
 

 

 
 
 
 
 
 
 
 
 

Machine Translation Summit XVI 
http://www.mtsummit2017.org 

 
 
 
 
 
 
 
 
 
 
 
 

Proceedings of MT Summit XVI 
Vol.1 Research Track 

 
 
 
 
 
 
 
 
 

Sadao Kurohashi, Pascale Fung, Editors 
 



 

 

MT Summit XVI 
September 18 – 22, 2017 -- Nagoya, Aichi, Japan 
 
 
 
 
 
 

Proceedings of MT Summit XVI, 
 
 
 

Vol. 1: MT Research Track 
 
 
 
 

Sadao Kurohashi (Kyoto University) 
& 

Pascale Fung (Hong Kong University of Science and Technology), Eds. 
 
 
 
 
 
 
 

Co-hosted by 

     
 

©2017 The Authors. These articles are licensed under a Creative Commons 
3.0 license, no derivative works, attribution, CC-BY-ND. 

 
International 

Association for 
Machine Translation 
http://www.eamt.org/iamt.php 

 
Asia-Pacific 

Association for 
Machine Translation 

http://www.aamt.info 

 
Graduate School of 

Informatics, Nagoya University 
http://www.is.nagoya-u.ac.jp/index_en.html 



 

 

Research Program Co-chairs 
Sadao Kurohashi Kyoto University 
Pascale Fung Hong Kong University of Science and Technology 
 
Research Program Committee 
Yuki Arase Osaka University 
Laurent Besacier LIG 
Houda Bouamor Carnegie Mellon University 
Hailong Cao Harbin Institute of Technology 
Michael Carl Copenhagen Business School 
Daniel Cer Google 
Boxing Chen NRC 
Colin Cherry NRC 
Chenhui Chu Osaka University 
Marta R. Costa-jussa Universitat Politècnica de Catalunya 
Steve DeNeefe SDL Language Weaver 
Markus Dreyer Amazon 
Kevin Duh Johns Hopkins University 
Andreas Eisele DGT, European Commission 
Christian Federmann Microsoft Research 
Minwei Feng IBM Watson Group 
Mikel L. Forcada Universitat d'Alacant 
George Foster National Research Council 
Isao Goto NHK 
Spence Green Lilt Inc 
Eva Hasler SDL 
Yifan He Bosch Research and Technology Center 
Philipp Koehn Johns Hopkins University 
Roland Kuhn National Research Council of Canada 
Shankar Kumar Google 
Anoop Kunchukuttan IIT Bombay 
Jong-Hyeok Lee Pohang University of Science & Technology 
Gregor Leusch eBay 



 

 

William Lewis Microsoft Research 
Mu Li Microsoft Research 
Lemao Liu Tencent AI Lab 
Qun Liu Dublin City University 
Klaus Macherey Google 
Wolfgang Macherey Google 
Saab Mansour Apple 
Daniel Marcu Amazon 
Jonathan May USC Information Sciences Institute 
Arul Menezes Microsoft Research 
Haitao Mi Alipay US 
Graham Neubig Carnegie Mellon University 
Matt Post Johns Hopkins University 
Fatiha Sadat UQAM 
Michel Simard NRC 
Katsuhito Sudoh Nara Institute of Science and Technology 
Christoph Tillmann IBM Research 
Masao Utiyama NICT 
Taro Watanabe Google 
Andy Way ADAPT, Dublin City University 
Deyi Xiong Soochow University 
Francois Yvon LIMSI/CNRS 
Rabih Zbib Raytheon BBN Technologies 
Jiajun Zhang Institute of Automation Chinese Academy of Sciences 
Bing Zhao SRI International 
 
 
 
 
 
 
 
 



 

 

 
 

Contents 
Page 
1 Empirical Study of Dropout Scheme for Neural Machine Translation 

 Xiaolin Wang, Masao Utiyama and Eiichiro Sumita 
15 
 

A Target Attention Model for Neural Machine Translation 
 Hideya Mino, Andrew Finch and Eiichiro Sumita 

27 
 

Neural Pre-Translation for Hybrid Machine Translation 
 Jinhua Du and Andy Way 

41 
 

Neural and Statistical Methods for Leveraging Meta-information  
in Machine Translation 
 Shahram Khadivi, Patrick Wilken, Leonard Dahlmann and Evgeny Matusov 

55 
 
 

Translation Quality and Productivity: A Study on Rich Morphology Languages 
 Lucia Specia, Kim Harris, Frédéric Blain, Aljoscha Burchardt, Viviven 

Macketanz, Inguna Skadiņa, Matteo Negri and Marco Turchi 
72 
 

The Microsoft Speech Language Translation (MSLT) Corpus for Chinese and 
Japanese: Conversational Test data for Machine Translation and Speech Recognition 
 Christian Federmann and William Lewis 

86 
 

Paying Attention to Multi-Word Expressions in Neural Machine Translation 
 Matīss Rikters and Ondřej Bojar 

96 
 

Enabling Multi-Source Neural Machine Translation By Concatenating Source 
Sentences In Multiple Languages 
 Raj Dabre, Fabien Cromieres and Sadao Kurohashi 

108 Learning an Interactive Attention Policy for Neural Machine Translation 
 Samee Ibraheem, Nicholas Altieri and John DeNero 

116 
 

A Comparative Quality Evaluation of PBSMT and NMT using Professional Translators 
 Sheila Castilho, Joss Moorkens, Federico Gaspari, Rico Sennrich, Vilelmini 

Sosoni, Panayota Georgakopoulou, Pintu Lohar, Andy Way, Antonio Valerio 
Miceli Barone and Maria Gialama 

132 
 

One-parameter models for sentence-level post-editing effort estimation 
 Mikel L. Forcada, Miquel Esplà-Gomis, Felipe Sánchez-Martínez and Lucia 

Specia 
144 
 
 

A Minimal Cognitive Model for Translating and Post-editing 
 Moritz Schaeffer and Michael Carl 



 

 

156 
 

Fine-Tuning for Neural Machine Translation with Limited Degradation across In- 
and Out-of-Domain Data 
 Praveen Dakwale and Christof Monz 

170 
 

Exploiting Relative Frequencies for Data Selection 
 Thierry Etchegoyhen, Andoni Azpeitia and Eva Martinez Garcia 

185 Low Resourced Machine Translation via Morpho-syntactic Modeling: The Case of 
Dialectal Arabic 
 Alexander Erdmann, Nizar Habash, Dima Taji and Houda Bouamor 

201 Elastic-substitution decoding for Hierarchical SMT: efficiency,  
richer search and double labels 
 Gideon Maillette de Buy Wenniger, Khalil Simaan and Andy Way 

216 
 

Development of a classifiers/quantifiers dictionary towards French-Japanese MT 
 Mutsuko Tomokiyo, Mathieu Mangeot and Christian Boitet 

227 
 

Neural Machine Translation Model with a Large Vocabulary Selected by Branching 
Entropy 
 Zi Long, Ryuichiro Kimura, Takehito Utsuro, Tomoharu Mitsuhashi and Mikio 

Yamamoto 
241 
 

Usefulness of MT output for comprehension — an analysis from the point of view of 
linguistic intercomprehension 
 Kenneth Jordan-Núñez, Mikel L. Forcada and Esteve Clua 

254 
 

Machine Translation as an Academic Writing Aid for Medical Practitioners 
 Carla Parra Escartín, Sharon O'Brien, Marie-Josée Goulet and Michel Simard 

268 
 

A Multilingual Parallel Corpus for Improving Machine Translation on Southeast 
Asian Languages 
 Hai Long Trieu and Le Minh Nguyen 

282 
 

Exploring Hypotheses Spaces in Neural Machine Translation 
 Frédéric Blain, Lucia Specia and Pranava Madhyastha 

299 
 

Confidence through Attention 
 Matīss Rikters and Mark Fishel 

312 
 

Disentangling ASR and MT Errors in Speech Translation 
 Ngoc-Tien Le, Benjamin Lecouteux and Laurent Besacier 

324 
 

Temporality as Seen through Translation: A Case Study on Hindi Texts 
 Sabyasachi Kamila, Sukanta Sen, Mohammed Hasanuzzaman, Asif Ekbal, 

Andy Way and Pushpak Bhattacharyya 
337 
 

A Neural Network Transliteration Model in Low Resource Settings 
 Tan Le and Fatiha Sadat 



Empirical Study of Dropout Scheme
for Neural Machine Translation

Xiaolin Wang xiaolin.wang@nict.go.jp
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Eiichiro Sumita eiichiro.sumita@nict.go.jp
Advanced Translation Research and Development Promotion Center,
National Institute of Information and Communications Technology, Japan

Abstract

Dropout has lately been recognized as an effective method to relieve over-fitting when train-
ing deep neural networks. However, there has been little work studying the optimal dropout
scheme for neural machine translation (NMT). NMT models usually contain attention mech-
anisms and multiple recurrent layers, thus applying dropout becomes a non-trivial task. This
paper approached this problem empirically through experiments where dropout were applied
to different parts of connections using different dropout rates. The work in this paper not only
leads to an improvement over an established baseline, but also provides useful heuristics about
using dropout effectively to train NMT models. These heuristics include which part of con-
nections in NMT models have higher priority for dropout than the others, and how to correctly
enhance the effect of dropout for difficult translation tasks.

1 Introduction

Neural machine translation (NMT), as a new technology emerged from the field of deep learn-
ing, has improved the quality of automated machine translation into a significantly higher level
compared to statistical machine translation (SMT) (Wu et al., 2016; Sennrich et al., 2017; Klein
et al., 2017). State-of-the-art NMT models, like many other deep neural networks, typically
contain multiple non-linear hidden layers. This makes them very expressive models, which is
critical to successfully learning very complicated relationships between inputs and outputs (De-
vlin et al., 2014). However, as these large models have millions of parameters, they tend to
over-fit during training phrases.

Dropout has recently been recognized as a very effective method to relieve over-fitting.
Dropout was first proposed for feed-forward neural networks by Hinton et al. (2012). Dropout
was then successfully applied to recurrent neural networks by Pham et al. (2014) and Zaremba
et al. (2014). Dropout outperforms many traditional approaches to over-fitting, including early
stop of training, introducing weight penalties of various kinds such as L1 and L2 regularization,
decaying learning rate and so on.

Reported state-of-the-art NMT systems all adopt dropout during training phrases (Wu
et al., 2016; Klein et al., 2017), but their paper have not provided many details about how
dropout was applied. The optimal way to apply dropout to NMT models is non-trivial. Strictly
speaking, NMT is an application of deep neural networks, so it can directly benefit from the
advance of deep neural networks. However, two facts make NMT models stand out from nor-
mal deep neural networks. First, NMT models contain recurrent hidden layers in order to gain
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the ability of operating on sequences. As contrast, deep neural networks in face recognition
and phoneme recognition are feed-forward as they take separate inputs (Povey et al., 2011;
Krizhevsky et al., 2012). Second, NMT models contain a novel attention mechanism to manage
a memory of an input sequence, as this sequence can become quite long (Bahdanau et al., 2014).
This attention mechanism involves calculations such asweighted mean, which is rarely used in
normal deep neural networks.

As far as we know, there has been no focused study on how to apply dropout effectively to
NMT models. This motivated the work presented in this paper, which aimed at finding out the
optimal dropout scheme for training NMT models. Because the architecture of NMT models
is complicated, we took an empirical approach. We trained many NMT models by verifying
the subsets of connections that dropout were applied to, and using different dropout rates for
different connections. We tried to find out the optimal dropout scheme through answering the
following two questions,

• what part of NMT models should be applied dropout to during training phrases;

• how to correctly set the dropout rates for training NMT models.

The following of this paper is structured as: the section 2 reviews related works on dropout,
then the section 3 describes the method that we adopted to search for optimal dropout scheme,
after that the section 4 presents the results of the experiments, and in the end the section 5
concludes this paper with a description on our future work.

2 Related Works

Hinton et al. (2012) and Srivastava et al. (2014) proposed the method of dropout to relieve over-
fitting when training feed-forward neural networks. They worked with a variety of feed-forward
neural networks each of which is established for a certain task. Different dropout schemes were
applied to these neutral networks in order to obtain optimal results.

• MNIST is a standard toy data set of handwritten digits(LeCun et al., 2010). The best
network had two layers of 8 195 rectified linear units. Dropout was applied to the input
units with a ratep = 0.2, and the hidden units withp = 0.5 .

• CIFAR-10 and CIFAR-100 are tiny natural images (Krizhevsky and Hinton, 2009); Street
View House Numbers is a data set of images of house numbers collected by Google Street
View (Netzer et al., 2011). The best network had three convolutional layers followed by
two fully connected hidden layers. The output of the last fully-connected layer was fed to a
softmax which produced a distribution over the class labels. All hidden units were rectified
linear units. Each convolution layer was followed by a max-pooling layer. Dropout was
applied to all layers including the input layer withp = { 0.10, 0.25, 0.25, 0.50, 0.50, 0.50
}.

• ImageNet is a large collection of natural images (Deng et al., 2009). The best network had
five convolutional layers followed by three fully connected hidden layers. The numbers
of units in each layers were 253 440, 186 624, 64 896, 64 896, 43 264, 4 096, 4 096, and
1 000. The output of the last fully-connected layer was also fed to a softmax layer which
produced a distribution over all class labels (Krizhevsky et al., 2012). Dropout was only
applied to the first two fully connected hidden layers withp = 0.50. The reason might
be that the network was very big . The author claimed that dropout roughly doubled the
number of iterations required to converge. It can be inferred that applying dropout to all
layers might not be feasible because of the time cost on training.
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• TIMIT is a standard speech benchmark for clean speech recognition (Garofolo et al., 1993).
The best network had six layers. Dropout was applied to the input layer withp = 0.2 and
the hidden layers withp = 0.5.

• Alternative Splicing is a data set of RNA features for predicting alternative gene splic-
ing (Xiong et al., 2011). The best network had two layers of 1024 hidden units. Dropout
was applied to the input layer withp = 0.2 and the hidden layers withp = 0.5.

Their experiments were limited on feed-forward networks, which were much simpler than NMT
networks. However, their experimental results suggest two useful heuristics about achieving
good performance from dropout. First, dropout need to be applied to all layers of networks.
Second, the optimal dropout rates for different type of layers such as input layers and hidden
layers are different.

Zaremba et al. (2014) studied how to correctly apply dropout to recurrent neural networks
such as long short-term memory (LSTM) units. They proposed that dropout should only be
applied vertically, that is, be applied to non-recurrent connections. They argued that applying
dropout to recurrent layers will amplify noise, as discussed by Bayer et al. (2013). They
performed experiments on a variety of tasks, one of which was a machine translation task.
Their NMT model contained no attention mechanism, which was like a recurrent language
model trained on concatenations of source sentences and their translations (Sutskever et al.,
2014). It had four layers of 1 000 LSTM units, three embedding layers (source language input
embedding, target language input and output embedding ) and a softmax layer. Dropout was
applied to the connections between input-embedding-to-LSTM, LSTM-to-LSTM, LSTM-to-
output-embedding1 with p = 0.2. Their experiments were performed on a selected subset of
the WMT 2014 English to French data set containing 340M French words and 304M English
words Schwenk et al. (2011). Experimental results showed that dropout improved BLEU scores
from 25.90 to 29.03, while still lost to a BLEU score of 33.30 achieved by a phrase-based SMT
system named LIUM.

Wu et al. (2016) achieved a great improvement of translation quality through NMT when
compared to their previous phrase-based production systems. They adopted a deep LSTM net-
work that had eight encoder layers, eight decoder layers and a attention layer. They claimed that
they adopted a dropout scheme similar to the method in Zaremba et al. (2014), but no further
details were provided, especially on how dropout was applied to the attention layer.

Klein et al. (2017) released an NMT toolkit named OpenNMT. It implemented a network
architecture similar with the one proposed by Luong et al. (2015). OpenNMT outperformed the
SMT system of Moses (Koehn et al., 2007) and a few other NMT systems including GroundHog
and Blocks in our pilot experiments. Therefore we took it as an important baseline in this paper.
OpenNMT did not follow the dropout scheme of Zaremba et al. (2014) to apply dropout to
all non-recurrent layers. Instead, OpenNMT applied dropout only to non-top encoding and
decoding LSTM layers, and output hidden states(see section 3.2 for details). This dropout
scheme seems arbitrary, but it did performed quit well in experiments. Solving this puzzle is
one of the main motivations of this paper.

3 Methods

This section first presents the architecture of the NMT model that we adopted, which is one of
state-of-the-art attention-based encoder-decoder NMT model. After that, this section analyzes
that architecture and provides a list of connections in the architecture that are appropriate for
applying dropout to. In the end, this section describes the method that we adopted to search for
the optimal dropout scheme for training NMT models.

1According to the source code inhttps://github.com/wojzaremba/lstm.
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3.1 Neural Machine Translation

The essence of a machine translation system is modeling the conditional probability of a trans-
lation given a source sentence. In encoder-decoder NMT models, it can be formalized using
chain’s rule as,

log p(y|x) =

m∑

j=1

log(p(yj |y
j−1
1 , s) (1)

wherex=(x1, . . . , xn, 〈EOS〉) is a source sentence and〈EOS〉 is a end-of-sentence token;
y=(y1, . . . , ym) is a translation;s is an representation ofx produced by the encoder. Note that
x sometimes reverse its order to help the decoder to translate from the beginning of a source
sentence.

In this paper, we adopted a compact stacking recurrent architecture as the encoder-decoder
(illustrated by figure 1), which was proposed by Luong et al. (2015). This architecture assumes
that equation 1 is factorized into a calculable form as,

log p(y|x) =

m∑

j=1

log(p(yj |H
〈j〉
o )

=

m∑

j=1

log(softmaxyj
(tanh(WoH

〈j〉
o + Bo))) (2)

H〈j〉
o = Fatt(Hs, H

〈j〉
t ), (3)

whereHs is a source-side hidden state produced by the top recurrent layer of the encoder;Ht

is a target-side hidden state produced by the top recurrent layer of the decoder;Ho is a output
hidden state produced by the attention modelFatt; the superscript〈j〉 is a target-side timestamp;
Wo andBo are the matrix and bias of output embedding; andsoftmaxyj

means selecting the
dimension from the output of the softmax which corresponds toyj in one-hot encoding.

We adopted a global attention model (Luong et al., 2015) asFatt (illustrated by figure 2).
This attention model first calculates an alignment weight as,

a
〈ij〉
st = softmax(Fa(H

〈i〉
s , H

〈j〉
t ))

=
eFa(H

〈i〉
s ,H

〈j〉
t )

∑n
i=1 eFa(H

〈i〉
s ,H

〈j〉
t )

, (4)

Fa(H
〈i〉
s , H

〈j〉
t ) = H〈i〉

s
⊤WaH

〈j〉
t , (5)

whereFa is a scoring function for alignment, which is composed of a linear mapping and a dot
product; andWa is a matrix for linearly mapping target-side hidden states into a space which is
comparable to the source-side.

Then the attention model calculates translation contexts as,

C〈j〉
s =

n∑

i=1

a
〈ij〉
st H〈i〉

s (6)

C
〈j〉
st = [Cs; H

〈j〉
t ], (7)

whereC
〈j〉
s is a source-side context, andC

〈j〉
st is a context derived from both source and target

sides through concatenating.
In the end, the attention model calculates an output hidden state as,

H〈j〉
o = WcCst

〈j〉, (8)

whereWc is a matrix for linearly mapping a context into an output hidden state.
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Figure 1: Network Architecture of Neural Machine Translation
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Figure 2: Illustration of Attention Model
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3.2 Appropriate Connections for Dropout

Dropout should be applied vertically according to the previous study by Zaremba et al. (2014).
This means that dropout should only be applied to non-recurrent connections. Therefore, there
are nine connections in the NMT model that are appropriate for applying dropout to. The
figures 1 and 2 annotate the corresponding variables with red colored symbols. For the sake
of convenience, this paper views each connection in the NMT model as a variable. Applying
dropout to a variable means applying dropout to those non-recurrent connections that transport
the variable.

A detailed list of the nine variables appropriate for dropout in the NMT model is as follows,

• Es input embedding of source-side;

• Rs hidden states of source-side non-top recurrent layers;

• Hs hidden states of source-side top recurrent layer;

• Et input embedding of target-side;

• Rt hidden states of target-side non-top recurrent layers;

• Ht hidden states of target-side top recurrent layers;

• Ho hidden states of output;

• Cs translation context of source-side;

• Cst concatenate of source and target-side translation contexts.

The impact of applying dropout to these nine variables are not independent. Especially, the
four variables involved in the attention model, includingHs, Cs, Ht andCst, are closely related
to each other. This is because the operators ofweighted mean (the equation 6) andconcatenate
(the equation 7) reserve the effect of dropout. In other words, the dropout that is applied to their
input will propagate onto their output.

Because of the complicated relations among these variables, the optimal way to apply
dropout becomes a non-trivial task. For example, there are two choices if we want to make
NMT model robust to source representations. One is to apply dropout toHs, which will affect
the calculation of alignment weightast, weighted meanCs, and concatenated contextCst. The
other one is to apply dropout toCs, which will leave the calculation of alignment weightast

untouched. It is quite difficult to predict the end-to-end performances of these two choices.

3.3 Search for Optimal Dropout Scheme

We decomposed the task of searching for optimal dropout scheme into two steps. The first step
was to search for an optimal combination of variables for applying dropout to. The second step
was to search for optimal dropout rates for each variable in the optimal combination.

Note that training NMT models was very time consuming, so exploring the full search
space was impossible. Therefore we sometimes terminated searches early if one result was
particularly good. We were aware that pruning search space might cause results not to be
globally optimal. However, it made searching for optimal dropout scheme a feasible task.

3.3.1 Search for Optimal Combination of Variables
As described above, there are nine variables in the NMT model which are appropriate for
dropout. The established toolkit of OpenNMT chooses to apply dropout to three of the nine
variables, includingRs, Rt andHo (Klein et al., 2017). This decision seems quite arbitrary.
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Therefore, it was meaningful to find out which combination of thesenine variables lead to good
performance.

We took a heuristic greedy search to find the optimal combination of variables. We grad-
ually increased the size of combinations. We started by applying dropout to only one variable.
Then we tried applying dropout to two variables. After that we continued by applying dropout
to three variables, and continued like this. In each stage we aimed to find the best combina-
tion of a given size. We generally tried adding variables to the promising combinations in the
previous stage.

3.3.2 Search for Optimal Dropout Rates

Hinton et al. (2012) and Srivastava et al. (2014) showed that optimal dropout rates for differ-
ent layers of feed-forward networks are different. Because the nine variables appropriate for
dropout in the NMT model play different roles, they may have different optimal dropout rates.
Therefore, we explored applying different dropout rates to the variables in the optimal combi-
nation, which was found in the first step.

We took a grid search to find optimal dropout rates . In each step, we tried increasing or
decreasing the dropout rate of one variable by a fixed amount such as 0.05. We then chose the
update on a variable which maximized the performance.

4 Experiments

This section first describes our experimental settings, then presents the results of searching
for optimal combination of variables for applying dropout to, after that presents the results of
searching for optimal dropout rates, and in the end compares our optimal dropout schemes with
baselines.

4.1 Experimental Settings

Two corpora were used in our experiments (see the table 1). The first corpus was from the
shared task of NIST Open Machine Translation 2006 Evaluation (OpenMT Chinese-to-English
) 2. We first removed the UN and the traditional Chinese data sets from the NIST-2006 con-
straint training resources. Then we performed word segmentation on the Chinese text using the
Stanford word segmenter (Tseng et al., 2005), and performed tokenization on the English text
using the scripts provided in (Koehn, 2005). The data sets of NIST Eval 2004 and 2005 were
used as a development set. The data set of NIST Eval 2016 was used as a test set.

The second corpus was the Basic Travel Expression Corpus (BTEC) (Takezawa et al.,
2002). We used the in-house English-to-Japanese corpus which contains about 463k sentences.
We randomly selected 2 000 sentences as a development set, and selected another 2 000 sen-
tences as a test set. The sentences left over were used as a training set. The English text was
also tokenized using the scripts provided in (Koehn, 2005), and the Japanese text was segmented
into words using the toolkit of Mecab (Kudo, 2005).

The wordpiece model was adopted to deal with rare words for NMT (Wu et al., 2016).
This approach breaks all words, especially the rare ones, into subword units that are like to
occur more often in a training corpus. Therefore, these rare words become translatable by NMT
models. Byte Pair Encoding was adopted to train segmentation models (Gage, 1994). This
method allows for the representation of an open vocabulary through a fixed-size vocabulary of
variable-length character sequences, making it very suitable for close-vocabulary systems like
NMT (Sennrich et al., 2015). In this paper, we adopted a vocabulary size of 16k according to
our pilot experiments.

2http://www.itl.nist.gov/iad/mig//tests/mt/2006/
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Data Set # Sentences # Words Vocabulary
Source Target Source Target

Corpus: OpenMT Chinese-to-English
Training 442,967 12,265,072 13,444,927 178,832 130,249
Development 2,679 72,869 87,369† (346,231‡) NA NA
Test 1,664 37,827 46,207† (193,214‡) NA NA

Corpus: BTEC English-to-Japanese
Training 458,894 3,664,481 4,193,101 27.757 36,308
Development 2,000 16,148 18,451 NA NA
Test 1,664 15,866 18,048 NA NA

Table 1: Experimental Corpora.† the first reference;‡ totally four references.

The phrase-based SMT toolkit of Moses was adopted as a baseline (Koehn et al., 2007).
The Moses’ models were trained in a conventional settings. The toolkit of SRILM was
adopted to train 5-gram language models on target languages (Stolcke, 2002). The toolkit of
Giza++ (Och, 2003) was adopted to perform word alignment. Then the training scripts provided
by Moses were employed to build translation models. Then the systems were tuned with MERT
on development sets (Och, 2003).

The NMT toolkit of OpenNMT was adopted as another baseline. OpenNMT outperformed
Moses and a few other NMT systems including GroundHog and and Blocks in our pilot exper-
iments. Therefore we took it as a baseline.

Different dropout schemes were tested using our C++ implementation of NMT, named
CytonMT. The implementation utilizes NVIDIA’s native libraries including CUDA, CUBLAS
and CUDNN to gain efficiency on NVIDIA’s GPUs. CytonMT adopts the network architecture
proposed by Luong et al. (2015), which is similar with the one implemented by OpenNMT.

NMT models were trained with a similar setting as Luong et al. (2015). The stacking
LSTM models had four layers of 1 024 cells, and 1 024-dimensional embedding. The parame-
ters of neural networks were initialized in [-0.1, 0.1]. The parameters were trained with stochas-
tic gradient descending algorithm. The gradient normalized gradient was re-scaled when it
exceeded 5.

A simple adaptive learning rate schedule was employed to ensure that models with heavy
dropout were fully trained. The training started with a learning rate of 1. If the perplexity on
the development set did not decrease after an epoch, the learning rate started to decay by 0.5
per epoch. After that if the perplexity did not decrease in two continuous epochs, the training
phrase was terminated. The maximum number of epochs was unlimited, while training usually
finished around 20 epochs.

Translation performances of difference methods were measured by BLEU. BLEU was
calculated on the lower-cased English words in the task of OpenMT Chinese-to-English, and
was calculated on the Japanese characters in the task of BTEC English-to-Japanese.

4.2 Results of Searching for Optimal Combination of Variables

A group of experiments were performed following the method described in the section 3.3.1.
The table 2 presents the results of the experiments. Main experiments were performed on the
OpenMT corpus, and the BTEC corpus were used for confirming the findings.

The experiments were categorized into seven stages (separated by horizontal lines in the
table), as the number of variables in the combination were gradually increased. In each stage,
we aimed to find the best combination of given size (annotated by bold fonts in the table). We
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generally tried adding variables to the promising combination inthe previous stage. Because
training NMT models s time consuming, we terminated the stage early if the best one was clear.

Two observations can be made from these experimental results. First, two special vari-
ablesCt andCst are not suitable for dropout. They are called special because they are the
output ofweighted mean andconcatenate, so they inherit the effect of dropout from the input.
Experiments 21, 22, 29 and 30 show that the applying dropout toCt or Cst leads to poorer
performance than applying dropout to upstream variablesHs or Ht.

Second, among the seven remaining variables, the priority of applying dropout to each
variable can be formulated as a chain,

Rt ≻ Rs ≻ Ho ≻ Es ≻ Hs � Ht � Et (9)

where≻ means context-ed superior, and� means context-ed superior or equal, with respects
to dropout.x1 ≻ . . . ≻ xk ≻ xk+1, means that given the context that(x1, . . . , xk−1) have
already been applied dropout to, applying dropout toxk is superior to applying dropout to
xk+1. In other words, applying dropout to(x1, . . . , xk−1, xk) outperforms applying dropout to
(x1 . . . xk−1, xk+1).

The priority chain of the equation 9 confirms that the OpenNMT’s dropout scheme is
an effective one, becauseRt, Rs andHo are the three top variables. Besides, the chain also
suggests two other effective dropout schemes. The optimal-1 is to apply dropout toRt, Rs,
Ho andEs. The experiment 17 shows that the cross entropy on the development set decreases
by addingEs into the OpenNMT’s dropout scheme. The optimal-2 is to apply dropout to all
the seven remaining variables. The experiments 23 – 27 show that adding any one or two from
Ht, Hs andEt into the optimal-1 brings little improvement, but adding all three variable into
optimal-1 reduces the cross entropy.

4.3 Results of Searching for Optimal Dropout Rates

In this subsection, we aimed to refine the optimal dropout schemes found in the last subsection
by using different dropout rates for each variable. We applied the grid search method described
in the section 3.3.2. The table 3 and 4 presents the results of refining the optimal-2 on the
OpenMT corpus and refining the optimal-1 on the BTEC corpus, respectively.

Unexpectedly, the experimental results on both corpora show that no changes on the
dropout rates can improve the performances. Therefore,p = 0.3 is an optimal dropout rate
for training the NMT model that we adopt.

4.4 Comparison with Baselines

In this section, we compared the optimal dropout schemes found in our study with baselines.
Three baselines were employed. The first was Moses – one of the state-of-the-art phrase-based
SMT systems. The second was the NMT toolkit of OpenNMT. The third was our implementa-
tion of CytonMT using the OpenNMT’s dropout scheme. Among these three baseline, the third
was the most accurate. The table 5 presents the results of the experiments.

Three observations can be made from the experimental results. First, on the OpenMT
corpus, both the optimal-1 and the optimal-2 outperform the baselines (the experiments 1–5). In
addition, the optimal-2 outperforms the optimal-1. This validates the effectiveness of optimal-1
and the optimal-2.

Second, on the BTEC corpus, the performances of the three dropout schemes are close.
The different behaviors on the two corpora may be caused by the fact that the OpenMT corpus
is more difficult than the BTEC corpus with respects to translation, as its sentences are longer
and its vocabulary is larger. From the baseline to the optimal-1 and optimal-2, the strength
of dropout gradually increases since more and more variables are being applied dropout to.
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No. Method Cross Entropy
Apply Dropout to Training Development

Corpus: OpenMT Chinese-to-English
1 Es 1.52 2.65
2 Et 2.16 3.46
3 Rs 2.20 3.61
4 Rt 1.59 2.58
5 Hs 1.66 2.85
6 Ht 1.63 2.62
7 Ho 2.33 3.51
8 Cs 2.24 3.56
9 Cst 1.74 2.70

10 RtEs 1.57 2.53
11 RtRs 1.53 2.46
12 RtHt 1.72 2.53
13 RtHo 1.53 2.55
14 RtRsEs 1.49 2.50
15 EtRsHt 1.74 2.53
16 RtRsHo

♮ 1.50 2.41
17 RtRsHoEs

† 1.59 2.36
18 RtRsHoEt 1.70 2.40
19 RtRsHoHs 1.70 2.37
20 RtRsHoHt 1.68 2.40
21 RtRsHoCs 1.74 2.45
22 RtRsHoCst 1.70 2.43
23 RtRsHoEsEt 1.59 2.37
24 RtRsHoEsHs 1.65 2.36
25 RtRsHoEsHt 1.70 2.36
26 RtRsHoEsHtEt 1.72 2.37
27 RtRsHoEsHtHs 1.79 2.36
28 RtRsHoEsHsHsEt

‡ 1.79 2.33
29 RtRsHoEsEtHtCs 1.845 2.39
30 RtRsHoEsEtCst 1.834 2.41

Corpus: BTEC English-to-Japanese
31 RtRsHoEs

† 0.81 1.12
32 RtRsHoEsHtHsEt

‡ 0.83 1.11

Table 2: Results of Applying Dropout to Different Combinations ofVariables. The Dropout
rate isp = 0.3. ♮ dropout scheme of the toolkit OpenMT;† the optimal-1;‡ the optimal-2.
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No. Dropout Rate Cross Entropy
Rt Rs Ho Es Ht HS Et Training Development

Corpus: OpenMT Chinese-to-English
Ref. 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1.79 2.33

1 0.35 0.30 0.30 0.30 0.30 0.30 0.30 1.79 2.38
2 0.25 0.30 0.30 0.30 0.30 0.30 0.30 1.96 2.43
3 0.30 0.35 0.30 0.30 0.30 0.30 0.30 1.85 2.36
4 0.30 0.25 0.30 0.30 0.30 0.30 0.30 1.77 2.38
5 0.30 0.30 0.35 0.30 0.30 0.30 0.30 1.73 2.35
6 0.30 0.30 0.25 0.30 0.30 0.30 0.30 1.77 2.35
7 0.30 0.30 0.30 0.35 0.30 0.30 0.30 1.80 2.37
8 0.30 0.30 0.30 0.25 0.30 0.30 0.30 1.74 2.36
9 0.30 0.30 0.30 0.30 0.35 0.30 0.30 1.81 2.34

10 0.30 0.30 0.30 0.30 0.25 0.30 0.30 1.79 2.34
11 0.30 0.30 0.30 0.30 0.30 0.35 0.30 1.81 2.37
12 0.30 0.30 0.30 0.30 0.30 0.25 0.30 1.78 2.34
13 0.30 0.30 0.30 0.30 0.30 0.300.35 1.89 2.41
14 0.30 0.30 0.30 0.30 0.30 0.300.25 1.81 2.37

Table 3: Results of Using Different Dropout Rates on the optimal-2.

No. Dropout Rate Cross Entropy
Rt Rs Ho Es Training Development

Corpus: BTEC English-to-Japanese
Ref. 0.30 0.30 0.30 0.30 0.81 1.12

9 0.35 0.30 0.30 0.30 0.73 1.13
10 0.25 0.30 0.30 0.30 0.73 1.13
11 0.30 0.35 0.30 0.30 0.82 1.12
12 0.30 0.25 0.30 0.30 0.77 1.12
13 0.30 0.30 0.35 0.30 0.73 1.13
14 0.30 0.30 0.25 0.30 0.76 1.12
15 0.30 0.30 0.30 0.35 0.80 1.13
16 0.30 0.30 0.30 0.25 0.79 1.12

Table 4: Results of Using Different Dropout Rates on the optimal-1.
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No. System Dropout Scheme Cross Entropy BLEU
Train. Dev. Dev. Test

Corpora: OpenMT Chinese-to-English
1 Moses NA NA NA 32.12 31.11
2 OpenNMT baseline♮ 1.62 2.42 39.96 39.11
3 CytonMT baseline♮ 1.50 2.41 40.07 39.21
4 CytonMT optimal-1† 1.59 2.36 40.39 39.38
5 CytonMT optimal-2‡ 1.79 2.33 40.35 39.89

Corpora: BTEC English-to-Japanese
6 Moses NA NA NA 52.09 50.77
7 OpenNMT baseline♮ 0.63 1.15 52.35 52.38
8 CytonMT baseline♮ 0.81 1.12 52.49 52.46
9 CytonMT optimal-1† 0.81 1.12 52.58 52.44
10 CytonMT optimal-2‡ 0.83 1.11 52.63 52.33

Table 5: Comparison with Baseline Methods.♮ baseline: OpenNMT’s method, applying
dropout toRt, Rs andHo. † optimal-1: applying dropout toRt, Rs, Ho andEs. ‡ optimal-2:
applying dropout to all variables ofRt, Rs, Ho, Es, Ht, Et andHs but excludeCs andCst.
The drop rate is fixed asp = 0.3 .

Therefore, for easy translation tasks, the baseline or the optimal-1 is sufficient; while for difficult
tasks, the optimal-2 is recommended.

Third, all the NMT systems trained with dropout clearly outperformed the SMT system.
This indicates that the baseline dropout scheme is effective. This also confirms the description
in the section 1 of this paper.

5 Conclusion

In this paper, we performed an empirical study on dropout scheme for training NMT models.
We started the study by analyzing the architecture of NMT models, and found out the appro-
priate variables for applying dropout to. We then run two groups of experiments to find out the
optimal combination of these variables and the optimal dropout rate.

Two main questions raised in the introduction can be answered through our study. The first
question is what part of NMT models should be applied dropout. The priority of the variables
in NMT models is

Rt ≻ Rs ≻ Ho ≻ Es ≻ Hs � Ht � Et.

This chain suggests some effective dropout schemes, including the OpenNMT’s scheme, the
optimal-1, and the optimal-2 (section 4.2). Note that heavy dropout scheme will increase the
required number of epochs in training phase. If a translation task is difficult, and training time is
sufficient, the optimal-2 is recommended (section 4.4). We empirically find that training NMT
models using OpenNMT’s dropout scheme usually converges within the 13 epochs3 which is
quite efficient, while using the optimal-2 usually requires around 20 epochs.

The second question is how to correctly set dropout rate for training NMT models. It is
found that the dropout ratep = 0.3 is optimal for the NMT model that we adopt (section 4.3).

In the future, we plan to explore two topics related to dropout for NMT, including max-
norm regularization (Srivastava et al., 2014) and drop connections (Wan et al., 2013).

3the default setting of the toolkit OpenNMT
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Abstract
Neural Machine Translation (NMT) with an attention mechanism has shown promising results
by utilizing word alignments between the source and target sentences. Typically, training of
NMT proceeds token-by-token on the target side, where each token is predicted using only a
vector representing the current hidden-state, and the previous token. However, this strategy has
serious shortcomings originating the lack of information about the partial target sequence hy-
pothesis; specifically, this can lead to source tokens being translated multiple times or remain-
ing untranslated. To alleviate this problem, we introduce a target-side attention mechanism to
exploit the generated target sequence of tokens more effectively. We calculate a target-side con-
text vector using a recurrent neural network and feed it to an attention mechanism so that the
decoder can pay more or less attention to each token in the partially generated target sequence
when predicting the next target token. Experiments on three different English-to-Japanese
translation tasks show improvements of 0.6-1.5 BLEU points.

1 Introduction

Recently, Neural Machine Translation (NMT) (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014) has been growing in popularity due to its capacity to model the translation process
end-to-end within a single probabilistic model, and its potential for higher performance com-
pared to existing phrase-based statistical machine translation (SMT) (Koehn, 2004). There are
some unique features of NMT models which pose significant challenges for machine transla-
tion. One is that NMT systems exploit Long Short-Term Memory (LSTM) units (Hochreiter
and Schmidhuber, 1997) (or the similar Gated Recurrent Units (GRUs) (Cho et al., 2014)) which
allow the systems to capture long-distance dependencies better than vanilla RNNs. Another is
the attention mechanism, whereby the decoder can attend directly to localized information from
the source sequence of tokens for generating the target sequence (Bahdanau et al., 2015; Luong
et al., 2015). NMT systems are generally trained to maximize the likelihood of generating the
target sequence of tokens given the source sequence. In practice, each target token is generated
conditioned on the vector representing the current hidden-state of the model, and the previously
generated target token.

