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Abstract 

India is one of unique countries in the 

world that has the legacy of diversity of 

languages. English influence most of these 

languages. This causes a large presence of 

code-mixed text in social media. Enormous 

presence of this code-mixed text provides 

an important research area for Natural 

Language Processing (NLP). This paper 

proposes a novel Attention based deep 

learning technique for Sentiment 

Classification on Code-Mixed Text 

(ACCMT) of Hindi-English. The proposed 

architecture uses fusion of character and 

word features. Non-availability of suitable 

word embedding to represent these Code-

Mixed texts is another important hurdle for 

this league of NLP tasks. This paper also 

proposes a novel technique for preparing 

word embedding of Code-Mixed text. This 

embedding is prepared with two separately 

trained word embeddings on romanized 

Hindi and English respectively. This 

embedding is further used in the proposed 

deep learning based architecture for robust 

classification. The Proposed technique 

achieves 71.97% accuracy, which exceeds 

the baseline accuracy. 

1 Introduction 

Languages used in India belong to several 

language families.  Historical presence of British 

on Indian soil has led to a very high influence of 

English language on many of these Indian 

languages. People belonging in a multi-lingual 

society of India, gives rise of a large amount of text 

in various social media (Patra, 2018). Inclusion of 

English is very common in these texts. Essentially, 

an utterance in which a user makes use of grammar, 

                                                           
1https://en.wikipedia.org/wiki/List_of_languages_by_number

_of_native_speakers_in_India 

lexicon or other linguistic units of more than one 

language is said to have undergone code-mixing 

(Chanda, 2016). Hindi is the widely spoken 

language of India and used in various media. The 

number of native Hindi speakers is about 25% of 

the total Indian population; however, including 

dialects of Hindi termed as Hindi languages, the 

total is around 44% of Indians, mostly accounted 

from the states falling under the Hindi belt1. This 

community contributes a large amount of text on 

social media. The form of Hindi language used in 

Social Media is mixed with English and are 

available in roman scripts. According to the study 

(Dey, 2014) most common reason for this kind of 

code mixing in a single text is ‘Ease of Use’. The 

code-mixed Hindi and English language poses 

various types of challenges (Barman, 2014), which 

makes the text classification task on code-mixed 

text, an exciting problem in NLP Community. 

Despite a wide research on classification of code 

mixed texts, there remains open opportunities with 

two major aspects; first technique of preparing 

word embedding on Code-Mixed texts and second 

utilization of character and word features together 

to improve the accuracy. This research targets these 

two open points for exploration. 

2 Related Work 

Various research works have tried to tackle these 

challenges.  Recent work of Prabhu (2016) utilizes 

character level LSTMs to learn sub word level 

information of social media text. Then this 

information is used to classify the sentences using 

an annotated corpus. The work is very interesting 

and achieves good accuracy. However the work 

does not intend to capture the information related 

to word level semantics. This provides a further 

scope of research to study the impact of word 
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embedding based approach on classification of 

code-mixed text. Sharma (2015) used an approach 

of lexicon lookup for text normalization and 

sentiment analysis on Code-Mixed text. Pravalika 

(2017) used lexicon lookup approach for domain 

specific sentiment analysis. These lexicon lookup 

based approaches lack capability to handle 

misspelled words and wide variety of these code 

mixed texts. Recent work (Lal, 2019) have used 

BiLSTM based dual encoder networks to represent 

the character based input and additional feature 

network to achieve good accuracy on code-mixed 

texts. Recent work (Yenigalla, 2018) has explored 

the opportunity of using both character and word 

embedding based feature to handle unknown 

words for text classification on monolingual 

English only text corpora. However, this approach 

is not common for Code-Mixed text, primarily 

because of the non-availability of word embedding 

for the Code-Mixed texts.  

3 Dataset  

We have considered Hi-En Code-Mixed dataset2, 

shared by Prabhu (2016) as a baseline for this 

research.  

