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Abstract

This paper describes KIT’s submission to the IWSLT
2018 Translation task. We describe a system participating
in the baseline condition and a system participating in the
end-to-end condition. The baseline system is a cascade of
an ASR system, a system to segment the ASR output and a
neural machine translation system. We investigate the com-
bination of different ASR systems. For the segmentation and
machine translation components, we focused on transformer-
based architectures.

1. Introduction

The Karlsruhe Institute of Technology participated in
the IWSLT 2018 Evaluation Campaign with systems for
English—German Speech Translation task. We submitted
system to both conditions: the baseline condition and the
end-to-end condition.

The submission to the baseline condition is based on the
cascaded approach described in [1]. In this evaluation cam-
paign, we investigated the combination of different ASR sys-
tems. Furthermore, we investigated the use of transformer-
based models.

This paper is structured as follows. In Section 2, we de-
scribe different speech recognition systems we employed in
the campaign and how we combined them. Afterwards, we
give a detailed description of the segmentation approach in
Section 3 and the machine translation system in Section 4.
Finally, in Section 5 we describe the end-to-end speech trans-
lation model. At the end of the paper we report the results
and finish with a conclusion.

2. Speech Recognition

In this year’s evaluation, we built three different types of au-
tomatic speech recognition systems. All the systems were
trained using the data from the TED-LIUM Corpus version 2

[2].

2.1. Hybrid Model

Different from previous years, this year we built only one
single HMM-based hybrid model for the speech recogni-
tion task. The hybrid acoustic modelling is constructed by

131

stacking 5 LSTMs layers of 320 units, a projection layer
of 200 units and a softmax layer to classify 8000 context-
dependence phone (CD-Phone) states. As traditional ap-
proach, we used Viterbi forced alignment to provide CD-
Phone state labels for the training data and the acoustic model
was trained using only cross-entropy loss function.

For model training, we use SGD with an initial learning
rate of 0.004 for 8 epochs and degrade it with a factor of 0.8
for other 8 epochs. We use a momentum term of 0.9 while
dropout is set to 10%. Only 40 features of Mel-filterbank
coefficients are fed into the LSTMs network every timestep,
we did not employ any further speaker adaptation features.

After the model was successfully trained, we performed
the traditional beam search decoding with the employment
of the 4-gram language model. We used Janus Recogni-
tion Toolkit (JRTK) [3] as the decoding framework while the
language model is built by Cantab research group [4] from
WMT data.

2.2. CTC Model

Our CTC-based [5] ASR model is similar to the system de-
scribed by [6]. The input to the model are 40-dimensional
Mel-filterbank coefficients. We used every third speech fea-
ture of our input sequence and randomly chose the start off-
set during training, which has the advantage of a lower input
sequence length. We trained the model to predict Byte-Pair
Units, also referred to as Byte-Pair Encoding (BPE) [7].

The CTC-based model consists of four bidirectional
LSTM layers with 400 units in each direction followed by
a softmax layer. The size of the softmax layer depends on
the number of BPE units we created. We used a dropout rate
of 0.25 for all LSTM layers. We trained two models based
on BPE units with 300 (small model) and 10,000 (big model)
merges, respectively.

We used SGD with a learning rate of 0.0005 and a mo-
mentum term of 0.9 for training. The learning rate is halved
whenever the validation token error rate does not decrease by
more than 0.1%. We first trained the small model and initial-
ized the parameters of the big model’s BILSTM layers using
the smaller model’s ones. We decoded the model by greedily
selecting the most likely output at each time step.
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2.3. Encoder-Decoder Model

Our attentional ASR model follows the listen-attend-spell [8]
architecture and is similar to the system described by [9].
The model is implemented with XNMT. Compared to a con-
ventional neural machine translation architecture, we replace
the encoder with a 4-layer bidirectional pyramidal encoder
with a total downsampling factor of 8. The layer size is set to
512, the target embedding size is 64, and the attention uses an
MLP of size 128. Input to the model are Mel-filterbank fea-
tures with 40 coefficients. For regularization, we apply vari-
ational dropout of rate 0.3 in all LSTMs, and word dropout
of rate 0.1 on the target side [10]. We also fix the target em-
bedding norm to 1 [11]. For training, we use Adam [12] with
initial learning rate of 0.0003, which is decayed by factor 0.5
if no improved WER is observed. To further facilitate train-
ing, label smoothing [13] is applied. For the search, we use
beam size 20 and length normalization with the exponent set
to 1.5.