NMT, however, has a serious drawback in that some input tokens are unnecessarily trans-
lated or mistakenly left untranslated (Tu et al., 2016). Our hypothesis is that this is mainly
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because the hidden state of the LSTM decoder is not sufficiently representing all the infor-
mation concerning the generated target sequence of tokens. Our work therefore endeavors to
alleviate this drawback by explicitly handing a summary of the target sequence generated so
far, at each step in the decoding process. Although an LSTM is able to provide the function
of a long-term memory, the prediction of target tokens in a state-of-the-art NMT model (Bah-
danau et al., 2015) heavily depends on two factors: the source-side context vectors with focus
provided by an attention model, and a target language model implicitly learned by the LSTM
decoder. This NMT model fails to exploit the generated target-side information, which is useful
to avoid over- and under-translation problems. If target words translated in the past is accumu-
lated appropriately to the LSTM decoder, they are less likely to be translated again, and new
target word which is not translated yet should be generated. Because of ignoring the informa-
tion of the sequence of previously generated target tokens, unnecessarily translated words and
mistakenly untranslated words are generated. To alleviate the lack of target-side information in
the LSTM decoder, we propose to add a target-side context vector directly into the NMT model.
The target-side context vector is generated with the attention mechanism, which selects the rel-
evant target tokens for predicting the next target token. We show empirically that the addition
of this target-side context vector significantly improves the performance of an NMT system on
three different English-to-Japanese translation tasks.

2 Related Work

There is much recent work on augmenting attention-based NMT systems with additional fea-
tures. One focus is the use of the monolingual data (Sennrich et al., 2016; Gülçehre et al., 2015).
Gülçehre et al. (2015) incorporated a large language model into an attention-based NMT system
to allow the effective use of target-side monolingual data. Another focus is in designing better
decoding strategies (Luong et al., 2015; Tu et al., 2016; Mi et al., 2016; Liu et al., 2016; Mi et al.,
2016; Tu et al., 2017). Tu et al. (2017) proposed to augment a direct model’s decoding objective
with a reverse translation model. Liu et al. (2016) proposed translating in both a left-to-right
and a right-to-left direction and seeking a consensus. Tu et al. (2016) introduced a coverage
vector to keep track of the attention history, which encourages the attention-based NMT system
not to translate source words for multiple times (i.e., avoiding over-translation) and to translate
more untranslated source words (i.e., avoiding under-translation). Mi et al. (2016) also dealt
with the coverage problem.

We also tackle on the over- and under-translation problems. Our approach differs from
those of Tu et al. (2016) and Mi et al. (2016) in that they utilize only source-side attention
history, whereas our approach also exploits the sequence of target tokens generated.

3 Neural Machine Translation with a Source Attention Model

Our method is based on NMT with attention (Bahdanau et al., 2015), which generates the target
sentence y = (y1, ..., yM ) from the source sentence x = (x1, ..., xN ) of length N , as illustrated
in Figure 1 (note: we use bold script to denote sequences hereafter). The attention-based model
consists of two components, an encoder and a decoder. The encoder reads the source sentence
x and encodes it into hidden states h = (h1, ..., hN ). The hidden states are produced using a
bidirectional RNN, which concatenates a forward and a backward sequences, as

hj =

[ −→
h j←−
h j

]
(1)

where
−→
h j = e1(xj ,

−→
h j−1),

←−
h j = e2(xj ,

←−
h j+1). (2)
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Figure 1: Encoder-decoder NMT architecture with source attention

e1 and e2 are nonlinear functions. Bahdanau et al. (2015) used a GRU (Cho et al., 2014) for
e1 and e2. Each hidden state, represented as a single vector, includes not only the lexical infor-
mation at its source position, but also information about the unbounded length of the left and
right context. Then, the decoder predicts the target sentence y using a conditional probability
calculated as

p(yi|y1,i−1,x) = f1(yi−1, si, ci) (3)

where y1,i−1 is a partial translation (y1, ..., yi−1), f1 is implemented as a feedforward neural
network with a softmax output layer, si is a hidden state of the RNN, and ci is a context vector
derived from the source sentence. The hidden state si of the target RNN is computed by

si = g1(si−1, yi−1, ci) (4)

where g1 is a nonlinear function analogous to e1 or e2. The context vector ci is computed as a
convex sum of the hidden states hj of Equation (1):

ci =
N∑
j=1

αi,jhj (5)

where αi,j is a scalar weight of each hidden state hj computed by

αi,j =
exp{a(si−1, hj)}∑N
k=1 exp{a(si−1, hk)}

(6)

where a is a feedforward neural network with a single hidden layer. The attention mechanism
is driven by this αi,j , which shows how well the input context at the j-th word and the output
word at the i-th position match. The objective is to jointly maximize the conditional probability
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Figure 2: The proposed encoder-decoder NMT architecture with both source and target attention

for each generated target word as

θ∗ = arg max
θ

K∑
k=1

Mk∑
i=1

log p(yki |yk
1,i−1,x

k, θ) (7)

where (xk,yk) is the k-th training pair of sentences, and Mk is the length of the k-th target
sentence yk.

4 Adding a Target Attention Model

Attention-based NMT usually uses an LSTM for decoding from an encoded source sentence as
a whole, and a single previous target token as in Equation (4). Intuitively, the encoded source
sentence and the generated sequence of target tokens are both indispensable for predicting the
next target token. Although LSTMs have been shown to be capable of predicting the next
token in a sequence given a compressed representation of the preceding sequence, this process
becomes considerably more difficult when compressing long sequences (Liu et al., 2016). To
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strengthen the information provided by the generated target sequence of tokens, our model adds
a target-side context vector to the input of the LSTM decoder at each decoding step, as shown
in Figure 2. In this model, a representation of the generated target sequence is explicitly made
available to the decoder at each step instead of implicitly relying on the LSTM to maintain it.

In addition, the semantics each token of the generated target sequence depends on its con-
text. The LSTM model produces a vector that contains compressed information representing
an unfocused summary of the whole generated target sequence. In order to allow the model to
focus on salient contexts, we use a mechanism for focusing on the relevant parts of the already-
generated target sequence for generating the current target token, along with a bidirectional
layer to provide the model with the a good representation of the target.

The proposed method is implemented as a target-side attention model constructed analo-
gously to the source-side attention model, where the attention ranges over the partially generated
target token sequence. More formally, the partial translation y1,i−1 is encoded into a sequence
of hidden states t1,i−1, which are produced using a bidirectional RNN, as

tk =

[ −→
t k←−
t k

]
(1 ≤ k ≤ i− 1) (8)

where

−→
t i = e3(yi,

−→
t i−1),

←−
t i = e4(yi,

←−
t i+1). (9)

e3 and e4 are nonlinear functions as in Equation (2). Then, the decoder predicts the target
sentence with a conditional probability as

p(yi|y1,i−1,x) = f2(yi−1, si, ci, di) (10)

where f2 is a probability estimator as in Equation (3) and newly introduced di is a predicted
target-side context vector. The computation of the hidden state si is also modified as

si = g2(si−1, yi−1, ci, di) (11)

where g2 is a nonlinear function as in Equation (4). The context vector di is computed as a
convex sum of the hidden states t1,i−1:

di =
i−1∑
k=1

βi,ktk (12)

where βi,k is also a scalar weight of each hidden state tk as below:

βi,k =
exp{b(si−1, tk)}∑i−1
k=1 exp{b(si−1, tk)}

(13)

where b is a feedforward neural network analogous to a in Equation (6). βi,k gives a normalized
score for each previous target token, which measures how the k-th target word is relevant to the
prediction of the i-th target token. The objective is again to jointly maximize the likelihood
as in Equation (7). Typically, the previous target token yi−1 used by the LSTM decoder is
the true previous token when training, and a predicted previous token during decoding. In our
experiments, we follow this practice, although there is evidence that using predictions during
training would be beneficial (Bengio et al., 2015). Since our approach is orthogonal to that of
Bengio et al. (2015), it would be possible to use both techniques in tandem.
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Training Development Test
Corpus Sents. Word types Avg. length Sents. Word types Sents. Word types

en ja en ja en ja en ja
IWSLT’07 40k 9.4k 10k 9.3 12.7 0.5k 1.2k 1.3k 0.5k 0.8k 0.9k
NTCIR-10 717k 105k 79k 23.3 27.7 2.0k 5.0k 4.4k 0.5k 2.4k 2.1k
ASPEC 843k 288k 143k 22.1 23.9 1.8k 7.1k 6.3k 1.8k 7.0k 6.4k

Table 1: Data sets

5 Experiments

We evaluated the proposed method on three different English-to-Japanese translation tasks. As a
baseline, we trained the attention-based NMT and the coverage-vector method (Tu et al., 2016).
To confirm the effectiveness of the target-side bidirectional RNN in the proposed method, we
also trained the proposed method with one direction RNN, from left to right.

5.1 Data and model parameters
The corpora we used were IWSLT’07 (Fordyce, 2007), NTCIR-10 (Goto et al., 2013), and
ASPEC (Nakazawa et al., 2016). IWSLT’07 consists of spoken travel conversations, NTCIR-
10 consists of patents, and ASPEC is in the domain of scientific publications. We constrained
training sentences to have a maximum length of 40 to speed up the training.1 As shown in
Table 1, the data size of IWSLT’07 is smaller than the other corpora, and ASPEC has a greater
lexical variety compared to the others. Each test sentence had a single reference translation.
The English data was tokenized using the tokenization script included in the Moses decoder.2

The Japanese data was tokenized with KyTea (Neubig et al., 2011).

5.2 Settings
The input and output of our model are sequences of one-hot vectors with dimensionality cor-
responding to the sizes of the source and target vocabularies. For NTCIR-10 and ASPEC, we
replaced words of frequency less than 3 with the [UNK] symbol and excluded them from the vo-
cabularies. As a result, the number of word types in NTCIR-10 turned out 60k for English and
50k for Japanese, and ASPEC contained 124k types for English and 79k for Japanese. Due to
the limited memory of GPU, each source and target word was projected into a 200-dimensional
continuous Euclidean space to reduce the dimensionality, the depth of the stacking LSTMs was
1 and hidden layer size was set to 300. Each model was optimized using Adam (Kingma and
Ba, 2014) with the following parameters: α = 1e− 3, β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8.
To prevent overfitting we used dropout (Srivastava et al., 2014) with a drop rate of r = 0.5
to the last layer of each stacking LSTM. All weight metrics of each model were initialized by
sampling from a normal distribution of zero mean and 0.05 standard deviation. The gradient
at each update is calculated using a minibatch of at most 100 sentence pairs and we ran for a
maximum of 30 iterations for the entire training data. Training was early-stopped to maximize
the performance on the development set measured by BLEU. We used a single Tesla K80 GPU
with 12 GB of memory for the training. For decoding, we used beam search with a beam size
of 10. The beam search was terminated when an end-of-sentence [EOS] symbol was generated.

The evaluation metric is case-insensitive BLEU (Papineni et al., 2002) calculated by the

1The proposed method takes approximately five times the training time, and three times the decoding time, relative
to the baseline attention-based NMT. The proposed method with one direction RNN, instead of bidirectional RNN,
takes approximately three times the training time, and three times the decoding time.

2http://statmt.org/moses/
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System IWSLT’07 NTCIR-10 ASPEC
source-attn 47.4 31.0 26.2
coverage-vector 47.7 31.4 25.8
source-and-target-attn (left-to-right) 48.0 31.5 26.4
source-and-target-attn (bidirectional) 48.3 32.3 †‡ 27.7 †‡

Table 2: BLEU scores for the attention-based NMT (source-attn), the coverage vector method
(Tu et al., 2016) (coverage-vector) and the proposed method (source-and-target-attn) with
target-side bidirectional RNN (bidirectional) and target-side one directional RNN from left to
right (left-to-right) (†: significantly better than source-attn (p < 0.05); ‡: significantly better
than coverage-vector (p < 0.05).

System IWSLT’07 NTCIR-10 ASPEC
source-attn 39 / 0.91 412 / 0.94 1178 / 0.91
coverage-vector 91 / 0.91 347 / 0.92 884 / 0.89
source-and-target-attn (left-to-right) 58 / 0.91 286 / 0.93 870 / 0.90
source-and-target-attn (bidirectional) 38 / 0.90 335 / 0.94 659 / 0.91

Table 3: Numbers of overtranslated words (left-side) and averages of the brevity penalty per
sentence (right-side)

multi-bleu.perl script in the Moses toolkit. Statistical significance testing of the BLEU
differences was performed using paired bootstrap resampling (Koehn, 2004) with 10,000 it-
erations. We also assessed the decrease in the over- and under-translation with two kinds of
criteria. For the over-translation, we used a number of overtranslated words, which are un-
necessarily translated though these are already translated in outputs. We simply counted the
number of repeated phrases (length longer or equal than 2 words) for each sentence as in Mi
et al. (2016). For the under-translation, we used an average of brevity penalty per sentence. The
brevity penalty, which is part of BLEU, is to penalize predicted sentence that are shorter than
the reference.

5.3 Results
Table 2 summarizes the results for all the three tasks. For the IWSLT’07 task, our model
achieved 0.9, 0.6, and 0.3 BLEU point improvements compared with source-attn, coverage-
vector, and source-and-target-attn (left-to-right), respectively. For the NTCIR-10 task, our
model achieved gains of 1.3, 0.9, and 0.8 BLEU points. For the ASPEC task, our model
achieved gains of 1.5, 1.9, and 1.3 BLEU points. These results show that our proposed method
is more effective than other baseline methods. The results for IWSLT’07 show less improve-
ment than those for NTCIR-10 and ASPEC. The reason for this may be the length of the target.
As shown in Table 1, the average length of sentence of IWSLT’07 is much shorter than NTCIR-
10 and ASPEC. These results show that the proposed method seems to be more effective for the
tasks with long sentences. The explanation is most likely analogous to the motivation for using
a source-side attention model: an LSTM model without attention struggles to propagate nec-
essary information over longer distances. Our target-side attention model explicitly facilitates
this.

Table 3 shows the numbers of overtranslated words and the averages of the brevity penalty.
The brevity penalty is 1.0 when the output length is longer than the reference translation’s
length. For IWSLT’07, there were no improvements. As mentioned earlier, we believe the
cause is related to the fact that the sentences in this corpus are short; our method is most ef-

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 21



fective for longer sequences. For the other two tasks, our model seemed to be able to reduce
the number of overtranslated words, also maintaining the target sequence length closer to that
of the references. For NTCIR-10, though source-and-target-attn (left-to-right) greatly reduces
the number of overtranslated words, the BLEU score is almost same as coverage-vector. It
shows that source-and-target-attn (left-to-right) increases the number of mistranslated words
and source-and-target-attn (bidirectional) is effective to decrease not only the number of over-
translated words but also the number of mistranslated words. Examples of outputs generated by
each model are shown in Appendix A.

These analyses validate our contribution to the original motivation for this work, i.e., the
proposed model is capable of effectively decreasing the number of mistakenly untranslated
words and unnecessarily translations of the same word.

6 Conclusion

We introduced a focused summary of the target sequence generated so far into the decoding
process in order to alleviate the problems of the over- and under-translation problems. Our
empirical evaluation shows that the proposed method is effective in achieving substantial im-
provements in terms of translation quality consistently across three different tasks.
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Gülçehre, Ç., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H., Bougares, F., Schwenk, H., and Bengio, Y.
(2015). On using monolingual corpora in neural machine translation. CoRR, abs/1503.03535.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8).

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing (EMNLP 2013).

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 22



Koehn, P. (2004). Statistical significance tests for machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing (EMNLP 2004).

Liu, L., Utiyama, M., Finch, A., and Sumita, E. (2016). Agreement on target-bidirectional neural machine
translation. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL 2016).

Luong, T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural ma-
chine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2015).

Mi, H., Sankaran, B., Wang, Z., and Ittycheriah, A. (2016). Coverage embedding models for neural
machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2016).

Nakazawa, T., Yaguchi, M., Uchimoto, K., Utiyama, M., Sumita, E., Kurohashi, S., and Isahara, H. (2016).
Aspec: Asian scientific paper excerpt corpus. In Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC 2016).

Neubig, G., Nakata, Y., and Mori, S. (2011). Pointwise prediction for robust, adaptable japanese mor-
phological analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies (ACL 2011).

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic evaluation
of machine translation. In Proceedings of 40th Annual Meeting of the Association for Computational
Linguistics (ACL 2002).

Sennrich, R., Haddow, B., and Birch, A. (2016). Improving neural machine translation models with
monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (ACL 2016).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15.

Sutskever, I., Vinyals, O., and Le, Q. V. V. (2014). Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems (NIPS 2014).

Tu, Z., Liu, Y., Shang, L., Liu, X., and Li, H. (2017). Neural machine translation with reconstruction. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016). Modeling coverage for neural machine translation. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016).

Appendix A. Examples of outputs

We show examples of Japanese translation generated with each of the four models in Tables 2 and 3 with a
source sentence and a reference. The words shown in bold letters are examples of over- or under-translation
problems.
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Examples of NTCIR-10
[Example 1]

Source sentence:

This fluctuation in the power supply voltage and reference voltage causes power source noise .

Reference:

このようにして電源電圧 (the power supply voltage)や基準電圧 (the reference voltage)
が変動して電源ノイズを生じさせる。

Output with source-attn:

電源電圧 (the power supply voltage)と電源電圧 (the power supply voltage)との変動
により、電源ノイズが発生する。

Output with coverage-vector:

電源 電圧 (the power supply voltage) の 変動 に よ り 、 電源 電圧 (the power supply
voltage)が変動し、電源電圧 (the power supply voltage)が発生する。

Output with source-and-target-attn (left-to-right):

電源電圧 (the power supply voltage)および基準電圧 (the reference voltage)の変動は
、電源ノイズを発生する。

Output with source-and-target-attn (bidirectional):

電源電圧 (the power supply voltage)と基準電圧 (the reference voltage)との変動は、
電源ノイズを発生する。

[Example 2]
Source sentence:

As shown in FIG . 5 , the drain current is also affected by the stress .

Reference:

図 5に示したようにドレイン電流 (the drain current)も応力の影響を受ける。

Output with source-attn:

５．５に示すように、ドレイン電流 (the drain current)の影響を受けることに
より、ドレイン電流 (the drain current)が影響を受ける。

Output with coverage-vector:

５ ｖ に 示 す よう に 、 ドレイン 電流 (the drain current) に よ り ドレイン 電流 (the
drain current)も影響を受ける。

Output with source-and-target-attn (left-to-right):

図５に示すように、ドレイン電流 (the drain current)は、応力によって影響を
与える (is affecting)。

Output with source-and-target-attn (bidirectional):

図５に示すように、ドレイン電流 (the drain current)は、応力によって影響を
受ける (is affected by)。
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Examples of ASPEC
[Example 1]

Source sentence:

compatible solutes include polyols such as glycine betaine ( betaine ) , zwitterionic proline ,
pinitol , sorbitol , and mannitol .

Reference:

適合溶質としては，グリシンベタイン（ベタイン），プロリンなどの両性イオ
ン (zwitterionic)，ピニトール (pinitol)，ソルビトール (sorbitol)，マンニトールなど
のポリオール類などが知られている。

Output with source-attn:

適合 溶質 は グリシンベタイン （ グリシンベタイン ） ， ピニトール (pinitol) ， ピニ
トール (pinitol)，ピニトール (pinitol)，ピニトール (pinitol)，ピニトール (pinitol)で
ある。

Output with coverage-vector:

適合溶質としては，グリシンベタイン（ベタイン），ピニトール (pinitol)，ピニ
トール (pinitol)，ピニトール (pinitol)，ピニトール (pinitol)，ピニトール (pinitol)で
ある。

Output with source-and-target-attn (left-to-right):

適合溶質としてはグリシンベタイン（ベタイン），両性イオン (zwitterionic)，ピ
ニトール (pinitol)，ピニトール (pinitol)，マンニトールなどのポリオール類が含ま
れる。

Output with source-and-target-attn (bidirectional):

適合溶質としては，グリシンベタイン（ベタイン），ピニトール (pinitol)，ソル
ビトール (solbitol)，マンニトールなどのポリオールを含む。

[Example 2]
Source sentence:

the liquid-crystal film in the title was prepared on a glass substrate by uniaxial orientation and
the amount of the transmitted light through a polarizing plate was measured .

Reference:

標題液晶薄膜をガラス基板上に (on a glass substrate)一軸配向させて形成し，偏
光板を経た透過光量を測定した。

Output with source-attn:

標記薄膜をガラス基板上に (on a glass substrate)ガラス基板上に (on a glass substrate)
調製し，偏光板を通過する透過光の量を測定した。

Output with coverage-vector:

標記薄膜をガラス基板上に (on a glass substrate)ガラス基板上に (on a glass substrate)
作製し，偏光板を通過する透過光の量を測定した。
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Output with source-and-target-attn (left-to-right):

標記液晶膜を一軸配向によりガラス基板上に (on a glass substrate)作製し，偏
光板を介した透過光の量を測定した。

Output with source-and-target-attn (bidirectional):

標記液晶をガラス基板上に (on a glass substrate)一軸配向により作製し，偏光
顕微鏡により透過光の量を測定した。
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Abstract
Hybrid machine translation (HMT) takes advantage of different types of machine translation
(MT) systems to improve translation performance. Neural machine translation (NMT) can
produce more fluent translations while phrase-based statistical machine translation (PB-SMT)
can produce adequate results primarily due to the contribution of the translation model. In
this paper, we propose a cascaded hybrid framework to combine NMT and PB-SMT to im-
prove translation quality. Specifically, we first use the trained NMT system to pre-translate
the training data, and then employ the pre-translated training data to build an SMT system and
tune parameters using the pre-translated development set. Finally, the SMT system is utilised
as a post-processing step to re-decode the pre-translated test set and produce the final result.
Experiments conducted on Japanese→English and Chinese→English show that the proposed
cascaded hybrid framework can significantly improve performance by 2.38 BLEU points and
4.22 BLEU points, respectively, compared to the baseline NMT system.

1 Introduction

In recent years, NMT has made impressive progress (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015). The state-of-the-art NMT model
employs an encoder–decoder architecture with an attention mechanism, in which the encoder
summarizes the source sentence into a vector representation, the decoder produces the target
string word by word from vector representations, and the attention mechanism learns the soft
alignment of a target word against source words (Bahdanau et al., 2015). NMT systems have
outperformed the state-of-the-art SMT model on various language pairs in terms of translation
quality (Luong et al., 2015a; Bentivogli et al., 2016; Junczys-Dowmunt et al., 2016; Wu et al.,
2016; Toral and Sánchez-Cartagena, 2017). However, due to some deficiencies of NMT systems
such as the limited vocabulary size, and meaningless translations, much research work has
involved combining NMT and SMT to improve translation performance (Cho et al., 2014; He
et al., 2016; Niehues et al., 2016; Wang et al., 2017).

HMT is a strategy that combines different types of translation systems and fully takes ad-
vantage of the strengths of each system to improve translation performance. A typical example
of HMT involves a rule-based system’s predictable and consistent translations with an SMT
system used for post-processing to further improve translation quality (Groves and Way, 2005;
Paul et al., 2005; Groves and Way, 2006; Chen et al., 2007; Sánchez-Martı́nez et al., 2007;
Enache et al., 2012; Li et al., 2015).1 NMT is a new MT paradigm which can produce highly

1A huge amount of work has been done on this topic in the past decades, so we only list a representative sample
here.
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fluent translations. However, NMT sometimes generates translations that have a totally different
meaning compared to the source sentences, which testifies to its strong language modeling but
weak translation modeling capabilities. By contrast, PB-SMT is good at reflecting the adequacy
of source sentences by means of the ‘hard word alignment’. Intuitively, if we take the fluent
but wrong translations as another language and perform word alignment, then we can perhaps
restore the original meaning of source sentences to some extent using SMT. Moreover, for any
source-side out-of-vocabulary (OOV) words in NMT, if we can keep them in the translations,
then we can fully utilise the advantage of SMT to translate them.

Some work has been done on combining the adequacy of SMT and fluency of NMT. To
the best of our knowledge, the most similar work is the pre-translation framework proposed
in Niehues et al. (2016). In their framework, the SMT system is first used to pre-translate
the input and then an NMT system generates the final hypothesis using the pre-translation as
input. However, in their experiments, the “SMT⇒NMT” framework without integrating source
information did not beat the pure NMT system and was not able to combine the strengths of
both systems.

In this paper, we propose an “NMT⇒SMT” hybrid strategy to utilise SMT and NMT
by considering (i) that NMT systems significantly outperform SMT systems, so using a higher-
quality system as a post-processing step may indeed improve the performance of a lower-quality
MT system, but might be difficult to outperform the higher-quality system; (ii) that NMT is
more sensitive to noisy data compared to SMT, so using pre-translated data to train NMT will
cause translation performance to deteriorate. Accordingly, the NMT system trained on the pre-
translated data will not be able to correct errors from the SMT system. Experiments conducted
on Japanese→English and Chinese→English demonstrate that our proposed “NMT⇒SMT” hy-
brid strategy can alleviate the above problems and further improve translation quality compared
to pure NMT systems. The main contributions of this work include:

• We re-implement the “SMT⇒NMT” strategy on two different language pairs and four di-
rections, namely Japanese↔English and Chinese↔English. Results show that this frame-
work indeed cannot outperform the baseline NMT system.

• We propose an “NMT⇒SMT” hybrid framework that can better combine SMT and NMT
by using their different strengths.

• We examine the effectiveness of the proposed framework on different NMT systems,
namely the single NMT, factored NMT and ensemble NMT systems.

The rest of the paper is organised as follows. In Section 2, related work to the proposed
neural hybrid MT framework is introduced. Section 3 describes the attentional encoder–decoder
framework for NMT, and Section 4 introduces factored NMT and our proposed input features
for NMT. In Section 5, we detail our proposed neural hybrid MT framework. In Section 6, we
report the results of two sets of experiments on Chinese–English and Japanese–English tasks.
Then a qualitative analysis is carried out, and some examples for comparing different systems
are also illustrated in this section. Section 7 concludes and gives avenues for future work.

2 Related Work

The combination of NMT and SMT can be roughly categorised into three categories:

• NMT in post-processing: in this scenario, translations from SMT can be post-processed
using NMT. For example, using NMT or neural networks to re-rank the outputs from
SMT (Zhao et al., 2014; Lee et al., 2015; Neubig et al., 2015; Ding et al., 2016; Farajian
et al., 2016), or using pre-translated results from SMT to build an NMT system (Niehues
et al., 2016).
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• Integrating SMT into NMT: in this scenario, SMT is used to guide translation in NMT,
e.g. incorporating the translation model or language model into the decoding process of
NMT (He et al., 2016; Wang et al., 2017).

• Integrating NMT into SMT: in this category, it is essentially integrating neural network-
based features into SMT, such as the neural reordering model, neural language model,
neural semantic model etc., e.g. Cho et al. (2014); Li et al. (2014); Passban et al. (2015).

In terms of the second category, He et al. (2016) incorporate SMT features, such as a
translation model and an n-gram language model, with the NMT model under the log-linear
framework. Their experiments show that the proposed method significantly improves transla-
tion quality of the baseline NMT system on Chinese→English translation tasks.

Wang et al. (2017) propose to incorporate an SMT model into the NMT framework in
which at each decoding step, SMT offers additional recommendations of generated words based
on the decoding information from NMT, and then an auxiliary classifier is employed to score
the SMT recommendations and a gating function is used to combine the SMT recommendations
with NMT generations, both of which are jointly trained within the NMT architecture in an end-
to-end manner. Experimental results on Chinese-to-English translation show that the proposed
approach achieves significant and consistent improvements over state-of-the-art NMT and SMT
systems.

The proposed hybrid framework in this paper can be defined as a novel fourth category
where we use SMT to post-process translations from NMT, which is completely different from
the “SMT⇒NMT” framework in Niehues et al. (2016). In their framework, the SMT system
is used to pre-translate the input and then an NMT system generates the final hypothesis using
the pre-translation. In their experiments, the basic pre-translation system did not beat the NMT
system either on natural order or pre-reordered data. By concatenating the source-side sen-
tences with pre-translations as input to NMT, the final translation performance outperformed
the baseline NMT system. From their results, we can see that the framework still needs the
source information, and it is difficult to tell whether the improvements are mainly contributed
by the pre-translation or source information.

3 Neural Machine Translation

The basic principle of an NMT system is that it can map a source-side sentence x =
(x1, . . . , xm) to a target sentence y = (y1, . . . , yn) in a continuous vector space, where all
sentences are assumed to terminate with a special “end-of-sentence” token < eos >. Concep-
tually, an NMT system employs neural networks to solve the conditional distributions in (1):

p(y|x) =
n∏

i=1

p(yi|y<i, x≤m) (1)

We utilise the NMT architecture in Bahdanau et al. (2015), which is implemented as an
attentional encoder-decoder network with recurrent neural networks (RNN).

In this framework, the encoder is a bidirectional neural network (Sutskever et al., 2014)
with gated recurrent units (Cho et al., 2014) where a source-side sequence x is converted
to a one-hot vector and fed in as the input, and then a forward sequence of hidden states
(
−→
h 1, . . . ,

−→
hm) and a backward sequence of hidden states (

←−
h 1, . . . ,

←−
hm) are calculated and

concatenated to form the annotation vector hj . The decoder is also an RNN that predicts a
target sequence y word by word where each word yi is generated conditioned on the decoder
hidden state si, the previous target word yi−1, and the source-side context vector ci, as in (2):
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p(yi|y<i,x) = g(yi−1, si, ci) (2)

where g is the activation function that outputs the probability of yi, and ci is calculated as a
weighted sum of the annotations hj . The weight αij is computed as in (3):

αij =
exp(eij)

m∑
k=1

exp(eik)
(3)

where

eij = a(si−1, hj)

is an alignment model which models the probability that the inputs around position j are aligned
to the output at position i. The alignment model is a single-layer feedforward neural network
that is learned jointly through backpropagation.

4 Factored NMT Using Linguistic Features

Factored NMT, introduced in Sennrich and Haddow (2016), represents the encoder input as a
combination of features as in (4):

−→
h j = g(

−→
W (

|F |n

k=1

Ekxjk) +
−→
U
−→
h j−1) (4)

where ‖ is the vector concatenation, Ek ∈ Rmk×Kk are the feature-embedding matrices, with∑|F |
k=1mk = m, Kk is the vocabulary size of the kth feature, and |F | is the number of features

in the feature set F (Sennrich and Haddow, 2016).
In factored NMT, the features can be any form of knowledge which might be useful to

NMT systems, such as POS tags, lemmas, morphological features and dependency labels as
used in Sennrich and Haddow (2016). In our work, besides POS tags, we also use a new feature
– word class (WoC) – in the NMT system. We define “POS+WoC” as pre-reordering features
because they are used for pre-reordering source-side sentences in SMT (Neubig et al., 2012;
Nakagawa, 2015).

Figure 1: The Cascaded framework for neural HMT
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5 Cascaded Hybrid Machine Translation

NMT can produce more fluent translations than SMT. However, NMT often produces some
meaningless translations, i.e. the translation is totally different from the original meaning of
the source sentence (Toral and Sánchez-Cartagena, 2017), or repeatedly translates some source
words while mistakenly ignoring other words (Tu et al., 2017). We infer that this problem is
due to the lack of an explicit translation model in NMT and the whole framework of NMT is
regarded as a language model.

Although the soft-attention mechanism is helpful to guide the prediction of target words
using the source information, and a reconstructor in NMT can manage to reconstruct the in-
put source sentence from the hidden layer of the output target sentence to avoid the duplicate
translation of source words (Tu et al., 2017), it still cannot explicitly and fully use the source
information as in SMT. Thus, if we regard the translation from NMT as another ‘language’,
and use SMT to perform word alignment and build a translation model, we might alleviate the
meaningless and duplicate translations to some extent.2

Therefore, we propose an “NMT⇒SMT” framework to combine NMT and SMT as a
multi-engine hybrid MT system as illustrated in Figure 1. In this pipeline, the first step is
to train an NMT system using the initial training data, and then translate the training data,
development set (devset) and test set (testset) into pre-translations; the second step is to use
the pre-translated training data to build a target–target SMT system and tune the parameters
using the pre-translated devset; the last step is to use the tuned SMT system to decode the
pre-translated test set and produce the final output.

During pre-translation using NMT to translate the training data, devset and testset, we
allow NMT to generate the ‘UNK’ token if an OOV occurs in the source sentence. Then, we
propose a very simple but effective method to replace the “UNK” token in the translation by the
corresponding source word. The method is shown in Algorithm 1.

Algorithm 1 Replacing UNK by source words
Require: A source sentence f l1, the translation em1 with UNK tokens, and the limited source-

side vocabulary V for NMT.
source position = 1
for i = 1 to m do

if ei == UNK then
for j =source position to l do

if fj not in V then
ei = fj
source position = j + 1
break

end if
end for

end if
end for

The mechanism of Algorithm 1 is different from that in Jean et al. (2015) where they use
the soft word-alignment information from the NMT system to guide the substitution process.
However, generating the word-alignment information from NMT is quite time-consuming, es-
pecially for the translation of the training data. Therefore, our algorithm simply traverses the

2This is an open question. Intuitively, this depends on what word alignments are learned and what phrase pairs are
extracted.
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translation and its corresponding source sentence. Specifically, when we encounter the ‘UNK’
token, we will look up the source words in order in the NMT source-side vocabulary. If the
source word does not exist in the vocabulary, then we replace the ‘UNK’ with this source word.
We repeat this process to the end of the translation sentence. There might exist the wrong re-
placement due to different word order between the source sentence and the target sentence.3

However, we believe that the SMT system will use its local reordering capability to reorder the
OOVs to some extent and translate them.

Finally, different from using a back-off dictionary to post-process these unknown words
in Luong et al. (2015b), we employ an SMT system to translate by considering more context.

6 Experiments

As Japanese and Chinese languages differ drastically from English in terms of word order and
grammatical structure, we select Japanese–English and Chinese–English translations4 to verify
the proposed framework.

We also re-implement the “SMT⇒NMT” pipeline proposed in Niehues et al. (2016) as
a comparison with our proposed framework. Therefore, two sets of experiments are set up as
follows:

• “SMT⇒NMT”: four translation directions (JP↔EN and ZH↔EN) are evaluated on
natural-order and pre-reordered data. We employ the top-down BTG-based pre-reordering
method to reorder source-side sentences (Nakagawa, 2015).

• “NMT⇒SMT”: we test our proposed framework by integrating different types of NMT
systems on JP→EN and ZH→EN tasks.

In the following sections, we report our experimental setup and results in terms of these
two experiments.

6.1 Experimental Settings
For JP–EN translation tasks, the training data is the first part (train-1) of the JP–EN Scientific Pa-
per Abstract Corpus (ASPEC-JE) that contains 1M sentence pairs, the development/validation
set contains 1,790 sentence pairs, and the test set contains 1,812 sentence pairs (Nakazawa et al.,
2016). There is only one reference for each source-side sentence in the validation and test sets.

For ZH–EN tasks, we use 1.4M sentence pairs extracted from LDC ZH–EN corpora as
the training data, and NIST 2004 current set as the development/validation set that contains
1,597 sentences, and NIST 2005 current set as the test set that contains 1,082 sentences. There
are four references for each Chinese sentence and there is only one reference for each English
sentence in the validation and test sets. For the EN→ZH direction, we use the first reference
out of four references for Chinese as the input (English).

For factored NMT, we use POS tags and word class as input features, which are obtained
as follows:

• POS tag: the Japanese data are segmented and tagged using KyTea (Neubig et al., 2011),
and the Chinese data are segmented and tagged using the ICTCLAS toolkit (Zhang et al.,
2003).

• Word Class (WoC): the word classes of the training data are obtained using “mkcls” by
setting the number of classes to 50. For an OOV word in the validation and test sets, we
randomly allocate a class between (1, 50) to it.

3Noting that the number of OOVs in the source sentence is not always precisely the same as the number of UNKs
in the translation of NMT. In our method, we take the minimum of these two numbers to replace the OOVs.

4In the rest of the paper, we use JP, ZH and EN to denote Japanese, Chinese and English, respectively.
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Chinese and Japanese are not suitable for using the Byte Pair Encoding (BPE)
method (Sennrich et al., 2016) to encode words as subword units, so we keep the words as
translation units. We use Moses (Koehn et al., 2007) with default settings as the standard PB-
SMT system, and use KenLM (Heafield et al., 2013) to train a 5-gram language model. We use
Nematus (Sennrich et al., 2017) as the NMT system, and set minibatches of size 80, a maxi-
mum sentence length of 60, word embeddings of size 600, and hidden layers of size 1024. The
vocabulary size for input and output is set to 45K. The models are trained with the Adadelta
optimizer (Zeiler, 2012), reshuffling the training corpus between epochs. We validate the model
every 5,000 minibatches via BLEU (Papineni et al., 2002) scores on the validation set and save
the model every 30,000 iterations.

As in Sennrich and Haddow (2016), for factored NMT systems, in order to ensure that per-
formance improvements are not simply due to an increase in the number of model parameters,
we keep the total size of the embedding layer fixed to 600. Tables 1 and 2 show the vocabulary
size and embedding size for pre-reordering features and the word as the input for the JP→EN
and ZH→EN systems, respectively.

Vocab. Size Embedding Size
Feature Corpus Model All Single
POS 21 21 10 10
WoC 51 51 10 10
Word 161,390 45K 580 590

Table 1: Vocabulary size, and size of embedding layer of pre-reordering features and words for
JP→EN

Vocab. Size Embedding Size
Feature ZH Model All Single
POS 36 36 10 10
WoC 51 51 10 10
Word 185,029 45K 580 590

Table 2: Vocabulary size, and size of embedding layer of pre-reordering features and words for
ZH→EN.

In Tables 1 and 2, the columns from left to right under “Vocab. Size” indicate the vocab-
ulary size of each feature. For example, “21” for “Corpus” indicates that there are a total of
21 POS tags in our Japanese corpus, and “21” for “Model” indicates that the vocabulary size
of POS tags configured in the NMT model is 21. The column “All” indicates the embedding
size of a feature when it combines with all other features, and “Single” indicates the embedding
size of a feature only combining with “Word”. In all NMT systems, the total embedding size is
fixed to 600. Therefore, “590” indicates that for each single feature, the word embedding size
for “Word” is obtained by [600− embedding size(feature) = 600− 10 = 590].

The NMT system with the best BLEU score is selected as our baseline, and in terms of the
ensemble NMT system, we use the last 5 models. The beam size for all NMT systems is set to
12.

We only employ the pre-translated training data and devset from the baseline NMT system
to train and tune the SMT engine. Then the tuned SMT system is employed to re-decode the
pre-translated test set using the baseline NMT, factored NMT and ensemble NMT systems,
respectively.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 33



JP→EN EN→JP
Non-reordered Pre-reordered Non-reordered Pre-reordered

SYS Validation Test Validation Test Validation Test Validation Test
SMT 18.25 17.64 21.79* 21.71* 27.03 26.32 33.67* 33.75*
NMT 24.16* 24.55* 20.42 21.43 35.25* 35.23* 32.75 32.98

SMT⇒NMT 18.01 17.83 20.39 20.91 27.64 27.57 33.23 33.43

Table 3: Results on JP–EN SMT⇒NMT experiments. “*” indicates translation performance is
significantly better.

ZH→EN EN→ZH
Non-reordered Pre-reordered Non-reordered Pre-reordered

SYS Validation Test Validation Test Validation Test Validation Test
SMT 33.13 29.24 34.63* 30.59* 14.50 12.77 16.12* 13.77*
NMT 35.49* 31.76* 33.95 30.23 15.97* 15.62* 14.14 13.53

SMT⇒NMT 32.87 28.86 33.84 29.69 14.51 12.94 15.45 13.36

Table 4: Results on ZH–EN SMT⇒NMT experiments

All results are reported by case-insensitive BLEU scores and statistical significance is cal-
culated via a bootstrap resampling significance test (Koehn, 2004).

6.2 Results and Analysis on SMT⇒NMT
Tables 3 and 4 show the results for JP↔EN and ZH↔EN with and without pre-reordered data,
respectively. The baseline system is a standard PB-SMT system trained on non-reordered and
pre-reordered data, respectively. “NMT” indicates the baseline NMT system as described in
Section 6.1.

