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Abstract

Multilingual neural machine translation (M-NMT) has re-
cently shown to improve performance of machine translation
of low-resource languages. Thanks to its implicit transfer-
learning mechanism, the availability of a highly resourced
language pair can be leveraged to learn useful representa-
tion for a lower resourced language. This work investigates
how a low-resource translation task can be improved within a
multilingual setting. First, we adapt a system trained on mul-
tiple language directions to a specific language pair. Then,
we utilize the adapted model to apply an iterative training-
inference scheme [1] using monolingual data. In the exper-
imental setting, an extremely low-resourced Basque-English
language pair (i.e., ≈ 5.6K in-domain training data) is our
target translation task, where we considered a closely re-
lated French/Spanish-English parallel data to build the mul-
tilingual model. Experimental results from an i) in-domain
and ii) an out-of-domain setting with additional training data,
show improvements with our approach. We report a transla-
tion performance of 15.89 with the former and 23.99 BLEU
with the latter on the official IWSLT 2018 Basque-English
test set.

1. Introduction
The amount and diversity of model training data have been
shown to affect the performance of Neural Machine Transla-
tion (NMT) system [2]. The direct relation between dataset
size and performance of NMT [3], calls for alternative ap-
proaches to improve low-resource language translation.

Multilingual models that constitute more than one lan-
guage pair has been shown to improve the translation perfor-
mance of the low-resources language direction [4, 5]. In it’s
simplified and most effective setting, building an M-NMT
system requires only an additional “language-flag” on the
data level. Then, the attentional encoder-decoder based NMT
model can be trained with the aggregation of several lan-
guage pairs. The flag functions as a mechanism to trigger
and direct the generation of target tokens in a specific target
language. Thus, when the training set is constructed with

(*) Work conducted while this author was at FBK.

the merge of several language directions, the latent transfer-
learning across languages within the conventional NMT ar-
chitecture showed to improve low-resourced language pairs.
However, M-NMT training mechanism is biased towards
generating the language pair with the largest portion of train-
ing data [1]. This bias will consequently limit the expected
level of improvement in translating low-resource language
pairs.

In this work, we propose a progressive adaptation of
a multilingual model to a single language pair. We cast
the adaptation stage in iterative training-inference operations
that utilize monolingual data. Assuming, the availability
of a low-resource language pair and a high resource re-
lated/language pairs data, we specifically explore the follow-
ing two mechanisms:

• Adapting a multilingual model trained with several
language directions to a specific low-resourced lan-
guage pair, with the aim to avoid ambiguities at the
time of inference.

• Then, applying an iterative training-inference using
monolingual data of the low-resourced pair, with the
aim to acquire a more cleaner pseudo-parallel corpus
for the next adaptation stage.

In our experimental setting, we apply the above two mech-
anisms for improving the extremely low-resourced (ELR)
Basque(EU)-English(EN) language pair. Then, with the ex-
perimental results and discussion we present our participa-
tion of the IWSLT-20181 shared task on Low Resource MT
of TED2 talks from Basque to English direction. We eval-
uated our approach with the i) ELR training condition in
a constrained in-domain data, and ii) by adding an out-of-
domain training data in addition to the in-domain. We train
both models in a similar language setting (i.e., the addi-
tional/related language pairs are French/Spanish-English).

For comparing our approach, we train a bilingual
(Basque-English) baseline and multilingual baseline model
by adding more data from the related language pairs. More
specifically, to build the M-NMT model Basque-French and

1https://sites.google.com/site/iwsltevaluation2018/TED-tasks
2https://wit3.fbk.eu/
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Basque-Spanish with a similar ELR condition, and French-
English and Spanish-English with the relatively high re-
source data size are added to the bilingual model. All
models share common configurations at training and infer-
ence time, unless stated differently. Models are trained fol-
lowing [4], preprocessing and training procedures using the
Transformer model [6].

In the following sections, we begin by introducing NMT
(§2). Following, we review the related work in multilingual
models and transfer-learning (§3). In Section 4, we describe
our model training approach, followed by dataset and pre-
processing, experimental settings, and baseline models (§5).
Finally, we give further analysis on the experimental results
in Section 6.

2. Neural Machine Translation
A standard state-of-the-art NMT system comprises an en-
coder, a decoder and an attention mechanism, which are
all trained with maximum likelihood in an end-to-end fash-
ion [7]. Although there are different variants of the encoder-
attention-decoder based approach, Recurrent variants being
the predominant until recently [8], this work utilizes the
“Transformer” model [6]. The encoder is purposed to en-
code a source sentence into hidden state vectors, whereas the
decoder uses the last representation of the encoder to predict
symbols in the target language. In a broad sense, the atten-
tion mechanism improves the prediction process by deciding
which portion of the source sentence to emphasize at a time
[9]. Nevertheless, in the Transformer architecture, the ap-
plication of attention spans to the representation of encoder
latent and decoder latent space.

