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Abstract
This paper describes the Johns Hopkins University (JHU)
and Kyoto University submissions to the Speech Translation
evaluation campaign at IWSLT2018. Our end-to-end speech
translation systems are based on ESPnet and implements an
attention-based encoder-decoder model. As comparison, we
also experiment with a pipeline system that uses independent
neural network systems for both the speech transcription and
text translation components. We find that a transfer learn-
ing approach that bootstraps the end-to-end speech transla-
tion system with speech transcription system’s parameters is
important for training on small datasets.

1. Introduction
We report on our efforts on the IWSLT 2018 Speech Trans-
lation task. The goal of the 2018 task is to build and evalu-
ate English-to-German speech translation systems on the do-
main of lectures and TED talks. We build two systems:

• Pipeline System: English (EN) speech transcription
system using a joint CTC-attention model (Section
3.1), followed by a English-to-German (EN-DE) text
translation system using a RNN-based sequence-to-
sequence model (Section 3.3).

• End-to-End System: English-to-German (EN-DE)
speech translation system using an RNN-based
sequence-to-sequence model transferred from the joint
CTC-attention model (Section 4).

The main challenge is to develop end-to-end neural sys-
tems that are trainable given the small amount of data (of
English speech matched to German text). We find that boot-
strapping the end-to-end system with the parameters of an
English-only speech transcription system (i.e. ASR of En-
glish speech to English text) was helpful.

Generally, we are interested in comparing the relative
merits of end-to-end vs. pipeline approaches. Currently,
our pipeline system outperforms the end-to-end system, even
when trained on the same number of utterances, suggesting
that there is much room for future work in end-to-end mod-
els.

† Work carried out as a visiting scholar at JHU.

2. Data
We build our systems on the following provided corpora:

1. Speech-Translation TED corpus (ST TED): This data
contains English speech (EN-s), the corresponding
English transcription (EN-t), as well as the German
translation (DE-t). We use this to train both pipeline
and end-to-end systems. In particular, (EN-s,EN-t) is
used to train the pipeline’s speech transcription com-
ponent (Section 3.1); (EN-t, DE-t) is used to train
the pipeline’s text translation component (Section 3.3);
and (EN-s, DE-t) is used to train the end-to-end sytem
(Section 4).

2. TED LIUM corpus (TEDLIUM2): This data contains
English speech (EN-s) and their English transcrip-
tion (EN-t). We use this as additional data to train
the pipeline system’s speech transcription component,
which is also used to initialize the end-to-end system.

3. WMT 2018 data, filtered to the TED domain us-
ing Moore-Lewis data selection [1] (WMT-Filtered):
We trained 5-gram Engish language models on TED
(LMTED) and a random sample of the WMT data
(LMWMT ), then selected the top 1 million WMT bi-
text according to the perplexity difference between
LMTED and LMWMT . Finally, we filtered all sen-
tences that were longer than 100 tokens or had an out-
of-vocabulary rate (with respect ST TED dictionary)
of 10% or larger. This is used to augment the training
data for the pipeline’s text translation component.

For data preprocessing of transcriptions and translations
in all languages, we normalized punctuation and performed
tokenization using the Moses scripts1. For both the pipeline’s
speech transcription and the end-to-end speech translation,
we used a fixed vocabulary of 5k or 10k wordpieces, which
were composed from characters to words and generated us-
ing sentencepiece2. We used the same dictionary including
both EN and DE wordpieces to capture the common words
in both languages.

1normalize-punctuation.perl and tokenizer.perl in
https://github.com/moses-smt/mosesdecoder

2https://github.com/google/sentencepiece
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For the pipeline’s text translation component, we exper-
imented with different kinds of subword units. For simplic-
ity, we did not use any truecase models for any systems and
worked directly with the natural casing. Table 1 shows the
data sizes in each corpus.