From Table 3, we can see that:

• Non-reordered task: all “SMT⇒NMT” systems on JP→EN and EN→JP are significantly
worse than the baseline NMT systems. Except for the validation set of JP→EN, all other
“SMT⇒NMT” systems on JP→EN and EN→JP outperform the baseline SMT systems.

• Pre-reordered task: the “SMT⇒NMT” system is worse than both the pre-reordered NMT
system and pre-reordered SMT system on JP→EN, while it is better than the pre-reordered
NMT system on EN→JP.

For ZH↔EN tasks, the “SMT⇒NMT” system performs worse relative to JP↔EN tasks,
i.e. almost all “SMT⇒NMT” systems did not beat the NMT and SMT systems.

The observations from these experiments show that:

• if the translation quality of NMT is better than that of SMT, then using NMT as a post-
processing module without integrating source-side information to re-decode translations
from SMT cannot further improve translation performance.

• the pre-reordering in the source-side sentences is indeed helpful to SMT, while it hurts the
performance of NMT.

• we need a better pipeline to combine NMT and SMT without using the source-side infor-
mation.
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6.3 Results and Analysis on NMT⇒SMT
Results on the proposed NMT⇒SMT model are shown in Table 5, where “NMT⇒SMT-B”
indicates that the “NMT⇒SMT” pipeline re-decodes the translations of the baseline NMT sys-
tem, “NMT⇒SMT-F” indicates that the “NMT⇒SMT” pipeline re-decodes the translations
of the factored NMT system, and “NMT⇒SMT-E” indicates that the “NMT⇒SMT” system
re-decodes the translations of the ensemble NMT system.5

JP→EN ZH→EN
SYS Validation Test Validation Test
SMT 18.25 17.64 33.13 29.24
NMT 24.16 24.55 35.49 31.76

NMT⇒SMT-B 25.33* 25.66* 36.58* 32.38*
factored NMT 25.08 25.17 37.42 33.15
NMT⇒SMT-F 25.94* 26.08* 37.69* 33.39*
ensemble NMT 26.24 26.37 39.10 35.69
NMT⇒SMT-E 26.80* 26.93* 39.53* 35.98*

Table 5: Results of SMT⇒NMT experiments on JP→EN and ZH→EN. “*” indicates transla-
tion performance is significantly better.

We observe that:

• JP→EN: the NMT⇒SMT-B improves translation performance by 1.17 BLEU points and
1.11 BLEU points on validation and test sets, respectively, compared to the baseline NMT
system. The NMT⇒SMT-F improves by 0.86 BLEU points and 0.91 BLEU points on
the validation and test sets, respectively, compared to the factored NMT system. The
NMT⇒SMT-E improves by 0.56 BLEU points and 0.56 BLEU points on the validation
and test sets, respectively, compared to the ensemble NMT system, and improves by 2.64
BLEU points and 2.38 BLEU points on the validation and test sets, respectively, compared
to the baseline NMT system. All improvements are significantly better.

• ZH→EN: the NMT⇒SMT-B improves translation performance by 1.09 BLEU points and
0.62 BLEU points on validation and test sets, respectively, compared to the baseline NMT
system. The NMT⇒SMT-F improves by 0.27 BLEU points and 0.24 BLEU points on
the validation and test sets, respectively, compared to the factored NMT system. The
NMT⇒SMT-E improves by 0.43 BLEU points and 0.29 BLEU points on the validation
and test sets, respectively, compared to the ensemble NMT system, and improves by 4.04
BLEU points and 4.22 BLEU points on the validation and test sets, respectively, compared
to the baseline NMT system. All improvements are significantly better.

The results show that:

• Our proposed neural hybrid MT pipeline is more effective and feasible than the
SMT⇒NMT pipeline. In Niehues et al. (2016), the SMT⇒NMT pipeline only works
when integrating the source information into NMT. However, it increases the computa-
tional complexity by concatenating the pre-translated and source sentences as input to
NMT.

5In current experiments, we only ensemble the baseline NMT systems. In future, we also plan to ensemble the
factored NMT systems to verify the HMT performance.
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• Our proposed NMT⇒SMT framework only uses source-side information once, i.e. at
the stage of NMT training, while at the stage of post-processing, we only use the pre-
translations without the source information (except OOVs), which keeps the framework
simpler than the SMT⇒NMT framework.

• For different types of NMT systems, the proposed pipeline can significantly further im-
prove translation performance, and the pre-translated SMT system is only trained using
translations from the baseline NMT system. We would expect further improvements if we
use the translations from the factored NMT or ensemble NMT models to train the SMT
engine.

From the analysis on the results, we found that:

• OOVs rate in the test set is significantly decreased in the proposed framework, i.e. the
post-processing SMT system can translate some of the OOVs appearing in the test set due
to its larger vocabulary. For example, in the Chinese test set, the OOVs rate for NMT
system is 4.62%. In the final result of the proposed framework, the OOVs rate is reduced
to 2.36%.

• The improvement of translation performance is also attributed to the reordering and cor-
rection of phrases. We will carry out human evaluation and look into more details in future.

6.4 Examples
To further analyse the proposed NMT⇒SMT framework, Table 6 shows two examples pro-
duced from the baseline NMT system and the corresponding NMT⇒SMT from the JP→EN
and ZH→EN tasks, respectively. The first example in Table 6 shows that the SMT system
has the capability of making local translations more fluent. We can see that the NMT⇒SMT-
B changes the phrase “the hydrogen bond network” in NMT to “hydrogen bond networks”
which exactly matches the reference. “NMT-OOV” in the second example indicates the pre-
translations after tracking the “UNK” symbols and replacing them by source-side OOVs. This
example shows the capability of SMT to make the translation more adequate by subsequently
translating the OOV.

Reference: next , the change of hydrogen bond networks which was a basis of the
motion of the water was explained .

NMT: next , the change of the hydrogen bond network which was a basis of the
movement of the water was explained .

NMT⇒SMT-B: next , the change of hydrogen bond networks which was a basis of the
movement of the water was explained .

Reference: barratt said : “ we have not achieved further information . ”
NMT: UNK said : “ we have yet to get any results . ”
NMT-OOV: 巴巴巴拉拉拉特特特 said : “ we have yet to get any results . ”
NMT⇒SMT-B: barratt said : “ we have yet to get any results . ”

Table 6: Examples

7 Conclusion

In this paper we propose a cascaded hybrid framework (NMT⇒SMT) to combine NMT and
SMT to improve translation performance. More specifically, we first employ a trained NMT
system to pre-translate the training data, and then train an SMT system using the pre-translated
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data. Finally, the tuned target–target SMT system is utilised to re-decode the pre-translated
test set and produce the final results. We compare the proposed NMT⇒SMT pipeline with
the SMT⇒NMT pipeline on JP–EN and ZH–EN tasks, and show that our framework is more
effective than SMT⇒NMT, resulting in improvements on the test set of 2.38 BLEU points
and 4.22 BLEU points on JP→EN and ZH→EN, respectively, compared to the baseline NMT
system.

As to future work, we expect more experiments on different language pairs and larger-
scale data sets to verify the proposed framework, and we will explore better combination of
NMT and SMT to further improve translation quality. Additionally, we also want to verify the
HMT framework without replacing OOVs in the NMT outputs.
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Abstract
In this paper, we discuss different methods which use meta information and richer context
that may accompany source language input to improve machine translation quality. We focus
on category information of input text as meta information, but the proposed methods can be
extended to all textual and non-textual meta information that might be available for the input
text or automatically predicted using the text content. The main novelty of this work is to
use state-of-the-art neural network methods to tackle this problem within a statistical machine
translation (SMT) framework. We observe translation quality improvements up to 3% in terms
of BLEU score in some text categories.

1 Introduction

Using larger context in machine translation to improve its quality, including selection of correct
word meaning, has been a challenging task. Correct translation of polysemous words is vital
to transfer important information from source sentence to the translation. To find the correct
sense of polysemous words and phrases, usually only the context of the source sentence is
available. Depending on the use case, the context can be extended to the surrounding sentences,
or external signals about the text, like its topic or genre. Therefore, we can consider all methods
that try to use a larger context for translation as methods that can help MT system select the right
translation for polysemous words. In e-commerce, the problem of polysemous words is more
severe. For example, incorrect literal translation of a brand name like Apple, Coach, Diesel,
Affliction, Avenue, Cables To Go, Free People, etc. misleads a potential buyer. It also may
create legal issues when e.g. a wrong translation directs buyers to a competitive brand name. In
e-commerce MT scenarios, one of the main tasks is often the translation of the titles of the items
offered for sale. Such titles are short, non-grammatical, and the local context of a given word
is very variational. Since item title translation has a crucial importance in cross-border trade
for e-commerce, we are trying to leverage meta data available for each item to deal with these
irregularities. Items in e-commerce inventory are usually classified according to a hierarchical
taxonomy. The hierarchy itself contains top-level categories (like Clothing, Electronics) with
varying degrees of depth in each top category. Although such hierarchy is created based on

∗Patrick Wilken has contributed to this work during his internship at eBay Inc.
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business insights, it implicitly groups objects which can be described in semantically similar
terms. Therefore, we expect less variation in word senses within a category, with ambiguity
decreasing deeper in the tree. For instance, Apple is very likely to be a brand name, not a fruit
in Smartphones. Therefore, item category information can potentially provide a strong signal to
identify the meaning of a word. In this work, we focus on using more broad product categories
of a particular e-commerce site, on the top level 1 (L1, e.g. “Clothing and Shoes”), but also on
levels 2 (L2, e.g. “Women’s Shoes”) and 3 (L3, e.g. “Women’s Boots”).

The main goal of this work is to modify the major state-of-the-art approaches that leverage
larger context in MT to use (category) meta-information both in training and at runtime and
check experimentally whether such approaches are able to better translate polysemous words
in e-commerce data and improve MT quality both overall and in specific categories. Among
others, we look at neural machine translation (NMT) models which are by now state-of-the-
art and by definition use larger context during decoding, as in (Bahdanau et al., 2014). Since
our goal is to enhance a real-time production phrase-based SMT system for title translation,
and also to have a better understanding of the power of NMT as compared to SMT in using
larger context, we use a bidirectional recurrent neural network (RNN) lexical model and also
a feed-forward NN model as features in our SMT system. To the best of our knowledge, we
were the first to modify these specific NMT models to use the embedding of sentence meta-
information as an additional signal. Also, in this work we propose and test a simple generative
category-specific word lexicon model.

The main challenges we encountered are data sparseness, data bias towards most frequently
observed meaning of polysemous words, and absence of meta information for parts of training
data. Nevertheless, significant improvements of MT quality could be achieved with some of the
described methods on selected tasks.

In the next section, we describe major research works that employ larger context in MT. In
Section 3, we describe the models we investigate in our work and the novel ways of integrating
the category information into these models. Section 4 is devoted to experimental results which
include automatic and human evaluation on an English-to-Italian e-commerce title translation
task. The paper concludes with a summary and future works in Section 5.

2 Related Work

Phrase-based MT models have an intrinsic problem in using large(r) context and long range
dependencies, since these models are bounded by phrase context. Therefore, many research
publications target solving these well-known problems of phrase-based MT. Here, we focus
on pioneering works that are most comparable to this work. One research line of using larger
context in MT is to use sentence context for word sense disambiguation (Carpuat and Wu,
2007). Mauser et al. (2009) proposed the idea of employing a discriminative lexical model
that uses sentence level information to predict a target word, this idea has been extended and
enhanced in a recent work (Tamchyna et al., 2016). Tamchyna et al. (2016) have proposed to
extend the discriminative model to also use the target prefix to predict the next target word,
and also they enhance the model to calculate target word probabilities on-line during the search
using a fast and efficient classification method based on the Vowpal Wabbit1 toolkit. Devlin
et al. (2014) proposed a neural joint lexical model that also employs a larger context around
a given source word including previous generated target words, to predict the corresponding
target word probability using a feed-forward neural network as the classifier.

Research works of Durrani et al. (2011) and (Guta et al., 2015) can also be considered as
attempts to use larger context and long-range dependencies in phrase-based MT by modeling
the dependencies between phrases.

1http://hunch.net/˜vw/
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The use of topic models in MT is another promising way to use larger context in lexical
translation. The main idea is to use the topic models to infer the topic of the whole docu-
ment/sentence, and then use it as a signal to the MT system to find the correct sense of the
source word to translate (Eidelman et al., 2012). Hasler et al. have investigated different ways
to use topic models in SMT (Hasler et al., 2012a, 2014b,a). They showed relatively small but
consistent improvements when topic models are used inside SMT models.

This work is different from previous works in the following aspects:

• We use a bidirectional LSTM as an alternative to a feed-forward NN (Devlin et al., 2014)
or maximum entropy-like classifiers (Tamchyna et al., 2016).

• In comprehensive experiments, we explore different methods to use additional meta-
information in translation process.

• We conduct a case study on e-commerce data where meta-information and context seem
to be more effective.

• We perform human evaluation to confirm and explain improvements of automatic MT
quality measures.

In our evaluation on an e-commerce translation test set containing a mix of product cate-
gories, we observed moderate improvements using different approaches introduced in the liter-
ature. This is in agreement with previous works. For specific product categories, however, we
obtained large and significant improvements with each method. These experiments confirm the
benefit of using larger context and meta-information in translation. In addition, we found that
the problem is far from being solved by the current approaches.

3 MT Models Leveraging Meta-information

3.1 Sparse Lexical Features
The main idea is to bias a SMT system towards the vocabulary and style of the target domain
that can be inferred from the latent topics of the source sentence (Eidelman et al., 2012). We
employ sparse lexical features (Hasler et al., 2012b) and sparse topic features on top of common
dense features in a SMT system. Sparse lexical features are tuples composed of a single source
word and a single target word. These features can be also extended with another binary fea-
ture representing coexistence of a specific topic or text category in the source sentence. Topic
information can be obtained from topic models trained on the source side of the bilingual train-
ing corpus along with other available in-domain monolingual data in the same language. The
features with topic information are triggered by the topic of the source sentence, that is, for a
particular source sentence to be translated, only the features that have been seen with the topic
of that sentence will fire.

We can also add information like topics or text categories for each phrase pair in the phrase-
table. This information can be inferred from each phrase pair independent of the context or it
can be inferred from the sentence pairs from which a given phrase pair is extracted. Therefore,
each phrase pair is augmented with its topics, i.e., a vector of membership values of the phrase
pair to each topic. The topic model is trained on an appropriate monolingual data in the source
language. Then, based on the source side of each phrase or sentence pair, the topics and their
probabilities, which again form a vector, are inferred from the topic model. We can combine
both types of features to create a SMT more sensitive to the context, similar to (Mathur et al.,
2015). The idea of a topic vector can be extended to any other context vector, i.e., the vector
is simply a phrase-pair-specific representation of the meta-information in a continuous vector
space.
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3.2 Feed-Forward neural translation model
A neural network model previously used as a feature in a PBMT system is the neural network
joint model (NNJM), a feed forward architecture presented in (Devlin et al., 2014). Assuming
the target sentence E : e1, . . . , eI and given the source sentence F : f1, . . . , fJ , NNJM pre-
dicts a target word ei given a window f

bi+w/2
bi−w/2 of size w + 1 around the corresponding source

word and a target history ei−1
i−v of length v. This context is represented in the model by the con-

catenation of word embeddings corresponding to the source and target words. Because of the
dependence on target context, the model has to be evaluated during search for each translation
hypothesis. Using a full softmax as output layer, this would be computationally prohibitive.
Instead we use noise-contrastive estimation (NCE) as described in (Zoph et al., 2016). We rely
on the self-normalizing property of NCE and do not perform a manual normalization of the
network outputs. To further reduce evaluation time, the hidden layer contributions of all words
in the vocabulary at all possible input positions are precomputed before search. This leads to a
model which is fast enough to be evaluated during the search.

Due to the their flexibility, neural networks models can be easily augmented with additional
inputs to integrate any kind of context information. In this work, we integrate the product
category information into the feed-forward model by creating a one-hot category vector and
appending it to the concatenation of the word embeddings, as shown in Figure 1. The additional
input can be included in the precomputation of the hidden layer in a straightforward manner,
because it only adds one more input that can be looked up just like the ones from the source
words. Variants like using an embedding for the category or appending it to the hidden layer
have also been investigated. However, we have not seen significant differences in terms of the
MT quality.

Embedding Lookup

Noise Contrastive Estimation

fbi-w/2 fbi
ei-v

... fbi+w/2

p(ei | fbi-w/2 , ei-v, L2)
b +w/2

... ei-1
...

concatenate

Hidden Layer

i-1

One Hot

L2 category

i

Figure 1: General architecture of neural network joint lexical model. Here, the L2 product
category is also shown as an optional input to the model.

3.3 Bidirectional RNN translation model
Recurrent neural network models can be efficiently integrated into the framework of a phrase-
based machine translation system under some circumstances (Alkhouli et al., 2015). In this
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work, we have adopted the encoder part of the bidirectional encoder-decoder machine trans-
lation architecture described in (Bahdanau et al., 2014). This bidirectional translation model
(BTM) takes the whole source sentence as input and estimates the probability p(ei|f I1 , bi) of a
translation of the source word at position bi. This architecture is also similar to (Sundermeyer
et al., 2014), but instead of the class-factored output layer we chose importance sampling (Jean
et al., 2015) to train the model. Also, instead of introducing ε-tokens for unaligned words
we obtain a unique bi by applying Devlin’s affiliation heuristic to the statistical word align-
ments (Devlin et al., 2014). Since the model does not depend on the target history the outputs
for all combinations of ei and bi can be precomputed before the search. Thus, it is feasible to
calculate the full softmax layer without approximations during the decoding.

Similar to the feed-forward model, we augment the BTM by adding category information
as an additional input. In Figure 2, an example of the resulting network architecture is shown.
The one-hot category vector is concatenated to the word embedding at each source position.
Other methods like treating the category as a special word in front of the actual sentence or
replacing the one-hot vector with a category embedding have also been investigated, but their
performance was worse or the same as with the architecture in Figure 2.

Embedding Lookup

Softmax

Bidirectional RNN

Forward RNN

alignment

f1 f2 f3 fJfJ-1fJ-2
... ...

p(ei | f1 , bi, L2)
J

+ + ++++++++++ ++ + + +

One Hot

L2 category

bi information

Figure 2: General architecture of bidirectional recurrent neural network lexical model. L2

category is also shown as an optional input to the model.
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3.4 Category-aware generative model
Here, the main idea is to introduce category L2 as a hidden variable into the translation prob-
ability p(e|f) of the target word e given the source word f originating from a title of category
L2:

p(e|f) =
∑
L2

p(e, L2|f)

=
∑
L2

p(e|f) · p(L2|e, f) (1)

=
∑
L2

p(e|f) · p(L2|e)

where p(L2|e) is the probability of a category L2 given a target word e. This probabilistic
function implicitly penalizes word and phrase translations that are rarely observed in L2, and
it favors target words frequently appearing in L2, but not in other categories. We should note
that p(L2|e) is different from category-specific language models of type p(e|L2). The main
advantage of this model is the possibility to be trained on larger amounts of additional in-domain
monolingual data in the target language that has category information.

4 Experiments

We conduct comprehensive experiments with various methods to see the impact of meta in-
formation on the translation of item titles in the e-commerce domain. We use two baseline
phrase-based MT systems. The first one is based on the Moses toolkit (Koehn et al., 2007), and
the second one is an in-house phrase-decoder (Matusov and Köprü, 2010), which is similar to
the Moses decoder. In both systems, we use standard SMT features, including word-level and
phrase-level translation probabilities, the distortion model, and an n-gram LM. Due to the na-
ture of the item titles, we did not use any lexicalized reordering models in the MT system. The
distortion limit was set to 6. On the target side, we built a trigram LM, which is optimum on
this task, using KenLM (Heafield, 2011) trained with modified Kneser-Ney smoothing (Chen
and Goodman, 1996). The LM is trained on the target side of bilingual data plus additional
in-domain monolingual data composed of 60M words of item titles data. In addition, we have
also used a 5-gram operation sequence model (OSM) (Durrani et al., 2011) and a 7-gram joint
translation and reordering (JTR) model (Guta et al., 2015), which share the same idea and con-
cept, in Moses-based and in-house systems, respectively. The feature weights are optimized
using the k-best batch MIRA implementation provided in the Moses toolkit (Cherry and Foster,
2012). In the in-house decoder, the feature weights are tuned with minimum error rate training
(MERT) Och (2003) on n-best lists of the development set. The MT quality is judged using the
automatic case-insensitive BLEU (Papineni et al., 2002) and TER (Snover et al., 2006) scores.
Statistical significance tests were conducted using approximate randomization tests (Clark et al.,
2011).

We have implemented the NNJM described in Section 3.2 and the BTM described in Sec-
tion 3.3 using TensorFlow2 The trained models are then exported to our in-house decoder using
TensorFlow’s C++ API. As the model is independent of the target history, we are able to precal-
culate scores for all phrase pairs that are selected in the phrase matching step for a given source
sentence. This improves the runtime cost, as the model does not need to be queried during the
decoding.

For training and evaluating feed-forward neural network models in Moses, we rely upon
the Neural Probabilistic Language Model Toolkit (NPLM) (Vaswani et al., 2013). NPLM can

2www.tensorflow.org
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be used to train both neural language models and joint models. We also integrate the models
into our in-house decoder as language models.

English Italian
Train: Sentences 10,231,392

Tokens 117 M 115 M
Vocabulary 493 K 582 K
Singletons 239 K 257 K

Dev.: Sentences 910 910
Tokens 10,818 11,159

Vocabulary 4,422 4,481
OOVs 321 310

Test Sentences 910 910
Tokens 10,814 11,241

Vocabulary 4,487 4,532
OOVs 337 321

Table 1: Corpus Statistics

We conduct experiments on an English-to-Italian e-commerce item titles translation task.
The training data is composed of in-house data (item titles, descriptions, etc.) as in-domain
corpus and also publicly available data that has been sampled according to the similarity to
in-domain data. The corpus statistics are summarized in Table 1. The size of in-domain data
is about 4.6% of the training data in terms of source side tokens. Before calculating the corpus
statistics, we apply some usual text pre-processing including tokenization and replacement of
numbers with a placeholder token; and also some domain dependent processing such as replac-
ing product specification - e.g., 6S, and 1080p - with a general token.

The in-domain data has also some meta information that identifies the category of each
sentence/segment. We denote this meta-information as L2. In all experiments we define six
categories, five selectedL2 categories plus one other category. Meta information for out-domain
training data is inferred based on a state-of-the-art text classification algorithm trained on a big
in-domain source monolingual data, for which the L2 category is available. The Dev and Test
sets also contain the category information, and they have two human reference translations.

In Table 2, the translation results are shown in terms of both BLEU score and TER. Moses
baseline has a slightly better quality performance compared to in-house baseline system, sev-
enth row. We report in-house results since NNJM and BTM models described respectively in
Section 3.2 and Section 3.3, are implemented in this in-house system. We also report the re-
sults of a state-of-the-art baseline NMT system as described in (Chen et al., 2016). Based on
Chen et al. (2016) and also our experiments on another language pair in the same task, there is
room to improve this baseline using techniques like back-translation (Sennrich et al., 2015) and
guided-alignment, but the performance of a single system (and even with ensembling technique)
is lower than a strong phrase-based baseline. The lower performance is due to the nature of item
titles data that are not appropriate for NMT approach. Item titles data are not grammatical, they
are very irregular and like other user-generated data very noisy. Therefore, we confine to report
a simple NMT baseline to show the characteristics of the task.

System in the second row is based on the work of Tamchyna et al. (2016), we have used
the default features proposed in the original work: source bag of words, target bi-grams, source
indicator and target indicator. We have also conducted two experiments to train the classifier
model on in-domain data and on mixed domain data, we report the translation results if the
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Test
# System BLEU TER

[%] [%]
1 Moses Baseline 37.4 45.7
2 + Tamchyna et al. (2016) 37.4 45.9
3 + Word-pair SF 37.6 45.9
4 + Category SF 38.3 44.8
5 + Category SF +Mathur et al. (2015) 37.5 45.4
6 + NNJM 37.7 45.0
7 In-house Baseline 37.0 46.0
8 + BTM 37.7 45.5
9 + NNJM 37.5 45.5
10 Pure NMT baseline 28.0 54.9

Table 2: Experimental results: English-to-Italian item title translation task.

classifier model is trained only on in-domain data. In third and fourth experiments in Table 2,
we use word-pair feature, and word-pair plus category information as sparse features (SF),
respectively. We adopt the method presented in (Hasler et al., 2012b) in our case study, we
replace topic models with predefined category information. We include the work of Mathur
et al. (2015) in our experiments, with this difference that we use category information instead
of topic models. As required by this model, we have augmented to each phrase of the phrase
table a six-value normalized vector that represents the membership value of each phrase to
each category. These membership values are simply normalized frequencies of categories in
the parent sentence pairs of a phrase pair. Parent sentence pairs are those that include a given
phrase pair. The next systems in the table are based on neural network models. In NNJM, we
set a window of four source words. Since the translation of polysemous words is not directly
dependent on the previous target words, and also, to make this model more comparable to
BTM, we do not use target words in NNJM. In NNJM, input word embedding and output word
embedding are set to 150 and 750, respectively. We use a single hidden layer in NNJM. Despite
the same setting in sixth and ninth rows, the implementation of NNJM in the sixth row is based
on NPLM toolkit in Moses, and implementation in ninth row is as described in Section 3.2 in
TensorFlow toolkit. In BTM, we have used the embedding size of 620, RNN size of 1000 and
GRU cells. The learning rate was set to 0.0002, decaying by 0.9 each epoch. The vocabulary is
set to most frequent 100,000 words for both NNJM and BTM.

As shown in Table 2, the differences of MT systems are relatively small. Among other
reasons, limited number of samples per each targeted categories in the test set could explain
these small differences. The number of occurrences for each category are shown in the last row
of Table 3, a similar distribution of categories exists for the development set.

In Table 3, we have also shown the detailed improvements achieved on five specific L2

categories. Now, we observe much larger improvements in the selected categories. We observe
the best performing system in Table 2 is not necessarily the best system for our specific goal
that we embed corresponding additional information into the translation process. As shown
in Table 3, in-house system plus NNJM has the most consistent improvements over its corre-
sponding baseline. For a better comparison of results, you may use diagrams in Figure 3 and
Figure 4. Please note that the results for all neural models are without category information so
far. Although we expect improvements of MT quality on the particular categories by adding the
category information as an additional signal into the neural models, we have not seen any signif-
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Cat. I Cat. II Cat. III Cat. IV Cat. V
Sys. BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Moses Baseline 58.5 27.3 36.2 44.2 35.8 47.2 29.6 51.7 34.1 48.2
+ Tamchyna et al. 2016 58.5 29.6 37.4 45.5 35.0 48.5 30.0 51.9 34.0 49.0
+ Word-pair SF 58.6 28.7 35.7 45.3 36.0 47.7 29.3 51.7 33.7 49.5
+ Category SF 60.6 27.1 36.2 43.9 35.8 47.7 30.1 50.2 34.0 48.7
+ Category SF 59.3 28.0 36.8 42.8 38.0 46.9 29.6 50.7 34.3 48.2
+ Mathur et al. 2015
+ NNJM 58.5 28.7 36.2 44.3 36.0 46.9 33.6 48.6 33.8 47.1
In-house Baseline 57.7 28.5 36.9 44.3 34.9 48.0 29.2 52.4 33.9 47.7
+ BTM 59.7 27.8 37.7 44.1 36.4 46.7 28.1 51.7 34.4 46.6
+ NNJM 59.9 27.8 37.8 43.4 36.6 46.4 32.2 50.0 35.1 46.6
# test sentences 33 62 27 32 30

Table 3: Translation of English titles from five selected product categories into Italian (BLEU
scores and TER in %).

icant improvements. We thought, we may need to send a stronger signal in the training process
and therefore we have tried different ways to embed category information into the model, but
the results in all cases were almost at the same level. These results are in contrast with the
results reported in (Chen et al., 2016), they have shown some improvements using category
information in an NMT architecture. This disagreement might be due to different architectures
and also due to different baselines.

To investigate why category information does not contribute to MT quality improvements
in our experiments, we have conducted some experiments to measure the perplexity on the
training corpus when the BTM model is trained with and without L2 information and we have
observed a small increase in perplexity when we used the L2 categories. We may discuss
these results in two directions, first the category information are too sparse in our settings to
be useful, and second, the category information has no more information over the text itself,
especially when the text is processed globally in a neural network model.

We have also conducted an in-house human analysis of polysemous words to better under-
stand the situation. We observe some examples where L2 categories help to disambiguate the
meaning of the words. At the same time, there are other polysemous words for which category
information cannot help. For example, the sense of the word Vans can be identified if we know
it is from Motors category meaning plural of Van or from Clothing category meaning a
brand name. Another example is word mixer that has two different meaning in Kitchen
and in Music instruments categories. However, there are cases that product categories
will not help to disambiguate the meaning of the word, e.g., word Ship in category Toys may
have at least two different meanings as a noun or as a verb. Therefore, L1 or L2 categories
information might be not helpful for some polysemous words.

The system described in Section 3.4 uses an additional probability p(L|e) for the input
sentence category given a target word candidate. We have implemented it as an additional
lexical model that assigned a score to each target phrase pair. Using this model with a tuned
weight in the log-linear model combination did not result in significant improvement of auto-
matic MT measures, the BLEU/TER scores remained basically the same as in-house baseline,
line 7 of Table 2. However, this system was stable in the sense that its translations did not dif-
fer much from the baseline, and the observed changes predominantly affected content words.
A manual analysis showed several examples where translations of polysemous words which
were inappropriate for a certain product category were changed for the better. For instance,
the Italian translation of the term latte used in an English title in the category Bags and
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Figure 3: Detailed BLEU results.

Figure 4: Detailed TER results.

Accessories as a bag’s color was corrected from latte macchiato to color crema.
Also, in the Kitchen Appliances category, the word tamper was incorrectly translated
as manomissione (fabrication) by the baseline system. The system that uses the
category-specific word lexicon p(L|e) has correctly translated it as pestello.

In general, systems with the category-aware features, implicitly or explicitly, cause moder-
ate improvements compared to a baseline system in terms of automatic MT error measures like
BLEU. However, it can be argued that these automatic MT measures do not reflect the impact
of polysemous words, since such words occur rarely as compared to all other words even if we
consider all polysemous words, not only those which have a wrong translation in the baseline.
A human evaluation focusing on translation of polysemous words can potentially justify the
soundness of the employed method. For such an evaluation, we randomly selected 300 item
titles if they had at least one of the polysemous words which have been identified as such by
domain expert linguists. We asked human translators to answer five questions for each transla-
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tion, the most important and relevant question was whether the identified polysemous word in
the text was correctly translated or not. The human evaluation results show that although the
proposed system cause moderate improvements - about the same as we observe in the above
tables - one third of the polysemous words have not been translated correctly.

We attribute the weak performance of the presented models on polysemous words to the
bias that we observe in the training data to the most frequent meanings of such words. For
example, the translation of Apple as a brand name is by far more frequent in our training data
than translation of this word as a common noun with the meaning of a fruit. Optimization for
the BLEU score seems to additionally increase the bias, since the tuning set is in most cases
also biased to the most frequent meaning of such words.

5 Conclusion

We employed several different ways to incorporate explicit meta-information or larger context
to better translate polysemous words or improve MT quality in general. We explored existing
state-of-the-art methods that can potentially help in this task or can accept another input as
meta-information, e.g., (Hasler et al., 2012b; Mathur et al., 2015; Tamchyna et al., 2016; Devlin
et al., 2014).

To better exploit the source-side topic/category labels, we introduced a bidirectional LSTM
to encode the entire source sentence context to translate a word. We investigated different ways
of incorporating meta-information in the encoder. In addition, we proposed a novel generative
model that can leverage topic-labeled target monolingual data.

We conducted comprehensive experiments on different ways of using additional meta-
information in translation process, including both the given human-labeled and the automati-
cally predicted meta-information. Our case study was an e-commerce English-to-Italian trans-
lation task. We observed improvements up to 3% in terms of the BLEU score for some input
text categories. Finally, we performed a human evaluation to confirm and explain improvements
of automatic MT quality measures. We have realized that, although the observed improvements
were reconfirmed by human evaluation, there were many polysemous words in the test set that
were still not translated correctly. The take-home message of this research is that the problem of
how to best use meta-information in MT for correct, in-topic translation of polysemous words
and phrases is still far from being solved.

In the future, we aim to use other types of meta-information that may be better suited for
disambiguating the meaning of polysemous words. For example, we plan to leverage automat-
ically predicted domain-specific named-entity tags as meta-data for translation. Another area
for future work is how to use meta-information more effectively, overcoming data sparseness
and bias problems.

In the future, we also plan to adopt a hybrid NMT and SMT approach similar to (Dahlmann
et al., 2017) to improve the translation of polysemous words in item title domain. In this way,
we can benefit from long context coverage of NMT system to find a more appropriate transla-
tion based on the context for polysemous words, and also benefit from more control over the
generation process of SMT system and its features like text override.
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Abstract
This paper introduces a unique large-scale machine translation dataset with various levels of
human annotation combined with automatically recorded productivity features such as time and
keystroke logging and manual scoring during the annotation process. The data was collected
as part of the EU-funded QT21 project and comprises 20,000–45,000 sentences of industry-
generated content with translation into English and three morphologically rich languages:
English–German/Latvian/Czech and German–English, in either the information technology
or life sciences domain. Altogether, the data consists of 176,476 tuples including a source
sentence, the respective machine translation by a statistical system (additionally, by a neural
system for two language pairs), a post-edited version of such translation by a native-speaking
professional translator, an independently created reference translation, and information on post-
editing: time, keystrokes, Likert scores, and annotator identifier. A subset of 2,000 sentences
from this data per language pair and system type was also manually annotated with translation
errors for deeper linguistic analysis. We describe the data collection process, provide a brief
analysis of the resulting annotations and discuss the use of the data in quality estimation and
automatic post-editing tasks.

1 Introduction

Data-driven approaches to machine translation (MT) rely largely on datasets of source sentences
and their corresponding translations previously created by humans, so-called parallel corpora.
MT systems, be they statistical or neural, are built in static fashion and (if at all) updated from
time to time as more translations become available. With the popularisation of post-editing

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 55



(PE), a natural question is whether the corrected version of the MT output could be used in
feedback loops to improve the current system via model retraining, model tuning or the addition
of explicit model components. Additionally, by studying PE data, one can get insights on the
errors made by the MT system to try and remedy them in different ways. PE data can also
be used to build and benchmark metrics for the automatic evaluation of MT output, as well as
quality estimation metrics and automatic PE systems.

To facilitate research in these and related areas, we have created a unique large-scale
dataset with various levels of human annotation combined with automatically recorded pro-
ductivity features. The data comprises 20,000–45,000 sentences of industry-generated content
for English from or into three morphologically rich languages and was collected as part of the
EU-funded QT21 project. The PE of all four language pairs was performed using a tool to
record detailed process and product information at the sentence level during PE, including time,
keystrokes, actual edits and Likert scores for the PE effort as given by the translator immediately
after completion of the editing.

Most of the data was translated by a phrase-based statistical MT (PBMT) system. In
addition, subsets of 15,000–20,000 sentences for EN–DE and EN–LV – respectively – were
also translated using a neural MT (NMT) engine that was trained on exactly the same data
used to train the original PBMT system. The PE of identical input data for both the PBMT
and NMT systems facilitates large-scale direct comparisons between the actual output of these
systems, as well as between process cues. For example, PE productivity can be calculated and
compared using the time and keystroke information recorded during PE. The “preference” of
translators can be compared through the scores given to the perceived quality of the output by
such translators. A number of other comparative analyses and benchmarking in both research
and industry scenarios become possible with this data.

Finally, a subset of 2,000 sentences was selected for each language pair and MT system
type and manually annotated with word-level errors for deeper linguistic analysis. Both PE and
error annotations were performed by professional translators.

While other datasets with PE data have been created in the past and also released for
research purposes, these are limited in either their scale (e.g. see those used for the WMT13–
14 shared tasks on quality estimation1), have been post-edited by non-professional translators
(Wisniewski et al., 2013; Bojar et al., 2015), or make only the actual post-edits available, pro-
viding no additional information on the process and no explicit annotations. The most notable
example of the latter is the Autodesk dataset (Zhechev, 2012). It contains sentences predomi-
nantly belonging to Autodesk software user manuals, covering 13 language pairs with English
as the source language. The source sentence, its machine translation and its post-edit are pro-
vided. The translated sentences are produced by an MT system or are translation memory
suggestions with a fuzzy match score larger than 75%.

In the remainder of this paper we first describe our data sources (Section 2) and the MT
systems built (Section 3) to translate this data. We introduce the PE process and its results in
Section 4, and the error annotation in Section 5. In Section 6 we present two uses of the dataset.

2 Data

The post-edited and annotated data described in this paper belongs to two specific domains:
information technology (IT) and life sciences. These domains were chosen because of the
high demand for this type of content in multiple languages due to its economic impact on
businesses active on global markets where language is key. The use of this data in research can
therefore play a significant role in building the necessary bridges between the constituencies
most interested in achieving progress in the field of MT: research and industry.

1http://www.statmt.org/wmt14/
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Language
pair

#
sentences

#
source tokens

#
target tokens Domain

Data
provider

EN–DE 80,874 1,322,775 1,312,975 IT Adobe
EN–CS 81,352 1,332,654 1,175,463 IT Adobe
EN–LV 231,028 3,713,803 3,168,740 Pharma EMEA
DE–EN 193,637 3,120,482 3,228,761 Pharma EMEA

Table 1: Domain-specific datasets: number of sentences and source and target tokens.

Training data
EN–DE EN–CS EN–LV DE–EN

# sentences 21,873 32,352 204,528 135,884
# source words 0.53 0.59 3.19 2.41

Table 2: Statistics on the in-domain training data. The number of words is reported in millions.

Four sets of parallel data in four language combinations (English– German/Latvian/Czech
and German–English) were selected from the web. English Adobe software manuals translated
into German and Czech were chosen for the IT domain, and a subset of the European Medicines
Agency (EMEA) corpus was selected for the life sciences domain (which we also refer to as
“pharma”) to cover the English–Latvian and German–English language pairs.2

To create datasets that can satisfy different research needs and thus increase their usability,
a set of criteria was applied to data selection and pre-processing. For English–German/Czech
and German–English, sentences that did not end with a punctuation mark or contained less than
three or more than 35 words were discarded, and duplicate sentences were removed. These
strategies reduced the number of sentence pairs by approx. 45%. For English–Latvian, a part of
parallel sentences were obtained by extracting textual sentences from PDF files in the EMEA
repository. First, we used Adobe Acrobat v10 Professional to convert PDF files to HTML
format, as this preserved most of the original document structure. Then we ran customised
scripts to convert the HTML files to plain text and clean the data. The Microsoft Bilingual
Sentence Aligner (Moore, 2002) was used for sentence alignment of the parallel plain text
files. Duplicate sentence pairs and sentences with less than three or more than 35 words were
removed. This sentence size filtering only marginally affected the size of the final corpus. The
statistics of the final sets are reported in Table 1.

For each language pair, we selected a subset of data for annotation (see Table 5), and used
the remaining sentence pairs as in-domain training data to build the MT systems (Section 3).
This remaining data was split into training (see Table 2), development (2,000) and test (2,000)
sets.

