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Abstract

This work describes the En→De Alibaba speech translation
system developed for the evaluation campaign of the Interna-
tional Workshop on Spoken Language Translation (IWSLT)
2018. In order to improve ASR performance, multiple ASR
models including conventional and end-to-end models are
built, then we apply model fusion in the final step. ASR pre-
and post- processing techniques such as speech segmenta-
tion, punctuation insertion, and sentence splitting are found
to be very useful for MT. We also employed most techniques
that have proven effective during the WMT 2018 evaluation,
such as BPE, back translation, data selection, model ensem-
bling and reranking. These ASR and MT techniques, com-
bined, improve the speech translation quality significantly.

1. Introduction
In this paper we describe the Alibaba speech translation sys-
tem that was built as part of the Speech Translation Task in
IWSLT 2018. The task involved translating English audio to
German text in which English audio are from lectures and
TED talks. Our system employs a pipeline approach that in-
cludes an automatic speech recognition system (ASR) and a
machine translation (MT) system.

The paper is organized as follows: Section 2 presents the
ASR system used, along with a description of conventional,
end-to-end, and fusion systems. Section 3 focuses on the MT
system in which we describe preprocessing, data augmenta-
tion, noisy input translation, ensembling, and reranking com-
ponents in detail. We present our concluding remarks in Sec-
tion 4.

2. Automatic Speech Recognition
In a pipeline-based speech translation system, ASR is the
most front-end module. In order to get reliable transla-
tion of quality, it is critical to obtain ASR transcription
as accurate as possible. To start, we build several con-
ventional pipeline-based ASR systems using deep neural
network/hidden Markov model (DNN/HMM) framework.
In the DNN-HMM framework, we employ several DNNs

* Equal contribution

with different structures including fully-connected DNN
(FDNN), time-delay deep neural network (TDNN) [1, 2],
and latency-controlled bidirectional long short-term memory
(BLSTM) [3].

Our final goal is to build end-to-end speech translation
system, that is, we need to simplify the model-building pro-
cess of conventional pipeline-based ASR system by con-
structing complicated modules with a single DNN architec-
ture or in a data-driven learning method. Thus we also em-
ploy an end-to-end ASR system which is based on a hy-
brid connectionist temporal classification (CTC) [4, 5] and
attention based encoder-decoder [6] architecture. Finally, we
combine the output of different ASR systems to boost the
final ASR performance.

During the development of our system, all acoustic mod-
els are trained on TED dataset together with the training
datasets provided by the organizer. We noticed that the or-
ganizer’s segmentation of the talks/lectures is not quite ac-
curate, e.g. some sentences are not properly split. There-
fore, we employ our own model-based voice activity detec-
tion (VAD) module to split the talks/lectures into utterances
before ASR decoding. For the model-based VAD, the recur-
rent neural network (RNN) model is used to train and classify
each frame into non-speech or speech. The RNN based VAD
model was trained by using TED and other speech corpus,
and by using Alibaba’s VAD segmentation, it can get bet-
ter performance when comparing with Organizer’s segmen-
tation. Table 2 listed the comparsion.

Table 1: Configuration of DNNs in DNN-HMM acoustic
models.

System Input feature #Dim Network context

FDNN FBank+Pitch 80 {-5, 5}
TDNN MFCC+ivector 40+100 {-13, 9}
BLSTM FBank+Pitch 80 {-8, 8}
#Dim: number of feature dimension
{-L, R}: L frames in the left context and R frames in the
right context
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Table 2: WER (%) of different ASR systems on IWSLT 2013 and 2015 dataset using organizer’s and Alibaba’s segmentation.

System Organizer’s segmentation Alibaba’s segmentation
tst2013 tst2015 Avg. tst2013 tst2015 Avg.

CTC (baseline) 26.1 37.6 31.9 - - -

1. FDNN/HMM 22.9 31.6 27.3 19.4 28 23.7
2. TDNN/HMM 13.6 25.5 19.6 11 23.1 17.1
3. BLSTM/HMM 13.6 26.3 20.0 10.6 22.3 16.5

4. CTC/Attention 26 33.1 29.6 23 29.8 26.4

1+2+3+4 - - - 10.3 22.3 16.3
2+3+4 - - - 8.6 21.7 15.2

2.1. Conventional ASR system

In the conventional DNN-HMM framework, DNNs are des-
ignated to predict the alignments derived from a GMM-
HMM based acoustic model, given different input fea-
tures. As shown in Table 1, FDNN and BLTSM take 80-
dimensional filter bank feature vectors (FBank) and pitch
feature as input feature while TDNN take 40-dimensional
Mel-frequency cepstral coefficients (MFCCs) appended with
100-dimensional iVector as input feature. These DNNs take
different lengths of context. FDNN takes one frame together
with 5 frames from its left and right context as the input win-
dow, i.e. context span is {-5, 5}. TDNN follows the setting
in [2] which takes {-13, 9} as the context span. BLSTM
takes context span {-8, 8}.