The Transformer architecture works by relying on a self-
attention (intra-attention) mechanism, removing all the re-
current operations that are found in the RNN approach. In
other words, the attention mechanism is repurposed to com-
pute the latent space representation of both the encoder and
the decoder sides. However, with the absence of recurrence,
positional-encoding is added to the input and output embed-
dings. Similarly, as the time-step in a recurrent network,
the positional information provides the Transformer network
with the order of input and output sequences.

In our work, we use the absolute positional encoding, but
very recently the use of the relative positional information
has been shown to improve performance [10]. The model is
organized as a stack of encoder-decoder networks that works
in an auto-regressive way, using the previously generated
symbol as input for the next prediction. Both the decoder
and encoder can be composed of uniform layers, each built of
sub-layers, i.e., a multi-head self-attention layer and a posi-
tion wise feed-forward network (FFN) layer. The multi-head
sub-layer enables the use of multiple attention functions with
a similar cost of utilizing attention, while the FFN sub-layer
is a fully connected network used to process the attention
sublayers; as such, FFN applies two linear transformations
on each position and a ReLU [6].

3. Related Works
3.1. Multilingual NMT

Prior to the introduction of a shared attention mechanism
[11], early works in multilingual NMT utilizes separate en-
coder, decoder and an attention mechanism to support the
translation of either many-to-one [12], or one-to-many [13]
language directions. Moreover, Firat et al. [11] intro-
duced a many-to-many system, however, relying on separate
encoder-decoder setup. In a simplified yet delivering better
performance [4] and [5] introduced a “language-flag” based
approach that shares the attention mechanism and a single
encoder-decoder networks to enable multilingual models. In
this work, we follow the Johnson et al. [4] approach for
prepending a language-specific flag at the source side of the
training and inference examples.

3.2. Transfer Learning and Model Adaptation

Zoph et al., (2016) [14], proposed how transfer-learning be-
tween two NMT models can improve a low-resourced MT
task. In their approach, a language pair with the relatively
large amount of data is first utilized to train a parent model,
then the encoder-decoder parameters are transferred to ini-
tialize a child model for a low-resourced language pair. After
initializing, in the fine-tunning stage, the parameters of the
child decoder network is fixed. The main motivation behind
updating only the encoder parameters is that the decoder lan-
guage across the parent-child models stays the same. Simi-
larly, the parent-child approach has been extended to analyze
the effect of using related languages on the source side of the
encoder-decoder network [15].

In a related way to benefit the low-resource language
from the high resourced pair [16] proposed an alternative
transfer-learning approach built on a component that allows
to share lexical and sentence level representations of multi-
ple source language to a single target language. In a prior
work, a multi-source approach where two or more encoders
shares an attention mechanism has been suggested in [17], to
address the ambiguities of translating a source token to a sin-
gle target language. Unlike [18] where a single multilingual
model is used for several language translations [19] showed
how adapting the multilingual model on a specific language
pair improves performance. Recently [20] explored the ad-
vantage of initializing a low-resource language pair training
using a pre-trained multilingual model showing a significant
improvement over baseline approaches.

4. Adaptation from a Multilingual Model
This work aims to exploit the transfer-learning across lan-
guages, however, instead of the parent-child strategy [14],
we rely on using a multilingual model as in [4] that allows
to abstract the representation of several languages in a single
attentional encoder-decoder model. We hypothesis if data
is received both for the low and high resourced language
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pairs, training a single model with the concatenation of all the
data and progressively fine tunning it with the low-resource
(target-task) language pair can avoid possible ambiguities
between languages at the time of inference.

First, we train a model with all the available language
pairs (including the target-task). Second, we adapt the best
performing model to the target-task language pair. Unlike
the recently proposed approach [20], we adapt using the
same target-task data that has been utilized for training the
baseline multilingual model. The main reason behind this
is that the target-task data is already received at time of
training the multilingual model. Then, the (latest) adapted
model is used to perform back-translation [21] in a target →
source direction or an iterative dual-inference in a source ↔
target directions [1]. However, both inference approaches
are used to create a source side synthetic data, the dual-
inference requires an available monolingual data both from
the source and target language. More importantly, the fact
that we adapt from the multilingual to a bi-directional model
allows us to avoid the use of auxiliary models (i.e., a sepa-
rate model trained in a target → source direction) to perform
the inference operations. After the inference stage, we con-
tinue training the model by combining the target-task and the
newly formed source (synthetic) → target parallel data, con-
sequently creating a progressive adaptation stages.