3 MT Engine Building

3.1 Training Data
A crucial aspect for creating a set of reliable post-edited sentences and error annotations is
the availability of domain-adapted translations. This is necessary because a generic translation
system is not able to correctly translate domain-specific terms or expressions, which would, in
turn, cause translators to rewrite translations from scratch, rendering accurate error annotation

2The German–English dataset was created by taking the available English–German data and then inverting the
language direction. This is not ideal; however, very little domain-specific data exists for under-resourced language
pairs, including those whose source language is German.
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EN–DE EN–CS EN–LV DE–EN
Parallel Mono Parallel Mono Parallel Mono Parallel Mono

In-domain 7.2 - - - 0.181 - 2.09 2.35
Out-domain 12.7 - 50.34 51.46 - - - -

Table 3: External resources collected to train the MT systems. The reported numbers represent
millions of sentences.

impossible.
When building a domain-adapted MT system we rely on different external resources de-

pending on the size of the in-domain data. For the language pairs for which there are less than
100,000 in-domain sentence pairs (i.e. EN–DE and EN–CS), a large collection of in- and out-of-
domain monolingual and parallel corpora was gathered from the web, while for the remaining
languages (EN–LV and DE–EN) only in-domain corpora were used. This process resulted in:

• EN–DE: Over 20 million generic and in-domain sentence pairs obtained by merging the
datasets available in the OPUS (Tiedemann, 2012), TAUS, WMT and JRC 3 repositories
(e.g. Europarl, CDEP, CommonCrawl, etc.);

• EN–CS: Over 51 million generic and in-domain sentence pairs available in the CzEng 1.6
dataset (Bojar et al., 2016b).4 In addition, translating into a language with free word order
suggests the use of a large collection (more than 50M sentences) of monolingual generic
data obtained from the Translation task at WMT16;

• EN–LV: Over 385,000 parallel medical sentences from the EMEA corpus available in
OPUS and the most recent documents from the EMEA website (years 2009-2014);

• DE–EN: Over 2 million in-domain sentence pairs collected from OPUS and the data re-
leased for the medical translation task at WMT14 (Bojar et al., 2014). These resources
include MuchMore, PatTr, and the Wikipedia parallel titles. In addition to these parallel
sentences, monolingual data (approx. 2 million) obtained from the medical translation task
at WMT14.

A summary of the external resources used to train the MT system is shown in Table 3.

3.1.1 Data Selection
In MT literature, it has been shown that when large generic datasets and a small in-domain
corpus exist, the use of data selection techniques can help improve translation quality (Eetemadi
et al., 2015). To optimally leverage a domain-specific corpus, we used cross-entropy-based
selection for monolingual data (Moore and Lewis, 2010), its extended version for bilingual
texts proposed by Axelrod et al. (2011) and the latent-domain translation method (Cuong and
Simaan, 2014).

Entropy-based method: Originally proposed by Gao and Zhang (2002), entropy-based
approaches consist in computing the perplexity score of each sentence of a generic corpus
against both an in-domain language model (LM) and an LM trained on the generic corpus. The
sentences are then ranked according to the difference between their two perplexity scores. Once
all of the generic sentences have been ranked, the size of the subset to extract is determined by
minimising the perplexity of a development set against an LM trained on an increasing amount
of the sorted corpus (e.g. 5%, 10%, ...). According to (Moore and Lewis, 2010), perplexity

3https://ec.europa.eu/jrc/en/language-technologies
4http://ufal.mff.cuni.cz/czeng/czeng16pre
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decreases when less but more relevant data is used. We used the freely available open-source
tool XenC (Rousseau, 2013).

Latent-domain translation method: This technique is able to give priors to different
domains that comprise the generic data set. The goal is to estimate the probability of whether
a sentence pair belongs to the in- or out-of-domain data, using in-domain corpus statistics as
prior. The Expectation-Maximisation training algorithm is derived and used to estimate the out-
of-domain models (given only in and mixed-domain data). This technique provides the selected
data directly without the need to choose a cut-off point in the ranked list of sentence pairs.

Both methods were first tested on the EN–DE language pair, and the best performing
method was applied to EN–CS. In our experiments, we used the data shown in Table 1 as
in-domain and the concatenation of the data in Table 3 as out-of-domain data. Although an
in-domain corpus exists for EN–DE in the additional resources, it represents a mix of datasets
resulting from a different distribution compared to the training data in Table 1. For this reason,
all corpora in the additional resources are considered out-of-domain data.

The perplexity computed on the target side of the development set using all available data
is 207. When applying both data selection methods, it significantly decreased to 150, indicating
that selecting data in this fashion can be advantageous. The entropy-based method achieved a
perplexity of 150, and selecting only the top 15% of the ranked sentences resulted in 3.3 million
sentence pairs. The latent domain method obtained a similar perplexity (157) but selected a
larger number of sentences. For this reason, the entropy-based technique is also used for EN–
CS. In this case, the perplexity is higher than for EN–DE (1900), but using the top 5% of the
ranked data (2.5 million sentences) allowed us to significantly reduce it to 1300. These high
perplexity values stem from the fact that the external resources for EN–CS do not contain any
IT data.

3.2 MT Systems
Different systems were built for each language pair using the selected and the in-domain data
for EN–DE and EN–CS and the in-domain data for the other language pairs.

• EN–DE: Two different MT systems were created: a PBMT and a NMT system. The
PBMT system was trained on all of the selected parallel training data. The phrase table
was adapted to the in-domain data using the approach proposed in (Niehues and Waibel,
2012). To deal with complex reordering in the German language, this system uses a pre-
reordering technique (Herrmann et al., 2013) in combination with lexical reordering. In
addition, it takes advantage of two word-based n-gram language models and three addi-
tional non-word language models, namely, two automatic word class-based (Och, 1999)
language models using 100 and 1,000 word classes, and a POS-based language model us-
ing fine-grained POS tags (Schmid and Laws, 2008). For the NMT system, we trained
the Nematus toolkit (Sennrich et al., 2017) which is an implementation of the attentional
encoder-decoder architecture (Bahdanau et al., 2014). To handle large vocabulary, the
training data was previously segmented using the byte-pair encoding compression algo-
rithm (Sennrich et al., 2016), resulting in a vocabulary of 40,000 sub-word units for both
languages. We used mini-batches of 100, word embeddings of 500 dimensions, and gated
recurrent unit layers of 1,024 units. The maximum sentence length was set to 50. The
models were trained using Adam and by reshuffling the training set at each epoch. The
NMT system was trained on the selected data and then fine-tuned on the in-domain data.

• EN–CS: The PBMT system was trained using Moses (Koehn et al., 2007) combined with
TectoMT (Žabokrtskỳ et al., 2008). This was done by adding the source development and
test sentences and their translations obtained by TectoMT as additional (synthetic) parallel

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 59



EN–DE EN–CS EN–LV DE–EN
PBMT NMT PBMT PBMT NMT PBMT
35.9 45.8 38.7 46.5 38.4 53.4

Table 4: BLEU score of the PBMT and NMT systems on different language pairs.

data to the Moses system previously trained on the selected data. This new corpus and
the in-domain data were used to train separated phrase tables. At test time, we ran Moses
using all of the phrase tables and we corrected its output using Depfix (Rosa et al., 2012).
In addition, we trained a 7-gram LM on surface forms from all monolingual resources.
Similar to the EN–DE system, two additional LMs over morphological tags were built to
help maintain morphological coherence in the translation output. The system is described
in (Tamchyna et al., 2016).

• EN–LV: The PBMT system was trained on Tilde’s MT platform (Vasiļjevs et al., 2012).
The system is based on the Moses toolkit using the standard components. Nematus with
sub-word units was used to train the NMT system with a vocabulary size of 40,000 sub-
words. The models were trained with a projection (embedding) layer of 500 dimensions,
recurrent units of 1024 dimensions, a batch size of 20 and dropout enabled. All other
parameters were set to their default values.

• DE–EN: The PBMT system was trained using the same components and adaptation tech-
niques as those used for the EN–DE model.

The results of the different systems for each of the language pairs are reported in Table
4 according to BLEU (Papineni et al., 2002). The parameters of the models were optimised
on the development set and the final results computed on the test set. When comparing the
PBMT and NMT performance, we noticed that when using a large collection of training data
(i.e. EN–DE) the NMT system can significantly outperform the PBMT as shown in several
evaluation campaigns. However, when the training data is limited (i.e. EN–LV) , the PBMT
performs better than the NMT. The language pairs with the lowest out-of-vocabulary rate (EN–
LV: 0.2 and DE–EN: 0.5) achieve the best BLEU score values. The DE–EN system obtains
better performance compared to EN–LV because it can leverage more in-domain training data.

4 Post-Editing Process

Post-editing was performed using the PET tool (Aziz et al., 2012). This is a simple and freely
available, open-source tool that tracks PE using a number of indicators. Figure 1 shows a
screenshot of the tool with an English–German PE task. The tool tracks the process of PE,
records PE time per sentence, and logs all keystrokes pressed by the annotator. This allows us
to reproduce the PE activity, which can be useful for research on topics such as PE process,
productivity gains, and automatic PE. The following information was recorded during PE:

• Editing time: time spent translating or editing a unit.

• Keystrokes: number of keys pressed during the PE according to type of keys (deletion,
alpha-numeric, etc.).

• HTER: edit distance between the draft translation and its post-edited version.

• Evaluation: quality assessment based on a pre-defined set. We ask a question about the
usefulness of the draft translation for PE (top left corner in Figure 1).
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Figure 1: Example of project in the PET tool.

Time, one of the most important indicators collected by the tool, is computed from the
moment the target box of the unit is clicked to the moment the task is completed (either the
job is closed or the navigation button “next” is pressed). The tool allows for multiple revisions,
where the annotator can go back to the same sentence and edit it again. For the statistics reported
here, we take the aggregation of PE time and keystrokes, and compute the edit distance between
the last version and draft MT output. The outcome of a job is also stored in an XML file.

A set of PE and annotation guidelines created by the QTLaunchpad project were adapted
for the PE of our data. To ensure that the quality of the post-edits was consistent and reflected
the requirements of the research to be performed on the resulting data, agreement was reached
on the level of editing to be done on the data. Based on the previous experience of the language
partners involved, the following general rules were defined:5

• Use as much of the raw MT output as possible.
• Aim for grammatically and syntactically correct translations.
• Ensure that no information has been accidentally added or omitted.
• Edit any offensive, inappropriate or culturally unacceptable content.
• Ensure proper and appropriate spelling.
• Do not restructure or change word order solely to improve the flow of the text unless

dictated by grammar or domain standards.

Additionally, the following domain-specific rules for software localisation were used:

• Ensure that domain-specific terminology is correctly translated.
• Ensure that standard domain and language-specific style issues are followed.
• If formatting is used, ensure that it is correct.

5For details: qt21-wiki.dfki.de/index.php?title=Post-editing_guidelines
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# sentences # words SRC # words MT # words PE
Lang. PBMT NMT - PBMT NMT PBMT NMT
DE–EN 45,000 – 14.66 15.54 – 15.58 –
EN–DE 30,000 15,0006 14.47 14.61 14.77 14.61 14.56
EN–LV 20,738 20,738 15.91 13.50 13.42 13.52 13.42
EN–CS 45,000 – 15.04 13.16 – 13.23 –

Table 5: General statistics of the post-edited data: Total number of sentences, average number
of words in source, translation and post-edited sentences.

Avg. utility score
Lang. PBMT NMT
DE–EN 1.62 –
EN–DE 1.98 1.40
EN–LV 1.64 1.84
EN–CS 2.17 –

Table 6: PE utility scores: the
lower the score, the more useful
the MT output.

Avg. TER MT-PE Avg. TER REF-PE
Lang. PBMT NMT PBMT NMT
DE–EN 0.17 – 0.36
EN–DE 0.25 0.08 0.40 0.37
EN–LV 0.15 0.23 0.29 0.34
EN–CS 0.32 – 0.34 –

Table 7: Average edit distance between PE and original
MT (HTER), and between PE and independent reference.
The higher the distance, the more edits performed.

The guidelines were made available to all language teams and pre-editing meetings were
held to avoid communication issues. Consistency in the application of these rules was crit-
ical, which is why professional translators were employed and thorough consultations were
performed prior to PE.

Professional translators performed PE on every language pair. Six translators were in-
volved in the PE for EN–DE, 4 for DE–EN, 8 for EN–LV, and 5 for EN–CS. For the evaluation
score, the following options were given to the translator after the post-editing of each sentence:

• 1. Perfect or near perfect (typographical errors only).
• 2. Very good, could be post-edited quickly.
• 3. Poor, required significant post-editing.
• 4. Very poor, required retranslation.

Tables 5–8 summarise the outcome of the PE process. Much more detailed information is
available in the XML output files. Table 5 provides general statistics on numbers of sentences
and words per language pair and MT system type. The average perceived PE effort scores are
given in Table 6. Table 7 measures the edit distance between MT and PE, and between PE and
the original reference (REF). Finally, 8 shows average PE time and keystrokes. As expected, PE
time varies considerably for different sentences, even if outliers are removed. Therefore, Table
8 also shows standard deviations.

5 Error Annotation Process using MQM

Our error annotation process follows a 2-step workflow. After PE, the quality of each sentence is
evaluated on a scale from 1–4 as explained in the previous section. A subset of sentences scored
as 2 (very good) are then selected for the error annotation phase, during which all issues resolved
during the PE phase are classified. The errors are annotated using the Multidimensional Quality
Metrics (MQM) error annotation framework (Lommel et al., 2014), which is popular in industry
and research, and actively supported by XTM, Trados Studio, and other commercial tools. We
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Avg. PE time Avg. PE time w/o outliers Avg. keystrokes
Lang. PBMT NMT PBMT NMT PBMT NMT
DE–EN 42±80 – 36±45 – 24.71 –
EN–DE 51±78 46±602 46±39 32±36 15.55 13.89
EN–LV 27±77 43±406 23±28 36±39 18.91 26.08
EN–CS 44±43 – 42±35 – 45.78 –

Table 8: Post-editing time and keystrokes: average number of seconds per word, with and
without outliers (plus standard deviation) and average number of keys pressed during post-
editing of a sentence. Outliers are sentences that took more than four minutes to be edited.

used the open-source tool translate57 (see Figure 2), a database-driven tool with a GUI. Source
texts, translations, post-edits, and error annotations are organised in a relational database. The
tool, originally implemented as a proofreading and PE environment for the translation industry,
has been recently extended to support MQM annotation.

Figure 2: MQM error annotation in translate5 (excerpt of screenshot).

An error represents any issue that has been corrected during the PE step in the translated
sentence. In the annotation step, a relevant error classification must be provided for all cor-
rections made during PE according to a given list of errors. Error annotation is performed by
experienced professional translators supported by detailed annotation guidelines.

The list of errors is divided into the main issue categories accuracy, fluency and terminol-
ogy, which fold into a selection of more detailed categories from the MQM hierarchy. Figure 3
shows part of a decision tree that annotators used to select the most appropriate issue. The
actual error categories used in the annotation are shown in Table 9.

Annotators are instructed to use the subcategories whenever possible and to resort to the
more general category level only in case of doubt, for example, if the German term Zoomfaktor
is incorrectly translated as zoom shot factor, and the annotator is unsure whether this represents
a mistranslation or an addition. In this case, the error can be classified as an Accuracy error
since it is unclear whether content has been added or a term mistranslated.

The annotation process has been completed for all languages and MT system types, result-
ing in 1,800 unique sentences per language pair and MT system type, with an additional 200
sentences doubly annotated for agreement analysis. The breakdown of error annotations for all
2,000 sentences per language pair and MT system type is shown in Table 9.

Table 10 shows an initial analysis on the agreement between pairs of annotators. Agree-
ment was computed using Cohen’s kappa (Cohen, 1960) at the word level in two ways: firstly,
for each word we count an agreement whenever both annotators agree that it is incorrect (or cor-
rect), with agreement by chance = 1/2; second, for each word we count an agreement whenever

7http://translate5.net
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Figure 3: Decision tree guiding error annotation (excerpt).

both annotators agree on the exact error type assigned to the word (or agree on the word being
correct), considering all the 20 categories shown in Table 9 as equally likely (i.e. no distinction
was made among different levels in the hierarchy), with agreement by chance = 1/21.

The interpretation of the kappa coefficient is difficult, but it is generally believed that 0.4–
0.6 is moderate, while 0.6–0.8 represents substantial agreement, with anything above 0.8 indi-
cating perfect agreement (Landis and Koch, 1977). Considering the subjectivity of the task and
the number of error categories and different levels in the hierarchy, we consider the moderate
to high agreement found a very positive result towards validating the annotation of the data.
In the near future, further quantitative and qualitative analysis will be performed to understand
problematic categories and the reasons behind certain disagreements.

6 Examples of Uses of the Dataset

Subsets of the datasets collected have been used in the 2016 and 2017 editions of the WMT
shared tasks on Quality Estimation and Automatic Post-editing (Bojar et al., 2016a, 2017).8 In
what follows we summarise some of the outcomes from these tasks.

6.1 Quality Estimation
Quality Estimation (QE) is the task of predicting the quality of the output of an MT system
without the use of reference translations (Blatz et al., 2004; Specia et al., 2009). This is ap-
proached as a machine learning task, where training data with quality labels is needed. These
labels can target different granularity levels: words, phrases, sentences or entire documents.

Early work in the area relied on proxies to quality labels generated using automatic evalu-
ation metrics such as BLEU (Papineni et al., 2002) based on human translations. The task was
thus framed as that of predicting an automatic evaluation metric score. This did not prove very
successful because of the limitations of the automatic metrics themselves and the lack of a clear
interpretation for the predictions (i.e. what does a BLEU score of 0.5 mean?).

Quality labels given by humans have been suggested in (Quirk, 2004) but only started to be

8http://www.statmt.org/wmt16/ and http://www.statmt.org/wmt17/.
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DE–EN EN-DE EN–LV EN–CS
Error type PBMT PBMT NMT PBMT NMT PBMT
Accuracy 3 0 0 39 50 0

Addition 539 332 167 277 268 385
Mistranslation 437 967 852 274 677 786
Omission 576 690 355 395 560 588
Untranslated 278 102 24 79 62 301

Fluency 3 0 0 233 210 234
Grammar 0 0 0 11 2 103

Function words 1 2 1 0 0 0
Extraneous 302 525 245 49 49 228
Incorrect 139 804 449 56 55 454
Missing 362 779 231 66 32 348

Word form 0 94 267 280 261 1401
Part of speech 20 128 132 38 35 147
Agreement 18 506 97 419 357 48
Tense/aspect/mood 63 184 51 60 46 397

Word order 218 868 309 336 152 1148
Spelling 118 126 132 324 387 638
Typography 282 553 249 823 387 1085
Unintelligible 0 33 0 10 14 30

Terminology 27 82 139 34 31 0
All categories 3386 6775 3700 3803 3635 8321

Table 9: MQM error categories and breakdown of annotations completed to data.

DE–EN EN-DE EN–LV EN–CS
PBMT PBMT NMT PBMT NMT PBMT

# annotated words (A1/A2) 516/643 974/920 338/288 669/682 303/310 324/370
Kappa on annotated words 0.61 0.70 0.82 0.69 0.67 0.62
Kappa on error type 0.51 0.48 0.69 0.53 0.51 0.51

Table 10: Number of annotated words per language pair for each annotator (A1 and A2) and
the Cohen’s kappa measuring inter-annotator agreement for MQM error annotations.

used more recently (Specia et al., 2009). In particular, the use of objective labels derived from
extrinsic uses of MT output, such as PE, have become popular (Specia, 2011). Labels of this
type include normalised PE distance (HTER - Human Targeted Translation Error Rate (Snover
et al., 2006)). These can be acquired as a by-product of PE in a translation workflow, are less
subjective and less subject to biases such as the annotators’ perception of MT.

The datasets described in this paper open many new avenues for research in QE. The main
benefits with respect to previously collected labels include its scale, domain specificity and the
availability of multiple types of (reliable) human annotation.

In the WMT16 QE shared task, a subset of the English-German IT domain post-edited
data containing 15,000 sentences was used for the sentence, word and phrase-level tasks. The
quality labels were automatically derived from the PE of the MT output, e.g. for sentence level,
HTER scores were used. Bojar et al. (2016a) claim that, when compared to previous year –
approx. 14,000 crowdsourced post-edited sentences – the results of the 2016 task were more
conclusive. They attribute this to the higher quality of the new dataset and observe that:
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Task Baseline ↑ Best system ↑
2016 Training set

Word-level QE 0.32 0.55
Phrase level QE 0.40 0.50
Sentence-level QE 0.35 0.53

2017 Training set
Word-level QE 0.36 0.58
Phrase level QE 0.33 0.60
Sentence-level QE 0.39 0.71

Table 11: QE shared task results on the 2016 test set: baseline and winning systems in 2016 and
2017 (larger training set) for sentence (Pearson), word and phrase (F1-mult = multiplication of
F1 for the GOOD and BAD classes) levels.

• for sentence level, the best Pearson correlation between the system prediction and true
HTER in 2015 was 0.39 (against 0.14 of the baseline system). In 2016, the winning sub-
mission reached 0.52 Pearson correlation (against 0.35 of the same baseline system). One
can speculate that the task was made somewhat “easier” by using high quality data, but
the delta in the Pearson correlation between the baseline and winning submission is still
substantial.
• for word level, 2016 systems performed much better: 0.56 against 0.43 F1-BAD. The

baseline systems are not comparable.

In order to further push progress in the QE field, the 2017 QE task was provided with an
extended version of the 2016 dataset in addition to data from a different domain and a different
language pair. For English-German, the 2016 dataset was extended to include a total of 28,000
sentence pairs. For German-English, 28,000 sentence pairs in the life sciences domain were
made available for the task.

The two datasets are significantly larger than any dataset used before in QE shared tasks.
The same data was used for the three subtasks: sentence, word and phrase levels. The results of
this year’s task (Bojar et al., 2017) show major improvements for all tasks over the 2016 results.
In addition to general advances in the field, these can in part be attributed to the larger dataset
provided. For the 2016 test set, also used in 2017 for comparison, Table 11 shows the results
using the official metrics for the best system and the baseline system using the 2016 vs the 2017
training sets.

This data has proven useful for subsequent work in the field: for instance, (Forcada et al.,
2017) focuses on the prediction of PE time at sentence level on the 2016 dataset, while (Martins
et al., 2017) proposes an novel word-level QE approach using automatic PE techniques.

6.2 Automatic Post-Editing
Automatic Post-editing (APE) systems are usually trained on (source, MT, human post-edit)
triplets from which the appropriate corrections of systematic errors should be learned and pos-
sibly generalised. This supervised learning problem is addressed as a “monolingual translation”
task in which rough MT output in a given target language has to be translated into a fluent and
adequate translation of the original source text. BLEU and TER computed against reference
human post-edits are the standard evaluation metrics for the task, and their respective improve-
ments and reductions are usually compared against the baseline scores obtained by the original
MT output that has been left untouched (i.e. rough, non post-edited translations).

Early APE systems (Allen and Hogan, 2000; Simard et al., 2007) were developed under
the PBMT paradigm, that is, by learning from “parallel” data, either (MT, human post-edit)

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 66



pairs or triplets including information from the source text (Béchara et al., 2011; Chatterjee
et al., 2015). Recent solutions achieved larger and more significant improvements by exploiting
neural methods (Junczys-Dowmunt and Grundkiewicz, 2016; Pal et al., 2016, 2017), which
approach the task as a sequence to sequence learning problem.

Both paradigms suffer from drawbacks that have, to date, represented the main obstacles
towards a wider adoption of APE technology. According to Bojar et al. (2015), one of the
major problems lies in data sparsity, which limits the ability to exploit training data in order to
learn correction patterns that can also be applied to test instances. Several factors contribute to
raising this data sparsity issue, namely: i) the size of the data (although human post-edits are
a by-product of industrial translation workflows, few corpora are available for research, ii) the
domain of the data (general domains – like news – are definitely less repetitive than narrow ones
– like information technology), and iii) the origin of the post-edits (professional post-editors are
definitely more reliable and coherent than non-expert ones).

The datasets described in this paper aim to mitigate the problems related to data sparsity
for reasons that are similar to those discussed in the previous section on QE. Indeed, their
size, domain specificity and professional PE quality may explain the renewed interest and the
impressive progress of APE research in the past few years. The following figures drawn from
the WMT experience support our claims:

• Number of tasks and submitted runs. At WMT 2016, only one English-German translation
task in the IT domain was organised, while 2017 saw two tasks: English-German (IT) and
German-English (life sciences). The new corpora (more repetitive than news data edited
by non-experts in 2015) motivated more teams to participate: from 7 submissions in 2016
to 20 in 2017.

• Improvements over the baseline. The switch to new data coincided with significant per-
formance gains that prove the viability of APE in domain-specific settings. While in 2015
none of the participants was able to beat the baseline, the best English-German submissions
in 2016 and 2017 improved over the baseline by up to 5.5 and 7.6 BLEU points.

• Improvements over the PBMT approach. While in 2015 all systems followed this
paradigm, falling in the same range of performance, the combination of advancements in
neural research and the provision of more suitable data resulted in impressive performance
gains in the next two evaluation rounds. The same PBMT system used for comparison
in all the evaluation rounds was significantly outperformed by most of the participants in
2016 (up to 3.2 BLEU points) and in 2017 (up to 7.1 BLEU points).

7 Conclusions

In this paper we introduced a large and unique set of data points derived from industry data that
have been post-edited and annotated by professional translators. This allows for specific fea-
tures and novel combinations of features to be used for a variety of research and user-oriented
purposes, including establishing the actual PE effort by translators based on time and keystrokes
and comparing these results to the perceived level of quality of the post-edited sentence, estab-
lishing correlations between certain characteristics such as sentence length and post-editing
time, or post-editing time and human or automatic quality evaluation metrics. The datasets also
measure post-editing productivity and can be used to detect error patterns in the MT output.
In addition, the creation of MQM-annotated subsets of these post-edits for typical industry do-
mains provide information about error patterns and support feature-oriented quality estimation
and evaluation, among many other novel avenues for research. This dataset is freely available
and can be downloaded from the project website: http://www.qt21.eu/.
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Béchara, H., Ma, Y., and van Genabith, J. (2011). Statistical Post-Editing for a Statistical MT
System. In Proceedings of the 13th Machine Translation Summit, pages 308–315, Xiamen,
China.

Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte, C., Kulesza, A., Sanchis, A., and
Ueffing, N. (2004). Confidence estimation for machine translation. In Proceedings of the
20th International Conference on Computational Linguistics, number 315 in COLING ’04,
Geneva, Switzerland.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina, P.,
Post, M., Saint-Amand, H., Soricut, R., Specia, L., and Tamchyna, A. (2014). Findings of the
2014 workshop on statistical machine translation. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, pages 12–58, Baltimore, Maryland, USA. Association for
Computational Linguistics.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Jimeno Yepes,
A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Neveol, A., Neves, M., Popel, M., Post,
M., Rubino, R., Scarton, C., Specia, L., Turchi, M., Verspoor, K., and Zampieri, M. (2016a).
Findings of the 2016 conference on machine translation. In First Conference on Machine
Translation, Volume 2: Shared Task Papers, WMT, pages 131–198, Berlin, Germany.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Koehn, P., Lo-
gacheva, V., Monz, C., Negri, M., Post, M., Rubino, R., Specia, L., and Turchi, M. (2017).
Findings of the 2017 conference on machine translation (wmt17). In Proceedings of the
Second Conference on Machine Translation, Volume 2: Shared Tasks Papers, Copenhagen,
Denmark.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, C., Koehn, P.,
Logacheva, V., Monz, C., Negri, M., Post, M., Scarton, C., Specia, L., and Turchi, M. (2015).
Findings of the 2015 workshop on statistical machine translation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pages 1–46, Lisbon, Portugal.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 68



Bojar, O., Dušek, O., Kocmi, T., Libovický, J., Novák, M., Popel, M., Sudarikov, R., and Variš,
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Abstract

Recent years have seen unprecedented growth in the use of MT across industries

and domains. Partly this is due to the ready availability of open source MT tools

such as Moses or online or customizable services. It is also due to fundamental shifts

in the technology, specifically the move to deep learning, which has dramatically

improved the quality of MT engines, including those used by online services. Likewise,

improvements in Speech Recognition (SR) technology, also driven by the move to deep

learning, are showing significant improvements in quality driven by deep learning

alone. The improvements of both of these technologies, MT and SR, increase the

potential viability for speech translation, since the error cascade caused by daisy-

chaining these technologies drops as the quality bar raises. MT is a crucial component

in speech translation systems, yet developing conversational MT systems essential

to speech translation is not a focus for many working in the Machine Translation

discipline. Particularly problematic for many languages is the absence of test and

dev data, not any less true for the Chinese and Japanese languages, where forays

into conversational MT in and out of these languages are limited by the lack of

publicly available conversational test data. In this paper, we seek to address this

problem, by providing MT test and dev data that has been built from actual bilingual

conversations between English and Japanese and Chinese, test data that can be useful

to drive further research in this space for these two languages. Our plan is to make

the data described in this paper available to the public by MT Summit.

1 Introduction

The commoditization of MT, as evidenced by increased use of MT across industries
and domains, results most significantly by the availability of open source MT tools
such as Moses [1] and online tools for training and building customized systems (such
as those offered by Microsoft, SDL, IBM, etc.). But it is also due to fundamental

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 72



shifts in the technology, specifically the move to deep learning, which has dramatically
improved the quality of MT engines [2, 3, 4], including those used by online services
(e.g., Google, Microsoft, Baidu, etc.). Likewise, improvements in speech recognition
technology, also driven by the move to deep learning, are showing 25-50% improvements
in quality driven by deep learning alone; for instance, [5] showed a 32% reduction in
Word Error Rate when switching from Gaussian Mixture Models (GMMs) to Deep
Neural Networks (DNNs), with no change in training data. The improvements of both
of these technologies increase the potential viability for speech translation, since the
error cascade caused by daisy-chaining these technologies drops as the quality bar in
each component technology increases.

MT is a crucial component in speech translation systems, yet developing conver-
sational MT systems essential to speech translation is not a focus for many working in
the Machine Translation discipline. With the increase of conversation-like sources that
needed to be translated, however, e.g., social media, and an increase in the availability
of speech recognition systems across multiple languages, translating less formal content
is becoming far more commonplace and in-demand. MT systems that are trained on
more “general” content, say, Web page content or parallel PDF documents, do not do
well on content of a radically different style [6, 7].

Also problematic for developing conversational MT systems is an adequate way to
evaluate them. Our focus in this paper is on test data for Chinese and Japanese, in
and out of English. We describe here test and dev data that has been built from actual
bilingual conversations between English to and from Japanese and Chinese. This test
data consists not only of the audio (not relevant to MT per se, but certainly to speech
translation), but also “raw” un-edited transcripts of the audio, cleaned-up caption-
like transcripts, and translations to/from English and Japanese and Chinese. For each
language there are two test sets: one from English, and one to English. This provides
data that is native in the source language, eliminating problems with direction-bias
in evaluation. Also, because the data is conversational, it is fully appropriate to tune
systems to, and evaluate systems on, conversational-style content.

It should be noted that the bilingual English↔Japanese and English↔Chinese
conversations were unscripted; participants were given some guidance with respect to
topic, but otherwise, were allowed to have unrestricted conversations with one another.
In many ways this is similar to the instructions provided to participants in the con-
struction of the monolingual Switchboard corpus [8]. Because the conversations were
unscripted, the data is rife with content typical of conversations: filler pause-words
(um, uh), discourse markers (you know, I mean), restarts (I’m...I’ve), stutters (I-I-I),
colloquial forms (gonna, kinda), and a host of disfluencies and artifacts common to collo-
quial speech. See Figure 1 for a few examples of Chinese and Japanese disfluencies. This
provides a means to test MT systems designed for less formal, more conversation-like
content, not only limited to output from speech recognition, but also content common in
social media. Although our test data does not translate disfluencies a la [9], which was
by design, it does preserve the informal character of the input content in the translation.

2
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Figure 1: Example disfluencies in Chinese and Japanese.

2 Data Collection

The focus of our work here was to create realistic test data for evaluating conversational
MT systems. Thus, we wanted the test data that reflected actual bilingual conversa-
tions between fluent speakers of English, Chinese and Japanese. Monolingual corpora
of this type exist, e.g., LDC2004T19 and LDC2005T19 [10, 11] for English, and the
CALLHOME corpora for English and Chinese and other languages [12, 13, 14, 15] (but
notably, not Japanese). The focus of these corpora, however, are explicitly on Speech
Recognition and not Machine Translation, since no translations of the content are pub-
licly available. For those interested in conversational Machine Translation or Speech
Translation, these corpora are of little use, unless one wishes to expend significant re-
sources in translation. Further, one has no options from Japanese, since these corpora
do not cover Japanese.1

The “realistic” test data requirement also meant, crucially, that we did not want
our test data to be constrained by the current state of the art in speech recognition and
machine translation technology, nor constrained by domain. This requirement meant
that we avoided using existing speech recognition and machine translation systems in
data collection.

2.1 Recording Guidelines

As noted, we opted not to use existing speech recognition or machine translation tech-
nology in our recordings. This was motivated, in part, by experiments we conducted
on English, German and French [17]. In these experiments, we noted that users behav-
ior changed dramatically when having conversations mediated by a speech translation
system: speech rate dropped dramatically from monolingual conversations, vocabu-
lary was more constrained, conversations were punctuated by a significant number of
restarts and rephrases, and users would often ask questions solely for the purpose of
clarification (e.g., when ASR or MT failed), affects that would not be present in fluent
conversations. Our interest is in constructing realistic bilingual conversations, notably
not constrained by the current state of the art, specifically sans the artifacts described
above. Constraining systems in such a way would set a ceiling to what exists currently,
and thus not provide a true gold standard conversational content to evaluate against.

1The BTEC corpus [16] does contain quasi-conversational Japanese input, but it is focused on the

travel domain, and does not consist of free form conversations and transcripts.

3
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Without the aid of machine translation, we could only recruit bilingual speakers of
English, Chinese and Japanese. Bilinguality varies significantly across speakers, but gen-
erally, speakers will be dominant in one of the languages (usually their native or mother
tongue) and less capable in other language(s). We recruited fluent bilingual speak-
ers, who would naturally understand utterances in either language, but for the source
language, only those who were dominant in that language. Thus, Japanese bilingual
speakers needed to be native (or dominant) in Japanese, but capable of understanding
English. Likewise for Chinese speakers.

For the recordings, no machine translation was used. Users held conversations
over communication software installed on their computers, specifically Skype, and we
captured the audio from these conversations. The audio data was then segmented
into smaller chunks (typically, less than 30 seconds long) and transcribed faithfully,
capturing all disfluencies present in the audio signal.2 For each pair of speakers, we
organized recordings adhering to the following paradigm:

– Speakers recorded two sessions, 30 minutes each;

– Speakers switched roles, speaking their native language in one conversation, English
in the other;

– Conversations were lightly constrained to predefined topics. Topics were used more
to prime conversations than to act as constraints, and included topics such as
sports, pets, family, education, food, etc.

We recorded over 100 speakers for each language, with 50+ pairings. Speakers were
balanced for gender and age groups. The English side of the recordings for Japanese and
Chinese bilingual conversations were discarded as they represented accented speech, and
thus less desirable, given our unrestricted requirement. In other words, the bilinguals
we recruited were dominant in Japanese and Chinese first, English second. For English-
only, we collected data from monolingual English conversations between speakers of
different English dialects (American, Australian, British and Indian), ensuring speaker
and dialect diversity.

2.2 Annotation Guidelines

We asked annotators to transcribe the given audio signal in disfluent, verbatim form.
Incomplete utterances and other sounds are transcribed using:

– predefined tags such as <SPN/> or <LM/>, and

– free annotations such as [laughter] or [door slams].

In theory, annotators are free to choose whatever annotations they deemed appropriate
for sounds which none of the predefined tags captured. In reality we observed only one
such annotation: [laughter].

2For capturing the audio, we used a specially modified Skype client that allowed us to record the

audio on the local computer, at the same time that they were holding a conversation.
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The following list provides details on the predefined tags and their interpretation.

– SPN: Speech noise: Any sounds generated during speaking which are not actual
words should be transcribed as speech noise. Examples are lip smacks or breathing
noises from the primary speaker.

– EU: End unspoken: Used when the end of a word was truncated or swallowed
by the speaker, possibly due to hesitation. Example: "hell<EU/> hello".

– NON: Non-speech noise: Any sounds which are not generated by a speaker
should be transcribed as non-speech noise. Examples are external sounds such as
cars or music from a TV running in the background.

– UNIN: Unintelligible: When the transcriber cannot even make an educated
guess at which word has been uttered by the speaker, it should be transcribed as
unintelligible. Should be applied to one word at a time. For multiple such words,
multiple tags should be used.

– LM: Language mismatch: If the word uttered by the speaker is understandable
but not in the expected speech language the annotator should use the language mis-
match tag. If the foreign word can be identified, it should be embedded into the tag,
otherwise an empty tag is sufficient. Examples are "Hello <LM>monsieur</LM>"

or "I visited <LM/>".3

– AS: Audio spill: If the audio signal is polluted by feedback or audio bleeding
from the second channel or affected by any other technical issues, this should be
transcribed as audio spill. Generally, this indicates bad headsets or recording con-
ditions.

– SU: Start unspoken: Used when the beginning of a word was truncated or
otherwise messed up by the speaker. Example: "<SU/>an hear you".

– UNSURE: Annotator unsure: Indicates a word the transcriber is unsure of.
Should be applied to one word at a time. For multiple such words, multiple tags
should be used.

– NPS: Non-primary speaker: Indicates a word or phrase which has been uttered
by a secondary speaker. This speaker does not have to be identified. Example:
"watching the water flow. <NPS>yeah.</NPS>"

– MP: Mispronounced: A mispronounced but otherwise intelligible word. Exam-
ple: "like, a filet <MP>mignon</MP>"

Table 2 gives a detailed overview on the observed frequencies of these tags for each of
the released MSLT data sets.

3 Corpus Data

The Microsoft Speech Language Translation (MSLT) corpus for Japanese and Chinese
will be made available at the following URL:

– https://aka.ms/mslt-corpus

3In the latter example, taken from real data, the <LM/> tag indicates an utterance in a language

that the transcriber did not know, and was left untranscribed, e.g., I visited Ceuta.
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Language Data set Files Runtime Average

English
Test 3,304 4h03m58s 4.4s

Dev 3,052 3h56m37s 4.7s

Japanese
Test 4,160 5h22m23s 4.6s

Dev 3,179 4h29m07s 5.1s

Chinese
Test 1,285 2h24m36s 6.8s

Dev 1,256 2h12m28s 6.3s

Table 1: Audio runtime information for our Test and Dev data by source language.

At this site, we provide the audio files (see format description in Section 3.1 below),
disfluent and fluent transcripts (“T1” and “T2”), and English translations (“T3”). In
addition to the English, Chinese and Japanese corpora, we provide links at this site
for the other corpora in the MSLT family of corpora, including the English, German,
and French MSLT corpus released last year [17]. We ask that users of the Japanese
and Chinese corpora cite this paper when used in their research (and [17] when using
the English, French and German corpora). Also, please refer to the license agreement
contained in the download packages for details on citation and limits of use.

3.1 Audio Files

The corpus contains uncompressed WAV audio files with the following properties:

– Encoding: PCM

– Sample rate: 16,000 Hz

– Channels: 1, mono

– Bitrate: 256 kbit/s

Note that the original audio streams had been encoded using the Siren codec so we had
to transcode them to create the uncompressed files for release. Furthermore, the origi-
nal signal had been subject to transport via Skype’s network with variable bandwidth
encoding. Audio quality of the released files may be affected by both factors. Files
represent a realistic snapshot of speech quality in real life. Table 1 gives more details
for the audio portions of the MSLT release.

3.2 Transcription and Translation Files

Transcripts (T1, T2) and translations (T3) are formatted as Unicode (16 bits, little-
endian) text files. We defined these three text annotation layers for our speech-to-speech
processing:

– T1: Transcribe: represents a raw, human transcript which includes all disflu-
encies, hesitations, restarts, and non-speech sounds. The goal of this annotation
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step is to produce a verbatim transcript which is as close to the original audio
signal as possible. Audio were provided to annotators segmented at the utterance
level. Segmentation was done using an existing ASR engine using a Voice Activity
Detection (VAD) algorithm. We observed bias when speakers annotated their own
transcripts (repairing, e.g., disfluencies and restarts, or transcribing words based
on original intent), so we assigned work to a different set of consultants to prevent
this issue. The extra effort regarding transcription resulted in higher transcription
fidelity, especially regarding disfluencies, noises and incomplete utterances. Both
punctuation and case information are optional in T1 but we found that most an-
notators already provided this. We assume they added this information to make
the subsequent T2: Transform processing easier.