We train a 4-gram LM using all the allowed text. The 4-
gram LM obtained by linearly interpolating a number of LMs
that are trained using all the TED transcripts provided by the
organizer, all the text in the WMT18 CommonCrawl corpus,
some sentences selected from the WMT18 news, WMT18
news discussion and OpenSubtitles2018 corpora. We use
cross-entropy based data selection to select sentences from
the corpora that are close to the TED transcripts. The LM
interpolation weights are optimized on all development data.

2.2. End-to-end ASR system

We employ a hybrid CTC/Attention architecture [6] in our
end-to-end ASR system. This system consists of a BLSTM-
based encoder, a CTC output layer and an attention decoder.
The CTC output layer and the attention decoder takes the out-
put of encoder and predicts the corresponding letters. That
is, the end-to-end system is charactor level system. Please
refer to [6] for more system details. And in Table 2, there are
large differences between CTC/attention based ASR system
and TDNN or BLSTM based ASR system. The reasons lie in
that (1) the scale of speech training data. The CTC/attention
based ASR need more large scale of traning data to get better
performance comparing with TDNN or BLSTM based ap-
proach; and (2) the weak language model for CTC/attention
based ASR system.

2.3. Fusion of ASR output

With all the aforementioned ASR systems, we have a set of
ASR output of each test set. The WER of the ASR systems
are summarized in Table. 2. We utilize ROVER [7] to fuse
the output from different ASR systems. By enumerating all
combinations of each ASR system, we select the output from
the combination of the TDNN/HMM, BLSTM/HMM and
hybrid CTC/attention based end-to-end systems, since this
combined output gives the lowest WER. There are so big
differences between them in model structure and used fea-
tures for TDNN, BLSTM and CTC/attention systems, and
therefore, after fusing between them, it can get better perfor-
mance.

3. Machine Translation
3.1. MT baseline

In this section, we describe how our MT system has been
developed. All our models are based on the transformer ar-
chitecture in [8]. We start with the TED corpus, speech-
translation TED corpus, and WMT18 data that are relevant
to the speech translation domain. The total size of the bilin-
gual corpus is 6.3 million sentence pairs. We use Marian
toolkit for all experiments [9] and our development set in-
cludes dev2010 and tst2010-2015. The baseline architecture
of Marian mainly follows the default setting for transformer
NMT except for a 6-layer transformer encode-decoder, a 0.1
label smoothing, and 0.1 dropout between transformer layer.
For parameter optimization, we use synchronized ADAM
[10] with learning rate 0.0003, and set up the number of
noam warm-up steps as 16,000.

3.2. Preprocessing

The training data is preprocessed following standard proce-
dure. We first use the scripts in moses toolkit1 for punctu-
ation normalization, tokenization and lowercasing. After-
wards, we jointly learn and apply the byte pair encoding2

for English and German together. Figure 1 shows a detailed
1https://github.com/moses-smt/mosesdecoder
2https://github.com/rsennrich/subword-nmt
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Figure 1: Performance of BPE operations including joint-bpe
16k, 32k, 48k, 64k, 80k, 96k, and shared-bpe 24K and 32K
on our development set.

comparison of different BPE operations on our development
set. We observe that joint bpe with 32K vocabulary performs
best in this case and it is our final BPE code size. In the end,
sentences longer than 100 tokens are removed.

Generally, the ASR raw output is a long stream of words
with no punctuation, capitalization or segmentation markers.
[11] shown that using various types of text segmenters be-
tween ASR and MT modules can improve speech translation
quality. Our ASR system performed audio segmentation,
punctuation and capitalization prediction. We use spaCy3

to segment processed ASR transcription into shorter chunks.
By using text segmentation we observed BLEU score gains
between 0.2 and 1.0, depending on different ASR and MT
systems.

For sentence boundary detection and punctuation inser-
tion model, we experiment with a 3 layers LSTM for se-
quence tagging, and 3-gram KenLM[12] for additional scor-
ing. In prediction phrase, we store some token in buffer as
the foregoing context which is useful in real time prediction.
Silence time in ASR is also used for sentence boundary de-
tection. We also trained single layer self attention sequence
tagging model and a bi-directional self attention LM. And we
found it got much higher comma F1 score, but a litter lower
period F1 score. This approach was not used in the final re-
sult and we will do more experiments in our future work.