For feature extraction for speech transcription and trans-
lation, we extracted 80-channel log-mel filterbank outputs
with 3-dimensional pitch features computed with a 25ms
window and shifted every 10 ms using Kaldi [2]. The fea-
tures were normalized by the mean and the standard devi-
ation on the whole training set (excluding our development
set). We removed utterances having more than 3000 frames
or more than characters due to the GPU memory capacity.

corpus #utterance speech datasize
Speech-Translation TED 166,214 271 hours

TEDLIUM2 258,943 210 hours
WMT-Filtered 988,697 -

Table 1: Data size in each corpus.

3. Pipeline System
3.1. Speech Transcription Component

In this section, we briefly describe the joint CTC-attention
framework for the speech transcription (i.e. ASR) com-
ponent. Let x = (x1, . . . , xT ) be acoustic features and
y = (y1, . . . , yU ) be the corresponding target sentence in
the same language as x.

3.1.1. Connectionist Temporal Classification (CTC)

Connectionist Temporal Classification (CTC) [3] is a latent
variable model which directly maps the input sequence into
the output sequence of shorter length. To compensate the dif-
ferences of sequence lengths, CTC introduces an additional
”blank” symbol. The CTC loss function is defined as the
summation of negative log probabilities of all possible paths
mapped from ground truth labels interleaved with blank la-
bels.

Lctc = − lnP (y|x)
= − ln

∑

π∈B−1(y)

P (π|x)

where π represents a CTC path, and B represents a col-
lapse function which maps all the CTC paths into the unique
ground truth labels y by removing all blank labels. Based
on the conditional independence assumption, posterior prob-
abilities P (π|x) is factorized frame by frame as follows:

P (π|x) =
T∏

t=1

P (πt|ht)

where ht represents an activation of the top layer of the
encoder. P (π|x) is effectively calculated by the forward-
backward algorithm.

3.1.2. Attention-based encoder-decoder

Attention-based encoder-decoder [4, 5] is another sequence
labeling model which directly predicts output sequences.
Unlike the CTC framework, this approach does not make any
conditional independence assumptions, where the model pre-
dicts each token conditioned on all previous tokens.

P (y|x) =
U∏

u=1

P (yu|y1, . . . , yu−1,x)

Attention-based encoder-decoder model consists of two
modules: the encoder and decoder. The encoder network
maps input features x into high-level distributed represen-
tation h, and the decoder network picks up a portion of h
with a scoring function given encoder and decoder hidden
states, which is called the attention mechanism. We used the
location-aware scoring function, which takes previous atten-
tion weights into account. The loss function is designed as
the negative log probabilities as follows:

Latt = − lnP (y|x)

3.1.3. Joint CTC-attention

We introduce the multitask learning (MTL) framework with
the CTC objective in the training of the attention-based
encoder-decoder model [6]. This approach has two advan-
tages: 1) it encourages monotonic alignments in the en-
coder network, which leads to fast convergence and removes
inappropriate alignments in long sequences, 2) it leads to
sequence-level optimization. The loss function of the joint
CTC-attention framework is designed as an interporation of
Lctc and Latt with a tunable parameter λ (0 ≤ λ ≤ 1):

Lmtl = λLctc(y|x) + (1− λ)Latt(y|x)

In addition, scores from CTC outputs are taken into ac-
count in the beam search decoding of the attention-based
model during the inference stage [7, 8]. Because CTC is
frame-synchronous, hyper-parameters tuning such as length
penalty and coverage penalty are not neccesary any more in
order to prune inappropriate hypotheses.

3.2. Evaluation of Speech Transcription Component

Preprocessing: We used the Speech-Translation TED
corpus augmented with TED LIUM corpus, totaling 481h.
With regard to the official development sets provided by
the IWSLT organizers (dev2010, tst2013 etc.), there is
no segmentation information of the start and end time of
utterances. Therefore, we sampled 4k utterances from the
Speech-Translation TED corpus as the validation set, and
removed them from the original training data. For evalua-
tion, we segmented each audio file in the development sets
with the LIUM SpkDiarization tool [9] first, then performed
MWER segmentation with the toolkit from RWTH [10] as
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in the baseline implementation provided by organizers3.