– T2: Transform: represents a cleaned up version of the T1 transcript with proper
punctuation and case information. Of course, T2 data should not contain any dis-
fluencies or other annotations. T2 output also should be segmented into semantic
units. While the audio signal has already been segmented using VAD, the resulting
utterances typically contain multiple phrases instead of a single sentence. This is
partly due to the human speech production process and partly due to deficien-
cies in our speech segmentation. As machine translation targets individual input
sentences, the T1-to-T2 segmentation process is crucial. The idea is to create con-
versational text which might be printed in a newspaper quote. Segmentation and
disfluency removal may introduce phrasal fragments, which are kept as long as
they have at least some semantic value. Annotators work on the T1 text files only
and do not have access to the original audio files. We found that giving the an-
notators access to the audio signal resulted in longer annotation times, sometimes
contradicting the original T1 data, and with less focus on the transformation task.

– T3: Translate: represents the translation of the fluent T2 transcript. The goal is
to create conversational target text which feels natural to native speakers. Every
translation should be usable in a direct quote in a newspaper article. Translations
have been created based on unique segments in order to enforce translation con-
sistency. Translators are instructed not to translate any (remaining or perceived)
disfluencies but instead asked to flag such T2 instances for repair. The biggest
problem for translators was lack of context. Especially for shorter utterances, we
observed a lot of ambiguity which made the translation process hard. While we sent
out T2 data in order (so that translators could have used contextual cues), any kind
of task parallelization will have negatively affected the translation process. Also,
our assumption that unique source segments should always have the same target
translation might not hold in the case of ambiguous, context-dependent phrases.
Our lessons learnt during the original translation process will guide future transla-
tion campaigns creating additional references for this data set.

3.3 Corpus Statistics

Table 3 provides an overview on segment, token and type counts for both Test and Dev
data for English, Japanese and Chinese. Token length for disfluent T1 transcripts and
segmented, fluent T2 transcripts show expected behavior: segment counts increase and
the token numbers decrease. Note the significantly higher number of tokens for both
English sets. A possible explanation lies in the fact that English conversations were
easier as speakers only had to “translate” between different English dialects. Hence,
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these conversations were much closer to our monolingual recording scenario than con-
versations for Japanese or Chinese.

3.4 Some Examples

Figures 2 and 3 give examples containing disfluent, verbatim transcripts (T1), cleaned
up and transformed text (T2) and the corresponding translations (T3) into English from
both Chinese and Japanese. Note in the Chinese example how T2 transformation breaks
the T1 transcript into two segments and also removes disfluencies and annotations.
Translations are aligned on the segment level, and only with T2.

Figure 2: Examples from the Chinese corpus, with raw transcripts, transformed transcripts, and trans-

lations into English. Disfluencies that are removed are highlighted in the source.

Figure 3: Examples from the Japanese corpus, with raw transcripts, transformed transcripts, and

translations into English. Disfluencies that are removed are highlighted in the source.

4 Usage Scenarios

We have previously described the three levels of annotation for the MSLT corpus data.
In this section, we will describe how one could use the different annotation layers and
explain why all three are needed to evaluate end-to-end quality of a speech translation
system.

4.1 Using T1 data: “Bilingual” Speech Recognition

First, our data allows one to measure quality for bilingual speech recognition. While
the recorded speech data itself is monolingual, our recording setup was bilingual by
design. In any given session, both speakers were native speakers of the non-English
language, so they could natively understand one other. However, as one of the two had
to give answers in English, an additional bilingual element was added to the conversation
flow. This affects the conversation. Most notably, we observe a decreased number of
words uttered compared to purely monolingual conversations, which makes our data
special in this regard and naturally representative of bilingual conversations (rather
than monolingual conversations).

8
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Testing speech recognition quality with our data will typically be implemented using
word error rate (WER) scoring, comparing an ASR hypothesis against our reference
transcription. Depending on the output style of the ASR engine under investigation, the
reference text is either T1 or T2 data. Many ASR systems will remove disfluencies and
partial recognitions to make resulting transcripts more readable to humans. If testing
against such a system, our T2 data should be used as reference for WER scoring. As
the segmentation of the T2 reference transcripts will likely not match that of the ASR
output (which might not be segmented at all), ASR output should be compared to the
“joint” T2 reference, which is the concatenation of all T2 segments into a single line.

Of course, if the ASR system being evaluated does no disfluency processing, then
the T1 transcript should be used as the reference for calculating WER.

4.2 Using T2 data: Disfluency Removal

In the construction of the MSLT corpus, we have put in extra effort to annotate and tran-
scribe disfluencies and other non-speech sounds, which are common in conversational
speech. Such annotations can be used to evaluate the quality of disfluency removal (DR)
models. While it is possible to train machine translation models to learn to translate
or otherwise deal with such phenomena—this works pretty well for simple disfluencies,
but becomes far more challenging for non-obvious disfluencies or partial utterances and
restarts; see [9] for an example of such a system—the data space for these is very sparse.
Therefore, we found it more practical to apply a DR component to “clean up” our ASR
output before translation, as a normalization step [18].

For evaluation of such DR systems, one would feed the disfluent T1 transcripts
into a disflueny removal system and compare the resulting output to the fluent T2
transcripts, which act as the reference. As we have previously discussed, T2 data is
both cleaned up (with respect to disfluencies or non-speech noises) and segmented into
units that contain at least some semantic value. Doing this will affect the usefulness
of the T2 data as references for disfluency removal. If the DR model also performs
segmentation, then its output can be directly compared to the T2 references. It has
to be noted, however, that even small differences in segmentation will negatively affect
the comparison. Hence, it might make more sense to compare the DR output and T2
segments on a non-segmented level. This is similar to the problem of testing “fluentized”
ASR output against T2 references, as mentioned above.

4.3 Using T3 data: Conversational Translation

Considering evaluation of machine translation, the main difference to existing test data
lies in the conversational nature of the collected data. We are not aware of any data
sets which have been produced following the same “bilingual” recording setup. While
there are test sets based on conversational speech transcripts, they are typically based
on monolingual conversations. Hence, they might not be ideal for testing of bilingual
(or even multilingual) conversational MT4. The MSLT data is different here as it puts

4There are a host of reasons why this might be true: directionality bias (given that one would

be translating content from one language to another in one direction but not the other); unnatural
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the focus on such bilingual conversation scenarios, albeit emulating a perfect translation
component in the form of speakers understanding the non-English language natively.
As this approach represents an upper bound on achievable translation quality (subject
to the individual language competency of the speakers), the resulting references are
perfectly suited for evaluation of conversational translation.

The MSLT corpus data can also be used to evaluate machine translation quality for
conversational speech transcripts. To do this, one would use the fluent and segmented T2
transcripts as input segments for an MT system5. The resulting output data would then
be compared to the corresponding T3 references, using automated metrics such as BLEU
or human annotation. As directionality matters for MT evaluation, we provide test sets
for translation from English as well as for translation into English. It is important to
note that the transcripts for these are from different recording sessions which have been
conducted by different speakers. As instructions and recording setup were identical for
these, we think that the resulting data represents high quality test data for evaluation
of conversational MT.

4.4 End-to-end Speech Translation Systems

Next to testing the performance of components corresponding to the individual anno-
tation layers in the MSLT corpus, its data can also be used for end-to-end testing of
speech translation. The setup is straightforward: The system records spontaneous ut-
terances from one or more participants of a conversation. The audio signal is then sent
to the speech recognition component which creates disfluent, verbatim transcripts. In a
follow-up step, a disfluency removal component removes any disfluencies and separates
the input transcript into one or more segments. These segments are fluent and each
corresponds to a single “semantic unit”, as discussed earlier. In a last step, the fluent
segments are translated into the target language. Translation quality is computed based
on automated metrics or evaluated using human annotators.

4.5 Multimodal Translation

The MSLT corpus data may also be helpful for multimodal translation. This research
area has recently seen increasing interest (as demonstrated by shared tasks at WMT
2016 and 2017 [19]; also as a keynote by Mirella Lapata at ACL 2017) and aims to solve
translation problems based on multimodal input. Effectively, our data offers three dif-
ferent input layers (the audio files and the T1/T2 transcripts), all of which are mapped
to a single output layer, the T3 translations. It may be possible to build a transla-
tion system which uses both the audio signal and the corresponding transcript (likely
in a joint, neural network approach) to generate translation output. Quality of such
translations can be evaluated using our data set.

conversational structures, words, and phrases in the target language; no equivalent set of disfluencies

one sees in T1 transcripts; etc.
5Again, we point to [9] for an example of where noisy, disfluent transcripts were used as input

in a conversational MT system. In such a setting, the MT system itself would be doing much of the

disfluency processing, rather than some separate DR module. The upside of such a technique is that the

MT system could produce relevant disfluencies in the target language, given bilingual conversational

text data with such disfluencies represented in the data for both languages.
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4.6 Evaluation Campaigns using MSLT

MSLT evaluation data for German, French and English was used in the Machine Trans-
lation and Speech Recognition tracks at IWSLT 20166. Although participants had
access to significant amounts of parallel training data, e.g., from the WMT campaigns7,
they had very limited parallel data for training conversational MT systems. The out-
of-the-box MT systems trained on WMT data generally did poorly on MSLT and TED
lecture test data. However, adapting the base models using held-out TED data showed
significant improvements on both the MSLT and TED test data sets. A notable ex-
ample are the results from the Karlsruhe Institute of Technology (KIT) submission to
IWSLT 2016 [20], where adaptation led to more than 1.5 BLEU score improvements
on the MSLT corpus, even though, as the authors noted, the MSLT corpus did not
exactly match the TED data used for adaptation (which is lecture-focused, and less
conversational).

English Japanese Chinese

Annotation Description Test Dev Test Dev Test Dev

<SPN/> Speech noise 200 271 1,445 1,122 722 694

<EU/> End unspoken 409 388 43 32 20 15

<NON/> Non-speech noise 192 235 1,446 1,192 987 1,077

<UNIN/> Unintelligible 306 125 92 110 103 76

<LM/> Language mismatch 12 0 0 0 44 56

<AS/> Audio spill 6 0 0 0 11 0

<SU/> Start unspoken 37 54 10 5 5 1

<UNSURE/> Annotator unsure 59 81 36 28 24 22

<NPS/> Non-primary speaker 44 68 3 2 36 27

<MP/> Mispronounced 3 4 12 20 0 0

[laughter] Laughter 217 192 31 26 55 43

Annotations 1,487 1,418 3,471 2,801 2,057 2,067

Utterances 3,304 3,052 4,160 3,179 1,285 1,256

Tokens 42,852 41,450 9,169 4,985 3,751 3,804

Types 36,318 35,308 8,413 4,964 3,510 3,597

Table 2: Annotation information for our Test and Dev data by source language.

5 Conclusion

We presented a corpus of Chinese and Japanese for end-to-end evaluation of speech
translation systems and/or component level evaluation. In the latter case, the test data
consists of component level data: to test the ASR component, albeit not relevant to MT
per se, the corpus has audio data and verbatim transcripts; to test disfluency removal
and related processing against the raw transcripts—a necessary component if one wishes
to process “raw” transcripts coming from, say, an off-the-shelf ASR engine— the corpus

6http://workshop2016.iwslt.org
7http://www.statmt.org/
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Language Type Segments Tokens Types

English

T1 (EN) 3,304 42,852 36,318

T2 (EN) 5,175 36,388 31,981

T3 (JA) 5,175 37,324 33,862

T3 (ZH) 5,175 39,776 35,614

Japanese

T1 (JA) 4,160 9,169 8,413

T2 (JA) 5,976 6,221 6,205

T3 (EN) 5,857 36,853 34,461

Chinese

T1 (ZH) 1,285 3,751 3,510

T2 (ZH) 2,156 2,208 2,205

T3 (EN) 2,156 15,665 13,920

Segments Tokens Types

3,052 41,450 35,308

5,313 36,184 31,960

5,313 36,409 32,913

5,313 40,159 35,824

3,179 7,333 6,689

4,970 4,985 4,964

4,965 28,105 26,399

1,256 3,804 3,597

2,018 2,097 2,097

2,018 14,284 12,628

Table 3: Segments, tokens and types for our Test/Dev data by source language and annotation type.

has transcripts that have been cleaned up of disfluencies, pause words, discourse mark-
ers, restarts, hesitations, laughter, and any other content not relevant to translation;
and to test conversational MT, the corpus has translated transcripts into English. We
also provide English source with the same characteristics, translated into both Chinese
and Japanese. This provides data that facilitates research in conversational MT both
into and out of these two languages. It should be noted that the conversations recorded
for either direction for any given language pair are not semantically contiguous, that
is, they do not consist of recordings of the same conversation sessions. This is due to
the fact the English side of Chinese and Japanese conversations was thrown out due to
non-English accents, and that all kept English sessions were recorded separately. We
feel that the test and dev data that we are providing will be of great use to the com-
munity interested in developing conversational MT systems in and out of the Chinese
and Japanese languages.
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Abstract
Processing of multi-word expressions (MWEs) is a known problem for any natural language
processing task. Even neural machine translation (NMT) struggles to overcome it. This paper
presents results of experiments on investigating NMT attention allocation to the MWEs and
improving automated translation of sentences that contain MWEs in English→Latvian and
English→Czech NMT systems. Two improvement strategies were explored—(1) bilingual
pairs of automatically extracted MWE candidates were added to the parallel corpus used to
train the NMT system, and (2) full sentences containing the automatically extracted MWE
candidates were added to the parallel corpus. Both approaches allowed to increase automated
evaluation results. The best result—0.99 BLEU point increase—has been reached with the first
approach, while with the second approach minimal improvements achieved. We also provide
open-source software and tools used for MWE extraction and alignment inspection.

1 Introduction

It is well known that neural machine translation (NMT) has defined the new state of the art in
the last few years (Sennrich et al., 2016a; Wu et al., 2016), but the many specific aspects of
NMT outputs are not yet explored. One of which is translation of multi-word units or multi-
word expressions (MWEs). MWEs are defined by Baldwin and Kim (2010) as “lexical items
that: (a) can be decomposed into multiple lexemes; and (b) display lexical, syntactic, semantic,
pragmatic and/or statistical idiomaticity”. MWEs have been a challenge for statistical machine
translation (SMT). Even if standard phrase-based models can copy MWEs verbatim, they suf-
fer in grammaticality. NMT, on the other hand, may struggle in memorizing and reproducing
MWEs, because it represents the whole sentence in a high-dimensional vector, which can lose
the specific meanings of the MWEs even in the more fine-grained attention model (Bahdanau
et al., 2015), because MWEs may not appear frequently enough in the training data.

The goal of this research is to examine how MWEs are treated by NMT systems, compare
that with related work in SMT, and find ways to improve MWE translation in NMT. We aimed
to compare how NMT pays attention to MWEs during translation, using a test set particularly
targeted at handling of MWEs, and if that can be improved by populating the training data for
the NMT systems with parallel corpora of MWEs.

The objective was to obtain a comparison of how NMT with regular training data and
NMT with synthetic MWE data pays attention to MWEs during the translation process as well
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as to improve the final NMT output. To achieve this objective, it needed to be broken down into
smaller sub-objectives:

• Train baseline NMT systems,

• Extract parallel MWE corpora from the training data,

• Train the NMT systems with synthetic MWE data, and

• Inspect alignments produced by the NMT.

The structure of this paper is as follows: Section 2 summarizes related work in translating
MWEs with SMT and NMT. Section 3 describes the architecture of the baseline system and
outlines the process of extracting parallel MWE corpora from the training data. Section 4
provides the experiment setup and results. Finally, conclusions and aims for further directions
of work are summarized in Section 5.

2 Related Work

There have been several experiments with incorporating separate processing of MWEs in rule-
based (Deksne et al., 2008) and statistical machine translation tasks (Bouamor et al., 2012;
Skadiņa, 2016). However, there is little literature about similar integrations in NMT workflows
so far.

Skadiņa (2016) performed a series of experiments on extracting MWE candidates and
integrating them in SMT. The author experimented with several different methods for both the
extraction of MWEs and integration of the extracted MWEs into the MT system. In terms of
automatic MT evaluation, this allowed to achieve an increase of 0.5 BLEU points (Papineni
et al., 2002) for an English→Latvian SMT system.

Tang et al. (2016) introduce an NMT approach that uses a stored phrase memory in sym-
bolic form. The main difference from traditional NMT is tagging candidate phrases in the
representation of the source sentence and forcing the decoder to generate multiple words all at
once for the target phrase. Although they do mention MWEs, no identification or extraction
of MWEs is performed and the phrases they mainly focus on are dates, names, numbers, loca-
tions, and organizations, that are collected from multiple dictionaries. For Chinese→English
they report a 3.45 BLEU point increase over baseline NMT.

Cohn et al. (2016) describe an extension of the traditional attentional NMT model with
the inclusion of structural biases from word-based alignment models, such as positional bias,
Markov conditioning, fertility and agreement over translation directions. They perform experi-
ments translating between English, Romanian, Estonian, Russian and Chinese and analyze the
attention matrices of the output translations produced by running experiments using the dif-
ferent biases. Specific experiments targeting MWEs are not performed, but they do point out
that using fertility, especially global fertility, can be useful for dealing with multi-word expres-
sions. They report a statistically significant improvement of BLEU scores in almost all involved
language pairs.

Chen et al. (2016) use a similar approach as we do. Their “bootstrapping” automatically
extracts smaller parts of training segment pairs and adds them to the training data for NMT. The
main difference is that they rely on automatic word alignment and punctuation in the sentence
to identify matching sub-segments.

3 Data Preparation and Systems Used

To measure changes introduced by adding synthetic MWE data to the training corpora, first, a
baseline NMT system was trained for each language pair. The experiments were conducted on
English→Czech and English→Latvian translation directions.
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Figure 1: Portions of the final training data set for English→Czech

Figure 2: Portions of the final training data set for English→Latvian

3.1 Baseline NMT System
To be able to compare the results with other MT systems, training and development cor-
pora were used from the WMT shared tasks: data from the News Translation Task1 for
English→Latvian and data from the Neural MT Training Task2 (Bojar et al., 2017) for
English→Czech. The English→Czech data consists of about 49 million parallel sentence pairs
and the English→Latvian of about 4.5 million. The development corpora consist of 2003 sen-
tences for English→Latvian and 6000 for English→Czech.

Neural Monkey (Helcl and Libovický, 2017), an open-source tool for sequence learn-
ing, was used to train the baseline NMT systems. Using the configuration provided by the
WMT Neural MT Training Task organizers, the baseline reached 11.29 BLEU points for
English→Latvian after having seen 23 million sentences in about 5 days and 13.71 BLEU
points for English→Czech after having seen 18 million sentences in about 7 days.

3.2 Extraction of Parallel MWEs
To extract MWEs, the corpora were first tagged with morphological taggers: UDPipe (Ramisch,
2012) for English and Czech, LV Tagger (Paikens et al., 2013) for Latvian. After that, the tagged
corpora were processed with the Multi-word Expressions toolkit (Ramisch, 2012), and finally
aligned with the MPAligner (Pinnis, 2013), intermittently pre-processing and post-processing
with a set of custom tools. To extract MWEs from the corpora with the MWE Toolkit, patterns
were required for each of the involved languages. Patterns from Skadiņa (2016) were used for
Latvian (210 patterns) and English (57 patterns) languages and patterns from Majchráková et al.
(2012) and Pecina (2008) for Czech (23 patterns).

This workflow allowed to extract a parallel corpus of about 400 000 multi-word expres-
sions for English→Czech and about 60 000 for English→Latvian. For an extension of this
experiment, all sentences containing these MWEs were also extracted from the training corpus,
serving as a separate parallel corpus.

4 Experiments

We experiment with two forms of the presentation of MWEs to the NMT system: (1) we add
only the parallel MWEs themselves, each pair forming a new “sentence pair” in the parallel
corpus, and (2) we use full sentences containing the MWEs. We denote the approaches “MWE
phrases” and “MWE sents.” in the following.

4.1 Training Corpus Layout
In both cases, we use the same corpus training corpus layout: we mix the baseline parallel
corpus with synthetic data so that MWEs get more exposure to the neural network in training

1http://www.statmt.org/wmt17/translation-task.html
2http://www.statmt.org/wmt17/nmt-training-task/
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Languages En→Cs En→Lv
Dataset Dev MWE Dev MWE
Baseline 13.71 10.25 11.29 9.32
+MWE phrases - - 11.94 10.31
+MWE sents. 13.99 10.44 - -

Table 1: Experiment results.

Figure 3: Automatic evaluation progression
of En→Cs experiments on validation data.
Orange – baseline; blue — baseline with
added MWEs.

Figure 4: Automatic evaluation progression
of En→Lv experiments on validation data.
Orange – baseline; purple — baseline with
added MWE sentences.

and hopefully allow NMT to learn to translate them better.
Figure 1 and Figure 2 illustrate how the training data was divided into portions. The block

1xMWE corresponds to the full set of extracted MWEs (400K for En→Cs, 60K for En→Lv)
and 2xMWE corresponds to two copies of the set (800K for En→Cs, 120K for En→Lv). For
En→Lv the full corpus was used. For En→Cs we used only the first 15M sentences to be able
to train multiple epochs on the available hardware. The MWEs get repeated five times in both
language pairs. By doing this, the En→Cs data set was reduced from 49M to 17M and the
En→Lv data set increased to 4.8M parallel sentences for one epoch of training.

While the experiments were running, early stopping of the training was executed and snap-
shots of the models for evaluation were taken in stages where the models already were starting
to converge. For En→Lv this was after the networks had been trained on 25M sentences (i.e.
5.2 epochs of the mixed corpus), for En→Cs 27M sentences (i.e. 1.6 epochs).

Neural Monkey does not shuffle the training corpus between epochs. This is not a problem
if the corpus is properly shuffled and the number of epochs is not very large compared to the
size of the epochs. We shuffled only the baseline corpus and the interleaved it with (shuffled)
sections for MWEs. This worked well when MWEs were provided in full sentences, but not
with MWEs presented as expressions. In the latter case, the NMT started to produce only very
short output, losing very much of its performance. We, therefore, shuffle the whole composed
corpus for the “MWE phrases” runs, effectively discarding the interleaved composition of the
training data.

4.2 Results

Table 1 shows the results for both approaches and both language pairs. Due to hardware con-
straints, we were not able to try out both approaches on both language pairs.

We evaluate all setups with BLEU (Papineni et al., 2002) on the full development set
(distinct from the training set), as shown in the column “Dev”, and on a subset of 611 (En→Lv)
and 112 (En→Cs) sentences containing the identified MWEs (column “MWE”).
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Figure 5: Differences in translation between baseline and improved NMT system. Improving
n-grams are highlighted in green and worsening n-grams — in red.

Figure 6: Differences in translation of a Czech sentence using baseline and improved NMT
systems. Improving n-grams are highlighted in green and worsening n-grams — in red.

Figures 3 and 4 illustrate the learning curves in terms of millions of sentences, as evaluated
on the full development set.

We see that the difference on the whole development set is not very big for either of the
languages, and that it fluctuates as the training progresses.

The improvement is more apparent when evaluated on the dedicated devset of sentences
containing multi-word expressions. The improvement for Latvian is even 0.99 BLEU, but ar-
guably, the baseline performance of our system is not very high. Also, more runs should be
carried out for a full confidence, but this was unfortunately out of our limits on computing
resources.

4.3 Manual Inspection

To find out whether changes in the results are due to the synthetic MWE corpora added, a subset
of output sentences from the ones containing MWEs were selected for closer examination. For
this task, we used the iBLEU (Madnani, 2011) tool.

In Figure 5, an improvement in the modified NMT translation is visible due to the treat-
ment of the compound nominal “city bus” as a single expression. It seems that the baseline
system translates “city” into “městě” and “bus” into “autobuse” individually, resulting in the
wrong form of “city” in Czech (a noun used instead of an adjective). On the other hand, the im-
proved NMT translates “city” into “městském” just like the target human translation. Attention
alignments will be examined in the following section.

Figure 6 shows an example where the improved NMT scores higher in BLEU points and
translates the MWE closer to the human, but loses a part of it in the process. While translating
the noun phrase “electronic wall map” the improved system generates a closer match to the
human translation “elektronické mapě”, it does not translate the word “wall” that was translated
into “stěny” by the baseline system. Upon closer inspection, we discovered that this error was
caused by the MWE extractor and aligner because the identified English phrase “electronic
wall map” was aligned to an identified Czech phrase “elektronické mapě” and the whole phrase
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Source: It should be noted that this is not the first time that Facebook has been ac-
tively involved in determining what network users see in their news feeds.

Baseline: Jāatzı̄mē, ka šis nav pirmajā reizē, kad Facebook ir aktı̄vi iesaistı̄ta,
nosakot to, ko tı̄klā izmanto viņu ziņu pārraides.

Improved NMT: Ir jāatzı̄mē, ka šis ir pirmā reize, kad Facebook ir aktı̄vi iesaistı̄jusies,
nosakot to, ko tı̄kla lietotāji dara viņu ziņu formātā.

Reference: Jāteic, ka šı̄ nav pirmā reize, kad Facebook aktı̄vi iesaistās, nosakot, ko
tı̄kla lietotāji redz savās jaunumu plūsmās.

Figure 7: Differences in translation between baseline and improved NMT system. Improving
n-grams are highlighted in green and worsening n-grams — in red.

Figure 9: Fragment of soft alignments of
the example sentence from the baseline NMT
system.

Figure 10: Fragment of soft alignments of the
example sentence from the improved NMT
system.

“nástěnné elektronické mapě” was not identified by the MWE extractor at all.
Figure 7 illustrates translations of an example sentence by the En→Lv NMT systems. The

MWE, in this case, is “network users” that is translated as “tı̄kla lietotāji” by the modified
system and completely mistranslated by the baseline.

4.4 Alignment Inspection

For inspecting the NMT attention alignments, we developed a tool (Rikters et al., 2017) that
takes data produced by Neural Monkey—a 3D array (tensor) filled with the alignment prob-
abilities together with source and target subword units (Sennrich et al., 2016b) or byte pair
encodings (BPEs)—as input and produces a soft alignment matrix (Figure 8) of the subword
units that highlights all units, that get attention when translating a specific subword unit. The
tool includes a web version that was adapted from Nematus (Sennrich et al., 2017) utilities and
slightly modified. It allows to output the soft alignments in a different perspective, as connec-
tions between BPEs as visible in Figure 9 and Figure 10.
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Source: Just like in a city bus or a tram.
Baseline: Jako ve městé autobuse nebo tramvaji.
Improved NMT: Jen jako v městském autobuse nebo tramvaji.
Reference: Stejně jako v městském autobuse či tramvaji.

Figure 11: Soft alignment example visualizations from translating an English sentence into
Czech from the baseline (top, hypothesis 1) and improved (bottom, hypothesis 2) NMT systems.

Figure 8: Example of a soft alignment matrix.
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In these examples, the attention state of the previously mentioned MWE from En→Lv
translations (“network users”) is visible. The alignment inspection tool allows to see that the
baseline NMT in Figure 9 has multiple faded alignment lines for both words “network” and
“users”, which outlines that the neural network is unsure and looking all around for traces to
the correct translation. However, in Figure 10, it is visible that both these words have strong
alignment lines to the words “tı̄kla lietotāji”, that were also identified by the MWE Toolkit as
an MWE candidate.

Figure 11 shows one of the previously mentioned En→Cs translation examples. Here it
is clear that in the baseline alignment no attention goes to the word “městě” or the subword
units “autobu@@” and “se” when translating “city”. In the modified version, on the other
hand, some attention from “city” goes into all closely related subword units: “měst@@”,
“ském”, “autobu@@”, and “se”. It is also visible that in this example, the translation of
“bus” gets attention from not only “autobu@@” and “se” but also the ending subword unit
of “city”, i.e. the token “ském”.

5 Conclusion

In this paper, we described the first experiments with handling multi-word expressions in neu-
ral machine translation systems. Details on identifying and extracting MWEs from parallel
corpora, as well as aligning them and building corpora of parallel MWEs were provided. We
explored two methods of integrating MWEs in training data for NMT and examined the output
translations of the trained NMT systems with custom built tools for alignment inspection.

In addition to the methods described in this paper, we also released open-source scripts for
a complete workflow of identifying, extracting and integrating MWEs into the NMT training
and translation workflow.

While the experiments did not show outstanding improvements on the general development
data set, an increase of 0.99 BLEU was observed when using an MWE specific test data set.
Manual inspection of the output translations confirmed that translations of specific MWEs were
improving after populating the training data with synthetic MWE data.

As the next steps, we plan (1) to analyze the obtained results of our experiments in more
detail through the help of a larger scale manual human evaluation of the NMT output and (2) to
continue experiments to find best ways how to treat different categories of MWEs, i.e. idioms.
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Abstract
In this paper, we explore a simple solution to “Multi-Source Neural Machine Translation"
(MSNMT) which only relies on preprocessing a N-way multilingual corpus without modifying
the Neural Machine Translation (NMT) architecture or training procedure. We simply concate-
nate the source sentences to form a single long multi-source input sentence while keeping the
target side sentence as it is and train an NMT system using this preprocessed corpus. We eval-
uate our method in resource poor as well as resource rich settings and show its effectiveness
(up to 4 BLEU using 2 source languages and up to 6 BLEU using 5 source languages). We also
compare against existing methods for MSNMT and show that our solution gives competitive
results despite its simplicity. We also provide some insights on how the NMT system leverages
multilingual information in such a scenario by visualizing attention.

1 Introduction

Multi-Source Machine Translation (MSMT) Och and Ney (2001) is an approach that allows one
to leverage source sentences in multiple languages to improve the translations to a target lan-
guage. Typically N-way (or N-lingual) corpora are used for MSMT. N-way corpora are those in
which translations of the same sentence exist in N different languages. This setting is realistic
and has many applications. For example, the European Parliament maintains its proceedings in
21 languages. In Spain, international news companies write news articles in English as well as
Spanish. One can now utilize the same sentence written in two different languages like Spanish
and English to translate to a third language like Italian by utilizing a large English-Spanish-
Italian trilingual corpus.
Neural machine translation (NMT) Bahdanau et al. (2015); Cho et al. (2014); Sutskever et al.
(2014) enables one to train an end-to-end system without the need to deal with word align-
ments, translation rules and complicated decoding algorithms, which are a characteristic of
phrase based statistical machine translation (PBSMT) systems. However, it is reported that
NMT works better than PBSMT only when there is an abundance of parallel corpora. In a
low resource scenario, vanilla NMT is either worse than or comparable to PBSMT Zoph et al.
(2016).
Multi-source Neural Machine translation (MSNMT) involves using NMT for MSMT. Two
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major approaches for Multi-Source NMT (MSNMT) have been explored, namely the multi-
encoder (ME/me) Zoph and Knight (2016) and multi-source ensembling (ENS/ens) Garmash
and Monz (2016); Firat et al. (2016). The multi-encoder approach involves extending the vanilla
NMT architecture to have an encoder for each source language leading to larger models. On
the other hand, the ensembling approach is simpler since it involves training multiple bilingual
NMT models each with a different source language but the same target language.
We have discovered that there is an even simpler way to do MSNMT. We explore a new sim-
plified end-to-end method that avoids the need to modify the NMT architecture as well as the
need to learn an ensemble function. We simply concatenate the source sentences leading to a
parallel corpus where the source side is a long multilingual sentence and the target side is a sin-
gle sentence which is the translation of the aforementioned multilingual sentence. This corpus
is then fed to any NMT training pipeline whose output is a multi-source NMT model.
The main contributions of this paper are as follows:
• Exploring a simple preprocessing step that allows for Multi-Source NMT (MSNMT) with-

out any change to the NMT architecture1.
• An exhaustive study of how the approach works in a resource poor as well as a resource

rich setting.
• An analysis of how gains in the translation quality are correlated with language similarity

in a multi-source scenario.
• An empirical comparison of our approach against two existing methods Zoph and Knight

(2016); Firat et al. (2016) for MSNMT.
• An analysis of how NMT gives more importance to certain linguistically closer languages

while doing multi-source translation by visualizing attention vectors.

2 Related Work

One of the first studies on multi-source MT Och and Ney (2001) explored how word based
SMT systems would benefit from multiple source languages. Although effective, it suffered
from a number of limitations that classic word and phrase based SMT systems do including
the inability to perform end-to-end training. The work on multi-encoder multi source NMT
Zoph and Knight (2016) is the first multi-source NMT approach which focused on utilizing
French and German as source languages to translate to English. However their method led
to models with substantially larger parameter spaces and they did not experiment with many
languages. Moreover, since the encoders for each source language are separate it is difficult
to explore how the source languages contribute towards the improvement in translation quality.
Multi-source ensembling using a multilingual multi-way NMT model Firat et al. (2016) is an
end-to-end approach but requires training a very large and complex NMT model. The work
on multi-source ensembling which uses separately trained single source models Garmash and
Monz (2016) is comparatively simpler in the sense that one does not need to train additional
NMT models but the approach is not truly end-to-end since it needs an ensemble function to
be learned. This method also helps eliminates the need for N-way corpora which allows one to
exploit bilingual corpora which are larger in size. In all cases one ends up with either one large
model or many small models for which an ensemble function needs to be learned.
Other related works include Transfer Learning Zoph et al. (2016) and Zero Shot NMT Johnson
et al. (2016) which help improve NMT performance for low resource languages. Finally it is
important to note works that involve the creation of N-way corpora: United Nations (Ziemski
et al. (2016)), Europarl (Koehn (2005)), Ted Talks (Cettolo et al. (2012)), ILCI (Jha (2010)) and
Bible (Christodouloupoulos and Steedman (2015)) corpora.

1One additional benefit of our approach is that any NMT architecture can be used, be it attention based or hierarchical
NMT.
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Figure 1: The Multi-Source NMT Approach We Explored.

3 Our Method

Refer to Figure 1 for an overview of our method which is as follows: For each target sentence
concatenate the corresponding source sentences leading to a parallel corpus where the source
sentence is a very long sentence that conveys the same meaning in multiple languages. An ex-
ample line in such a corpus would be: source: “Hello Bonjour Namaskar Kamusta Hallo" and
target:“konnichiwa". The 5 source languages here are English, French, Marathi, Filipino and
Luxembourgish whereas the target language is Japanese. In this example each source sentence
is a word conveying “Hello" in different languages. Note that there are no delimiters between
the individual source sentences since we expect the NMT system will figure out the sentence
boundaries by itself. We romanize the Marathi and Japanese words for readability. Optionally,
one can perform additional processing, like Byte Pair Encoding (BPE), to overcome data spar-
sity and eliminate the unknown word rate. Use the training corpus to learn an NMT model using
any off the shelf NMT toolkit. The order of the sentences belonging to different languages is
kept the same in the training, development and test sets.

3.1 Other methods for comparison

3.1.1 Multi-Encoder Multi-Source Method
This method was proposed by Zoph and Knight (2016). The main idea is to have an encoder for
each source language and concatenate encoding information before feeding it to the decoder.
We use the technique where attentions are computed for both source languages and feed this
multi-source attention to the decoder to predict a target word.

3.1.2 Multi-Source Ensembling Method
This method was proposed by Firat et al. (2016) and it relies on a single multilingual NMT
model with separate encoders and decoders for each source and target language. All encoders
and decoders share a single attention mechanism. To perform multi-source translation the model
is fed source sentences in different languages and the logits are averaged (ensembling) before
computing softmax to predict a target word. Since training a multilingual-multiway model
is difficult and time consuming to train we rely on separately trained models for each source
language and ensemble them without learning an ensemble function.
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4 Experimental Settings

All of our experiments were performed using an encoder-decoder NMT system with attention
for the various baselines and multi-source experiments. In order to enable infinite vocabulary
and reduce data sparsity we use the Byte Pair Encoding (BPE) based word segmentation ap-
proach Sennrich et al. (2016). However we perform a slight modification to the original code
where instead of specifying the number of merge operations manually we specify a desired vo-
cabulary size and the BPE learning process automatically stops after it learns enough rules to
obtain the prespecified vocabulary size. We prefer this approach since it allows us to learn a
minimal model and it resembles the way Google’s NMT system Wu et al. (2016) works with
the Word Piece Model (WPM) Schuster and Nakajima (2012). We evaluate our models using
the standard BLEU Papineni et al. (2002) metric2 on the translations of the test set. Baseline
models are single source models.

4.1 Languages and Corpora Settings

corpus type Languages train dev2010 tst2010/tst2013
3 lingual Fr, De, En 191381 880 1060/886
4 lingual Fr, De, Ar, En 84301 880 1059/708
5 lingual Fr, De, Ar, Cs, En 45684 461 1016/643

Table 1: Statistics for the the N-lingual corpora extracted from the IWSLT corpus for the lan-
guages French (Fr), German (De), Arabic (Ar), Czech (Cs) and English (En)

All of our experiments were performed using the publicly available ILCI3 (Jha (2010)),
United Nations6 (Ziemski et al. (2016)) and IWSLT7 (Cettolo et al. (2015)) corpora.
The ILCI corpus is a 6-way multilingual corpus spanning the languages Hindi, English, Tamil,
Telugu, Marathi and Bengali was provided as a part of the task. The target language is Hindi
and thus there are 5 source languages. The training, development and test sets contain 45600,
1000 and 2400 6-lingual sentences respectively8. Hindi, Bengali and Marathi are Indo-Aryan
languages, Telugu and Tamil are Dravidian languages and English is a European language. In
this group English is the farthest from Hindi, grammatically speaking, whereas Marathi is the
closest to it. Morphologically speaking, Bengali is closer to Hindi compared to Marathi (which
has agglutinative suffixes) but Marathi and Hindi share the same script and they also share more
cognates compared to the other languages. It is natural to expect that translating from Bengali
and Marathi to Hindi should give Hindi sentences of higher quality as compared to those ob-
tained by translating from the other languages and thus using these two languages as source
languages in multi-source approaches should lead to significant improvements in translation
quality. We verify this hypothesis by exhaustively trying all language combinations.
The IWSLT corpus is a collection of 4 bilingual corpora spanning 5 languages where the target
language is English: French-English (234992 lines), German-English (209772 lines), Czech-
English (122382 lines) and Arabic-English (239818 lines). Linguistically speaking French and
German are the closest to English followed by Czech and Arabic. In order to obtain N-lingual

2This is computed by the multi-bleu.pl script, which can be downloaded from the public implementation of Moses
Koehn et al. (2007).

3This was used for the Indian Languages MT task in ICON 20144 and 20155.
6https://conferences.unite.un.org/uncorpus
7https://wit3.fbk.eu/mt.php?release=2016-01
8In the task there are 3 domains: health, tourism and general. However, we focus on the general domain in which

half the corpus comes from the health domain the other half comes from the tourism domain.
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sentences we only keep the sentence pairs from each corpus such that the English sentence is
present in all the corpora. From the given training data we extract trilingual (French, German
and English), 4-lingual (French, German, Arabic and English) and 5-lingual corpora. Similarly
we extract 3, 4 and 5 lingual development and test sets. The IWSLT corpus (downloaded from
the link given above) comes with a development set called dev2010 and test sets named tst2010
to tst2013 (one for each year from 2010 to 2013). Unfortunately only the tst2010 and tst2013
test sets are N-lingual. Refer to Table 1 which contains the number of lines of training, devel-
opment and test sentences we extracted.
The UN corpus spans 6 languages: French, Spanish, Arabic, Chinese, Russian and English.
Although there are 11 million 6-lingual sentences we use only 2 million for training since our
purpose was not to train the best system but to show that our method works in a resource rich
situation as well. The development and test sets provided contain 4000 lines each and are also
available as 6-lingual sentences. We chose English to be the target language and focused on
Spanish, French, Arabic and Russian as source languages. Due to lack of computational facil-
ities we only worked with the following source language combinations: French and Spanish,
French and Russian, French and Arabic and Russian and Arabic.

