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RÉSUMÉ
Cet article présente une tâche du benchmarking de la reconnaissance de l’entité nommée (REN)
pour le français. Nous entrainons et évaluons plusieurs algorithmes d’étiquetage de séquence, et
nous améliorons les résultats de REN avec une approche fondée sur l’utilisation de l’apprentissage
semi-supervisé et du reclassement. Nous obtenons jusqu’à 77.95%, améliorant ainsi le résultat de
plus de 34 points par rapport du résultat de base du modèle.

ABSTRACT
Benchmarking for French NER.

This paper presents a benchmarking task of named-entity recognition for French. We train and
evaluate several sequence labeling algorithms, and we improve named-entity recognition results
using semi-supervised learning and reranking. We obtain up to 77.95%, in which we improve the
result by over 34 points compared to the baseline results.
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1 Named Entity Recognition

Named entities are phrases that contain the names of persons, organizations and locations (Tjong
Kim Sang & De Meulder, 2003). The task of named-entity recognition (NER) seeks to identify ele-
ments into predefined categories such as the names of persons (PER), locations (LOC), organizations
(ORG), etc. The following example 1 is from CoNLL 2003 English NER data :

U.N. NNP I-ORG
official NN O
Ekeus NNP I-PER
heads VBZ O

for IN O
Baghdad NNP I-LOC

. . O

In this example, entities such as PER, LOC and ORG are tagged using the BIO format alongside their

1. The example excerpted from https://www.clips.uantwerpen.be/conll2003/ner



original : preprocessed :
Emmanuel I-PER
DESOLES I-PER
de O
LOU O
Directeur O
politique O
BÊ>ÀCTION O
ET O
ADMINISTRATION O
9& O
, O
Rue I-LOC
du I-LOC
Pré-Botté I-LOC
, O
aS O
RENNES I-LOC
ABONNEMENTS O
Dép O
. O

Emmanuel NAM I-PER
DESOLES NAM I-PER
de PRP O
LOU NAM O
Directeur NAM O
politique ADJ O
BÊ>ÀCTION NAM O
ET NAM O
ADMINISTRATION NAM O
9& ADJ O
, PUN O
Rue NOM I-LOC
du PRP:det I-LOC
Pré-Botté NAM I-LOC
, PUN O
aS VER:simp O
RENNES NAM I-LOC
ABONNEMENTS NAM O
Dép NAM O
. SENT O

FIGURE 1 – Original and preprocessed NER data for French

words and Penn tagset part-of-speech (POS) labels. B-I-O stands for beginning-inside-outside of each
entity.

This paper presents a benchmarking task for French NER. We train and evaluate several sequence
labeling algorithms such as a Hidden Markov model (HMM) (Rabiner, 1989), conditional random
fields (CRF) (Lafferty et al., 2001), and bi-directional long-short-term-memory recurrent neural
network (bi-LSTM RNN) (Graves & Schmidhuber, 2005) for French NER. We also improve NER
results by introducing semi-supervised learning in which we use a large monolingual corpus to
augment the training data, and reranking which adjusts the results based on several sequence labeling
algorithms.

2 Experiments and Results

2.1 Data

We use the French NER data provided by Europeana Newspapers 2. They are OCRed newspaper
from 1870 to 1939 taken from the National Library of France. The original data only provides
automatically tokenized text and named entity label for each token. There are no sentence boundaries.
For training and evaluation, we add "rough" sentence boundaries and POS labels by TreeTagger
(Schmid, 1994) 3. To the best of author’s knowledge, there are no previous results on this corpus.
We explicitly introduce sentence boundaries that machine learning algorithms are trained sentence
by sentence based on the TreeTagger sentence segmentation. We then split the corpus 80/10/10
ratio as training/development/test data sets, and it gives 10,041/1,255/1,255 sentences, respectively.
Figure 1 shows the original data and preprocessed NER data for French. Note that the present corpus
is “original”. If there may be errors, it is not corrected in this paper.

2. Available at https://github.com/EuropeanaNewspapers/ner-corpora
3. Available at http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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FIGURE 2 – Learning models for NER : figures for HMM and CRFs are inspired by Sutton &
McCallum (2012).

2.2 Learning models

We use following learning models to train and evaluate NER for French :

— HMM using TnT (Brants, 2000) 4

— CRFs using CRF++ 5

— CRFs using Wapiti (Lavergne et al., 2010) 6

— bi-LSTM RNN using NeuroNER (Dernoncourt et al., 2017) 7 with a pre-trained embedding
vector for French (Bojanowski et al., 2017) 8.

Figure 2 summarizes the learning models of HMM, CRFs and bi-LSTM RNN where xi is a word
and yi is a label (1 ≤ i ≤ n). While an HMM uses only the token’s observation probability and the
transition probability of states (label) for learning features, CRFs can use their features as we define.
We use ±2 word and POS window context information and a bi-gram word and POS model are used
as a feature set for CRFs. The neural network will learn the optimal features during training for the
bi-LSTN RNN. We run the experiment with 50 epochs with stochastic gradient descent (SGD), 0.005
learning rate, and 0.5 dropout rate . A pre-trained embedding vector for French (Bojanowski et al.,
2017) is in 300 dimensional space, and it enriches word vector results with subword information.