In the experimental section, the adaptation and progres-
sive update of the multilingual model to the single language
pair (Basque-English) target-task are evaluated in two set-
tings:

• iELR, an extremely low-resource language pair
trained and evaluated using an in-domain parallel and
monolingual data.

• oELR, an extension of the iELR training condition
with an additional out-of-domain parallel and mono-
lingual data, as described in Section 5

In the following Section, the details of the experimental setup
are given for the two evaluation scenarios.

5. Experiments
5.1. Dataset

The experimental setting covers the Basque (EU), English
(EN), French (FR), and Spanish (ES) languages. The ELR
language pair (EU-EN) and the related language pairs (FR-
EU/EN, and ES-EU/EN) are categorized into the in-domain
and out-of-domain settings. The in-domain data are ex-
tracted from the publicly released shared task dataset, WIT3

TED corpus [22]. Where as the the out-of-domain dataset
is collected from the WMT evaluation campaign PaCo cor-
pus [23, 24], Opus corpus [25], and the Open Data Euskadi
Repository (OpenData)3. Monolingual datasets for the Eu-
EN pair are extracted from the TED, Opus18, and OpenData

3http://hltshare.fbk.eu/IWSLT2018/OpendataBasqueSpanish.tgz

TED Opus16/18 PaCo OpenData
EU-EN 5623 856314 130359 -
EU-FR 5815 689358 - -
EU-ES 5546 840458 - 926203
FR-EN 287134 - - -
ES-EN 277093 - - -
EU-Mono - - - 741254
EN-Mono 242831 503970 - -

Table 1: Languages and dataset size of the training set. TED
represents the in-domain data, whereas the Opus from the
2016 and 2018 (excluding the FR-EN and ES-EN pairs),
PaCO for the EU-EN pair, and OpenData for the EU-ES pair
represent the out-of-domain pairs.

sources and preprocessed by removing the overlapping seg-
ments with the parallel data. Note; EN is the only available
in-domain monolingual data, whereas the rest is collected
from the out-of-domain sources based on availability. Ta-
ble 1 summarizes the source and data size of each language
direction.

For evaluating the target-task (EU-EN) a development set
of 1140 segments and for reporting the official submission
results, the 2018 test set constituting 1051 source side seg-
ments are used from the TED talks in-domain data.

5.2. Preprocessing

We first tokenize the raw data and remove sentences longer
than 70 tokens. As in [4], we prepend a “language-flag”
on the source side of the corpus for all multilingual mod-
els. The internal sub-word segmentation [26] provided by
the Tensor2Tensor library4 is used before each training and
inference. Note that prepending the “language-flag” on the
source side of the corpus is specific to the multilingual mod-
els. Following the recommendation in [27], the number of
segmentation rules is set to 16K for the in-domain data and
32K for the out-of-domain data.

5.3. Experimental Settings

All systems are trained using the Transformer [6] model im-
plementation in the Tensor2Tensor library. For all train-
ings, we use the Adam optimizer [28], with an initial
learning rate constant of 2 and a dropout [29, 30] of 0.2.
The learning rate is increased linearly in the early stages
(warmup training steps=16, 000) and afterward it is de-
creased with an inverse square root of the training step.

Considering the two training scenario (i.e., iELR and
oELR), we utilize two model configurations; i) for the in-
domain data a 512 embedding and hidden units dimension,
and 6 layers of self-attention encoder-decoder network, and
ii) for an out-of-domain scenario the dimension is set to
1024. The training batch size is of 4, 096 sub-word tokens.

4https://github.com/tensorflow/tensor2tensor/tree/v1.6.2/tensor2tensor
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Round NMT M-NMT iELR oELR

Eu-En
I 3.10 13.37 12.96 22.48
II - - 15.65 22.72
III - - 15.15 23.14

Table 2: BLEU results on the dev2018 using the EU-EN sin-
gle language pair NMT and the multilingual M-NMT baseline
models, as compared to the in-domain iELR and the out-of-
domain oELR adapted multilingual models from three train-
ing rounds. The bold highlight shows the best performing
training rounds.

At inference time, we employ a beam size of 4 and a batch
size of 32.