4.2 NMT Systems and Model Settings
For training various NMT systems, we used the open source KyotoNMT toolkit9 Cromieres
et al. (2016). KyotoNMT implements an Attention based Encoder-Decoder Bahdanau et al.
(2015) with slight modifications to the training procedure. We modify the NMT implementation
in KyotoNMT to enable multi encoder multi source NMT Zoph and Knight (2016). Since the
NMT model architecture used in Zoph and Knight (2016) is slightly different from the one in
KyotoNMT, the multi encoder implementation is not identical (but is equivalent) to the one in
the original work. For the rest of the paper “baseline" systems indicate single source NMT
models trained on bilingual corpora. We train and evaluate the following NMT models:
• One source to one target.
• N source to one target using our proposed multi source approach.
• N source to one target using the multi encoder multi source approach Zoph and Knight

(2016).
• N source to one target using the multi source ensembling approach that late averages10

Firat et al. (2016) N one source to one target models11.
The model and training details are as follows:

• BPE vocabulary size: 8k12 (separate models for source and target) for ILCI and IWSLT
corpora settings and 16k for the UN corpus setting. When training the BPE model for the
source languages we learn a single shared BPE model. In case of languages that use the
same script it allows for cognate sharing thereby reducing the overall vocabulary size.

• Embeddings: 620 nodes
• RNN (Recurrent Neural Network) for encoders and decoders: LSTM with 1 layer, 1000

nodes output. Each encoder is a bidirectional RNN.
• In the case of multiple encoders, one for each language, each encoder has its own separate

vocabulary.
• Attention: 500 nodes hidden layer. In case of the multi encoder approach there is a separate

attention mechanism per encoder.

9https://github.com/fabiencro/knmt
10Late averaging implies averaging the logits of multiple decoders before computing softmax to predict the target

word.
11In the original work a single multilingual multiway NMT model was trained and ensembled but we train separate

NMT models for each source language.
12We also try vocabularies of size 16k and 32k but they take longer to train and overfit badly in a low resource setting
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• Batch size: 64 for single source, 16 for 2 sources and 8 for 3 sources and above for IWSLT
and ILCI corpora settings. 32 for single source and 16 for 2 sources for the UN corpus
setting.

• Training steps: 10k13 for 1 source, 15k for 2 source and 40k for 5 source settings when
using the IWSLT and ILCI corpora. 200k for 1 source and 400k for 2 source for the UN
corpus setting to ensure that in both cases the models get saturated with respect to heir
learning capacity.

• Optimization algorithms: Adam with an initial learning rate of 0.01
• Choosing the best model: Evaluate the model on the development set and select the one

with the best BLEU Papineni et al. (2002) after reversing the BPE segmentation on the
output of the NMT model.

• Beam size for decoding: 1614

We train and evaluate the following NMT models using the ILCI corpus:
• One source to one target: 5 models (Baselines)
• Two source to one target: 10 models (5 source languages, choose 2 at a time)
• Five source to one target: 1 model

In this setting, we also calculate the lexical similarity15 between the languages involved in
using the Indic NLP Library16. The objective behind this is to determine whether or not lexical
similarity, which is also one of the indicators of linguistic similarity and hence translation
quality Kunchukuttan and Bhattacharyya (2016), is also an indicator of how well two source
languages work together.

In the IWSLT corpus setting we did not try various combinations of source languages as
we did in the ILCI corpus setting. We train and evaluate the following NMT models for each
N-lingual corpus:
• One source to one target: N-1 models (Baselines; 2 for the trilingual corpus, 3 for the

4-lingual corpus and 4 for the 5-lingual corpus)
• N-1 source to one target: 3 models (1 for trilingual, 1 for 4-lingual and 1 for 5-lingual)

Similarly for the UN corpus setting we only tried the following one source one tar-
get models: French-English, Russian-English, Spanish-English and Arabic-English. The two
source combinations we tried were: French+Spanish, French+Arabic, French+Russian, Rus-
sian+Arabic. The target language is English.

For the ILCI corpus setting, Table 2 contains the BLEU scores for all the settings and
lexical similarity scores for all combinations of source languages, two at a time. The caption
contains a complete description of the table. The last row of Table 2 contains the BLEU score
for all the multi source settings which uses all 5 source languages.
For the results of the IWSLT corpus setting, refer to Table 3. Finally, refer to Table 4 for the
UN corpus setting.

4.3 Analysis

4.3.1 Main findings
From Tables 2, 3 and Table 4 it is clear that our simple source sentence concatenation based
approach (under columns labeled “our") is able to leverage multiple languages leading to sig-
nificant improvements compared to the BLEU scores obtained using any of the individual

13We observed that the models start overfitting around 7k-8k iterations
14We performed evaluation using beam sizes 4, 8, 12 and 16 but found that the differences in BLEU between beam

sizes 12 and 16 are small and gains in BLEU for beam sizes beyond 16 are insignificant
15https://en.wikipedia.org/wiki/Lexical_similarity
16http://anoopkunchukuttan.github.io/indic_nlp_library

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 101



Source
Language 1

Source Language 2 [XX-Hi BLEU] XX-Hi sim
En [11.08] 0.20 Mr [24.60] 0.51 Ta [10.37] 0.30 Te [16.55] 0.42

our ens me sim our ens me sim our ens me sim our ens me sim
Bn [19.14] 0.52 20.70 19.45 19.10 0.18 29.02 30.10 27.33 0.46 19.85 20.79 18.26 0.30 22.73 24.83 22.14 0.39

En [11.08] 0.20 - 25.56 23.06 26.01 0.20 14.03 15.05 13.30 0.18 18.91 19.68 17.53 0.20

Mr [24.60] 0.51 - - 25.64 24.70 23.79 0.33 27.62 28.00 26.63 0.43

Ta [10.37] 0.30 - - - 18.14 19.11 17.34 0.38

All our: 31.56 ens: 30.29 me: 28.31

Table 2: ILCI corpus results: BLEU scores for two source to one target setting for all language
combinations and for five source to one target using the ILCI corpus. The languages are Ben-
gali (Bn), English (En), Marathi (Mr), Tamil (Ta), Telugu (Te) and Hindi (Hi). Each language is
accompanied by the BLEU score for translating to Hindi from that language and its lexical sim-
ilarity with Hindi. Each cell in the upper right triangle contains the BLEU scores using a. Our
proposed approach (our), b. Multi source ensembling approach (ens), c. Multi Encoder Multi
Source approach (me) and d. The lexical similarity (sim; in tiny font size). The best BLEU
score is in bold. The train, dev, test split sizes are 45600, 1000 and 2400 lines respectively.

source languages. The ensembling (under columns labeled “ens") and the multi encoder (under
columns labeled “me") approaches also lead to improvements in BLEU. Note that in every sin-
gle case, gains in BLEU are statistically significant regardless of the methods used. It should be
noted that in a resource poor scenario ensembling generally outperforms all other approaches
but in a resource rich scenario our method as well as the multi encoder method are much better.
However, the comparison with the ensembling method is unfair to our method since the former
uses N times more parameters than the latter. However, one important aspect of our approach
is that the model size for the multi source systems is the same as that of the single source sys-
tems since the vocabulary sizes are exactly the same. The multi encoder systems involve more
parameters whereas the ensembling approach does not allow for the source languages to truly
interact with each other.

4.3.2 Correlation between linguistic similarity and gains using multiple sources

In the case of the ILCI corpus setting, Table 2, it is clear that no matter which source lan-
guages are combined, the BLEU scores are higher than those given by the single source sys-
tems. Marathi and Bengali are the closest to Hindi (linguistically speaking) compared to the
other languages and thus when used together they help obtain an improvement of 4.39 BLEU
points compared to when Marathi is used as the only source language (24.63). However it can
be seen that combining any of Marathi, Bengali and Telugu with either English or Tamil lead to
smaller gains. There is a strong correlation between the gains in BLEU and the lexical similar-
ity. Bengali and English which have the least lexical similarity (0.18) give only a 1.56 BLEU
improvement whereas Bengali and Marathi which have the highest lexical similarity (0.46) give
a BLEU improvement of 4.42 using our multi-source method. This seems to indicate that al-
though multiple source languages do help, source languages that are linguistically closer to
each other are responsible for maximum gains (as evidenced by the correlation between lexi-
cal similarity and gains in BLEU). Finally, the last row of Table 2 shows that using additional
languages lead to further gains leading to a BLEU score of 31.56 which is 6.96 points above
when only Marathi is used as the only source language and 2.54 points above when Marathi and
Bengali are used as the source languages. As future work it will be worthwhile to investigate
the diminishing returns in BLEU improvement obtained per additional language.
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Corpus Type
Train Size

Language
Pair

BLEU
tst2010

BLEU
tst2013

Number
of sources

BLEU
tst2010

BLEU
tst2013

our ens me our ens me
3 lingual
191381 lines

Fr-En 19.72 22.05
2 22.56 18.64 22.03 24.02 18.45 23.92

De-En 16.19 16.13

4 lingual
84301 lines

Fr-En 9.02 7.78
3 11.70 12.86 10.30 9.16 9.48 7.30De-En 7.58 5.45

Ar-En 6.53 5.25

5 lingual
45684 lines

Fr-En 6.69 6.36

4 8.34 9.23 7.79 6.67 6.49 5.92
De-En 5.76 3.86
Ar-En 4.53 2.92
Cs-En 4.56 3.40

Table 3: IWSLT corpus results: BLEU scores for the single source and N source settings using
the IWSLT corpus. The languages are French (Fr), German (De), Arabic (Ar), Czech (Cs) and
English (En). We give the BLEU scores for two test sets tst2010 and tst2013 which we translate
using a. Our proposed approach (our), b. Multi source ensembling approach (ens) and c. Multi
Encoder Multi Source approach (me). The best BLEU score is in bold. The train corpus sizes
are given in tiny font size. Refer to Table 1 for details on corpora sizes.

Language
Pair

BLEU
Source

Combination
BLEU

our ens me
Es-En 49.20 Es+Fr 49.93* 46.65 47.39
Fr-En 40.52 Fr+Ru 43.99 40.63 42.12
Ar-En 40.58 Fr+Ar 43.85 41.13 44.06
Ru-En 38.94 Ar+Ru 41.66 43.12 43.69

Table 4: UN corpus results: BLEU scores for the single source and 2 source settings using
the UN corpus. The languages are Spanish (Es), French (Fr), Russian (Ru), Arabic (Ar) and
English (En). We give the BLEU scores for for the test set which we translate using a. Our
proposed approach (our), b. Multi source ensembling approach (ens) and c. Multi Encoder
Multi Source approach (me). Note that we do not try all language pairs. The highest score is
the one in bold. All BLEU score improvements are statistically significant (p <0.001) compared
to those obtained using either of the source languages independently. The train, dev, test split
sizes are 2M, 4k and 4k lines respectively.

4.3.3 Performance in resource rich settings

In the UN corpus setting, Table 4, where we used approximately 2 million training sentences, we
also obtained improvements in BLEU. In the case of the single source systems we observed that
the BLEU score for Spanish-English was around 9 BLEU points higher than for French-English
which is consistent with the observations in the original work concerning the construction of
the UN corpus Ziemski et al. (2016). Furthermore, combining using French and Spanish to-
gether leads to a small (0.7) improvement in BLEU (over Spanish-English) that is statistically
significant (p <0.001) which is to be expected since the BLEU for Spanish-English is already
much better than the BLEU for French-English. Since the BLEU scores for French, Arabic and
Russian to English are closer to each other we can see that the BLEU scores for French+Arabic,
French+Russian and Arabic+Russian to English are around 3 BLEU points higher than those of
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their respective single source counterparts.However, they do not beat the performance17 of the
multi-encoder models which have roughly twice the number of parameters.
Similar gains in BLEU are observed in the IWSLT corpus setting. Halving the size of the train-
ing corpus (from trilingual to 4-lingual) leads to baseline BLEU scores being reduced by half
(19.72 to 9.62 for French-English tst2010 test set) but using an additional source leads to a gain
of roughly 2 BLEU points. Although the gains are not as high as seen in the ILCI corpus setting
it must be noted that the test set for the ILCI corpus is easier in the sense that it contains many
short sentences compared to the IWSLT test sets. Our method does not show any gains in BLEU
for the tst2013 test set in the 4-lingual setting, an anomaly which we plan to investigate in the
future.

4.4 Studying multi-source attention
In order to understand whether or not our multi-source NMT approach prefers certain language
over others, we obtained visualizations for the attention vectors for a few sentences from the
test set. Refer to Figure 2 for an example. Firstly, it can be seen that the NMT model learns
sentence boundaries although we did not specify delimiters between sentences, Note that, in the
figure, we use a horizontal line to separate the languages but the NMT system receives a single,
long multi-source sentence. The words of the target sentence in Hindi are arranged from left to
right along the columns whereas the words of the multi-source sentence are arranged from top
to bottom across the rows. Note that the source languages (and lexical similarity scores with
Hindi) are in the following order: Bengali (0.52), English (0.20), Marathi (0.51), Tamil (0.30),
Telugu (0.42).
The most interesting thing that can be seen is that the attention mechanism focuses on each
language but with varying degrees of focus. Bengali, Marathi and Telugu are the three languages
that receive most of the attention (highest lexical similarity scores with Hindi) whereas English
and Tamil (lowest lexical similarity scores with Hindi) barely receive any. Building on this
observation we believe that the gains we obtained by using all 5 source languages were mostly
due to Bengali, Telugu and Marathi whereas the NMT system learns to practically ignore Tamil
and English. However there does not seem to be any detrimental effect of using English and
Tamil.
From Figure 3 it can be seen that this observation also holds in the UN corpus setting for
French+Spanish to English where the attention mechanism gives a higher weight to Spanish
words compared to French words since the Spanish-English translation quality is about 9 BLEU
points higher than the French-English translation quality. It is also interesting to note that the
attention can potentially be used to extract a multilingual dictionary simply by learning a N-
source NMT system and then generating a dictionary by extracting the words from the source
sentence that receive the highest attention for each target word generated.

5 Conclusion and Future Work

In this paper, we have explored a simple approach for “Multi-Source Neural Machine Trans-
lation" that can used with any NMT system seen as a black-box. We have evaluated it in a
resource poor as well as a resource rich setting using the ILCI, IWSLT and UN corpora. We
have compared our approach with two other previously proposed approaches and showed that
it gives competitive results with other state of the art methods while using less than half the
number of parameters (for 2 source models). It is domain and language independent and the
gains are significant. We also observed, by visualizing attention, that NMT is able to identify
sentence boundaries without sentence delimiters and focuses on some languages by practically

17The difference in performance between multi-encoder approach and our approache for French+Arabic is not sig-
nificant.
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Figure 2: Attention Visualiza-
tion for ILCI corpus setting for
Bengali, English, Marathi, Tamil
and Telugu to Hindi. A hori-
zontal black line is used to sepa-
rate the source languages but the
NMT system receives a single,
long multi-source sentence.

Figure 3: Attention Visualization for
UN corpus setting for French and
Spanish to English. A horizontal
black line is used to separate the
source languages but the NMT system
receives a single, long multi-source
sentence.

ignoring others indicating that language relatedness is one of the aspects that should be consid-
ered in a multilingual MT scenario. Although we have not explored other multi-source NLP
tasks in this paper, we believe that our method and findings will be applicable to them.
In the future we plan on exploring the language relatedness phenomenon by considering even
more languages. We also plan on investigating the extraction of multilingual dictionaries by
analyzing the attention links and on how we can obtain a single NMT model that can translate
up to N source languages and thereby function in a situation where some source sentences in
certain languages are missing.
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Abstract
Interactive machine translation research has focused primarily on predictive typing, which re-
quires a human to type parts of the translation. This paper explores an interactive setting in
which humans guide the attention of a neural machine translation system in a manner that
requires no text entry at all. The system generates a translation from left to right, but waits pe-
riodically for a human to select the word in the source sentence to be translated next. A central
technical challenge is that the system must learn when and how often to request guidance from
the human. These decisions allow the system to trade off translation speed and accuracy. We
cast these decisions as a reinforcement learning task and develop a policy gradient approach
to train the system. Critically, the system can be trained on parallel data alone by simulating
human guidance at training time. Our experiments demonstrate the viability of this interac-
tive setting to improve translation quality and show that an effective policy for periodically
requesting human guidance can be learned automatically.

1 Introduction

Despite rapid advances in neural machine translation, human input is still needed to meet the
translation quality requirements of many applications. Interactive machine translation seeks
to combine the quality of human translation with the speed and lexical coverage of machine
translation. This paper explores an interactive setting in which the human translator does not
type at all, but instead guides the attention of a neural machine translation system by selecting
relevant source words as the system translates. While we should not expect that the resulting
translations will be as accurate as those produced by predictive typing, this interactive approach
could provide fast and accurate draft translations that could later be improved by post-editing.
Moreover, source word selection enables new user interface options because it can be performed
using a wide variety of input devices, including a mouse, a touch screen, or an eye tracker, which
may be used in tandem with traditional text entry methods.

We first address the question of whether guiding the attention of a neural machine trans-
lation system can provide enough useful information to improve translation quality. Rather
than experimenting directly with human subjects, we compute an experimental upper bound on
the accuracy gains from guided attention. For each word that the system is meant to generate,
we find an oracle attention that maximizes the probability of generating that word. We find
that guiding attention toward this oracle provides a great deal of information to the translation
system, yielding substantial gains in translation quality.

Second, we define an interactive translation process in which the system generates a trans-
lation left-to-right, but pauses on occasion to request guidance from a human collaborator. Ide-
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ally, the system would not pause after every word; if the system can generate some portion of
the translation accurately without human intervention, then it would be wasteful for it to solicit
human input. Therefore, an ideal system must learn to trade off between translating accurately
and requiring as little human input as possible.

However, it is difficult to predict the long-term consequences of choosing whether or not
to pause at any given position. The value of receiving human guidance is not only that it may
improve the prediction of the next word, but that it may improve predictions of all subsequent
words. Therefore, pausing early for human input might allow the system to require less guid-
ance in later parts of a sentence. Our primary technical contribution is to cast the sequence of
decisions about when to request human guidance as a reinforcement learning problem that prop-
erly accounts for the system’s uncertainty about all the downstream effects of requesting human
intervention. We apply a policy gradient method to this problem and show that the system is
able to learn an effective interaction policy. This policy estimates when, during the process of
translation, human guidance is likely to provide enough long-term benefit to justify the cost of
pausing.

We evaluate our approach using an English-German neural machine translation system
trained for the WMT 2016 news translation task. We show that the whole system, including
the learned interaction policy, can be trained fully automatically by approximating human input
using simulated guidance.

2 Related Work

Interactive machine translation involves human translators working collaboratively with a ma-
chine translation system to produce high quality output efficiently (Foster and Lapalme, 2002).
Several interactive interfaces to machine translation systems have been designed and evaluated
in the research community, such as TransType (Langlais et al., 2000), Thot (Ortiz-Martı́nez
et al., 2010), and Caitra (Koehn, 2009). Green et al. (2014) investigates the trade-off between
human effort and translation quality within the paradigms of post-editing and interactive MT.

A growing line of research has explored the use of neural machine translation with at-
tention (Bahdanau et al., 2014) in an interactive setting. Wuebker et al. (2016) compares the
performance of neural and statistical machine translation models for interactive prediction, and
shows that neural models are substantially more accurate. Knowles and Koehn (2016) also
demonstrates that neural models provide more accurate interactive predictions than statistical
models and addresses efficiency challenges. Hokamp and Liu (2017) describes a search al-
gorithm for neural models that specifically targets a typical interactive workflow in which the
terms in a bilingual lexicon must be prioritized over alternatives.

Werling et al. (2015) investigates the trade-off between the cost of human intervention
and accuracy for three other tasks: named-entity recognition, sentiment classification, and im-
age classification. That work also proposes an approach to decision making that considers the
uncertain long-term consequences of actions.

Mi et al. (2016) demonstrates the usefulness of providing additional attention informa-
tion to a fully automated neural machine translation system. In this work, the authors add an
additional loss to the translation model which encourages the attention computed by the NMT
system to resemble alignments predicted by an IBM word alignment model.

3 Guided Attention

Neural machine translation with attention (Bahdanau et al., 2014) is a variant of the seq2seq
model (Sutskever et al., 2014) that incorporates attention over the source encodings into the
decoder. The attention is a distribution over source positions that can be interpreted as a soft
indicator of what part of the source sentence will be translated next. We propose to replace the
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attention predicted by the model with a guided attention distribution that is provided directly
by a human selecting a source word. In this paper, we simulate the human selection using the
source word that is most helpful in the translation decision, described in detail below.

3.1 Neural Machine Translation with Attention

Given a source sentence x = x1, . . . , xn and a target sentence y = y1, . . . , ym, the model
first encodes x to form input representations z1, . . . , zn. To predict the target labels y, the
model conditions on a concatenation of two vectors, one being a hidden representation of the
output generated so far, and the other being the input representations weighted by the attention:∑
i α

(t)
i zi, where α(t)

i is the attention computed at time t for the ith word in the source sentence.
The input representations and hidden decoder states can be defined using an LSTM (Bahdanau
et al., 2014) or convolution (Gehring et al., 2017) over word embeddings.

The attention vector is a distribution over source positions:
∑
i α

(t)
i = 1 and α(t)

i ≥ 0. To
compute α(t)

i , a feed-forward neural network is used that takes in as inputs (zi, ht) where ht is
the hidden decoder state at time t. Finally, given the attention, hidden decoder state, and input
representations, the label yt is predicted using a learned distribution p(yt|ht,

∑
i α

(t)
i zi).

3.2 Simulated Attention

Instead of using human input to train the model, we attempt to simulate the behavior of an
accurate human, allowing for faster and cheaper training. We do this by, at each time step,
calculating the distribution over the target vocabulary p(yt|ht, zi) for each i, which is equivalent
to evaluating a one-hot attention vector for each source sentence word. We then provide the one-
hot attention for the source word that had the highest predictive probability for the correct next
target word to be translated. That is, if i∗ = argmaxi p(y

∗|hj , zi), where y∗ is the correct
target word, then

α(t) = ei∗ =⇒
∑
i

α
(t)
i zi = zi∗ .

4 Learning When to Ask for Guidance

Given that we have a method for simulating the guidance that a human would provide, we turn
to the problem of deciding when to request guidance at all. Each request for guidance affects
the input representation used for predicting a single word. Over the course of a sentence, the
system can request guidance multiple times.

4.1 Interaction Policy

To implement our interactive method, we use a greedy decoder. For each predicted word, the
model decides whether to translate using guided attention or to translate using the attention
predicted by the model. At the end of each iteration, there will be a loss penalty corresponding
to the amount of guidance requested as well as the likelihood of the sentence under the model.
Guidance improves likelihood by providing more information to each decision, but incurs a
penalty for requesting guidance.

4.2 Interactive Machine Translation as Reinforcement Learning

We believe that reinforcement learning is an appropriate framework for our set up, since decid-
ing when to ask for assistance can have long term ramifications on final accuracy that are hard
to anticipate before training. We therefore model our framework by a Markov decision process
(MDP). In this MDP, our agent is the machine translation system, whose actions are whether
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or not to request guided attention, and our reward function is the cross-entropy between our
prediction of the next word and a distribution that predicts the reference with probability 1.

4.3 Reinforcement Learning
An MDP is a tuple (S,A, T,R). S is the set of all possible states that an agent can be in. A is
the set of all possible actions the agent can take. T is the transition function p(st+1|st, at) =
T (st+1|st, at) that is the distribution over the next state given the current state and the action
to be taken. Finally, R is the reward function R(st+1, at, st) that determines the reward for
transitioning into st+1 from st with action at.

An agent acting in a MDP can be described by a policy function π : S → A, that takes
in states and returns actions. It is the goal of reinforcement learning to learn a policy that
maximizes the expected sum of (discounted) rewards: E[

∑
t γ

tR(st+1, π(st), st)], where γ ∈
(0, 1] is the discount factor.

In the case of interactive attention in machine translation, a state st captures the activation
of the translation network just before it would generate the next target word wt. There are only
two possible actions: whether to go ahead and generatewt or to request guidance. If guidance is
requested, then a new activation of the translation network is computed by replacing the model’s
attention weights with the guide’s attention weights, and then a new word w′t is generated using
these new activations. If guidance is not requested, then wt is generated. In either case, the
reward function is the cross entropy sequence loss of the correct translation.

4.3.1 Policy Gradient
Policy gradient is a common reinforcement learning method to learn a policy πθ parameterized
by θ. The policy gradient method aims to perform stochastic gradient ascent on the objective

J(θ) = E

[
T−1∑
t=1

γtR(st+1, πθ(st), st)

]
.

Let πθ(at|st) be the probability of choosing an action at in state st according to the policy
πθ. The policy gradient theorem states that if at are sampled according to πθ(st), and st+1 are
sampled according to T (·|st, at), then an unbiased estimator of∇θJ(θ) is

T−1∑
t=1

∇θ log πθ(at|st)
T−1∑
τ=t

γ(τ−t)R(sτ+1, aτ , sτ ).

Although using the above expression is an unbiased estimator, it can have high variance,
prompting the use of variance reduction methods. For any function b(s), the following is also
an unbiased estimator:

T−1∑
t=1

∇θ log πθ(at|st)
T−1∑
τ=t

γ(τ−t)(R(sτ+1, aτ , sτ )− b(sτ )),

And the choice that minimizes variance is

b(sτ ) = Eπθ

[
T−1∑
τ=t

γ(τ−t)R(sτ+1, aτ , sτ )

]
.

This optimal b(sτ ) can be approximated by a parameterized function Vφ, where we learn
Vφ by approximately minimizing
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Eπθ

(
Vφ(st)−

T−1∑
τ=t

γ(τ−t)R(sτ+1, aτ , sτ )

)2

.

Finally, a policy gradient algorithm alternates between taking a step of stochastic gradient
ascent on J(θ) and taking multiple gradient steps on Vφ.

When using the approximate value function Vφ to reduce variance, the inner expression of
the gradient is typically called the advantage function and denoted A(st):

A(st) =
T−1∑
τ=t

[
γ(τ−t)R(sτ+1, aτ , sτ )

]
− Vφ(st).

For our value function, we use a feed-forward neural network with two hidden layers of 32
units each, and for our policy function we use a neural network with one 32-unit hidden layer.
The input to the former is the standard decoder inputs, which consist of the previously output
token and the weighted sum of the hidden representations

∑
i α

(t)
i zi. The input to the latter

additionally includes the original softmax layer input.

4.4 Action Frequency Regularization
Since our goals are to maximize translation accuracy while minimizing the number of times
a human would have to intervene, we introduce an action weight parameter wa, in order to
manage the trade-off between accuracy and human effort. To promote accuracy during training,
we have part of the reward at time step t be the negative cross entropy of the predictions at time
t. To incorporate the number of times that the system requests guidance, we include not only the
probability of requesting guidance, but also whether or not guidance was requested. In addition
to these, we incorporate a threshold parameter ρa, to ensure that the action probabilities do not
exceed the designated value. We thus use the following policy gradient objective:

Â(st) · log pθ(at) + wa ·max(0, p(at)− ρa) · at,

where ai is a binary scalar that takes value 1 if guidance was requested, and 0 otherwise,
and Â is the standardized advantage function.

That is,

Â(st) =
A(st)− µ(A(st))

σ(A(st))
.

5 Experiments

We evaluate our model on the task of translating from English to German. Specifically, we
first train a sequence-to-sequence model with attention, and then continue training using our
reinforcement learning model. The baseline neural machine translation model was trained for
508,387 iterations.

5.1 Datasets
We use the English-German WMT 2016 news task dataset, which contains 4.2 million training
sentence pairs. We apply BPE with 32,000 merge operations.

5.2 Architecture Details
For our base NMT system, we used Google’s large seq2seq system implementation (Britz et al.,
2017). For the encoder, we had 512 hidden units. For the decoder, both the GRU and the
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attention have 512 units. 1

5.3 Results
We evaluate our approach on all 3000 sentences of the WMT 2016 news-test2013 development
set. We first evaluate the baseline fully automatic NMT model, which yields a BLEU (Papineni
et al., 2002) score of 19.37. In comparison, our model which asks for guidance with a 100%
probability has a BLEU score of 32.51. Thus, requesting guidance indeed improves translation
quality for this model. However, requesting guidance for every word would require maximal
human effort, as the human translator would be required to click at each time step.

We also evaluate a variety of learned policies on the same data and using the same baseline
model. During policy learning, the parameters of the translation model are frozen, and only the
parameters of the policy and value functions are learned. Varying the action weight and thresh-
old values yields various guidance frequencies and corresponding BLEU scores. To determine
whether the learned policy is requesting guidance efficiently, for each trained policy we also
evaluate a random policy that asks for guidance with the same frequency as the reinforcement
learning policy (Figure 5.3). The learned policy was able to achieve a BLEU score of 27.25
with observed guidance of about 54%, which improved upon the random policy by almost 2
BLEU and upon the baseline model by about 8 BLEU.

Figure 1: Translation accuracy for a random policy (blue) and a learned policy (green), for
different guidance frequencies. More guidance provides higher accuracy. Across a range of
guidance frequencies, the learned policy outperforms a policy that makes the same number of
guidance requests, but at randomly chosen times.

6 Analysis

We compare the simulated clicks to the attention generated by the neural machine translator. In
order to compare them, we compare the optimal word attention location computed by our simu-
lator against the word with the largest weight according to the NMT system. This does provide
a problem if the NMT was attending primarily to more than a single object, but nevertheless
we believe this method of comparison may still provide useful intuition. In the figure below we

1For full specification see: https://github.com/google/seq2seq/blob/master/example_

configs/nmt_large.yml
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only include arrows for which the attended words differ. We note that using the simulated atten-
tion seems mostly intuitive with respect to where a human translator would click and corrects
some of the NMT system errors. In particular, it makes von point to of and zu point to counter.
However, there are also a few quirks. For example, it makes kanishe point to Republic and EOS
point to to.

Figure 2: Guided attention (solid) vs NMT attention (dashed)

7 Future work

Our experiments demonstrate that reinforcement learning is an effective framework for request-
ing human guidance in interactive machine translation. However, we can identify several open
questions that merit further investigation. First, we have focused on greedy decoding in this pa-
per, because it is not trivial to apply a more sophisticated search procedure on top of our method.
Developing an extension that incorporates beam search could improve performance. Second,
during baseline training, the attention mechanism sees soft attention over the entire sentence
as opposed to one hot attention over a single word, and the discrepancy between training and
testing may limit the performance of the system. In addition, this method assumes that the word
that gives the best predictive probability of the next target word is the same word that a human
would choose. Another related limitation with our system is that it assumes that the previous
system output is the same as the correct translation, and so the best next word to be translated
by the system is the same as that of the reference translation.

As our approach is intended to reduce human effort, we look forward to conducting hu-
man subject experiments in future work, to see whether the gains we witnessed in simulation
carry over to real-world conditions. One interesting direction that our method could provide is
investigating whether the behaviors of humans interacting with such a system may be the same
as those when interacting with other humans, and if not, to test in which ways human actions
might be similar and how they may diverge from expected behavior. Another extension to this
work would be incorporating the attention supervision into the main model. Currently, if asked
to translate the same sentence twice, the current framework would ask for the same attention
help twice, which seems inherently wasteful. Ideally, after getting the supervision, it would be
able to incorporate it into the model to reduce redundant queries.

8 Conclusion

We have demonstrated an approach to interactive machine translation that aims to limit the
amount of effort required by human translators while maintaining translation quality. We hope
that our method inspires further research into this area.
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Abstract
This paper reports on a comparative evaluation of phrase-based statistical machine translation
(PBSMT) and neural machine translation (NMT) for four language pairs, using the PET in-
terface to compare educational domain output from both systems using a variety of metrics,
including automatic evaluation as well as human rankings of adequacy and fluency, error-type
markup, and post-editing (technical and temporal) effort, performed by professional translators.
Our results show a preference for NMT in side-by-side ranking for all language pairs, texts, and
segment lengths. In addition, perceived fluency is improved and annotated errors are fewer in
the NMT output. Results are mixed for perceived adequacy and for errors of omission, ad-
dition, and mistranslation. Despite far fewer segments requiring post-editing, document-level
post-editing performance was not found to have significantly improved in NMT compared to
PBSMT. This evaluation was conducted as part of the TraMOOC project, which aims to create
a replicable semi-automated methodology for high-quality machine translation of educational
data.

1 Introduction

The industrial use of machine translation (MT) for production has become widespread since
statistical machine translation (SMT) established itself as the dominant approach to translating
texts automatically. Raw MT is now a viable solution for perishable content (Way, 2013) and
post-editing of MT is offered by over 80% of language service providers surveyed by Lommel
and DePalma (2016). In the years since the publication of Brown et al. (1993), an ecosystem of
tools has grown around PBSMT, including scripts and tools for pre-processing and alignment,
enabling incremental improvement in the quality of PBSMT output (Haddow et al., 2015).

More recently, the research community has become increasingly interested in the possi-
bilities of neural machine translation (Bahdanau et al., 2014; Cho et al., 2014) (NMT), which
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involves building a single neural network that maps aligned bilingual texts and, given input
to translate, is trained to “maximize the probability of a correct translation” (Bahdanau et al.,
2014) without external linguistic information. This interest is shared by many in the language
service industry, where there is a need for improved MT quality and better quality estimation to
“help reduce the frustrating aspects of post-editing” (Etchegoyhen et al., 2014). NMT results in
the latest shared tasks have quickly matched or surpassed those of PBSMT systems, despite the
many years of PBSMT development (Sennrich et al., 2016a; Bojar et al., 2016). Recent studies
have reported an increase in quality when comparing NMT with PBSMT using either automatic
metrics (Bahdanau et al., 2014; Jean et al., 2015), or small-scale human evaluations (Bentivogli
et al., 2016; Wu et al., 2016). While these initial experiments with NMT have shown impressive
results and promising potential, so far there have been a limited number of human evaluations
of NMT output.

This paper reports the results of a quantitative and qualitative comparative evaluation of
PBSMT and NMT carried out using automatic metrics and a small number of professional
translators, considering the translation of educational texts in four language pairs, i.e. from
English into German, Portuguese, Russian and Greek. It employs a variety of metrics, includ-
ing side-by-side ranking, rating for accuracy and fluency, error annotation, and measurements
of post-editing effort. This evaluation is part of the work for TraMOOC,1 a European-funded
project focused on the translation of MOOCs, which aims to create a replicable semi-automated
methodology for high-quality MT of educational data. As such, the MT engines tested are built
using generic and in-domain data from educational resources, as detailed in Section 3.1.1. The
remainder of this paper is organized as follows: In Section 2 we review previous work compar-
ing MT output using the statistical and neural approaches. We describe our MT systems and the
experimental methodology in Section 3, and the results of human and automatic evaluations in
Section 4. Finally, we draw the main conclusions of the study and outline promising avenues
for future work in Section 5.

2 Previous Work Comparing PBSMT and NMT

A number of papers have been published recently which compare specific aspects of PBSMT
and NMT. Bentivogli et al. (2016) asked five professional translators to carry out light post-
editing on 600 segments of English TED talks data translated into German. These comprised
120 segments each from one NMT and four PBSMT systems. Using HTER (Snover et al., 2006)
to estimate the fewest possible edits from pre- to post-edit, they found that technical post-editing
effort (in terms of the number of edits) when using NMT was reduced on average by 26%
when compared with the best-performing PBSMT system. NMT output showed substantially
fewer word order errors, notably with regard to verb placement (which is particularly difficult
when translating into German), and fewer lexical and morphological errors. Bentivogli et al.
(2016) concluded that NMT has “significantly pushed ahead the state of the art”, especially for
morphologically rich languages and language pairs that are likely to require substantial word
reordering.

Wu et al. (2016) used BLEU (Papineni et al., 2002) scores and human ranking of 500
Wikipedia segments that had been machine-translated from English into Spanish, French, Sim-
plified Chinese, and vice-versa. Results from this paper again show that the NMT system
strongly outperforms other approaches and improves translation quality for morphologically
rich languages, with human evaluation ratings that were closer to human translation than PB-
SMT. The authors noted that some additional ‘tweaks’ would be required before NMT would
be ready for real data, and Google NMT engines subsequently went live for the language pairs
tested shortly after this paper was published (Schuster et al., 2016). Junczys-Dowmunt et al.

1http://tramooc.eu
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(2016) also found BLEU score improvements in NMT when compared with PBSMT for as
many as 30 language pairs.

Results of the 2016 Workshop on Statistical Machine Translation (WMT16) (Bojar et al.,
2016) found that NMT systems were ranked above PBSMT and online systems for six of 12
language pairs for translation tasks. In addition, for the automatic post-editing task, neural
end-to-end systems were found to represent a “significant step forward” over a basic statistical
approach.

Toral and Sanchez-Cartagena (2017) compared NMT and PBSMT for nine language pairs
(English to Czech, German, Romanian, Russian and vice-versa, plus English to Finnish), with
engines trained for the news translation task at WMT16. BLEU scores were higher for NMT
output than PBSMT output for all language pairs, except for Russian-English and Romanian-
English. NMT and PBSMT outputs were found to be dissimilar, with a higher inter-system
variability between NMT systems. NMT systems appear to perform more reordering than PB-
SMT systems, resulting in more fluent translations (taking perplexity of MT outputs on neural
language models as a proxy for fluency). Toral and Sanchez-Cartagena (2017) found that the
tested NMT systems performed better than PBSMT for inflection and reordering errors in all
language pairs. However, using the chrF1 automatic evaluation metric (Popović, 2015), which
they argue is more suited to NMT, they found that PBSMT performed better than NMT for
segments longer than 40 words.

Castilho et al. (2017) also reported on three comparative studies of PBSMT and NMT,
discussing some of the preliminary results of the current study, highlighting some strengths
and weaknesses of NMT, and the danger of hyperbole in discussions of the potential of NMT.
Against this background, this paper attempts to shed more light on the emerging picture of the
comparison between PBSMT and NMT.

3 Experiments

We built and evaluated PBSMT and NMT systems for four translation directions: English to
German, Greek, Portuguese, and Russian. Evaluation was performed with automatic metrics,
as well as with professional translators, who performed side-by-side ranking, adequacy and
fluency rating, post-editing and error annotation based on a predefined taxonomy.

3.1 MT Systems

3.1.1 Training Data
The MT engines used in the TraMOOC project are trained on large amounts of data

Lang. DE EL PT RU
mixed domain 23.78 30.73 31.97 21.30
In-domain 0.27 0.14 0.58 2.31

Table 1: Training data size the EN→* translation
directions (number of sentence pairs, in millions).

from various sources: the training data
from the WMT shared translation tasks2

and OPUS (Tiedemann, 2012) as mixed
domain, and as in-domain training data we
use TED from WIT3 (Cettolo et al., 2012);
QCRI Educational Domain Corpus (QED)
(Abdelali et al., 2014); a corpus of Cours-
era MOOCs; and our own collection of ed-
ucational data. The amount of training data used is shown in Table 1.

3.1.2 Phrase-based SMT
The PBSMT used is Moses (Koehn et al., 2007), MGIZA (Gao and Vogel, 2008) is used to train
word alignments, and KenLM (Heafield, 2011) is used for LM training and scoring.

2http://www.statmt.org/wmt16/
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The MT model is a linear combination of various features, including standard Moses fea-
tures such as phrase translation probabilities, phrase and word penalty, and 5-gram LM with
modified Kneser-Ney smoothing (Kneser and Ney, 1995; Chen and Goodman, 1998), as well
as the following advanced features: a hierarchical lexicalized reordering model (Galley and
Manning, 2008); a 5-gram operation sequence model (Durrani et al., 2013); sparse features
indicating phrase pair frequency, phrase length, and sparse lexical features; and, for English-
Russian, we employ a transliteration model for unknown words (Durrani et al., 2014). Feature
weights are optimized to maximize BLEU with batch MIRA (Cherry and Foster, 2012) on an
in-domain tuning set that has been extracted (and held out) from the in-domain training data.

