4/5
5 1/8 3/8 4/8
6 1/3 2/3 2/3

Table 3: Episode selection accuracy

selected 10 stories from the corpus along with
the questions and generated rules based on
linguistic heuristics, to avoid overfitting. We
then verified the rules on the remaining sto-
ries.
Out of 440 questions, 72 more questions were
rightly answered on using weighted Jaccard
similarity when compared to normal Jaccard
similarity. That is, 16% episodes were rightly
selected when weighted Jaccard similarity was
used instead of normal Jaccard similarity on
our model.
We also compared episode selection accuracy
by including modules mentioned in figure 1
on 6 random stories which are different from
the previously selected stories. The results
can be seen in table 3 for the same. It can
be observed that the weighted Jaccard sim-
ilarity accuracy improved consistently as we
added the Root Node Resolution and then
the Anaphora Resolution modules. The be-
low example demonstrates the improvement in
episode selection accuracy for different mod-
ules:
Question: राम क्या खा रहा था? [Translation:
What was Ram eating?]
Original Sentence: उसने आम खाया. [Transla-
tion: He ate a mango] Jaccard Score: 0
Root Node Sentence: वह आम खा [Translation:
He eat mango] Jaccard Score: 4
Anaphora Resolved Sentence: राम आम

खा[Translation: Ram eat mango] Jaccard
Score: 7
Overall accuracy of the answers based on ques-
tion Types is Shown in Table 4. The fig-
ure clearly shows good accuracy for major-
ity of the questions. Since the ‘Kya’ and
‘GivenNew’ format of the questions are ver-
satile and the answers can be subjective, the

Question Type Questions Accuracy
Karta 35 94.3%
Karma 7 100%
Time 7 100%
Loc 45 100%
Recipient 15 100%
Adj_Noun 15 100%
Intf 15 100%
Kya 179 71.6%
Kiske 13 84.62%
Kiska 5 100%
GivenNew 33 63.7%
Total 440 75.45%

Table 4: Accuracy of the answers

accuracy for these categories cannot be com-
parable to the direct question types whose
answers are obtainable through dependency
parser tags solely. Overall accuracy of the sys-
tem is 75.45%.

4 Future Work

This model currently doesn’t answer कैसे [How]
types of questions, which can be included in
future.
Currently we don’t resolve synonyms and
antonyms to answer the questions, which when
done, can improve Episode Selection algorithm
and also aim at answering complex questions.
The current model assumes the passage to be
in chronological order. We can improve the
model if we capture the relative time of the
episode to suite the passages which don’t fol-
low the chronological order.
Versatile questions such as ‘GivenNew’ and
‘Kya’ can be improved by increasing the scope
of answer retrieval to multiple sentences or
episodes around the selected episode unlike
the single episode range implemented in our
model. This will in-turn also increase the
scope of model to include longer and complex
texts.

5 Conclusion

Reading Comprehension is a complex task,
which involves comprehending the passage and
answering the questions following the pas-
sage. Once, we are able to structure this un-
structured data(passage), we can answer the

248

questions relatively well without complex ap-
proaches. The rules in linguistic are intuitive
and are capable of answering complex ques-
tions. Since it’s rule based, there is no require-
ment of large data to obtain promising results.
In the model we managed to get 75% accuracy
with just 65 stories and managed to answer
wide range of answers. This model is versa-
tile and can be extended to other Indian lan-
guages provided the dependency parser (simi-
lar to one we used3) exists.

References
Akshar Bharati, Vineet Chaitanya, Rajeev Sangal,

and KV Ramakrishnamacharyulu. 1995. Natu-
ral language processing: a Paninian perspective.
Prentice-Hall of India New Delhi.

Akshar Bharati, Rajeev Sangal, and Dipti M
Sharma. 2007. Ssf: Shakti standard format
guide.

Praveen Dakwale. 2014. Anaphora Resolution in
Hindi. Ph.D. thesis, PhD thesis, International
Institute of Information Technology Hyderabad.

Shriya Sahu, Nandkishor Vasnik, and Devshri Roy.
2012. Prashnottar: a hindi question answering
system. International Journal of Computer Sci-
ence & Information Technology, 4(2):149.

Perry W. Thorndyke. 1977. Cognitive structures
in comprehension and memory of narrative dis-
course. Cognitive Psychology, 9(1):77 – 110.

Dr. Maria Vargas-Vera, Enrico Motta, and John
Domingue. 2003. Aqua: an ontology driven
question answering system.

https://doi.org/https://doi.org/10.1016/0010-0285(77)90005-6
https://doi.org/https://doi.org/10.1016/0010-0285(77)90005-6
https://doi.org/https://doi.org/10.1016/0010-0285(77)90005-6