Architecture: We built end-to-end ASR models with
the ESPnet toolkit [11] with a pytorch backend [12]. For
the encoder part, we used 2-layers CNN layers with max-
pooling layers followed by 3 or 5-layers of 1024 dimensional
bidirectional LSTM [13], resulting in 4-fold time reduction.
For the decoder part, we used 2-layers of 1024 dimensional
LSTM. We did not conduct regularization such as dropout,
label smoothing [14, 15], scheduled sampling [16] for
speech transcription.

Optimization: Our systems were optimized with the
AdaDelta algorithm with epsilon annealing for 15 epochs.
The weight for CTC loss λ was empirically set to 0.5.

Decoding: We conducted beam search decoding with
beam width 20. LSTM language model of 2 layers with 650
hidden units trained on the same parallel corpus was used.

Results: Results for the TEDLIUM2 corpus are shown
in Table 2. 5k wordpiece units are always better than 10k in
this corpus. We also conformed the consistent improvements
with deeper encoders (3 layers → 5 layers). Results for
the official development sets are shown in Table 3. As in
Table 2, 5k units are better than 10k units, but we cannot see
improvements by adding encoder layers. We suspect that
this is due to the quality of audio segmentation by the LIUM
SpkDiarization tool and utterance matching by the RWTH
MWER tool.

#unit #layer dev test
10k 3 13.8 12.3
5k 3 12.1 11.1

10k 5 13.3 12.5
5k 5 11.6 10.7

Table 2: Word error rate (WER) evaluated on the
TEDLIUM2 corpus. #unit represents the number of untis in
the softmax layer. #layer represents the number of BiLSTM
layers following CNN layers in the encoder network.

#unit #layer dev2010 test2010 test2013 test2014 test2015
10k 3 28.2 29.5 31.9 32.6 46.5
5k 3 25.6 27.7 30.6 31.1 44.4
10k 5 28.8 31.2 33.1 34.5 45.6
5k 5 27.4 30.8 32.0 33.7 47.9

Table 3: Word error rate (WER) evaluated on the official de-
velopment sets.

3.3. Text Translation Component

Preprocessing: We built neural machine translation (NMT)
systems for the English-German text translation component
of our pipeline system. These systems were trained on the

3https://github.com/isl-mt/SLT.KIT

ST TED corpus, with English manual transcript for speech
recognition on the source side and corresponding German
translation on the target. Training data were tokenized and
split into subwords using Byte Pair Encoding (BPE) [17].
We set the number of BPE merge operations to be 20k for
the source side — same for the target side. The validation
set used for early stopping consists of around 4k utterances,
and they were randomly sampled from the corpus.

Architecture: The attention-based NMT models con-
sist of two components: an encoder network, which is a
recurrent neural network (RNN), that provides a represen-
tation of the input sentence, and a decoder network, which
is also a RNN, that generates translation based on the input
context with attention mechanism [5, 18] applied.

We trained our NMT systems with Sockeye [19]. In
the model we used based on hyper-parameter tuning, the
encoder and decoder both had 2 layers with 512 LSTM
hidden units on each layer and we applied dot product
attention for RNN decoders. Both the source and target
embedding vectors were set to 512. We used word-count
based batch of size 4096 words and maximum sequence
length 100. For regularization, the RNN inputs and states
dropout rates for both the encoder and the decoder were set
to 0.1.

Optimization: Our systems employed the Adam op-
timizer to reduce the cross-entropy loss with an initial
learning rate 0.0005. We made a checkpoint after every 2000
batch updates, and if the model had not improved in per-
plexity on the validation data for more than 8 checkpoints,
we would perform early stopping for the training process. In
general, it takes around 50 epochs (about 10 hours) for the
model to converge.