3.1 Description 

The dataset was collected from public Facebook 

pages of famous Indian personalities i.e. Salman 

Khan and Narendra Modi. The data is present in 

Roman script. The dataset contains 3879 

comments. Each data is annotated with a 3-level of 

polarity scale i.e. Positive, Neutral and Negative.  

The dataset contains 15% negative, 50% neutral 

and 35% positive. Table 1 shows some example of 

code-mixed texts dataset.  

 

Example Approx. meaning 

in English 

Polarity 

Sir yeh tho sirf aap 

hi kar sakte hai. 

Great sir 

Sir only you can do 

it. Great Sir 
Positive 

Kuch nahi karoge 

tum india ke liye 

You won’t do 

anything for India 
Negative 

Humari sabhayata 

humari pehchaan ... 

Our civilization is 

our identity 
Neutral 

Table 1:  Example from Hi-En Code-Mixed dataset. 

                                                           
2 https://github.com/DrImpossible/Sub-word-LSTM 

3.2 Challenges  

Transliteration of phonetic languages, like Hindi, 

into roman script creates several variations of the 

same word. For example, “बहुत” in Hindi which 

means “more” in English can be transliterated as 

“bahut”, “bohoot” or “bohut” etc. 

The Romanized Code-Mixed text, available on 

social media imposes additional challenges of 

contraction of phrases. For example, ‘awsm’ is 

shortened form of ‘awesome’; ‘a6a’ is contracted 

from ‘accha’ etc. Romanized code-mixed text also 

contain sentences with non-grammatical constructs 

like ‘Bhai jaan bolu naa.. yar’ as well as non-

standard spelling such as ‘youuuu’, ‘jaaaaan’ etc. 

The phonetic similarity of various words across 

participant languages in the Code-Mixed text 

increases the challenge by introducing 

disambiguation for meaning of a word. For 

example, “man” in English means ‘an adult human 

male’ where as in Hindi it means ‘mind’. 

Large availability of clean corpora has given a rise 

in various kinds of research for Mono-lingual texts 

like English. On the other hand, the limited 

availability of clean & standard Code-Mixed 

corpus restricts wide spectrum of experiments, 

which depends on word-embedding based input. 

 

3.3 Character Set 

The dataset is cleaned of any special characters for 

this research. Final character set is of 36 characters 

including 26 English letters and 10 numbers. Final 

character set is: 

abcdefghijklmnopqrstuvwxyz0123456789 

  

4 Proposed Method 

The proposed method consists of two major parts. 

First one is preparing a suitable word-embedding 

of code-mixed text and later one is a robust deep 

learning architecture for classification on code-

mixed text. 

4.1 Word-Embedding 

There are three main aspects for preparing word 

embedding for Hindi-English Code-Mixed Texts. 

First is preparation of a corpus of Hindi Romanized 

text. Second one is preparing word embedding by 

choosing a right algorithm of word embedding. 

https://github.com/DrImpossible/Sub-word-LSTM
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Third, is to ensure that words from both participant 

languages which are similar has nearby 

representation. To address the first aspect, we use 

Indic transliteration3  on large Hindi-English 

corpus4 where the Hindi text is present in 

Devanagari5 script also contains English content. 

In this way, we achieve the Hindi-English Code-

Mixed corpus in Roman Scripts. Figure 1 depicts 

the process of generating the desired corpus. 

 

Figure 1: Corpus Preparation for Hi-En 

Code-mixed Text in Roman Script. 

We hypothesize that the transliterated corpus 

represents a new language of Romanized Hindi. As 

discussed earlier there are various challenges of 

Romanized representation of Code-Mixed text 

such as presence multiple homo-phonic 

representations of a single word etc., so we have 

chosen fastText (Bojanowski, 2017) word 

representation as best method to train word 

embedding. This addresses the second aspect of 

previously discussed task of preparing word 

embedding. Once the corpus is generated, we have 

trained word embedding with fastText6. This 

trained embedding is capable of providing the 

vectorized representation of a Romanized Hindi 

word. On the other side, an utterance in the Code-

Mixed corpus also contains English words as well. 