Following [6], iELR experiments are run upto 100k
training steps, whereas oELR experiments are run upto 400K
steps, i.e., all models are observed to converge within these
steps. The consecutive adaptation converged in a variable
training steps, however, to make sure a convergence point is
reached, all restarted experiments are run for additional 50K
steps. Then, the best performing checkpoint on the dev set
is used in the next training stage. All models are trained on
a Tesla V100-pcie-16gb with a single GPU for iELR
and 4 GPU’s for oELR.

5.4. Baseline Models

Baseline: models are trained as a term of comparison in two
settings, i) using only the available in-domain EU-EN data,
refereed to as NMT, and ii) by adding the related language
(EU-FR/ES and FR/ES-EN) in-domain data on the EU-EN
target-task. The latter forms a multilingual (M-NMT) baseline
model. The following section, discusses the results and
the comparison between the baselines and the adapted model
types.

6. Results and Discussion
The baseline models (NMT and M-NMT) compared to against
the adapted multilingual (iELR and oELR) models are re-
ported in Table 2. The single language pair model trained
with the in-domain (≈5.6K) training data showed a perfor-
mance of 3.10 BLEU. As we expected, the poor performance
is directly related to the small amount of training data. In
case of the M-NMT, we observed an improvement of +10.27
over the NMT with a performance of 13.37 BLEU. As dis-
cussed in Section 1, the transfer-learning across languages,
that arise from the additional EU-ES/FR and FR/ES-EN in-
domain language pairs highly contributed for the observed
improvement. Moreover, the experiments with our sugges-
tion have been run for two consecutive rounds.
In-Domain Setting. In the first adaptation stage, the iELR
model showed no significant difference with the baseline
M-NMT. However, the adaptation stage helps to narrow the
translation direction to the target task and avoid possible am-

NMT M-NMT iELR oELR

Basque-English - - 15.89 23.99

Table 3: Official BLEU results of tst2018 evaluated using the
in-domain iELR and the out-of-domain oELR best perform-
ing adapted multilingual models.

biguities for the inference stage. In the second round the
iELR model showed a +2.28 BLEU improvement over the
M-NMT (13.37 BLEU) baseline. The improvement is ex-
pected for the reason that the model is trained with the addi-
tional pseudo-parallel corpus from the back-translation step
of the EN in-domain monolingual data to the EU target. In
the consecutive round, however, the model performance de-
grades after the back-translation stage. This is likely caused
by poorly generated source side synthetic EU from the EN
monolingual data. Thus, for the final evaluation we take the
best performing model from the second training round.
Out-of-Domain Setting: oELRmodels are trained in a simi-
lar training strategy with iELR, except the availability of ad-
ditional parallel and monolingual (both for EU and EN, see
Table 1) data. The relatively higher amount of training data,
contributed for the larger gain of the oELRmodel over the in-
domain training condition. Compared to the baseline models
(NMT and M-NMT), oELR showed the highest performance
with 23.14 BLEU score at the third training round. Unlike
the performance degradation observed in the iELR setting,
the availability of monolingual data both for EU and EN
benefits each training-inference stage. However, with only a
0.66 BLEU gain over the initial model after three rounds, we
observed that the domain mismatch between parallel (EU-
EN) and the monolingual data disadvantages the expected
improvement using the training-inference approach.

In case of, the official evaluation campaign, this work
focused on a primary submission using the oELR model and
a contrastive submission using the in-domain iELR model.
Table 3, shows the performance of the two models on test-
2018.

An interesting aspect from the multilingual adaptation
and the iterative training-inference stages is that improve-
ments are observed within 6k-20k steps. Meaning, the con-
tinued training approach from the latest adapted model shows
a faster convergence than training a model from scratch.
Overall, our approach aimed at training a baseline multilin-
gual model for a progressive adaptation to a target-task (i.e.,
EU-EN), and applying an iterative training-inference scheme
using monolingual corpora showed to improve over the base-
line model. Our results suggest that the progressive adapta-
tion is critical when the target-task language pair has new ad-
ditional data at each stage. The experimental findings have
brought our attention for a further study on how to adapt a
multilingual model and what type of monolingual data to uti-
lize in the training-inference stages.
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7. Conclusions
In this work, we showed how progressively adapting a multi-
lingual model to an extremely low-resourced (EU-EN) lan-
guage pair improves the translation performance, with an
additional training-inference stage that utilizes monolingual
data. To evaluate the approach, the experimental setting
is carried out in an in-domain (iELR) and out-of-domain
(oELR) scenarios. Results show a significant improvement
over a single language pair model (NMT), as well as a 2.28
BLEU increase over the baseline M-NMT model in an in-
domain setting. As future work, we will focus on improving
the joint iterative training-inference and progressive adapta-
tion stages.
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