2.4. Rover

To combine the outputs of the different ASR systems, we
used ROVER [14]. It operates on the final system output, the
CTM-files. Multiple merging strategies exist to combine the
outputs based on a majority vote. It is, e.g. possible to take
confidences into account to further fine-tune the merging pro-
cess. The key idea of ROVER is that different systems tend
to produce different errors, but that no two systems produce
the same error. The more different the systems those outputs
are combined are, the better the result will be. Systems being
very similar on the other hand will not benefit much from the
system combination as they are likely to generate the same
eITOorS.

We here combined three different architectures: a tradi-
tional HMM-based ASR system, a RNN/CTC based one and
an encoder-decoder based one. Hence, combining the out-
puts improved the WER due to the diversity of the system
architectures.

3. Segmentation

Automatic speech recognition (ASR) systems typically do
not generate punctuation marks or reliable casing. Using the
raw output of these systems as input to MT causes a perfor-
mance drop due to mismatched train and test conditions. To
create segments and better match typical MT training con-
ditions, we use a monolingual NMT system to add sentence
boundaries, insert proper punctuation, and add case where
appropriate before translating [15].

The idea of the monolingual machine translation system
is to translate from lower-cased, unpunctuated text into text
with case information and punctuation. Since we do not have
any information about the sentence boundaries when insert-
ing the punctuation and case information, we also remove
them from the training data. Therefore, in the first step of
the pre-processing, we randomly segment the source corpus

132

of the training data into chunks of 20 to 30 words. Based
on this randomly segmented corpus, we build the input and
output data for the monolingual translation system.

For the input data, we remove all punctuation marks and
lowercase all words. Since we will get lower-cased input,
we cannot use the same byte-pair encoding [7] as for the ma-
chine translation system. Therefore, we train a separate byte-
pair encoding on the lower-cased source data with a code size
of 40k. To summarize, the source sequence consists of lower-
cased BPE units without any punctuation.

For the target side, we do not want to change the words
in the output sentence, but only add case and punctuation in-
formation. Therefore, we replace the sentence by features
indicating case with punctuation attached. Every word is re-
placed by a letter U or L, whether it is upper-cased or lower-
cased. Furthermore, punctuation marks following the word
are directly attached to the letter.

At test time, we follow the sliding window technique de-
scribed by [16]. Therefore, we created a test set with seg-
ments of length 10 starting with every word on the input
data. This means, that except for the beginning and the end of
the document, every word occurs ten times, at all positions
within the segment. This of course dramatically increases
the number of sentences in the test data. In the second step,
we generate the target features by applying the monolingual
translation system. In a post-processing step, we case the
word as it most frequently occurs in the output. We insert
punctuation marks, if there is at least one punctuation mark
after the word in one of the 10 segments containing this word.
If different punctuation marks are predicted, we take the most
frequent one. Finally, if the punctuation mark is an end of
sentence punctuation mark {”.”,”/”,”?”}, we also start a new
segment. The segmented test data with case and punctuation
information is passed on to the machine translation system.

This year, we used a transformer-based NMT system to
generated the punctuation marks.'. For the encoder and de-
coder we used 12 layers each using a hidden size of 512 and
an inner size of the transformer model of 1024. We applied
dropout and trained the models using adam. We first trained
the system on the source side of the parallel data. We used
the EPPS corpus, NC corpus and a filtered version of the
paraCrawl corpus. In a second step, we fine-tuned the model
on the TED corpus.