3.3. Data Augmentation

In order to obtain a high quality domain related training cor-
pus, we exploit the algorithm described in [13, 14], aim-
ing at selecting sentence pairs from large out-domain corpus
that are similar to the target domain. In our experiments,
the 200K TED talks data is considered as in-domain corpus,
and all the other parallel corpora provided are combined as a
large out-domain corpus. Two 3-gram language models are
trained over the source and target side of the in-domain cor-

3https://spacy.io/

pus, respectively. Then, another set of two 3-gram language
models are trained, whose training data is randomly selected
from the out-domain corpus, with size being similar. Thus,
each sentence pair from out-domain corpus is scored by the
bilingual cross-entropy difference model. Finally, we sort all
sentence pairs and select top ranked sentences pairs. Our ex-
periments show that with different amount of additional data,
we obtain BLEU gain on the development set between 0.4 to
1.8.

3.4. Noisy input translation

Though our transformer translation system is applied to
the post-processed speech recognition outputs, the insertion,
deletion and substitution errors still cannot be removed. Fol-
lowing the idea in [15, 16], we use the corrupted inputs to
train a robust neural machine translation model. Since we
observe that the insertion error is rare in our ASR system,
only the deletion and substitution noises are considered for
the source sentences of the regular parallel training data. In
this way, the gap between training data and testing ASR out-
put will become potentially smaller.

Basically, we first randomly delete the token of the source
sentence with a small probability (0.01 and 0.02 are selected
in our experiments by cross-validation). Specifically, we also
pre-define a functional-words list including 120 tokens with
number of letters less than 5, and assign a doubled deletion
rate for them. Notice that we train several deletion-noisy
models alone without any other corrupted strategy for further
ensemble. In our experiments, the single model trained with
deletion noise can increase the case insensitive (CI) BLEU
for at least 0.5 BLEU point over the baseline on the ASR
output.

Additionally, we attempt to introduce the substitu-
tion noise by randomly replacing the token with its
pronunciation-like candidates with a small probability. By
trying different substitution rate, we empirically found that
the substitution noise model achieved no significant improve-
ment over deletion noise model. One possible solution is to
use the adaptive substitution rate of each token, estimated
with the maximum likelihood in the ASR model. We will
leave this as the future work.

The third strategy for noisy training is punctuation sim-
ulation. We randomly spare 30% of the regular parallel
corpus and remove all punctuations from the source side,
then annotate/re-generate the same data with the tool used
in the ASR post-processing. We add the punctuation noisy
corpus back and train our model, and empirically observe
an improvement of at least 0.5 BLEU point gain compared
with baseline as well. The punctuation simulation and dele-
tion/substitution noise are typically not combined, since the
underlying true noise comes from the ASR system and our
two manually designed noising systems may have a large
bias. Therefore, we decide to apply them separately to in-
crease the diversity of our models in ensemble.
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3.5. Refinements

3.5.1. Ensemble decoding

Model ensemble is a widely used technique to boost the per-
formance of a MT system, which is to combine the prediction
of multiple models at each decode step. We adopt the ensem-
ble method GMSE (Greedy Model Selection based Ensem-
ble) detailed in [17].

The candidate single models are first sorted as a list ac-
cording to their performance on the development dataset.
Another two model lists are maintained during the ensem-
ble, named “keep”, “redemption”. For each iteration, a can-
didate model could be either drawn from the beginning or
the end of the candidates list with probability p or preserve,
or the “redemption” list with probability predempt, where
p + preserve + predempt = 1. Then, the selected model is tem-
porarily concatenated to the “keep” list. If the evaluation of
the current model ensemble achieves a better BLEU score,
the model is permanently added to the “keep” list. Other-
wise, it will be put into the “redemption” list. Notice that
one model from the “redemption” list can only be redeemed
once, after which it is withdrawn permanently from the can-
didates.

In order to achieve better ensemble performance, we in-
crease the diversity of our candidate models by introducing
another 8 training schedules and further obtain about 200 sin-
gle checkpoints. The greedy nature of the GMSE algorithm
makes the search feasible in an acceptable time frame. In
summary, we list the different training schedules as follows.

1. 10 million training corpus is selected by BPE level lan-
guage models.

2. 8 million training corpus is selected by word level lan-
guage models.

3. Adding another 3 million back-translation data to the
original parallel corpus.

4. Training with deletion/substitution noise.

5. Training with punctuation simulation noise.

6. Fine-tuning with the 200K TED talks in-domain data.

7. Fine-tuning with the punctuation simulation data.

8. 7-layer transformer NMT model.