Adaptation to the MOOC domain is performed via three mechanisms: sparse domain in-
dicator features in the phrase table; linear interpolation of LMs with perplexity optimization on
the in-domain tuning set; and learning of feature weights on the in-domain tuning set.

3.1.3 Neural MT
The NMT systems are attentional encoder-decoder networks (Bahdanau et al., 2014), which we
trained with Nematus (Sennrich et al., 2017). We generally follow the settings used by Sennrich
et al. (2016a). We use word embeddings of size 500, and hidden layers of size 1024, minibatches
of size 80, and a maximum sentence length of 50. We train the models with Adadelta (Zeiler,
2012). The model is regularly validated via BLEU on a validation set, and we perform early
stopping for single models. Decoding is performed with beam search with a beam size of 12.

To enable open-vocabulary translation, words are segmented via byte-pair encoding (BPE)
(Sennrich et al., 2016c). For Portuguese, German, and Russian, the source and target sides of
the training set for learning BPE are combined to increase consistency in the segmentation of
the source and target text. For each language pair, we learn 89,500 merge operations.

For domain adaptation, we first train a model on all available training data, then fine-
tune the model by continued training on in-domain training data (Luong and Manning, 2015;
Sennrich et al., 2016b). Training is continued from the model that is trained on mixed-domain
data, with dropout and early stopping. The models are an ensemble of 4 neural networks with
the same architecture. We obtain the ensemble components by selecting the last 4 check-points
of the mixed-domain training run, and continuing training each on in-domain data.

3.2 The MOOCs Domain
As this evaluation was intended to identify the best-performing MT system for the TraMOOC
project, which focuses on high-quality MT for MOOCs, test sets were extracted from real
MOOC data. These data included explanatory texts, subtitles from video lectures, user-
generated content (UGC) from student forums or the comment sections of e-learning resources.
One of the test sets was UGC from a business development course and the other three were
transcribed subtitles from medical, physics, and social science courses. The UGC data was
often poorly formulated and contained frequent grammatical errors. The other texts presented
more standard grammar and syntax, but contained specialized terminology and, in the case of
the physics text, non-contextual variables and formulae.

3.3 Materials, Evaluators, and Methods
For the purposes of this study, four English-language datasets consisting of 250 segments each
(1K source sentences in total) were translated into German, Greek, Portuguese, and Russian
using our PBSMT and NMT engines. The evaluation methods included two conditions: i) side-
by-side ranking and ii) post-editing, assessment of adequacy and fluency, and error annotation.
Both conditions were assessed by professional translators. More specifically, the ranking tasks
consisted of only a subset (100 source segments) with their translations from PBSMT and NMT
which were randomized and were carried out by 3 experienced professional translators (4 of
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them in the case of Greek).The ranking was performed using Google forms.
For the second condition (ii), all the datasets (1K source sentences) were translated and

the MT output (from both NMT and PBSMT) was mixed in each dataset, and the tasks were
assigned in random order to the translators. The segments were presented sequentially, so as
to maintain as much context as possible. These tasks were carried out by 3 experienced pro-
fessional translators (2 in the case of English-German) using PET (Post-Editing Tool) (Aziz
et al., 2012) over a two-week period. Participants were sent the PET manual and given PET
installation instructions, a short description of the overall TraMOOC project and of the specific
tasks, and requested to (in the following order) i) post-edit the MT output to achieve publishable
quality in the final revised text, ii) rate fluency and adequacy (defined as the extent to which a
target segment is correct in the target language and reflects the meaning of the source segment)
on a four-point Likert scale for each segment, and iii) perform error annotation using a simple
taxonomy (more details are provided in Section 3.5). This set-up had the advantage that mea-
surements of two of Krings’ (2001) categories of post-editing effort could be drawn directly
from the PET logs, namely temporal effort (time spent post-editing) and technical effort (edit
count).

3.4 Automatic Evaluation
The BLEU, chrF3 and METEOR (Banerjee and Lavie, 2005) automatic evaluation metrics are
used in this study, with the caveat that two post-edits are used as references for each segment. It
should be noted that Popović et al. (2016) suggest that the use of a single post-edited reference
from the MT system under evaluation will tend to introduce bias. In addition, the HTER metric
(Snover et al., 2006) was used to estimate the fewest possible edits between pre- and post-edited
segments.

3.5 Human Evaluation
Ranking: The professional translators were asked to tick a box containing their preferred trans-
lation of an English source sentence for the side-by-side ranking task. PBSMT and NMT output
was mixed and presented to participants using Google Forms. Two to three segments, where
PBSMT and NMT output happened to be identical, were excised for each language pair, as the
judges did not have the option to indicate a tie. The remaining tasks were carried out within the
PET interface.

Adequacy and fluency rating: The judges were asked to rate adequacy in response to the
question ‘How much of the meaning expressed in the source fragment appears in the translation
fragment?’. To avoid centrality bias, a Likert scale of one to four was used, where one was
‘none of it’ and four was ‘all of it’. Similarly, fluency was rated on a one to four scale, where
one was ‘no fluency’ and four was ‘native’. Our expectation was that NMT would be rated
positively for fluency, with possible degradation for adequacy, especially for longer segments
(Cho et al., 2014; Neubig et al., 2015).

Post-editing and error annotation: Participants were asked to post-edit the MT segments
to publishable quality, and then to highlight issues found in the MT output based on a simple
error taxonomy comprising inflectional morphology, word order, omission, addition, and mis-
translation. Again, our expectation was that there would be fewer morphology and word order
errors with NMT, especially for short segments.

4 Results and Discussion

4.1 Automatic Evaluation
The automatic metric results using BLEU, METEOR, chrF3 and HTER are shown in Table 2.
In particular, the decrease in word order errors in NMT output (as may be seen in Section 4.3)
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shows an improvement in BLEU and METEOR scores, especially for some language pairs.
Table 2 shows that BLEU, METEOR and chrF3 scores considerably increase for German,

Greek and Russian with NMT when compared to the PBSMT scores. These results were sta-
tistically significant in a one-way ANOVA pairwise comparison (p<.05) (marked with †). For
Portuguese, moderate improvements can be observed, but no statistically significant differences
were found.

Lang. System BLEU METEOR chrF3 HTER
DE PBSMT 41.5 33.6 0.66 49.0

NMT 61.2 † 42.7 † 0.76 32.2
EL PBSMT 47.0 35.8 0.65 45.1

NMT 56.6 † 40.1 † 0.69 38.0
PT PBSMT 57.0 41.6 0.76 33.4

NMT 59.9 43.4 0.77 31.6
RU PBSMT 41.9 33.7 0.67 44.6

NMT 57.3 † 40.65 † 0.73 33.9

Table 2: Automatic Evaluation Results

Regarding the amount of PE
that was required, the HTER scores
show that more PE was performed
when using the output from the PB-
SMT system for German, Greek
and Russian. However, no sta-
tistically significant differences for
HTER scores were found. The
scores for chrF3 also show good
improvement for NMT over PB-
SMT for German and Russian, but
very similar results for Greek and
Portuguese.

4.2 Human Evaluation

Fluency and Adequacy: NMT was rated as more fluent than PBSMT for all language pairs.
Table 3 shows the mean ratings for Fluency and Adequacy of the target languages for both
PBSMT and NMT systems. Although no statistically significant differences were found, the
percentage of scores assigned a 3-4 fluency value (Near Native or Native) for German is 68%
for NMT as opposed to 54% for the PBSMT system, for Greek 75% and 65%, for Portuguese
80% and 74% , and for Russian 75% and 60%, respectively.

Lang. System Fluency Adequacy
DE PBSMT 2.60 2.85

NMT 2.95 2.79
EL PBSMT 2.86 3.44

NMT 3.08 3.46
PT PBSMT 3.15 3.73

NMT 3.22 3.79
RU PBSMT 2.70 2.98

NMT 3.08 3.12

Table 3: Mean for Fluency and Adequacy

When looking at the percentage of scores
assigned a 1-2 fluency value (No or Little
Fluency) for each MT system’s output, the
NMT systems appear to have fewer problems
when compared against the PBSMT systems
for all the languages (German: 46% PBSMT
vs. 32% NMT; Greek: 35% vs. 25%; Por-
tuguese: 26% vs. 21%; and Russian: 40% vs.
25%).

A typical example of improved output
for German NMT was the translation of the
segment ‘Would you send just 10 materials
that are the most suitable.’

PBSMT: Würden Sie nur 10 Materialien, die am besten geeignet sind.
NMT: Schicken Sie einfach 10 Materialien, die am besten geeignet sind.

The German PBSMT output left out an infinitive verb at the end of the segment (literally ‘Would
you [polite form] just 10 materials that are the most suitable.’), while NMT produced a correct
German translation, using the imperative verb form and retaining the correct register by using
the ‘Sie’ politeness marker.

For Portuguese, one example of improved fluency is the translation of the segment ‘I am
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just making sure that I understand this correctly.’

PBSMT: Estou só para ter a certeza que entendi corretamente.
NMT: Eu estou apenas me certificando de que eu entendo isso corretamente.

The PBSMT system translates ‘just’ as ‘só’ (which in Portuguese can mean ‘just’ but as it is
preceded by the verb ‘estar’, it implies the meaning ‘alone’/‘lonely’), conveying the misleading
meaning of ‘I’m alone to be sure if I understood correctly’. The NMT system translates ‘making
sure’ as ‘me certificando’, which is accurate with the word ‘just’ translated as ‘apenas’ or ‘só’.

One example for the Russian language is the translation of ‘I liked your presentation a
lot.’

PBSMT:Я любил свою презентацию много.
NMT: Мне очень понравилась ваша презентация.

While the NMT output is absolutely correct, the PBSMT system mistranslates the possessive
pronoun ‘your’ as ‘свою презентацию’, which means ‘my presentation’. It also translates
‘liked’ as ‘любил’, which means ‘loved’, and, finally, it also translates ‘a lot’ as ‘много’, which
translates back as ‘many’ (quantifying adjective).

For Greek, NMT also shows improved fluency for the translation of ‘What is the difference
between a financial analyst and technical analyst and business analyst?’

PBSMT: Ποια είναι η διαφορά μεταξύ ένας οικονομικός αναλυτής και τεχνική αναλύ-
τρια και οικονομικός αναλυτής·

NMT: Ποια είναι η διαφορά μεταξύ του οικονομικού αναλυτή και του τεχνικού
αναλυτή και του επιχειρηματικού αναλυτή·

The NMT output is both semantically accurate and grammatically correct: the terms ‘financial
analyst’, ‘technical analyst’ and ‘business analyst’ were rendered accurately in Greek, and, in
addition, the nouns correctly appear in genitive form and the generic masculine is used. The
PBSMT mistranslates the term ‘business analyst’ into ‘vοικονομικός αναλυτής΄ (i.e.‘financial
analyst’), and lacks fluency since the nouns are used in the nominative form and the gender
of the noun ‘technical analyst’ appears in the feminine form rather than in the correct generic
masculine form.

Regarding adequacy, however, results were overall less consistent (see Table 3) than those
for fluency, with higher mean scores for German PBSMT. While NMT output received the
highest mean ratings for all other language pairs, when considering 3-4 rankings (Most of It
and All of It) as well as 1-2 rankings (None of It and Little of It), English-German PBSMT was
ranked higher (73% against 66% for NMT), and English-Greek systems performed equally well
(89% of the sentences assessed as 3-4 in terms of adequacy). For Portuguese and Russian, the
NMT systems were ranked slightly higher when including 3-4 rankings, with PBSMT scoring
95% against 97% of NMT output in Portuguese, and for Russian the scores were 73% for
PBSMT against 78% for NMT. These results are also replicated when the distinction between
short and long sentences is made.

One example of adequacy for German where both MT systems committed errors can be
seen in:

EN: We begin our exploration today by looking at a particular ad that appeared in on
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American magazines in recent years.
PBSMT: Heute beginnen wir unsere Erforschung von einem bestimmten Ad anschaue, die

auf amerikanischen Zeitschriften erschienen in den letzten Jahren.
NMT: Wir beginnen unsere Forschung heute mit einer bestimmten Werbung, die in den

letzten Jahren in amerikanischen Zeitschriften veröffentlicht wurde.

The NMT output uses the noun ‘Forschung’, meaning ‘research’, rather than the correct ‘Er-
forschung’ as chosen by the PBSMT system. As a result, the participants rated this segment
poorly for adequacy, and actually substituted the word ‘Untersuchung’ for ‘exploration’. While
the PBSMT system chose the correct noun, there were other word order and lexical errors that
rendered the translation inadequate.

The following is an example of adequacy not being so consistent in translation into
Portuguese, but NMT system still performing better:

EN: What we’re going to need to do is, we’re going to find the initial stretch, excuse me,
the final stretch of the spring, the initial stretch of the spring, and subtract the squares.

PBSMT: O que vamos precisar fazer é, vamos encontrar o troço inicial, desculpe-me, o
último troço da Primavera, o troço inicial da Primavera, e subtrair os quadrados.

NMT: O que vamos precisar fazer é, vamos encontrar o limite inicial, desculpe-me, o
alongamento final da mola, o alongamento inicial da mola, e subtrair os quadrados.

PBSMT mistranslates the two main words of the sentence: ‘stretch’ (translates into ‘stuff’) and
‘spring’ (as the spring season, ‘primavera’), thus making the translation unintelligible. NMT
translates the term ‘stretch’ into two different ways (‘limite’ and ‘alongamento’), but the sen-
tence is still adequate and understandable.

For Russian, both MT systems also return errors for adequacy:

EN: We’ll be drawing heavily on the field of art history and how interpretation works in
that field.

PBSMT: Мы будем рисовать на области истории искусства и как интерпретации
работает в этой области.

NMT: Мы будем активно рисоваться на области художественной истории и
то, как интерпретация работает в этом поле.

Both systems translate the word ‘drawing’ as ‘draw a picture’. PBSMT, however, retrieves a
better translation for the remainder of the sentence, keeping ‘история искусства’ as a fixed
expression, while ‘художественной истории’ – chosen by the NMT system – is not natural
and the meaning is not clear. The translation of the word ‘field’ is also better in the PBSMT
output: ‘область’ is ‘field’ in the sense of area (of research/interest), while NMT translates as
‘поле’, i.e. a farm field or mathematical concept.

Finally for Greek, the NMT system seems to handle adequacy a bit better:

EN: So, what if a resident or student wants to opt out of doing abortions?
PBSMT: Οπότε, τι γίνεται αν ένας κάτοικος ή μαθητής θέλει να εξαιρεθούν από το

να κάνει εκτρώσεις·

NMT: Οπότε, τι γίνεται αν ένας κάτοικος ή φοιτητής θέλει να επιλέξει να κάνει
εκτρώσεις·

The PBSMT translation has problems both at the level of fluency and at the level of adequacy,
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while the NMT translation has problems only at the level of adequacy. In both the PBSMT and
the NMT translations the term ‘resident’ - which in this context refers to the North American
concept of ‘a medical graduate engaged in specialised practice under supervision in a hospital’-
is translated as `κάτοικος΄, that is, a person who lives somewhere permanently or on a long-term
basis. The PBSMT translates the word ‘student’ as `μαθητής΄, which refers to a pupil, when in
fact it should be translated as `φοιτητής΄ (university student). The PBSMT output also suffers at
the level of fluency due to the lack of subject to verb correspondence. In the NMT output, apart
from the mistranslation of the term ‘resident’, there is one major mistranslation involving the
phrasal verb ‘opt out’, as the NMT system translates it as ‘opt’, thus distorting completely the
meaning of the source sentence.

Polysemous terms appear to pose the main problem to the NMT system for Greek and
Russian languages, as it appears unable to discern semantic differences and choose the equiv-
alent which bears the same meaning as the ST one in the translation. This can pose significant
problems during the PE process, as translators may be misled by the inaccurate NMT render-
ing, and end up transferring the erroneous term in the final translation. For instance, for the
translation of ‘This is a magazine and a campaign called Got Milk where several famous fig-
ures appeared and they always asked the question, got milk?’, the term ‘figure’ is translated into
Greek by the PBSMT as `προσωπικότητα΄, while it is translated erroneously by the NMT system
as `φιγούρα΄, which is semantically wrong. Another example of polysemous term appears in the
Russian translation of ‘Is it free?’, where NMT translated as ‘Свободно ли?’, meaning ‘unoc-
cupied’ (‘is this seat/place free?’), while the PBSMT output includes a more frequent lexical
item, ‘Это бесплатно?’, which relates to price (‘free of charge’). For German and Portuguese,
however, the polysemous terms are either not handled well by neither systems, or the NMT
system provides a better translation.

This small selection of examples demonstrates the types of errors prevalent in the respec-
tive MT systems for each language pair studied, with the NMT output generally found to be
more fluent and comprehensible, although not without errors. The type and prevalence of these
errors throughout the test sets are detailed in Section 4.3.

4.3 Error Annotation

Category DE EL PT RU
PBSMT NMT PBSMT NMT PBSMT NMT PBSMT NMT

Inflectional Morphology 732 608 443 307 404 378 695 506
43% 49% 35% 28% 37% 37% 42% 38%

Word Order 382 180 303 208 216 181 197 122
23% 15% 24% 19% 20% 18% 12% 9%

Omission 126 84 48 57* 53 58* 194 163
7% 7% 4% 5% 5% 6% 12% 12%

Addition 46 39 24 31* 61 44 183 151
3% 3% 2% 3% 6% 4% 11% 11%

Mistranslation 401 323 459 483* 348 342 385 404*
24% 26% 36% 44% 32% 34*% 23% 30%

Total number of issues 1687 1234 1277 1086 1082 1003 1654 1346

Total number of “No Issues” 61 189 90 168 197 236 101 195
6% 18.9% 9% 16.8% 19.7% 23.6% 10% 19.5%

Table 4: Error annotation

Table 4 shows the results of the error annotation task for all target languages, the total
count of the errors and the percentage of errors of each category.3 The total number of issues

3The percentage of errors is the number of error per category divided by the total number of errors found.
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is greater for PBSMT than NMT for all language pairs. Moreover, the number of segments left
without error annotations (No issues) is greater for NMT across all language pairs (in bold).
NMT output was also found to contain fewer word order errors and fewer inflectional mor-
phology errors in all the target languages. For English-Greek, the PBSMT output contained
fewer errors of omission, addition, or mistranslation than NMT output (marked with an as-
terisk). For English-Portuguese, PBSMT showed fewer omissions and mistranslations, while
English-Russian PBSMT contained fewer mistranslations (also marked with an asterisk).

Interestingly, the percentage of errors found in PBSMT and NMT seems to follow a pat-
tern, with inflectional morphology, word order, and mistranslation being the most frequent prob-
lems found in both types of MT systems; with exception of the Russian language which presents
a bit more mixed results for omission and addition. For German, inflectional morphology errors
make up 49% of all the errors found in NMT output, a higher proportion than that found for
PBSMT (where it accounts for 43% of the errors).

We therefore observe that the specific types of errors displayed by NMT and PBSMT
output are to some extent dependent on the particular language pairs involved, and are clearly
influenced by the specific morphosyntactic features of the target language. This, in turn, has
implications for the post-editing effort involved in bringing the output to publishable quality,
which will inevitably vary from one target language to another, also keeping the text type and
the domain constant.

4.4 Ranking
For the ranking task, 400 English segments translated into Greek, and 300 segments trans-
lated into the other three target languages with NMT and PBSMT were compared side-by-side
by professional translators who participated in the evaluation, using Google Forms. Partici-
pants preferred NMT output across all language pairs, with a particularly marked preference

Evaluation preference for
PBSMT NMT

EN-DE 61 239
(300) 20.3% 79.7%

EN-EL 174 226
(400) 43.5% 56.5%

EN-PT 115 185
(300) 38.3% 61.7%

EN-RU 110 190
(300) 36.7% 63.3%

Table 5: Ranking

for English-German, as seen in Table 5. Inter-
annotator agreement shows moderate agreement
among the annotators (κ=0.60 for DE, κ=0.48 for EL,
κ=0.40 for PT and κ=0.61 for RU).

This preference was consistent across all text
types, with a 65% preference for NMT in the business
analysis forum content, 54% preference for transla-
tions of a medical training transcript, 52% for trans-
lations of a physics transcript, and 55% for transla-
tions of an advertising transcript. Using distinctions
from Pouget-Abadie et al. (2014), there was a 53%
preference for NMT for short segments (20 tokens or
fewer), and a 61% preference for NMT for long seg-
ments (over 20 tokens).

We believe that the text genres in which fluency is considered to be more important (i.e.
business and marketing) have scored much better for NMT, as opposed to medicine and physics
where a translator would tend to follow a more ‘literal’ translation, as it would typically be more
important to translate all the words in the source, so as to ensure that the exact same meaning
is preserved, sacrificing fluency if needed. We speculate that, for this reason, NMT may be
a good fit for the subtitling domain in general, especially for material that is not particularly
specialised.

4.5 Post-editing
Similarly to those segments left without error annotation, fewer NMT segments were considered
by participants to require editing during the MT post-editing task. Table 6 shows the number of
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segments changed and unchanged for all MT systems.

Lang. System Post-Edited Unchanged
DE PBSMT 940 60

NMT 813 187†
EL PBSMT 928 72

NMT 863 137
PT PBSMT 874 126

NMT 844 156
RU PBSMT 930 70

NMT 848 152

Table 6: Unchanged Segments (out of 1000)

For German, the difference between
the number of segments unchanged for
NMT when compared with PBSMT output
was very statistically significant in a one-
way ANOVA pairwise comparison (p<.05,
where M=.06, SE=.04) (marked with †).
Table 7 shows the mean and standard de-
viation for temporal post-editing effort and
Table 8 shows technical post-editing ef-
fort in the form of the average number of
keystrokes per segment.

Average throughput or temporal ef-
fort was only marginally improved for Ger-
man, Greek and Portuguese post-editing
with NMT, as may be seen at the segment level in Table 7 and expressed in words per sec-
ond in Table 9, while temporal effort for Russian was lower for PBSMT at the segment level.

Lang. System Mean Std. Deviation
DE PBSMT 74.8 21.12

NMT 72.8 17.16
EL PBSMT 77.7 1.85

NMT 70.4 8.86
PT PBSMT 57.7 14.23

NMT 55.19 15.58
RU PBSMT 104.6 3.62

NMT 105.6 21.29

Table 7: Temporal Post-Editing Effort
(secs/segment)

Technical post-editing effort was re-
duced for NMT in all language pairs us-
ing measures of actual keystrokes (Table
8) or the minimum number of edits re-
quired to go from pre- to post-edited text
(cf. the HTER scores in Table 2). Even
though these results were not statistically
significant, they suggest that those NMT
segments that were edited required more
cognitive effort than PBSMT segments.
Feedback from the participants indicated
that they found NMT errors more diffi-
cult to identify, whereas word order errors
and disfluencies requiring revision were
detected faster in PBSMT output.

Lang. System Mean Std. Deviation
DE PBSMT 5.8 1.84

NMT 3.9 1.63
EL PBSMT 13.9 0.16

NMT 12.5 1.31
PT PBSMT 3.8 1.68

NMT 3.6 1.91
RU PBSMT 7.5 4.99

NMT 7.2 5.80

Table 8: Technical Post-Editing Effort
(keystrokes/segment)

None of the participants reached the
average rate of professional throughput,
i.e. 0.39 words per second, found in
Moorkens and O’Brien (2015) (Table 9):
possibly with the exception of Portuguese,
the translators remained quite far from this
level of productivity, although it has to be
stressed that this is heavily influenced by
the type of text being translated as well as
by the degree of expertise of the transla-
tors, not only with the subject matter at
hand, but also, and crucially in the specific
case reported here, with PE. This particu-
lar result may have also been affected by
the unfamiliarity with the interface, the specialised nature of the texts and related research re-
quirements, or perhaps the fact that the rating and annotation tasks carried out after post-editing
disturbed the translators’ momentum. Productivity is normally achieved with continuous work
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and translators/editors often report that their productivity peaks half-way into their day.
As for the distinction between long and short segments regarding the decision as to whether

post-editing is required, the number of unchanged segments follows the same trend shown in
Table 6, where fewer NMT segments were considered to require editing. In terms of words
per second (see Table 10), the NMT system performs better with short sentences for German,
Greek and Portuguese when compared to the PBSMT system, with the Portuguese language
nearly reaching the average professional rate reported in Moorkens and O’Brien (2015).

Interestingly, the Russian output shows a slightly better WPS average for the PBSMT
system for short sentences. Regarding long sentences, Greek and Russian show fewer WPS for
NMT, but Portuguese and German show fewer WPS for the PBSMT system.

Similarly to the temporal effort results, the technical effort (keystrokes) results show that
when distinguishing long and short sentences, German, Greek, and Portuguese present lower
PE effort for NMT in short sentences, but the Russian output shows lower effort with PBSMT.
For the long sentences, Greek and Russian show lower technical effort for NMT, whereas Por-
tuguese and German show lower effort for the PBSMT system.

Lang. PBSMT NMT
DE 0.21 0.22
EL 0.22 0.24
PT 0.29 0.30
RU 0.14 0.14

Table 9: Words per Second (WPS)

Lang. PBSMT NMT
Short DE 0.21 0.26
(up to EL 0.24 0.27
20 tokens) PT 0.33 0.38

RU 0.15 0.13*

Long DE 0.21 0.20*
(greater EL 0.20 0.22
than PT 0.26 0.25*
20 tokens) RU 0.13 0.14

Table 10: WPS: long vs short segments

5 Conclusions

This paper has presented the results of a large-scale comparative evaluation between NMT
and PBSMT for four language pairs across several metrics, using complementary methods of
human evaluation in addition to state-of-the-art automatic evaluation metrics, thus expanding
the understanding of NMT’s strengths and weaknesses compared to those of PBSMT. The study,
that was conducted as part of the TraMOOC project, used translations of English educational
domain data from real-life MOOCs into German, Greek, Portuguese, and Russian. For these
language pairs and in this domain, we can conclude that fluency is improved and word order
errors are fewer when using NMT, confirming the findings of other recent studies (see Section
2). Fewer segments require post-editing when using NMT, especially due to the lower number
of morphological errors. There was, however, no clear improvement with regard to omission
and mistranslation errors when moving from PBSMT to NMT. There was also no great decrease
in PE effort, suggesting that NMT for production may not as yet offer more than an incremental
improvement in temporal PE effort.

While overall NMT produced better results for our domain, expectations are high for
NMT and financial pressures mean that the translation industry is eager for a leap forward in
MT quality (Moorkens, 2017). At this juncture, however, the neural paradigm is not a panacea.
Following on from this study, we intend to compare cognitive post-editing effort using average
pause ratio (Lacruz et al., 2012) and to evaluate the effects of added in-domain data on NMT
quality and domain specificity.
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Abstract
Methods to predict the effort needed to post-edit a given machine translation (MT) output are
seen as a promising direction to making MT more useful in the translation industry. Despite the
wide variety of approaches that have been proposed, with increasing complexity as regards their
number of features and parameters, the problem is far from solved. Focusing on post-editing
time as effort indicator, this paper takes a step back and analyses the performance of very
simple, easy to interpret one-parameter estimators that are based on general properties of the
data: (a) a weighted average of measured post-editing times in a training set, where weights
are an exponential function of edit distances between the new segment and those in training
data; (b) post-editing time as a linear function of the length of the segment; and (c) source and
target statistical language models. These simple estimators outperform strong baselines and
are surprisingly competitive compared to more complex estimators, which have many more
parameters and combine rich features. These results suggest that before blindly attempting
sophisticated machine learning approaches to build post-editing effort predictors, one should first
consider simple, intuitive and interpretable models, and only then incrementally improve them
by adding new features and gradually increasing their complexity. In a preliminary analysis,
simple linear combinations of estimators of types (b) and (c) do not seem to be able to improve
the performance of the single best estimator, which suggests that more complex, non-linear
models could indeed be beneficial when multiple indicators are used.

1 Introduction

Over the last decade, the interest of the industry in machine translation (MT) has grown, mainly
as a consequence of high demand and improvements in translation quality. Modern MT systems
have proven to lead to productivity gains (Plitt and Masselot, 2010; Guerberof Arenas, 2009)
when used to generate draft translations that are then post-edited (corrected) before publishing
(Krings and Koby, 2001; O’Brien and Simard, 2014). However, not all the translations produced
by MT systems are worth post-editing. In some cases, it would be faster to translate them
from scratch. As a result, a strong focus has been put into developing methods for estimating
the quality of machine-translated sentences (Blatz et al., 2004; Specia et al., 2009) to identify
those translations that may harm productivity if provided to post-editors. Several methods are
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proposed every year and compared in the framework of the WMT series of Workshops on
Machine Translation.1

Most approaches to MT quality estimation (QE) work at the sentence level, although there
are also approaches that try to estimate the quality at the word or document levels. Sentence-level
QE models predict translation quality in terms of post-editing (PE) time, number of edits needed,
and other related metrics (Specia, 2011; Bojar et al., 2014). This paper focuses on sentence-level
MT QE and measures quality in terms of PE time. This setting has the important advantage
that the time predicted for each machine-translated sentence can be directly used to budget a
translation job.

As will be discussed below, existing PE time estimators use many parameters and combine
rich features extracted from source sentences and their raw MT output, often with the help of
one or more pseudo-references obtained using additional MT systems. They are, however, still
far from producing human-like predictions (with Pearson correlations between predicted and
human effort metrics plateauing around 0.65, (Bojar et al., 2013, 2014)). To try to understand
the problem better, we explore the use of three types of very simple, one-parameter, black-box
PE time estimators: (a) a weighted average of PE times in the training set, where weights
are an exponential function of edit distances computed between the current sentence (source
or raw MT) and training sentences (source or raw MT), so that the contribution of nearest
examples is more important; (b) a simple model that learns a unit PE time, either per character
or per word, and multiplies it by the length of the current sentence (source or raw MT); and (c)
logarithmic probabilities obtained by applying a statistical language model of the source or the
target language respectively to the source or raw MT.2

The results show that some of these very simple models outperform not only rather strong
baselines, but also some complex, multi-parameter estimators participating in the WMT13 (Bojar
et al., 2013) and WMT14 (Bojar et al., 2014) PE time estimation contests. Results can be taken
as an indication that one should take a step back and first analyse simple models with intuitive
interpretations, to only then carefully and gradually increase their complexity, before blindly
attempting sophisticated machine learning approaches. In a preliminary analysis, simple linear
combinations of estimators of types (b) and (c) above does not seem to be able to improve the
performance of the single best estimator, which may be taken as an indication that more complex,
non-linear models should be considered when multiple indicators are used.

2 Settings and models

2.1 Corpora

We have conducted experiments using the data sets for English-to-Spanish (en→es) translation,
which are publicly available as part of the quality estimation shared Task 1.3 of WMT133

(Bojar et al., 2013) and WMT144 (Bojar et al., 2014); Table 1 describes these data sets. For
the experiments in this paper the corpora were pre-processed using the vanilla word tokenizer
available in the Python NLTK package (Bird et al., 2009).

2.2 Notation and evaluation

The training data consists of a set of N triplets {(si,MT(si), ti)}Ni=1 where si is a source
sentence, MT(si) its raw MT output, and ti the time taken to post-edit MT(si) into an adequate

1Last edition: http://www.statmt.org/wmt17/quality-estimation-task.html
2Language model features have already been proven to be the single best predictors in previous work, see e.g. (Felice

and Specia, 2012; Shah et al., 2015).
3http://www.statmt.org/wmt13/quality-estimation-task.html
4http://www.statmt.org/wmt14/quality-estimation-task.html
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Translation No. of segments
direction Training Test

WMT13 en→es 803 284
WMT14 en→es 650 208

Table 1: Translation direction and number of training and test instances for the corpora used in the
experiments.

translation of si. The goal is to predict the PE time for a new set of M source sentences and their
translations, {(sj ,MT(sj))}Mj=1.

As in the WMT13 and WMT14 contests, performance will be measured over the test set as
the mean absolute error (MAE) of the prediction t̂j , that is,

MAE =
1

M

M∑
j=1

|t̂j − tj |.

In addition to this, Pearson’s correlation r between the predicted and measured times will also
be reported as a secondary comparison metric.

The best parameter for each model will be determined through minimization of the MAE
over the training set, as will be explained in the next section.

2.3 Models
In what follows we describe the three one-parameter models we experimented with in order to
predict PE time.

2.3.1 Weighted-average model (Avg)
This model estimates the PE time needed to turn MT(sj) into an adequate translation of sj as
the weighted average

Avgu(α, xj) =
N∑
i=1

w(α, xi, xj) ti,

controlled by a single parameter α, whose weights w(α, xi, xj) depend on edit distances through

w(α, xi, xj) = e−αEDu(xi,xj)/

N∑
i=1

e−αEDu(xi,xj),

where EDu(xi, xj) is the edit distance between xi and xj , u is the unit used to compute it, either
characters (u = c) or words (u = w), and xi (resp. xj) is either the source sentence si (resp. sj)
or its machine translation MT(si) (resp. MT(sj)). For positive values of α, the contribution
w(α, xi, xj) of ti diminishes with the distance between either the source sentences or between
their raw machine translations. In particular:

• When α = 0, Avgu(0, xj) = 1
N

∑N
i=1 ti for all j, that is, the arithmetic average of

measured PE times; we will refer to this as the naïve zero-parameter average;

• When α → +∞, the ti corresponding to the minimum ED(xi, xj), that is, the nearest
neighbour, is selected. In what follows, this predictor will be referred to as NNu(xj).

It is expected that a careful choice of α in [0,+∞) will give a better estimate by assigning
a higher weight to closer examples. The weighted average effectively acts as a “soft nearest-
neighbour” predictor.
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To find the optimum value of α, the training corpus is randomly split in two sets: 80% of the
samples are used to compute the edit distances and the remaining 20% are used as a development
set.

The idea behind the weighted-average model bears some resemblance to the work by
Béchara et al. (2016), where a semantic textual similarity (between the source sentences) is used
to select a close example: instead of predicting time, Béchara et al. (2016) predict the BLEU
score for sentences that do not have a reference translation available, using as reference that
for the close example. Note the weighted-average model is clearly a black-box model, as it
does have access to the inner workings of the MT system whose quality is being predicted. It is
also an example-based model that computes a prediction for the current segment by looking up
measured times for existing segments in a training set.

2.3.2 Models based on the PE time per segment length unit (TLen)
These very simple, one-parameter estimators predict the PE time tj as

TLenu(a, xj) = a lenu(xj),

where xj is a source sentence sj , or its machine translation MT(sj), and lenu(xj) is the length
of xj in characters (u = c) or words (u = w). Note that the coefficient a, which is obtained
by directly minimizing the MAE over the whole training corpus, has an easy interpretation in
seconds per character or seconds per word, respectively. Again, this is a black-box model, which,
in addition, only looks at one property of the source or machine-translated segment: its length.
When xj = sj , it simply predicts that PE time grows linearly with the source sentence. When
xj = MT(sj), the estimate is similar if one assumes that target-segment length grows linearly
with source-segment length. Note, however, that this predictor pays very little attention to the
actual post-editability of the translation:

• Any MT output having the same length would have the same post-editing time, regardless
of the actual target words.

• Truncated or abnormally short MT outputs would be consistently —and often incorrectly—
estimated to be easier to post-edit.

These models are therefore expected to be very limited predictors of PE time.

2.3.3 Statistical language models
Source-language (SLM) and target-language models (TLM), trained on a subset of the WMT13
translation task data5 (an interpolated combination of Europarl and News Commentary data)
were used to compute the logarithm of the probability of sj and MT(sj), respectively. This
is then multiplied by a coefficient a which is also optimized to minimize MAE on the whole
training set. Language models are common indicators used in QE but also have important
limitations as PE time predictors:

• A TLM basically measures the fluency of the translation (Specia et al., 2013, p. 80), and
would estimate more fluent translations as easier to post-edit, regardless of their actual
semantic relationship to the source sentence.

• A SLM would in contrast measure the complexity of the translation (Specia et al., 2013,
p. 80), or, if the language model was trained on texts similar to those on which the MT
system was trained, its expectedness. Nevertheless, its predictive power may be limited
when applied to a system that was not trained on similar data (or to a rule-based system).

5http://www.statmt.org/wmt13/translation-task.html
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It is however worth mentioning that language models are amongst the best performing
features for sentence-level MT QE (Felice and Specia, 2012; Shah et al., 2015) and are therefore
included in most models submitted to the WMT QE shared tasks.

3 Results and discussion

3.1 Performance of one-parameter predictors
Tables 2 and 3 summarize the results for the one-parameter models, placing them in the context
of the results obtained by other WMT13 and WMT14 participants. The performance of the
zero-parameter naïve average, that is, the one obtained using for all test segments the average
time in the training set as a fixed estimate, and the four nearest-neighbour estimates NNu(xj)
(see Section 2.3.1) are also provided for completeness. The main metric used in the discussion
is MAE, the official metric in WMT13 and WMT14. Pearson correlations, also provided,
roughly follow the same trend, and their comparison would lead to similar conclusions (but see
Section 3.1.3 for a more detailed discussion).

3.1.1 WMT13 results
When ordering results by MAE, as in (Bojar et al., 2013), the one-parameter models (Avg,
TLen, SLM and TLM) outperform at least 2 of the 14 participants, with TLen models actually
outperforming 8 of them and the TLM outperforming 12 of them. The baseline system (Baseline
bb17 SVR), using support vector regression and a well-known set of 17 black-box features
(Specia et al., 2013) also outperforms 8 of the 14 participant models. It is worth mentioning
that language models are also included as features in this baseline set; that is, the baseline
system is a superset of the single-parameter models using LM features. Nevertheless, the TLM
outperforms the baseline by a rather large margin. This result in particular may reveal problems
not only present in the baseline but also in other participating submissions such as (a) additional
features adding noise that the learning algorithm could not adequately handle, (b) the regression
architecture used (for instance, support vector regression in the case of the baseline) not being
adequate, (c) optimization not being good enough (for instance, due to an incorrect choice of
hyperparameters or to incomplete convergence), or (d) over-fitting to a rather small training
set. All these reasons are in principle possible and worth a closer examination. One of the
participating systems is even outperformed by the naïve-average zero-parameter estimate, and
two of them by one of the (also parameterless) nearest-neighbour estimates.

In general terms, computationally simpler (linear) TLen models perform better than the
more complex (sum of exponentials containing edit distances) Avg models, while the outstanding
performance of TLM and SLM may be explained by the fact that they were trained on the same
data as the system whose quality was estimated — therefore, in this last case, the black-box
assumption would not hold entirely.

3.1.2 WMT14 results
When ordering results by MAE, as in (Bojar et al., 2014), one-parameter models have a more
modest performance in this dataset, beating only 3 out of the 10 submissions: one of them
(FBK-UPV-UEDIN/NOWP), which uses hundreds of features obtained from the best 100,000
translations produced by a purposely-trained statistical MT system; another one, the baseline, a
rather strong model (17 features), equivalent to the WMT13 baseline. Contrary to what happened
for WMT13, character-level Avg models seem to perform slightly better than the TLen model
and the SLM and TLM models; these language models were trained on the same data as for
WMT13, whereas the MT systems evaluated in WMT14 were not. All zero-parameter models
(naïve average, nearest-neighbour) rank below all participants.

We note that the performance of the official baseline system (Baseline bb17 SVR) is
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particularly poor on this data set. The reason for that were the ranges used for the grid search
to optimize the hyperparameters of the support vector machine model, which were different
from those used in the WMT13 model. If the same ranges are used, the baseline reaches a MAE
of 17.65, which would place it above all of the one-parameter models and above two of the
participating systems. This issue shows further evidence that more complex models need to be
carefully crafted, with special attention dedicated to their hyperparameters.