4. Machine Translation

Data preprocessing Our training data, while consisting the
TED Talks provided by the evaluation campaign, also in-
cludes the following corpora: Europarl (1.8M sentences),
News Commentary(280K), Rapid (1.2M), Common crawl
(2.2M), the backtranslation data from University of Edin-
burgh (3.M) and the Paracrawl data (30M). The Paracrawl
data is filtered by training a translation model to identify sen-
tences with low likelihood. The final data size is around 36M

Uhttps://github.com/isl-mt/NMTGMinor
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sentences, with basic preprocessing steps being truecasing,
tokenizing, and BPE splitting with BPE size of 40K. The
development set is newstest2013 to newstest2016 from the
WMT datasets for training the big models. In the adaptation
phase, we use the TED talks of dev2010 to validate our mod-
els.

Modeling Our translation models are constructed with self-
attention encoders and decoders, known as the Transformer
networks, following the work of [17]. In this work, we ex-
tend the depth of the standard Tranformers, thanks for the
residual design combined with layer normalization schemes
allowing gradients to flow smoothly. Thanks to the huge
amount of data as shown above, we were able to train models
up to 32 blocks and still yield meaningful improvement.
Our hyper-parameters of the Transformer models (except
depth) follow the Base configuration of the original work.
The layer size for hidden layers is 512, while the the in-
ner size of feed-forward network inside each block is 2048.
The attention layers (including self-attention and attention
between decoders and encoders) are multi-head attention lay-
ers with 8 heads. We also added label smoothing to regular-
ize the cross-entropy loss. For the network depth, we trained
models consisting of 4, 8, 6, 12, 16 and 32 blocks (for both
encoder and decoder). Not only are deep models very de-
manding in terms of computation, they also consume a con-
siderate amount of memory. In order to make training fea-
sible, we used the checkpointing technique [18] by employ
re-computation of the network activations during the back-
ward pass to reduce the memory cost for the models.
Training procedure We group mini-batches to fill up our
GPU’s memory depending on the network size. 12-layer
models can fit the memory with batch size containing 2048
words, while deeper models requires batch size reduction to
avoid out-of-memory. For updating the networks’ param-
eters, we accumulate gradients up to 25000 target words
before doing an update. The learning rate is scheduled as
in [17] but we doubled the initial learning rate and extend the
warm up duration to 8000 steps. All models including the
32—layer config train with 100000 updates. Each model, ex-
cept the 32-layer one has an additional variation with dropout
(added to the residual connection and the inner feed-forward
hidden layers).

Domain adaptation After training on all datasets, we fur-
ther fine tune each model on the TED Talks specifically.
Such technique is known to improve the model’s perfor-
mance greatly on the specifically adapted domain [19].
Noise adaptation Since the ASR output is fundamentally
different than the collected natural data, we apply a noise
model [20] on the TED training data which randomly replace
words by sampling. The model is further fine-tuned on the
noisy data in the same fashion as domain adaptation.

Final models The output is generated from the ensemble of
five models: 12-layer, 12-layer with dropout, 16-layer, 16-
layer with dropout and 32-layer.
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5. End-to-End Models

We extend the attentional ASR described under Section 2.3
to perform translation by replacing the source-language tar-
get tokens by tokens from the target language. We use a re-
fined encoder that performs downsampling to make memory
requirements manageable and adds depth for improved ac-
curacy, following one of the variants described by [21]: we
stack several blocks consisting of a bidirectional LSTM, a
network-in-network (NiN) projection, and batch normaliza-
tion. After the last block, we add a final bidirectional LSTM
layer. NiN denotes a simple linear projection applied at every
time step, performing downsampling by concatenating pairs
of adjacent projection inputs.

For better results and to be able to include the TEDLIUM
corpus in the training, we devise a multi-task training strat-
egy that trains auxiliary models on related tasks while shar-
ing a subset of the parameters with the main ST model. Pre-
cisely, besides the main ST task we include an ASR task that
shares encoder and attention, an MT task that shares attention
and decoder, and an transcript auto-encoder task that shares
only the attention. The ASR task is trained on the TEDLIUM
corpus, whereas the other tasks are trained the respective sub-
set of the 3-way TED corpus provided for the IWSLT 2018
evaluation. It should be noted that we did not put any efforts
into cleaning this data, despite it being relatively noisy.