#BPE merge ops 20k 30k 40k 50k
avg dev BLEU 23.83 24.18 24.28 23.77

Table 4: Effect of different number of BPE merge opera-
tions on average BLEU score on development sets. The ini-
tial learning rate was set to 0.0007.

Hyper-parameter Tuning: Hyper-parameters were
tuned based on systems’ average decoding performance
(BLEU score) on dev2010, tst2010, tst2013, tst2014 and
tst2015 set. We searched the number of BPE merge opera-
tions from 20k, 30k, 40k and 50k, word embedding size and
the number of RNN hidden units from 512 and 1024, batch
size from 4096 and 6000, initial learning rate from 0.0002 to
0.0007, dropout probability from 0.1 and 0.24.

When searching for a good hyper-parameter configura-
tion, we found that a more complex model, in terms of RNN
hidden size, was not necessarily needed to get better per-
formance on this corpus: when we increased the number of

4Due to time and computational resources limitation, we only tried a
subset of all the possible combinations.
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system dev2010 tst2010 tst2013 tst2014 tst2015
Manual: NMT (ST TED) on EN reference 23.96 27.54 26.23 22.30 25.07
Pipeline: NMT (ST TED) on ASR output 15.47 20.54 16.68 14.35 16.21
Manual: NMT (ST TED + WMT-Filtered) on EN reference 28.07 30.59 29.47 26.04 26.70

Table 5: BLEU comparison of NMT translating English reference (Manual) or ASR ouput (Pipeline). BLEU scores are evaluated
on development sets using multi-bleu.perl with the Moses tokenization.

RNN hidden units from 512 to 1024, the average BLEU score
dropped from 24.71 to 24. Another interesting finding was
that with other hyper-parameters fixed, when the number of
BPE operations increased, the BLEU score on the develop-
ment data tended to first go up and then decrease (see Table
4). Finally, the initial learning rate turned out to be an im-
portant hyper-parameter to tune. For example, we got 23.44
BLEU with initial learning rate 0.0003, but 24.18 BLEU with
0.0007.

3.4. Evaluation of Pipeline System

We show the main results of our pipeline systems in Table 5.
For the purpose of comparison, we provided the NMT sys-
tems with either the manual transcripts (Manual) or the out-
put of our ASR system (Pipeline), which is described in Sec-
tion 3.1. As expected for error cascading in pipeline systems,
BLEU scores drop substantially, by up to 36.4%, when trans-
lating noisy ASR outputs compared to translating the clean
English transcript.

A paired permutation test shows that Manual outper-
forms Pipeline statistically significantly with p-value < 1%.
NMT systems trained with good manual transcripts might be
intolerant to various ASR errors, and it is very likely they
will propagate the errors during decoding.

Additionally, the final row in Table 5 we show the BLEU
scores of the NMT system trained with additional WMT-
Filtered data. There is a large improvement, for example
from 23.96 to 28.07 on the dev2010. This confirms that
adding more bitext helps.

While the corpus-level BLEU score of the pipeline is
lower than the manual system, we did observe some inter-
esting variances at the level of individual sentences: it is not
the case that translations of ASR outputs are always worse
than translations of manual, clean transcripts. Figure 1 com-
pares the sentence-level BLEU scores in three different scat-
ter plots. For each sentence in tst2010, we have the English
transcript (EN-ref) and the resulting translation (DE-manual)
by our NMT system; we also have the English ASR output
(EN-ASR) and the resulting translation (DE-pipeline). Fi-
nally we have the correct German reference (DE-ref). We
then computed three sentence-level BLEU scores (with add-
one smoothing) as follows:

• Manual BLEU: BLEU of DE-manual vs. DE-ref

• Pipeline BLEU: BLEU of DE-pipeline vs. DE-ref

• ASR BLEU: BLEU of EN-ASR vs. EN-ref

Our goal is to compare ASR BLEU (which measures
whether the English sentence was difficult to transcribe) with
Manual/Pipeline BLEU. Our original hypothesis is that sen-
tences with low ASR BLEU should result in a larger differ-
ence in Manual BLEU minus Pipeline BLEU.