2.3 Results

We evaluate NER results with the standard F1 metric using conlleval 9. Table 1 shows the overall
baseline results on NER for French using several sequence labeling algorithms. Note that we use
train+dev data for training for TnT and CRF++ because they cannot have development data during
training. Training without dev data can obtain 45.36% and 63.16% for TnT and CRF++, respectively,
which are being outperformed by training with train+dev data as we present in Table 1. Otherwise,
we use train/dev/evaluation data as described in §2.1. crf (w) can improve up to 65.95% if the L2
penalty parameter for ridge regression is set λ to 0.01, which can penalize the high-value weights to

4. Available at http://www.coli.uni-saarland.de/~thorsten/tnt/
5. Available at https://taku910.github.io/crfpp/
6. Available at https://wapiti.limsi.fr/
7. Available at http://neuroner.com/
8. Available at https://fasttext.cc/docs/en/pretrained-vectors.html
9. Available at https://www.clips.uantwerpen.be/conll2003/ner/



hmm (t) crf (+) crf (w) bi-lstm

precision 38.99 58.49 60.13 73.71
recall 55.37 72.06 73.01 78.99

F1 45.76 64.57 65.38 76.26

TABLE 1 – Overall baseline results on NER for French : crf (+) and crf (w) represent CRFs using
CRF++ and Wapiti, respectively.

avoid overfitting. We also note that results on CRFs can be improved using the different feature set.
Even though CRF++ and Wapiti implement the same algorithm, Wapiti gives the better results.
We assume that this is because stop criteria of implementations and default values that we use for
learning. 10 While bi-LSTM RNN improves up to 77.76% during training epochs, we present the best
result based on dev data.

3 Improving NER Models Using Semi-supervised Learning

We employ the NER model described in the previous section (§2.3) to improve NER results using
semi-supervised learning, in which we automatically annotate a large monolingual corpus. This kind
of practice is often called self-training (McClosky et al., 2006a), self-taught learning (Raina et al.,
2007), and lightly-supervised training (Schwenk, 2008). For semi-supervised learning we introduce
the consensus method D̂ (Brodley & Friedl, 1999). We use it by intersection between entity-annotated
results using

D̂ = D(M1) ∩ · · · ∩ D(Mn) (1)

where D is raw text data,Mi is a learning model to annotate raw text data (1 ≤ i ≤ n), and D̂
is filtered annotated data. For raw text data for French, we use the monolingual corpus from the
French treebank (Abeillé et al., 2003) 11 (sentences only), and the French News Commentary v10
corpus 12. We directly use morphologically segmented tokens in the treebank, and the preprocessing
tools of Moses (Koehn et al., 2007) for the new commentary corpus : normalizing punctuations and
tokenization. 13 Table 2 summarizes the size of the monolingual corpus. To present the characteristics
of the monolingual corpus, we provide the ratio of entity labels comparing to per in D̂, in which
per is the most frequent entity in the original corpus. For example, the original NER training data
set (train) contains 4,977 per and 4,432 loc entities, in which we represent 0.89 for loc. Note that
the number and the ratio of entities in the French treebank and the New Commentary corpora are
based on the automatically labeled entities (D̂).

Table 3 shows the overall results on NER using semi-supervised learning. Since hmm (t) gives the
weakest results in the previous section, we exclude it for data intersection. Therefore, we obtain D̂ only
from D(Mcrf(+)) ∩ D(Mcrf(w)) ∩ D(Mbilstm) for the current semi-supervised learning task. All
learning algorithms can improve the NER results using semi-supervised learning by benefiting from
the larger training data, even though they are automatically labeled. Such improvements using “self-

10. We would like to thank reviewer #3 for indicating this problem.
11. Available at http://www.llf.cnrs.fr/Gens/Abeille/French-Treebank-fr.php
12. Available at http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz
13. Available at http://www.statmt.org/moses



size (D) size (D̂) per loc org

(original train) 0.16 M - 1 0.89 0.42
French treebank 0.62 M 0.38 M 1 0.74 0.18

News Commentary 6.09 M 3.65 M 1 3.00 0.23

TABLE 2 – Size of the monolingual corpus and the ratio of entity labels

hmm (t) crf (+) crf (w) bi-lstm

French treebank 50.34 65.94 66.63 77.49
News Commentary 49.69 66.18 68.28 76.65

TABLE 3 – Overall results (F1) on NER for French using semi-supervised learning described in §3

training” have already been shown in many NLP tasks, for example in syntactic parsing (McClosky
et al., 2006a).