For example, the 1st utterance in the Table 1 

contains two phrases, where 1st phrase contains the 

Romanized Hindi words and the 2nd phrase 

contains English words. This is the third and final 

aspect, discussed as a part of task of word 

embedding. Now to represent such an utterance 

using word embedding, we need the bi-lingual 

word embedding which include Romanized Hindi 

and English words as well. To cater to this 

requirement, we have used the proposed method 

(Smith, 2017) to represent bi-lingual 

representation of word from two monolingual 

representations. SVD is used to learn a linear 

transformation (a matrix), which aligns 

monolingual vectors from two languages in a 

single vector space7. In this experiment, we 

                                                           
3 https://github.com/sanskrit-coders/indic_transliteration 
4 https://www.kaggle.com/pk13055/code-mixed-hindienglish-

dataset 
5 https://en.wikipedia.org/wiki/Devanagari  

considered two monolingual word embedding(s). 

First is the trained word embedding of Romanized 

Hindi. Second one is the pre-trained & published8 

English word-embedding (Mikolov, 2018), which 

is trained on Wikipedia corpus. 

4.2 Model Architecture 

We prepare Attention based deep learning 

architecture for Classification of Code-Mixed 

Text (ACCMT) which uses learning from both 

character and word based representation. The 

proposed architecture consists of two major parts. 

The first part learns the sub-word level features 

from input character sequences. The other parts 

uses prepared word embedding as input and learn 

the word level features. 

 

 
 

The first part is similar as the baseline 

implementation Prabhu (2016), which is inspired 

by research work of Kim (2016). This part is 

independent of word vocabulary, which helps to 

resolve important issues in code mixed text like 

non-standard spelling, phrasal contraction etc. 

6 https://fasttext.cc/docs/en/python-module.html 
7 https://github.com/Babylonpartners/fastText_multilingual 
8 https://fasttext.cc/docs/en/pretrained-vectors.html  
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Figure 2: Attention based deep learning 

architecture for Classification of Code-Mixed 

Text (ACCMT) 

https://github.com/sanskrit-coders/indic_transliteration
https://www.kaggle.com/pk13055/code-mixed-hindienglish-dataset
https://www.kaggle.com/pk13055/code-mixed-hindienglish-dataset
https://en.wikipedia.org/wiki/Devanagari
https://fasttext.cc/docs/en/python-module.html
https://github.com/Babylonpartners/fastText_multilingual
https://fasttext.cc/docs/en/pretrained-vectors.html


127

 

 

Even though this representation lack word level 

semantic interpretability, the assumption is that 

character n-gram serve semantic functions e.g. 

‘cat+s=cats’. 

Formally a Sentence S is made of sequence of 

characters [𝑐1, … , 𝑐𝑙]where 𝑙 is sentence length. 

𝑄 ∈ ℝ𝑑 × 𝑙
 is the representation of sentence where 

𝑑 being the dimension of character embedding. We 

perform the convolution of 𝑄 with filter 𝐻 ∈

ℝ𝑑 × 𝑚
 of length m. This operation provides a 

feature map 𝑓 ∈ ℝ𝑙−𝑚+1
. Convolution is shown 

with ‘∗’ Operator in equation 1. 

 

𝑓 =  𝑄 ∗ 𝐻          (1) 

 

Next max-pool operation of p features from f 

brings sub-word representation y. 

𝑎𝑡 =  𝜏0 × tanh(𝜏𝑢𝐶𝑡  ̃ + 𝜏𝑓𝐶𝑡−1 ̃ ) 

𝑊ℎ𝑒𝑟𝑒, 𝐶𝑡  ̃ = tanh(𝑊𝑐[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑐) 

 𝜏𝑜 =  σ(𝑊𝑜[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑜) 

𝜏𝑢 = σ(𝑊𝑢[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑢)  

                   𝜏𝑓 =  𝜎(𝑊𝑓[𝑎𝑡−1, 𝑦𝑡] + 𝑏𝑓)       (2) 

 

Here 𝑦𝑡 represents the input at current timestamp. 