Interestingly, as seen in Figure 1 (c), there are individual
sentences where Manual BLEU is less than Pipeline BLEU.
An example is shown in Table 6. The difference between the
English reference and the ASR output is ”where it gets” vs
”what gets”, which are arguably both correct. However, the
NMT result is very different, one translating perfectly and
the other not. It appears that since NMT output has high
variance, i.e. it can output very different translations even
when the inputs are semantically similar.

4. End-to-End System
In this section, we describe our end-to-end speech translation
model and transfer learning from pre-trained ASR model.

4.1. Model for End-to-End Speech Translation

We used an attention-based encoder-decoder model for the
end-to-end speech translation model. The architecture of
the encoder is exactly the same as that in the ASR model
in Section 3.1 (VGG-like CNN layers followed by stacked
BiLSTM layers). The decoder includes two modification
from the ASR decoder: (1) adopting input-feeding mecha-
nism [18], and (2) adding scheduled sampling [16].

It is possible to integrate a language model during the
decoding stage (i.e. shallow fusion [20]) and also training
stage (i.e. deep fusion [21] and cold fusion [22]), but we did
not use any language models for the speech translation task
in this paper. We’ll leave them to the future work.

4.2. Transfer learning from ASR

In our preliminary experiments, it took too much time to train
end-to-end speech translation models from scratch, i.e. many
epochs are required for convergence. Therefore, we explored
methods to better initialize our end-to-end model.

Speech translation can be viewed as a combination of
ASR and MT tasks, so we can treat the encoder and de-
coder networks as having roles in ASR and MT, respectively.
Therefore, it is a natural choice to initialize the encoder with
that of a pre-trained ASR model. Initialing the decoder with
pre-trained MT model will be left to the future work.

Weiss et al. [23] shows improvements of BLEU scores

156

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



English Reference But here’s where it gets interesting. NMT Result (Manual) Aber hier ist das, was interessant wird.
ASR Output But here’s what gets interesting. NMT Result (Pipeline) Aber hier wird es interessant.

Table 6: An example where Pipeline system outperforms the Manual system (100 sentBLEU vs. 6.5 sentBLEU). The German
reference for the utterance is Aber hier wird es interessant .
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Figure 1: Sentence-level BLEU of manual, pipeline and ASR system on tst2010. A linear least-squares regression is calculated
for each pair of systems.

by multi-task learning (MTL) with ASR task by sharing the
encoder. Berard et al. [24] also shows both MTL and pre-
training strategies lead to fast convergence and better results
for end-to-end speech translation. Here we chose the pre-
training strategy and transfer the weights of the encoder in
the ASR model to the end-to-end model prior to training.

4.3. Experiments

We did the same data preprocessing as speech transcription
in Section 3.2. We also built end-to-end speech translation
models with the ESPnet toolkit with a pytorch backend. The
differences of the architecture, optimization, and decoding
from speech transcription models are as follows:

• We did not use the CTC framework due to its mono-
tone assumption

• We used scheduled sampling with probability 0.2

• We ran for 30 epochs

• We did not perform beam search decoding (i.e. greedy
decoding)

• We did not use any language models (due to time con-
straints)

We use the official scripts from the organizer and calculated
case-sensitive BLEU scores with multi-bleu-detok.perl in the
Moses toolkit after detokenization. We report BLEU scores
in Table 7 for both pipeline systems and end-to-end speech
translation models (E2E). There are several observations:

First, we can confirm that better ASR models led to bet-
ter BLEU scores in the pipeline systems when comparing

Table 3 and Table 7. The two ASR models with 5k units
have the lowest WER scores, and the resulting two pipeline
systems (b) and (d) also achieved the best BLEU scores. Sec-
ond, it seems challenging to train an E2E speech translation
model from scratch. Transfer learning with parameters from
an existing ASR model gave consistent gains.