Due to the time limitation, we cannot do all the ablative
experiments on listed strategies. However, we can still report
the best single model and best ensemble result on our ASR
output in Table 3. Note that our development set is the com-
bination of tst2013 and tst2015, we did not test our model on
these two dataset separately.

Table 3: Improvement with ensemble

tst2013 + tst2015

best single model 22.96
best ensemble 23.84

3.5.2. Reranking

Besides building multiple ensemble systems with different
random initialization and configurations, we also build and
optimize the n-best list reranker. We follow the approach in
[17] in which several neural machine translation models and
language models have been experimented with. The n-best
list reranker involves the following steps

• Build and optimize neural MT models including single
models, ensemble models, and models with different
configurations such as beam size. To improve diver-
sity, we also use the right-to-left and target-to-source
models.

• Build ngram language models from in-domain and
out-of-domain data using the data selection method
similar to [17, 18].

• Apply the the greedy feature selection based reranking
method in [17] to train the reranker. To deal with over-
fiting, we use the tuning set that contains both manual
transcription and our ASR transcription.

Our experiments show that depending on different set-
tings the reranker typically obtains improvements between
0.1 to 0.4 BLEU point over the best system.

Additionally, we experiment with the multi ASR inputs
for reranking. The main motivation is to directly exploit
strengths of different ASR systems into the reranking sys-
tem. Out initial results show that the multi ASR inputs does
not outperform the input for the ASR fusion output.

3.5.3. Recaser

Since the lowercased corpus are applied to train our MT sys-
tem, an additional post-processing recaser model is neces-
sary to obtain the truecased (or capitalized) German transla-
tion output. In principle, we exploit the combination of the
moses4 SMT recaser model and the Char-RNN based neu-
ral recaser model [19]. The SMT recaser model essentially
trains a word-to-word translation model and a cased language
model without reordering. Unlike the word-level approach,
the neural recaser model restores the case information at the
character-level, reducing the recasing problem to a sequential
binary classification task. No special treatment is required
for mixed cased words.

The final combination rule is that for every single word,
if the SMT recaser and the neural recaser reach a consensus

4http://www.statmt.org/moses/?n=Moses.SupportTools
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on the final recasing output, we will accept it; if they have a
disagreement, we will always capitalize that word. This strat-
egy will result in a combined recaser model which is slightly
better than any other one.

4. Conclusions
The IWSLT 2018 Speech Translation task provided the op-
portunity to compare different speech translation approaches
using shared datasets and standardized evaluation metrics.
Table 4 shows our submission results on the IWSLT 2018
official test set.

Table 4: IWSLT 2018 final evaluation results on contrastive
and primary submissions

con.1 con.2 primary con.3

BLEU 22 22.16 22.36 22.5
TER 63.44 63.52 63.03 63.03
BEER 52.47 52.69 51.77 52.64
CharTER 59.56 57.54 69.26 57.76
BLEU(ci) 23.97 24.14 24.23 24.3
TER(ci) 60.44 60.41 60.22 60.15

Our participation in this task revealed three important as-
pects of speech translation that we regard as important for
the future.

First, our experiments indicated that the speech segmen-
tation and transcription post processing, by themselves, can
make a big differences on transcription quality as well as
translation quality. Furthermore, these components not only
improve WER and BLEU scores, in live speech translation
scenario they also greatly improve user experience.

The second aspect relates to the importance of noisy in-
puts. There are many types of noises in speech translation
scenario. For example noise come from speech audio, tran-
scription errors, and the nature of spoken language. Our ex-
periments show that by modeling transcription errors directly
in the neural MT (NMT) training, we obtained consistent im-
provement. It indicates that the NMT model becomes more
robust against errors of our ASR system. Also, if we com-
pare statistical machine translation (SMT) technique, we find
SMT is generally more robust to noises than NMT. It is prob-
ably because SMT models are built on probability distribu-
tions estimated from many occurrences of words and phrases,
therefore any unsystematic noise in the training only affects
the tail end of the distribution.

The third aspect is the importance of model engineering.
In the statistical machine learning, the best model is typi-
cally from through several rounds of feature engineering. In
the NMT context, we see that our best model is also from
many steps of model engineering and refinements. Given the
availability and good scalability of ASR and MT toolkits to-
day, it is tempting to throw as much model configurations
as possible and let the built-in mechanisms of these learning
algorithms figure out which one is the best. However, the

strategy has its own limitations, and, in conjunction with the
limited availability of the labeled data, can easily produce
models that are under-performing on blind test sets.
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