4 Improving Results Using Reranking

We also propose a reranking algorithm using L̂ = rerank(L1, ...,Ln) where Li is an assigned label
by a learning algorithm, and L̂ is a reranked label by the rerank function. We exclude Lhmm(t),
and we then obtain L̂ from rerank(Lcrf(+),Lcrf(w),Lbilstm) for reranking labels. We calculate the
rerank function as follows :

rerank(·) = argmax(per,loc,org) if there is any entity label
O otherwise

For each entity score (per, loc or org), we calculate

α1Lcrf(+) + α2Lcrf(w) + α3Lbilstm (2)

where αi is a normalized weight. For example, α1 for Lcrf(+) is calculated by its baseline result in
F1 being normalized by the sum of all F1 scores by learning algorithms : 64.57

64.57+65.38+76.26 . We use
α1 = 0.3131, α2 = 0.3171 and α3 = 0.3698. For example, if a word Loiret (a department name in
north-central France) is annotated as I-LOC, I-ORG and I-LOC by CRFs and bi-lstm, L̂ is I-LOC
by the rerank calculation described in Figure 3. Finally, Table 4 shows the reranking results on NER
for French.

per = α1 × 0 + α2 × 0 + α3 × 0 = 0
loc = α1 × 1 + α2 × 0 + α3 × 1 = 0.6829
org = α1 × 0 + α2 × 1 + α3 × 0 = 0.3171

FIGURE 3 – An example for the rerank function to calculate argmax(per,loc,org) for Loiret.
We use α1 = 0.3131, α2 = 0.3171 and α3 = 0.3698.



monolingual corpus

reranking based on Table 1 76.41 baseline
reranking + semi-supervised based on Table 3 77.95 French treebank
reranking + semi-supervised based on Table 3 77.03 News Commentary

TABLE 4 – Reranking results (F1) on NER for French described in §4

5 Previous Work

Ollagnier et al. (2014) used the Open Edition corpus the Quaero Broadcast News Extended Named
Entity corpus 14, which contains over 1.2M tokens. They evaluated NER results with LIA_NE (HMM-
CRFs) 15, OpenNLP (Maximum entropy) 16 and Standford NER (CRFs) 17 with different sizes of
training data. They obtained up to 57,9 F1 score with LIA_NE. Partalas et al. (2016) compared
NER systems in the e-Commerce domain for the cosmetics products by using handcrafted rules and
machine learning techniques. They used two 50K tokens data sets (cosmetics magazines and blog
articles). They presented only entity level results and a system of lexical combined syntactic rules
with a domain-specific dictionary usually outperformed CRFs. Their rule-based systems yielded
between 60.00 and 90.68 F1 scores based on different entities.

There were efforts to create corpora annotated in named entities for French. Sagot et al. (2012) and
Dutrey et al. (2012) manually annotated named entities in the French treebank, and in restricted
domain such as oral dialogs recored by the EDF call center for information extraction, respectively.
Okinina et al. (2013) enriched proper nouns by mining Wikipedia with the combination of DBpedia
rules and a support vector machine classification. Hatmi (2012) used a cross-lingual approach by
converting a rule-based English NER system into French by using lexical and grammar adaptations.

Fraisse et al. (2013) employed NER for better classification results on opinion mining and sentiment
analysis. Sagot & Gábor (2014) corrected OCRed named entities errors by using a rule-based
NER system. Brando et al. (2016) used NER for recognizing geographical references. These are
applications, in which NER results improved other natural language processing tasks. Otherwise,
Dupont & Tellier (2014) proposed a pipeline for French NER based on Wapiti.

6 Conclusion

In this paper, we trained and evaluated several sequence labeling algorithms to perform benchmarking
for French named-entity recognition data. We then improved NER results using semi-supervised
learning and reranking. We obtained up to 77.95%, in which we improved the result by over 34 points
compared to the baseline results of the HMM.

While incorporating unlabeled data into a new model is a simple method, it would not be surprising
that self-training is not normally effective because errors in the original model can be amplified in

14. Available at http://catalog.elra.info/product_info.php?products_id=1195
15. Available at http://pageperso.lif.univ-mrs.fr/~frederic.bechet
16. Available at https://opennlp.apache.org
17. Available at https://nlp.stanford.edu/software/CRF-NER.shtml



the new model (McClosky et al., 2006a). We discard the weakest learner’s results for the consensus
method. This decision actually improves the NER results. For example, while hmm (t) obtains
only 47.35% with intersection of all data for the French treebank, it achieve 50.34% by excluding
D(Mhmm(t)) for data intersection. This semi-supervised process can be iterated, and it can be
performed over other sets of unlabeled data for French. We assume that iterating the semi-supervised
process and using a larger unlabeled data can improve NER results. We leave this to future work.
However, while learning models for HMM and CRFs are relatively quick, we note that training
bi-lstm using a large annotated corpus (e.g. over 3.65M tokens in News Commentary) takes several
days even on a GPU for a single iteration.

Reranking basically selects the best result from the set of NER results for each sentence to have
constructed high-performance NLP systems such as parsing (Charniak & Johnson, 2005). Combining
reranking and self-training is not new, which has been, for example, already proposed for syntactic
parsing (McClosky et al., 2006b). While reported results show a minor improvement (e.g. we obtain
76.41% using ranking baseline, compared to 76.26% in the best baseline result), it is cheap and easy
to implement for immediate improvements.

Comparison of results using previously proposed NER systems for French, and benchmark lear-
ning using other previously proposed NER data would be an interesting task, and we leave this to
future work. All trained models and data will be publicly available at https://github.com/
jungyeul/taln2018.
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