Finally, there are large differences between pipeline and
end-to-end systems. For example, on dev2010, E2E trained
from scratch achieved a BLEU of 4.44, E2E with transfer
from ASR achieved a BLEU of 6.71, and the pipeline sys-
tems achieved BLEU in the range of 14. This may be due
to data sparseness. Perhaps the explicit intermediate repre-
sentation of transcripts in the language of the speech input
is important for constraining the model complexity. Further,
10k wordpieces is a relatively large unit size for speech mod-
els and the data needs of an end-to-end model may be larger
than that of a pipeline model.

We show some examples of the end-to-end speech trans-
lation model transferred from pre-trained ASR (system (f) in
Table 7) in Table 8. Despite the low BLEU scores in general,
the end-to-end model sometimes do generate reasonable sen-
tences and correctly predicts keywords such as proper nouns
and numbers. Our system was robust to misspelling because
we used 10k units for the vocabulary. The official develop-
ment sets include many long sentences, and it appears that
our E2E model may be doing relatively worse compared to
Pipeline systems on long sentences.

5. Discussion
We described our pipeline and end-to-end speech translation
systems for IWSLT 2018. For the official evaluations, we
submitted the pipeline system (a) in Table 7 as a contrastive
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System Configuration dev2010 test2010 test2013 test2014 test2015
(a) Pipeline ASR (10k unit, 3 layer); NMT (ST TED) 14.22 13.62 14.21 11.73 10.68
(b) Pipeline ASR (5k unit, 3 layer); NMT (ST TED) 14.68 14.70 15.08 12.23 11.59
(c) Pipeline ASR (10k unit, 5 layer); NMT (ST TED) 14.54 13.05 14.60 11.73 11.16
(d) Pipeline ASR (5k unit, 5 layer); NMT (ST TED) 14.87 13.76 14.75 11.58 10.96
(e) E2E train from scratch 4.44 4.10 3.57 3.52 2.42
(f) E2E transfer learning from ASR parameters 6.71 6.21 6.01 5.08 4.51

Table 7: BLEU evaluated on the development sets using the official scripts provided by organizers. Note the results here are not
comparable to Table 5 due to differences in the tokenization and evaluation scripts.

EN(Ref) In the last five years we’ve added 70 million tons of CO2 every 24 hours – 25 million tons every day to the oceans.
DE (Ref) In den letzten 5 Jahren haben wir 70 Millionen Tonnen an CO2 produziert alle 24 Stunden – 25 Millionen Tonnen jeden Tag in die Ozeane.
DE (Hyp) In den letzten fnf Jahren haben wir die 70 Millionen Tonnen CO2 / h. Wir haben die Ostkste
EN(Ref) But not just any mission, it’s a mission that is perfectly matched with your current level in the game.
DE (Ref) Aber nicht nur irgendeine Mission, sondern eine Mission, die perfekt zu Ihrem aktuellen Level im Spiel passt, richtig?
DE (Hyp) Aber nicht nur die Mission, sondern nur eine Mission, die sich perfekt antreibt. Mit dem deren auf dem Spiel.

Table 8: Examples of the end-to-end speech translation model (system (f) in Table 7)

system and the E2E system (f) in Table 7 as the primary sys-
tem; they were our best systems at the time of submission.
Our main findings are that (1) pipeline systems can be very
strong systems, and that (2) more work is needed to train
end-to-end systems effectively, especially in small datasets.

For the official development sets, we had to use other
tools to segment audio files before decoding and then match
the number of references and hypotheses after decoding. We
found that this affected WER and BLEU scores seriously due
to misalignment. Therefore, the exact segmentation informa-
tion for acoustic features is desired for the future evaluation
in speech translation.
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