Output from LSTM is 𝑎𝑡at time 𝑡. 𝜏𝑜, 𝜏𝑢, 𝜏𝑓 are 

respectively the output, input and forget gates of 

LSTM cell. 𝐶𝑡  ̃is the cell state at time 𝑡. 

The second part is designed with intention to 

capture features for the word level semantic 

representation to counter the limitation of previous 

part of the architecture. For this purpose LSTM is 

used as well, because LSTM has performed very 

well (Bhasin, 2019; Tang, 2015) in various 

sentiment analysis and other text processing tasks. 

Formally a Sentence 𝑆 is made of sequence of 

words [𝑝1, … , 𝑝𝑙] where 𝑙 is word length of 𝑆. 𝑄 ∈

ℝ𝑑 × 𝑙
 is the representation of sentence where d 

being the dimension of word embedding. Now 𝑝𝑡, 

word at time 𝑡 is passed to memory cell of LSTM 

and the output follows similar of equation (2). 

We have introduced two separate attention layers 

over the LSTM output of Character based side and 

Word based side respectively. The intention of 

applying the attention is to infer the dominating 

features from character representation as well as 

word representation respectively. We have used 

                                                           
9 https://pypi.org/project/keras-self-attention/  

self attention (Vaswani, 2017) for our 

implementation9. Formally, the attention can be 

depicted as equation (3). 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 𝑑𝑘⁄ )  (3)  

 

The 𝑄, 𝐾 & 𝑉 is same and that is the output of the 

previous layer. The final output after attention of 

sub-word level representation through character 

embedding part and learnt features from the word 

embedding part are concatenated as late fusion to 

feature represent of the input sentence. The joint 

feature is passed through another attention layer. 

This layer is intend to figure out the dominating 

learnt feature among word and character based 

learnt features. Following this layer, we add two 

consecutive fully connected layers with ReLU 

non-linearity. The final output of the last dense 

layer is passed through a Softmax layer to predict 

the sentiment.   

Formally late fusion of learnt character features 𝑓𝑐 

& word features 𝑓𝑤  is 𝑓s =  (𝑓𝑐 , 𝑓𝑤) to represent 

jointly learnt features of sentence S. Then s is input 

to dense layers with 𝑔 as ReLU non-linearity. 

Output 𝑎1 is passed through second dense layer to 

get output a2. 

 

             𝑎1 = 𝑔(𝑊1 × 𝑓𝑠 +  𝑏1) 

𝑎2 = 𝑔(𝑊2 ×  𝑎1 +  𝑏2)                                  (4) 

 

Further, final layer is formalized as equation 5. 

𝜎 =  𝑒𝑎2 ∑ 𝑒𝑎2
𝑖⁄                                        (5) 

5 Experimental Setup 

This research used Keras on python for all required 

implementations. The baseline dataset is divided 

into 3 splits i.e. training, validation and testing. 

Initially the dataset is randomly divided into 80-20 

train-test split. Further train is randomly divided 

into 90-10 train-validation unlike the baseline 

implementation which splits 80-20 as train-

validation. The results are reported over the test 

split here. 

We have experimented with various possible  

values of hyper parameters and the best set of 

hyper parameters is shown in the Fig 2. As 

discussed earlier first part of the architecture is 

meant for character based input. Here a single 

https://pypi.org/project/keras-self-attention/
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sentence is considered to be of sequence of 200 

characters. Characters beyond 200 are ignored for 

sentence having more than 200 characters. A 

sentence with less than 200 characters is zero 

padded. Point need to mention is that we have 

considered space also as valid character input. For 

the second part of the network we have use word 

embedding of different dimensions for example 

100, 200 and 300. However it achieved best 

accuracy with 300 dimensional word-embedding. 

While training the fastText Word-Embedding, 

‘minn’ & ‘maxn’ parameters were set to 2 and 10 

respectively. For word based input, a sentence of 

length 40 words is considered. A sentence with 

lesser than 40 words is zero embedding padded 

whereas words beyond 40 are ignored if sentence 

is having more than 40 words. Also we empirically 

found that having two stacked  LSTM layers 

similar to Prabhu (2016) gave optimal 

performance.  