6. Experiments

We evaluated the models presented in the last section on the
provided test sets. Note that for all experiments we used the
audio segmentation tool [22] provided in the IWSLT docker
container.

6.1. Cascaded

Our experiments involve different configurations regarding
three main components in the cascade. For the ASR compo-
nent, we present three different setups: the ROVER com-
bination of two CTC and one Encoder-Decoder systems
(dubbed as ROVER-1) and finally the ROVER combination
of CTC,Encoder Decoder and Hybrid systems (dubbed as
ROVER-2).

For the text segmenter, we showed the models trained on
two data sizes (small and large), together with the larger
models being adapted with domains and adapted with noise.
Similarly, we showed the Translation models with additional
adaptation towards domain and noisy inputs.

ASR WER
ROVER-1 | 21.2%
HYBRID | 17.6%
ROVER-2 | 16.7%

Table 1: Word-Error Rate of different ASR configurations on
the tst2014 English set.
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ASR SEG MT BLEU
ROVER-1 Small Transformer | 13.77
ROVER-1 Small D. Adapted | 16.26
ROVER-1 Large D. Adapted 18.2
ROVER-1 | D.Adapted | D. Adapted | 19.15
ROVER-1 | N.Adapted | N.Adapted | 19.32
HYBRID | D.Adapted | N.Adapted | 21.33
HYBRID | N.Adapted | N.Adapted | 21.41
ROVER-2 | D.Adapted | N.Adapted | 22.61
ROVER-2 | N.Adapted | N.Adapted | 21.35

Table 2: SLT English—German results. We report the BLEU
scores (after re-segmentation) on the tst2014 test data. Note:
Noise-adapted models (N.Adapted) were already adapted to
the TED domain (D.Adapted) previously.

Regarding the whole cascade performance, as can be
seen from Table 2, the score dramatically increased with the
help of domain adaptation (2.5 BLEU points improved from
adapting the translation model, and an additional 3.2 points
from having a stronger adapted segmentation model (Large
into D.Adaptation). Additional noise-adaptation on the seg-
mentation and translation models improves the result by 0.2.
We can also see that the HYBRID ASR model is much better
than the ROVER-1 configuration, thanks to 17% improve-
ment in word error rate on the English speech input. As a
result, the whole cascade is improved by significant 3 BLEU
points. The best ASR configuration - ROVER-2 - finalized
the best result at 22.61. Notably, we have to use the seg-
mentation model configuration without noisy-adaptation to
achieve this, the counterpart fell short by 1 BLEU point.

6.2. End-to-End

We conduct preliminary experiments on the well-established
Fisher Spanish-English Speech Translation Corpus [23] to
confirm the model’s accuracy. We obtain 35.3 BLEU points
on Fisher/Test, 2.8 points better than a cascaded model us-
ing a similar architecture and the same training data. We
then train the end-to-end model described in Section 5 on
TEDLIUM?2 for the ASR task, and on IWSLT2018’s pro-
vided end-to-end TED data for the remaining tasks. We test
the resulting model on the tst2013 dataset and obtain 10.3
BLEU points without casing, and 9.3 BLEU points case-
sensitive scoring. This is still much worse than the cascaded
models described above, despite the promising preliminary
results. As potential reasons we identify the rather noisy pro-
vided training data, mismatch between the manual segmen-
tation at training time and the automatic segmentation at test
time, and the lack of additional data (beyond TED) included
in the training.

7. Conclusions

In this evaluated we build a cascaded speech translation
model as well as an end-to-end model for the English to Ger-
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man Speech Translation task.

For the cascaded approach, we see that the combination
of several ASR systems reaches the best performance. Fur-
thermore, we get the best single performance by using a hy-
brid model.

For the end-to-end model, we cannot achieve the same
performance as the cascaded approach. One challenge is the
integration of the significantly larger data available for the
cascaded models.
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