We have used default Keras implementations of 

Categorical Cross Entropy for loss functions in 

different experiments. Available implementation of 

Focal Loss10 is used during few experiments. The 

intention of apply focal loss (Lin, 2017) is to check 

the robustness of the proposed ACCMT 

architecture with respect to different loss function. 

Of late Focal Loss has migrated from Object 

Detection to various other tasks, for example 

speech emotion recognition Tripathi (2019) etc. 

We wanted to experiment and capture the impact 

of Focal Loss on Classification of Code-Mixed 

text. Default Keras implementation for adam 

optimizer is used for experiments. On the other 

hand learning rate of 0.0008 and a decay of 

0.000012 is set for RMS Prop in various set of 

experiments. Dropout at Character-LSTM part is 

set to 0.2 and Word-LSTM is set to 0.4, where as 

the dropout of dense layers are set to 0.4. We have 

used the available implementation of attention 

layer in our code for model architecture. 

The model is trained over 50 epochs and batch size 

of 64 with 10-fold cross-validation. During each 

fold, the best model is picked based on validation 

accuracy. The experiments are conducted in the 

Anaconda environment on a machine with Intel 

Core i5 processor and NVIDIA processor for GPU 

acceleration, 16 GB of RAM and a 1 TB of HDD 

with Windows 10 Operating System. The 50 

                                                           
10 https://github.com/mkocabas/focal-loss-keras  

epochs of training of ACCMT takes 25 minutes in 

average. 

6 Results and Analysis 

We have conducted all experiments in the 

computing environment mentioned in above 

section. In the same environment, the 

implementation of Prabhu (2016) attained 

maximum accuracy of 66.29% across 5 different 

executions. Whereas the best performance of 

ACCMT is 71.97% exceeds the baseline 

performance by 5.68% in the same computing 

environment. To understand the impact of attention 

on the classification of code-mixed text, we have 

also experimented without attention. We have 

removed three attention layers from the ACCMT 

and created a deep learning architecture which uses 

only fusion of character and word features. This 

architecture showed a maximum of 69.845% 

accuracy on the same dataset. This implies that 

attention has improved accuracy with 2.125%. We 

also compared against Yenigalla (2018) which 

gave an accuracy of 64.3%. Table 2 showed the 

accuracy and F1 score of all experiments. 

 

Experiments 
Results 

Accuracy F1 

Yenigalla (2018) 64.3% 62.2 

ACCMT  

(adamax + Focal Loss) 
70.10% 68.1 

ACCMT  

(RMS prop + categorical 

cross entropy) 

69.75% 67.5 

ACCMT (adamax + 

categorical cross entropy) 
71.97% 70.93 

ACCMT (RMS Prop + 

Focal Loss) 
70.32% 68.71 

Table 2:  Results of ACCMT on Hi-En Code Mixed 

dataset with different loss-function and initializers. 

7 Conclusion 

This paper shows the architecture of attention 

based deep learning architecture (ACCMT) which 

does fusion of character and word feature to 

develop a robust classifier for code-mixed text. The 

proposed ACCMT architecture performs well on 

the Hi-En code-mixed dataset and outperforms the 

baseline accuracy. A major contribution of this 

paper is the technique of training word embedding 

for code-mixed text. This technique is used for 

https://github.com/mkocabas/focal-loss-keras
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generating word embedding for Hindi-English 

code mixed corpus, which is required in this 

research work. This proposed technique is very 

easy to implement for other code-mixed languages 

as well and will be helpful for generating word 

embedding for low resource code-mixed languages 

majorly Indian languages e.g. Bengali, Tamil and 

Malayalam etc. This also opens up opportunities of 

research on other code-mixed languages. This 

work also shows the impact of attention for the 

classification of code-mixed text. Lal (2019) 

showed that introduction of feature network has 

improved the accuracy significantly. The 

integration of such feature network in ACCMT is 

considered for future course of improvement for 

the on-going research. 
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