3.1.3 Analysis
How can length be such a reasonable estimator? In both datasets, length-based TLenu(xj)
estimators show a rather competitive performance, in spite of the obvious limitations discussed
in Section 2.3.2. This may be due to the fact that the output of a single MT system was post-
edited and, therefore MT quality and, consequently, the post-editing effort across the segments
produced by the MT systems is quite stable, effectively yielding a roughly constant per-word or
per-character post-editing time and therefore making length a reasonable estimator in this case.6

It would therefore be reasonable to expect performance to have been clearly worse if output from
at least two MT systems with very different levels of quality had been post-edited.

Pearson correlations between predictions. In addition to the Pearson correlation with the test
set, we have computed the Pearson correlation coefficient between the predictions of participating
submissions —which are available at the WMT137 and WMT148 websites— and our best one-
parameter TLen, Avg, and TLM models. In general terms, systems showing a good correlation
with the one-parameter models happen to perform similarly, an indication that their predictions
are very similar for test sentences. There are, however, interesting exceptions. An example
of moderate correlation among predictors but similar performance is the SHEF FS submission
to WMT13, which has correlation coefficient with Avgc(α = 0.256,MT(sj)) of 0.67 and
an absolute difference in MAE of only 0.70. This may point at a certain complementarity
between the two predictors, which seem to predict differently for many test sentences in spite
of similar MAE performance. Another remarkable exception is the LIMSI elastic submission
to WMT13, which correlates reasonably well with TLenw(a = 3.226,MT(sj)) (r = 0.74),
Avgc(α = 0.256,MT(sj)) (r = 0.75), and specially TLM(a = −1.421,MT(sj)) (r = 0.85)
but performs considerably worse (the absolute differences in MAE are 18.6, 14.0, and 21.8
respectively). As we discuss in what follows, this could be an issue related to inadequate scaling
of predictions.

Correlation and MAE leading to different system rankings: A scaling study. There are
cases in which using the Pearson correlation obtained by participants does not lead to the
same system ranking as that obtained by the official MAE-based ranking. One such a case
is the LIMSI elastic submission, which has a Pearson correlation in the range of participants
getting much lower MAE. Another interesting case is that of FBK-UPV-UEDIN/WP, FBK-
UPV UEDIN/NOWP and RTM-DCU/RTM-RR in WMT14. Again, their Pearson correlation
coefficients are clearly higher than those of other participants having similar MAE.

Discrepancies between MAE and correlation coefficients may easily be explained in terms
of scaling; in fact, by simply scaling the outputs of all participating predictors one can obtain
better MAE results, as shown in tables 2 and 3.

6The actual time per unit, both in the training set and the test set, indeed shows a rather peaked distribution density
around the average values used by the length predictors.

7http://www.statmt.org/wmt13/quality_estimation_data/QE_WMT13_submissions_

task1.3_sentence.zip
8http://www.statmt.org/wmt14/quality_estimation_data/QE_WMT14_submissions_

task1.3_sentence.zip
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System ID MAE r Scaling Scaled MAE ∆MAE
FBK-UEDIN Extra 47.5 0.65 0.909 46.5 1.0
FBK-UEDIN Rand-SVR 47.9 0.66 1.062 47.6 0.3
TLM(a = −1.421,MT(sj)) 48.8 0.65
CNGL SVR 49.2 0.67 1.164 47.6 1.6
CNGL SVRPLS 49.6 0.68 1.104 48.9 0.7
SLM(a = −1.249, sj)) 49.7 0.64
CMU slim 51.6 0.63 0.902 50.6 1.0
Baseline bb17 SVR 51.9 0.61 1.103 51.4 0.5
TLenw(a = 3.226,MT(sj)) 52.0 0.57
TLenw(a = 3.468, sj) 52.3 0.59
DFKI linear6 52.4 0.64 0.857 50.7 1.7
TLenc(a = 0.664, sj) 52.4 0.57
TLenc(a = 0.601,MT(sj)) 52.5 0.57
CMU full 53.6 0.58 1.006 53.6 0.0
DFKI pls8 53.6 0.59 0.874 52.1 1.5
TCD-DCU-CNGL SVM2 55.8 0.47 1.082 55.4 0.4
TCD-DCU-CNGL SVM1 55.9 0.48 1.083 55.5 0.4
SHEF FS 55.9 0.42 0.870 54.7 1.2
Avgc(α = 0.256,MT(sj)) 56.6 0.53
Avgc(α = 0.386, sj) 57.2 0.56
Avgw(α = 1.079,MT(sj)) 61.1 0.52
Avgw(α = 0.612, sj) 61.7 0.59
NNc(sj) 62.5 0.41
SHEF FS-AL 64.6 0.57 1.054 64.4 0.2
NNc(MT(sj)) 67.8 0.35
Naïve zero-parameter average 68.1 —
NNw(sj) 70.1 0.37
LIMSI elastic 70.6 0.58 1.804 54.4 26.2
NNw(MT(sj)) 71.3 0.30

Table 2: Mean absolute error (MAE) and Pearson correlation coefficient (r) for one-parameter (Avg(α, xj),
TLen(a, xj), SLM(a, sj) and TLM(a,MT(sj))) and zero-parameter (naïve average, NNu(xj)) quality
estimators (all shaded) in the context of WMT13 submissions. For WMT13 participants, the results of
oracle scaling (see text) are also given: scaling factor, new MAE and variation of MAE.
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System ID MAE r Scaling Scaled MAE ∆MAE
RTM-DCU/RTM-SVR 16.77 0.63 0.863 16.29 0.48
MULTILIZER/MLZ2 17.07 0.64 0.851 16.22 0.75
SHEFF-lite 17.13 0.61 0.949 17.05 0.08
MULTILIZER/MLZ1 17.31 0.65 0.835 16.43 0.88
SHEFF-lite/sparse 17.42 0.61 0.963 17.38 0.04
FBK-UPV-UEDIN/WP 17.48 0.66 0.812 15.76 1.72
RTM-DCU/RTM-RR 17.50 0.64 0.814 16.16 1.34
Avgc(α = 0.217, sj) 17.69 0.58
Avgc(α = 0.202,MT(sj)) 17.94 0.57
TLM(a = −0.538,MT(sj)) 18.38 0.57
TLenc(a = 0.281,MT(sj)) 18.55 0.58
SLM(a = −0.521, sj) 18.59 0.55
TLenw(a = 1.519,MT (sj)) 18.66 0.55
FBK-UPV-UEDIN/NOWP 18.69 0.62 0.758 16.72 1.97
Avgw(α = 0.794,MT(sj)) 18.75 0.54
TLenc(a = 0.327, sj) 18.80 0.59
TLenw(a = 1.616, sj) 18.84 0.56
Avgw(α = 0.61, sj) 18.86 0.56
USHEFF 21.48 0.57 0.907 21.25 0.23
Baseline bb17 SVR 21.49 0.54 0.906 21.25 0.24
NNc(sj) 21.53 0.37
NNw(MT(sj)) 21.80 0.36
Naïve zero-parameter average 21.93 —
NNw(sj) 22.14 0.31
NNc(MT(sj)) 22.65 0.32

Table 3: Mean absolute error (MAE) and Pearson correlation coefficient (r) for one-parameter (Avg(α, xj),
TLen(a, xj), SLM(a, sj) and TLM(a,MT(sj))) and zero-parameter (naïve average, NNu(xj)) black-
box quality estimators (all shaded) in the context of WMT14 submissions. For WMT14 participants, the
results of oracle scaling (see text) are also given: scaling factor, new MAE and variation of MAE.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 139



In the case of the LIMSI elastic submission to WMT13, the scaling factor of 1.804 leads
to the best possible test-set MAE of 54.4, which is much better and closer to that of other
systems having similar Pearson’s coefficients. Note that this is an oracle scaling, since the gold-
standard time measurements for the test set are used to obtain the best scaling factor; however,
it is reasonable to expect that linear scaling on the training set would also have improved
this predictor. For the remaining participants in WMT13, oracle scaling factors in the range
[0.857, 1.164] lead to small changes in MAE between 0.3 and 1.7 seconds, that is, around 0.6%
to 3.4%. These changes would be expected to be even smaller or even negligible if scaling had
been learned on the training set.

The scaling picture for WMT14 is also interesting (see Table 3). Oracle scaling factors
in the range [0.758, 0.949] lead to improvements in MAE in the range [0.24 s, 1.97 s], which
are sometimes as large as 12%. The improvements are particularly substantial for FBK-UPV-
UEDIN/NOWP (–1.97 s, scaling 0.758), FBK-UPV-UEDIN/WP (–1.72 s, scaling 0.812) and
RTM-DCU/RTM-RR (–1.34 s, scaling 0.814), which would explain the discrepancies between
Pearson correlation and MAE mentioned above. It is reasonable to expect that a scaling factor
obtained using the training set would have also made a difference in the test-set MAE in these
three cases.

Approximating complex predictors with just one parameter: Finally, it is worth noting
that some systems showing a good Pearson correlation with the models presented in this paper
use very many features and parameters. In particular, the Pearson correlation coefficient of the
RTM-DCU/RTM-SVR submission to WMT14 with TLenc(a = 0.281,MT(sj)) is 0.90 (the
absolute difference in MAE is 1.78) and, while the latter has one feature and a single parameter,
the former uses hundreds of features and several other sources of information. Oracle scaling of
RTM-DCU/RTM-SVR slightly improves its test-set MAE to 16.23 s.

3.2 Performance of few-parameter predictors

In view of the surprisingly competitive results obtained with some of the single-parameter models
presented here, one would immediately ask the following question: would performance improve
further by using linear combinations of them?

We take the following six linear predicting features: the length-based TLenc(sj),
TLenw(sj), TLenc(MT(sj)), and TLenc(MT(sj)), and the two statistical-language models
SLM and TLM. For the study, we leave aside the weighted-average features as they are com-
putationally more intensive to use and to train, do not have a linear form, and need a separate
development set to be trained.

All 26−1 = 63 possible subsets of these 6 features are studied.9 We take linear combinations
of each subset and use the multidimensional downhill simplex algorithm of Nelder and Mead
(1965) as implemented in the Python library scipy to search the coefficients that minimize the
training set MAE. For more than two parameters, the result of the minimization heavily depends
on the starting point (this is expected in view of the strong collinearity, for instance, between
length features). Therefore, and to ensure the best possible training set MAE, for each subset,
50 searches are performed with starting parameters randomly sampled from the zero-average,
unit-variance normal distribution N (0, 1). The results are shown in Table 4.

As expected, the lowest training set MAE is found when all six features are used; however,
the resulting test set MAE does not improve the results obtained with the best single-parameter
predictor: 48.8 s for WMT13 (same as TLM alone) and 18.39 s for WMT14 (almost the same as
TLM alone). Conversely, some combinations having worse training-set MAE get better test set
MAE results, such as 48.22 s for a mixture of just TLenw(sj) and TLM(MT(sj)) in WMT13,

9Exhaustive search in feature spaces is sometimes performed in QE, e.g. (Scarton et al., 2015).
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Dataset Features Best combination Train
MAE

Test
MAE

WMT13

1 TLM 41.3 48.8
2 TLenw(si) + TLM 41.0 48.2
3 TLenw(si)+TLenc(MT(si))+TLM 40.7 49.1
4 TLenw(si)+TLenc(MT(si))+SLM+

TLM
40.6 48.6

5 TLenw(si) + TLenc(MT(si)) +
TLenw(MT(si)) + SLM + TLM

40.5 48.8

6 All 6 40.5 48.8

WMT14

1 SLM 15.92 18.59
2 TLenc(MT(si)) + SLM 15.60 18.44
3 TLenc(MT(si)) + TLenc(MT(si)) +

SLM
15.57 18.51

4 TLenc(si) + TLenc(MT(si)) +
TLenc(MT(si)) + SLM

15.53 18.40

5 TLenc(si) + TLenw(si) +
TLenc(MT(si)) + TLenc(MT(si)) +
SLM

15.53 18.40

6 All 6 15.53 18.39

Table 4: Post-editing time prediction using a small number of linear features: number of features, best
combination, training-set MAE, and test-set MAE.

or 18.2 s for a mixture of TLenw(sj), TLenc(MT(sj)) and TLM(MT(sj)) for WMT14. These
results may be a possible indication of over-fitting or a limitation of a simple linear regressor.

3.3 Budgeting translation jobs

An interesting use of PE time predictors is budgeting a PE job, when post-editors are paid by the
hour. Given a new translation job, an estimate of time to complete that job may easily be obtained
by summing up the predicted PE time over all segments. This is a very practical application of
QE.

Disregarding the actual hourly rate (a constant factor), a good estimate of the usefulness for
budgeting may be given by studying the Pearson correlation between the total time predicted for
a job by a certain estimator and the actual total time for that job.

To simulate that, we repeatedly and randomly extract PE jobs {(sj ,MT(sj), tj)}nj=1 of
n = 100 sentences from each of the test sets without replacement. Over each one of these
sets, we compute the Pearson correlation between the predicted total time and the actual total
measured time. The actual regression coefficients obtained vary with the number of random jobs,
but their values for job sizes of 0.4, 0.8, 1.0, and 2.0 times the size of the test set and for a fixed
number of 1000 jobs show consistent relative trends. The results for a number of jobs equal to
the number of segments in the test set are shown in Table 5.

As can be seen, the Pearson correlation reported for the best single-parameter predictors is
almost the same as that for the winning system in WMT13, and slightly worse in WMT14. This
would suggest that, at least for these datasets, simple predictors could be used instead of very
complex predictors having a large number of features and parameters with a very small loss in
budgeting accuracy.
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Dataset Predictor r

WMT13

FBK-UEDIN Extra (winner) 0.867
TLM(MT(sj)) 0.856
SLM(sj) 0.854
TLenw(MT(sj)) 0.856
Avgc(MT(sj)) 0.806
Baseline 0.849

WMT14

RTM-DCU/RTM-SVR (winner) 0.860
Avgc(sj) 0.821
TLM(MT(sj)) 0.828
TLenc(MT(sj)) 0.827
SLM(sj) 0.819
Baseline 0.730

Table 5: Budgeting Pearson correlation coefficients for selected PE time predictors, computed for a number
of random jobs equal to the number of segments in the test set.

4 Concluding remarks

The results obtained by very simple, one-parameter MT QE models happen to be surprisingly
competitive with those obtained by complex QE models using strong learning algorithms, tens,
hundreds or thousands of features, and, sometimes, additional resources such as existing, custom-
trained, or external MT systems. The findings in this study lead us to make the following
recommendations for researchers in MT QE:

• First, look at what can be done with very simple models before using a sledgehammer
to crack nuts, in order to get an idea of the performance one could obtain and hopefully
improve. As some of the features used in the simple models proposed here are usually
part of participants’ complex models, the modest performance they obtain may be due to
noise introduced by new features that could not be filtered out by the regressors (probably
as a result of a non-optimal training process), to learning problems such as over-fitting
to the training set, to non-optimal hyper-parameter choice, to incomplete convergence, or
to the shortcomings of the regressors used (as revealed by the oracle scaling described in
Section 3.1.3); the actual reasons are probably worth a closer analysis.
• Then, incrementally explore more complex models; linear combinations of a few carefully

selected features do not seem to help much; therefore, one should probably consider simple
non-linear models. The results of this analysis may be expected to shed some light on the
problem.

Finally, a better understanding of the contribution of each feature to the QE models using them
could open the door to using, in real-life QE scenarios, feasible and computationally simpler
predictors.
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Abstract
This study investigates the coordination of reading (input) and writing (output) activities in
from-scratch translation and post-editing. We segment logged eye movements and keylogging
data into minimal units of reading and writing activity and model the process of post-editing
and from-scratch translation as a Markov model. We show that the time translators and post-
editors spend on source or target text reading predicts with a high degree of accuracy how
likely it is that they engage in successive typing. We further show that the typing probability
is also conditioned by the degree to which source and target text share semantic and syntactic
properties. The minimal cognitive Markov model describes very basic factors which play a
role in the processes occurring between input (reading) and output (writing) during translation.

1 Introduction

We build a cognitive model of the translation process (from-scratch translation and post-editing)
which aims at predicting where translation problems occur. We ground the model in transla-
tion activity data that consists of keystrokes and gaze data that was captured during translation
sessions. We decompose the translation process into minimal cycles of iterative reading and
writing. We assume that the typing activities represent the solution to a translation problem that
emerged during the preceding reading event. We show that the complexity (i.e. non-literality)
of the produced translation as well as the duration and distribution of gaze activities on the
source and target texts has an effect on the probability of a successive typing event.

Schaeffer et al. (2016); Hvelplund (2016); Carl et al. (2016); Läubli and Germann (2016)
describe methods to decompose the stream of eye movements and keystrokes into sequences of
minimal activity units. In this paper we relate the duration of activity units with properties of
the translation product — the degree of translation literality — to predict the probability when
post-editors and translators will type after reading either the source (henceforth ST) or the target
text (henceforth TT).

Carl et al. (2016) show that a measure of translation literality has a great predictive power
for behavioral observations in the translation process. According to this definition, a translation
is literal if:

1. Word order is identical in the ST and TT

2. ST and TT items correspond one-to-one
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3. Each ST word has only one possible translated form in a given context

A translations which completely fulfills all three criteria is an absolutely literal transla-
tions. A literal translation consists of the same number of ST and TT tokens where each TT
token corresponds to exactly one ST token, and tokens in both texts are ordered in the same
way. A change in word order or a situation in which one ST word is aligned to more than one
TT word or vice versa weakens literality criteria 1 and 2 and makes a translation less literal.
Criteria 1 and 2 thus measure the syntactic similarity of an ST and its translation. The third
criterion describes the semantic similarity in both languages. If a word (or phrase) is consis-
tently translated in the same way by different translators, we assume that the ST word and its
translation also have large overlapping semantic properties. The more a source word (or phrase)
can be rendered into different translations, the weaker is also the semantic overlap between the
two languages (with respect to this word or phrase). In this paper we show that the degree of
translation literality has an effect on the reading activities prior to translation typing.

In section 2 we introduce an operationalization of the literality metric as described above.
We introduce a metric “HCross” which measures the entropy of word-order choices that are
observed in alternative translations, and which is strongly predictive for reading time duration
during the translation process. Section 3 presents the material of our empirical study. In section
4 we introduce translation units and translation states, as well as the topology of a minimal
cognitive model for from-scratch translation and post-editing. We review similar work which
used transition networks of activity units to model novice and expert translators. We review
a proposal that defines different translation styles and map these onto sequences of translation
states of our minimal cognitive model. In section 5 we analyze our data and develop a minimal
model of translation and post-editing.

Figure 1: An English-Spanish alignment with Cross values

2 Operationalising Translation Literality

2.1 Word-order Distortion (Cross)
From a given translation and its word alignment relations we compute Cross values (see Figure
1). For any two successive source words sk−1 and sk, we follow the alignment links to their
translations (sk−1 → tk−1 and sk → tk}) and compute the distance between the position
of words tk and tk−1 in the translation (i.e. position(tk) − position(tk−1)) as the value for
Cross(sk). We thus obtain a vector of relative alignment distortions for word positions in the
ST and the TT, indicating the word order similarity of the two sentences. In the case of an
(absolutely) literal translation, we say that each successive word aligns with the next one in the
target language, which provides the Cross vectors with values 1.

For instance, the word [He] in Figure 1 occurs at position 1 on the English source side
while its Spanish translation [le] occurs one word ahead at position 2 in the translation. [He]
thus has a Cross(s1) value of 2 in that sentence. In order to generate the translation [aplicaron]
for the English [given] we need to jump from the previous alignment [was-Se] two words to the
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right, which produces a Cross(s3) value of 2. In this way, Cross values are generated for each
word position in the text, for the source and the target sides. If a word is aligned to more than
one word (e.g. sk → {tk1

. . . tkn
}), Cross(sk) is the signed value of the maximum absolute

difference between the two translations, i.e. max(abs({tk1
− tk−1), . . . , abs(tkn

− tk−1)}). In
this way, t10 which has the alignment [cada→ “each of the”] has an alignment distortion value
Cross(t10) = 3.

2.2 Word Translation Entropy (HTra)
Carl et al. (2016) introduce word translation entropy as a measure to quantify observed transla-
tion choices. Entropy,H , represents the average amount of non-redundant information provided
by each new item. It is computed based on the sum of the probability of the items and their in-
formation. The information of a probability p is defined as I(p) = − log2(p) The entropy H is
the expectation of that information as defined in equation (1):

H =

n∑
i=1

piI(pi) = −
n∑

i=1

pi log2(pi) (1)

We adopt this notion to assess the entropy of word translation choices for a given ST word
sk into its n possible translations ti...n as shown in equation (2)

HTra(sk) = −
n∑

i=1

p(ti|sj)× log2(p(ti|sj)) (2)

The word translation entropy HTra(sk) in equation 2 is computed for each source word
sk and in every segment. The translations ti...n are taken only from the aligned alternative
translations of this segment. That is, the word translation probabilities p(ti|sk), as computed
according to equation (3), represent the ratio of the number of observed translations sk → ti
separately for each source segment in which sk occurs. Thus, while in language modeling, the
entropy indicates how many possible continuations for a sentence exist at any time, we deploy
the metric to assess how many different translations an ST word has in a given context.

p(ti|sk) =
count(sk → ti)

count(sk)
(3)

We take it, that HTra reflects the semantic similarity between a source word and its trans-
lation(s): low HTra values indicate a high amount of agreement between translator choices, and
thus a high degree of semantic similarity according to literality criterion 3 above.

2.3 Word-order Entropy (HCross)
The choices that a translator has to re-order translations of a source word sk in the target lan-
guage is captured by the metric HCross, as given in equation 4.

HCross(sk) = −
n∑

i=1

p(Cross(sk))× log2(p(Cross(sk)) (4)

The probability for each relative translation word-order distortions p(Cross(sk)) for a
source word sk is computed as the ratio of the number of the distortions Cross(sk) for alter-
native translations sk → t1...n divided by the total number of observed alternative translations
count(sk), similar to equation 3.

HTra and HCross values correlate to a high degree (r=.79, p < .001). That is, semantic
and syntactic variation seem to correlate highly in translation. More variation in syntactic (i.e.
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word-order) rendering of the translation seem to come along with more variation in lexical
choices, and vice versa: Low cross-lingual semantic similarity (i.e. high HTra values) are
correlated with high syntactic variation and complexity (i.e. high HCross values).

3 Experimental material

As a basis for our investigation in this paper we use the multiLing subset of the TPR-DB (Carl
et al., 2016). The multiLing set consists of six short English source texts (together 849 words,
40 ST segments) and a large number of alternative translations into Danish (da), Spanish (es),
German (de), Hindi (hi), Chinese (zh) and Japanese (jp) each by several translators. It contains
currently more than 1500 text production sessions, for from-scratch translation (T), post-editing
(P), monolingual editing (E), translation dictation (D) and text copying (C). However, in this
study we only make use of from-scratch translation and post-editing, which amounts to approx-
imately half the data, 124 hours productin time. For each text production session, keystroke
and gaze data were collected and stored. A real-time gaze-to-word mapping tool (Carl, 2012)
was used to map the gaze samples on the words, so that it is known which word was gazed
at, at any time during the translation sessions. The tool also computes which keystroke con-
tributes to the production (or modification) of which word. The STs and TTs were manually
aligned using the YAWAT tool (Germann, 2008). Aligners were adviced to align each segments
as compositional and complete as possible. The aligned data were further post-processed into a
set of summary tables, which integrate and describe the data of the translation process and the
translation product by means of currently more than 300 features (Carl et al., 2016).

SText:#Seg 1:6 2:7 3:5 4:5 5:10 6:7 STtok STseg
ST Token 160 154 146 110 139 139 848 40

Task Study TL Alt Alt Alt Alt Alt Alt TTtok TTseg Dur
P BML12 es 10 12 10 12 8 12 10216 431 5.22

ENJA15 ja 13 12 14 12 13 12 14447 519 16.81
MS12 zh 3 5 3 3 3 2 2561 129 3.18
NJ12 hi 7 12 8 10 12 11 9365 409 18.2
SG12 de 8 7 7 8 7 8 6470 305 8.78

T BML12 es 11 10 8 10 12 8 9938 411 10.34
ENJA15 ja 12 13 12 13 13 13 14134 525 22.46
KTHJ08 da 24 23 22 0 0 0 10667 523 7.7
MS12 zh 3 3 3 3 3 1916 89 4.12
NJ12 hi 7 7 5 7 6 6 5783 266 14.84
SG12 de 6 8 8 8 7 8 6777 305 12.46

Total 101 112 100 86 84 83 92274 3912 124

Table 1: Subset of the TPR-DB multiLing corpus with the post-editing (P) and from-scratch
translation (T) data. The table shows for each of the six English source texts the number of
segments and the number of words, as well as the total number of ST segments (STseg:40) and
words (STtok:848). It also shows for each language the number of alternative translations (Alt)
the total number of target text tokens (TTtok), segments (TTseg) and duration (Dur) per target
language and for each of the translation modes.

Table 1 shows some figures of multiLing Corpus. The length in words for each of the six
STs is given in the first row in Table 1 (ST1-6). For each of the six STs, the table indicates the
number of participants (#Part), and for each of the six STs the number of alternative translations
(Alt) and their total number in tokens (TokT). The total number of target words (TtokT) and
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target sentences (Ttsg) is also provided, together with the total production duration in hours
(Dur). The data is freely available. For more information on this dataset, please consult the
CRITT website.1

4 Translation states

We extend the work of Schaeffer et al. (2016), who introduce Activity Units as a means to
segment the stream of translation (and post-editing) activity into distinct units. Similar to Carl
et al. (2016) they make a distinction between 6 different basic types of activities 2:

• type 1: ST reading

• type 2: TT reading

• type 4: translation typing (no gaze data recorded)

• type 5: ST reading and typing (touch typing)

• type 6: TT reading and typing (translation monitoring)

• type 8: no gaze or typing activity recorded for more than 2.5 seconds

In this study we simplify the 6 types of activity units into four translation states. We
collapse activity units 4, 5 and 6 into writing activities (W ), irrespectively of whether reading
activities are also recorded at the same time. This leaves us with the following four translation
states:

Post-editing From-scratch translation
# OBS %Dur S2 T2 W2 P2 # OBS %Dur S2 T2 W2 P2

S1 15695 26 0.00 0.81 0.16 0.02 17756 29 0.03 0.52 0.42 0.03
T1 19275 40 0.56 0.01 0.41 0.03 17417 19 0.42 0.00 0.54 0.03
W1 13092 27 0.35 0.44 0.14 0.07 26187 44 0.36 0.28 0.30 0.05
P1 1723 8 0.19 0.28 0.53 0.00 2303 8 0.18 0.21 0.60 0.00

Total 49785 38.76 hours 63663 42.44 hours

Table 2: Distribution of translation states in number of total observations (#OBS) and duration
(%Dur), as well as a transition matrix for post-editing and from-scratch translation. The data
represents translation states during the drafting phase of the data from Table 1

• S: ST reading (with no concurrent writing activity)

• T : TT reading (with no concurrent writing activity)

• W : Writing (with or without concurrent gaze activity on the source or target window)

• P : Pausing (no activity recorded for more than 2.5 seconds)

Each of the translation states (i.e activity units) can be described by a number of features
(excluding P which has only a duration), including the number of keystrokes (deletions and
insertions), the word(s) produced by the keystrokes, the number and duration of fixations, the
fixation scanpath (i.e. sequence of fixations) within a state, including the number of different
words fixated, their average distance etc. (cf. Schaeffer et al. (2016)).

1sites.google.com/site/centretranslationinnovation
2The Activity Unit of type 7, as suggested in Carl et al. (2016), which entails concurrent type 1, 2 and 4 behaviour

is not assumed here. Instead the activities were split into the six types above.
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4.1 State transitions in translation and post-editing
The data in Table 2 shows the distribution of translation states from the mulitLing data which
were introduced in Table 1. The total dataset was segmented into 49,785 and 63,663 activity
units for the post-editing and translation experiments respectively.

The data represented in Table 2 only accounts for the activities during the drafting phase.
This amounts to 38.76 hours post-editing and 42.44 hours translating. The column #OBS shows
the number of observations per translation state, while the %Dur column gives their percentage
of the total production duration. In the post-editing mode, most activities (19,275 units) were
observed in the TT reading (T1) mode, as well with respect to the number of units and with
respect to their duration. In the translation mode, the translators were 44% of the total time
involved in writing activities.

Figure 2: A fully connected translation process transition network with four states.

The columns S2, T2, W2 and P2 provide the likelihood of the next state to which post-
editors or translators will switch.3 For instance, if a post-editor is involved in an ST reading
state (S1), there is a high chance of 81% that next he or she will switch to TT reading (T2).
Once in the T1 state, the highest probability (56%) is to switch back to ST reading (S2). This is
different in the translation mode, where the translator will most likely turn to writing (W2) after
a T1 activity. Table 2 provides thus a transition table which can be represented in the form of
a completely connected transition network as shown in Figure 2. Each state in the network in
Figure 2 is connected to each other state in the network, and the transition from one state to the
successor states are weighted by probabilities, such that the sum of all outgoing archs sums to
1.0. Two possible instantiations of the transition network are shown in Table 2, which produce
slightly different behavior for post-editing and for from-scratch translation.

4.2 Novice and expert translators
Hvelplund (2016) reports that novice and expert translators exhibit different behavior with re-
spect to the length and the sequencing of translation activities. His study is restricted to the
English to Danish data collection which is gathered in the KTHJ08 study in Table 2. Accord-
ing to Hvelplund, experienced translators shift more often from ST reading (S1) directly to
writing (W2) than student translators; in 65.5% and 52.2% of the cases respectively. Student

3There are also transitions in the diagonal e.g. W1 → W2 which result from the fact that we have collapsed
activities of type 4,5 and 6 into one state. We will ignore them here, since we are not concerned with these transitions
in this paper.
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translators show more occurrences of TT reading than professionals, which suggests that stu-
dents aim more often at confirming meaning hypotheses, rather than allocating the cognitive
resources directly to writing once a meaning hypothesis has been established. Hvelplund also
finds a higher variability in the unit duration of professional translators as compared to student
translators. Hvelplund sees this as an indicator for greater ability to adapt to the situation by the
professional group.

While Hvelplund investigates the impact of the level of translation expertise on the activity
transition probabilities of S1 →W2, we will show below in section 5 that the inner structure of
the preceding units (i.e. S1) themselves seem to determine to some extent the transition to the
next state.

4.3 Post-editing styles
Based on a taxonomy that overlaps to some extent with our six activity units, Mesa-Lao (2013)
suggests six post-editing steps and develops a minimal model of post-editing with spells out
four translation styles. His first two post-editing styles are:

• style1: The post-editor first reads the TT segment, detects an MT error, reads the ST
segment, and fixes the MT error.

• style2: The post-editor first reads the ST segment, then the TT segment, detects an MT
error, and fixes it.

Translation style3 in Mesa-Lao’s taxonomy is a variations of style2 (omit ST reading) and
in style4 the post-editor reviews first a previous segment before fixing the MT error. Post-
editing style1 seems to be the most preferred among his participants. However, in order to
simulate Mesa-Lao’s translation styles based on the available data that we have (keystrokes and
fixations) and the the four translation states, we cannot know when a translator actually detects
an MT error. Skipping the step “detect an MT error” leaves us thus with two post-editing
patterns that we can map on sequences of the translation states: style1: T → S → W and
style2: S → T → W . In the following section we reduce these two patterns even further and
examine the minimum translation cycles T → W and S → W , which represent the question:
what happens before typing?

5 Determinants of writing probability

In this section we analyze where and for how long the gaze was observed prior to writing. We
will also test to what extent the HCross value (i.e possibility for syntactic choice) of the typed
text has an effect on S1 and T1 reading duration, prior to typing W2. The analysis tells us
something about the processes which take place between the input (S1 and T1 reading), the
output (W2 writing activity) in the cognitive system.

For all the analyses in the present study, R (R Development Core Team, 2014) and the lme4
(Bates et al., 2014) and languageR (Baayen, 2013) packages were used to perform generalized
linear mixed-effects models. To test for significance, the R package lmerTest (Kuznetsova et al.,
2014) was used. Two separate models (one for post-editing and one for from-scratch translation)
with reading duration and HCross as predictors and their interaction with reading type were
tested. Both models had participant and target language as random factors.

5.1 The effect of reading duration on writing probability
Increased S1 reading duration during post-editing (Figure 3a, left) and from-scratch transla-
tion (Figure 3b, left) decreases the probability of successive writing (TypingProb). Increased
S1 reading duration thus increases the chances that post-editors and translators engage in suc-
cessive T2 reading, instead of writing (W2). The reason might be due to ST comprehension
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(a) Post-editing (b) Translation

Figure 3: The effect of S1 and T1 reading duration (Dur 1) on the probability (TypingProb)
that participants engage in successive writing activity W2. The gray shadow represents the
standard error.

or translation difficulties, which require longer S1 reading reading times, for both post-editing
and from-scratch translation. The more information is processed during ST reading (long S1

reading), the stronger is the need to first cross check the emerging translation hypothesis with
the existing TT, before typing in the translation solution - possibly due to working memory
limitations. We thus see more likely a transition S1 → T2 for longer S1 reading times. That
is, a translation hypothesis gathered during S1 reading needs to be integrated with the existing
TT before writing a solution. If the ST information intake is long (long S1 reading), memory
on the status of the TT might first need to be refreshed through (re-newed) TT reading in order
for the new solution to be properly integrated. Accordingly, the 16% and 42% of S1 → W2

transitions in post-editing and from-scratch translation respectively (see Table 2) take mainly
place if S1 reading durations are short (< 5000ms, see section 5.3).

Longer T1 reading activities increase the probability of a successive writing (W2) for post-
editing (Figure 3a, right) but decrease the probability of successive writing for from-scratch
translation (Figure 3b, right). This difference in TT reading patterns might be due to the fun-
damental difference between post-editing and from-scratch translation. In post-editing a TT
already exists and some modifications can be made without consultation of the ST. W2 activi-
ties after longer T1 reading times during post-editing might relate to the correction of (relatively
minor) fluency errors which can be corrected without consultation of the TT.

In from-scratch translation, information from the ST needs to be retrieved and integrated
with the existing translation in order to continue producing the emerging TT. The longer from-
scratch translators read the TT, the more likely they will need to retrieve new information from
the ST in order to continue translation production

There were highly significant main effects for reading type, for post-editing (β=4.02,
SE=0.06, t=62.54, p < .001) and for from-scratch translation (β=2.11, SE=0.04, t=54.65, p
< .001), such that writing (W2) was more likely after TT reading (T1). There were also highly
significant main effects for reading duration for post-editing (β=-0.91, SE=0.045, t=-20.38,
p < .001) and for from-scratch translation (β=-0.68, SE=0.02, t=-33.25, p < .001), such that
longer reading activities (Dur 1) made writing less likely. The interaction between reading type
(S1/T1) and reading duration (Dur 1) was highly significant for post-editing (β=1.07, SE=0.05,
t=22.65, p < .001) and for from-scratch translation (β=0.56, SE=0.03, t=21.41, p < .001).
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(a) Post-editing (b) Translation

Figure 4: The effect of the HCross on the probability that participants type immediately after
the reading activity (TypingProb), depending on whether the source (S) or the TT (T ) is read
prior to the writing event.

5.2 The effect of HCross on writing probability

As discussed in section 2, HCross represents the possibility for the translation of a word or
phrase to occur in different syntactic positions in the target text segment. HCross is highly
correlated with cross-lingual semantic similarity - HTra and HCross correlate to a high degree
(r=.79, p < .001). The more likely it is that different word orders are realized (high syntactic
complexity), the more likely it is that different lexical items are used (high semantic complex-
ity).

For both post-editing (Figure 4a) and from-scratch translation (Figure 4b), HCross had a
positive effect on the probability that writing follows ST reading. Thus, higher HCross values
increase the probability of a S1 → W2 transition. This effect was more pronounced for
from-scratch translation then on post-editing. However, for both post-editing and from-scratch
translation, HCross had a negative effect on the probability that writing follows TT reading.
Again, this effect was more pronounced for from-scratch translation.

An explanation of this observation might be that items with higher HCross values can be
seen as particularly challenging to translate and that solutions for difficult translations emerge
during ST reading. The more complex the translation is, i.e. semantically and syntactically less
similar, (the less literal), the more likely both post-editors and translators are to refer back to the
ST and the less likely they are to type a translation solution immediately after reading the TT.

That is, the 41% and 54% of T1 → W2 transitions in post-editing and from-scratch trans-
lation respectively (see Table 2) take preferably place if HCross values are low (the translation
is easy). The solutions of more complex translation problems are preferably typed in after S1

reading.
There were highly significant main effects for HCross, for post-editing (β=0.23, SE=0.02,

t=9.73, p < .001) and for translation (β=0.41, SE=0.017, t=24.15, p < .001), such that writing
(W2) was more likely for higher HCross values. The interaction between reading type (S1 / T1)
and HCross was highly significant for post-editing (β=-1.34, SE=0.03, t=-44.28, p < .001) and
for translation (β=-1.12, SE=0.02, t=-49.84, p < .001).

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 152



(a) Interaction between HCross * Dur 1

(b) Distribution of S1 duration
(Dur 1)

Figure 5: Interaction between the duration (Dur 1) of an S1 event and the complexity (HCross)
of successive translation productionW2 on the probability of a S1 →W2 transition. The typing
probability increases with short S1 reading times and high HCross values. Typing probability
decreases with long S1 reading times and high translation complexity (HCross).

5.3 Interaction of S1 reading duration and HCross value on W2 probability
As discussed in the previous sections, the S1 → W2 typing probability during translation de-
pends (among other factors) on the:

• expertise of the translator (section 4.2)

• S1 reading duration (section 5.1)

• HCross value of the W2 event (section 5.2)

Figure 5a shows the interaction effect between S1 reading duration (Dur 1) and the com-
plexity of the translation (HCross) that follows the reading event. In line with the findings
discussed in Figures 3a and 3b (left) it shows that short ST reading activities (< 5000ms) are
followed with high probability by typing events. As shown in Figure 4a and 4b (left) the typ-
ing probability is even more likely if the produced translation solution is more complex. This
suggests that complex translations are preferably produced immediately after a short ST con-
sultation, presumably to relieve working memory by flushing out probably intermediate and
incomplete translation solutions that are later to be revised and thus to avoid building up and
keeping more complex structures in mind. In contrast, less complex translation problems may
still be integrated with more information gathered during successive TT reading before a typing
event occurs.

This trend is reversed for longer ST reading duration, where the typing probability de-
creases if the translation problem becomes more complex. It suggests that long S1 reading
duration in combination with complex translation problems requires additional T2 reading, and
presumably additional ST-TT integration cycles.

In combination, these observations suggest that difficult translation problems are cross-
checked and resolved after reading the ST, while simple translation problems may be rectified
after TT reading.
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6 General Discussion

According to Dillinger (2014, xi), a key ability for post-editors (and translators) is their ability
to compare sentences (and texts) across languages, in terms of both literal meaning and the
culturally determined patterns of inference and connotation that different phrasings will entail.
Patterns of keystrokes and gaze behavior make it possible to trace the origin of problems trans-
lators face to establish equivalence across languages. We have shown that bigrams of translation
states, i.e., reading the ST or the TT and writing, constitute minimal and coherent problem iden-
tification and solution cycles. The degree of complexity (i.e. syntactic choice) clearly predicts
subsequent activities, both during translation and post-editing. Remarkable in this regard is the
fact that the effect of word-order choices in the target language (HCross) is similar in both tasks,
suggesting that post-editors engage in processes which are not unlike those during from-scratch
translation, when the raw MT output is faulty. Both post-editors and translators refer back to the
source text when the produced TT is semantically and/or syntactically complex or non-literal.
We hope that these minimal and coherent problem identification and solution cycles will con-
stitute the building blocks for a more fully fledged model of both post-editing and from-scratch
translation.
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Abstract
Neural machine translation is a recently proposed approach which has shown competitive re-
sults to traditional MT approaches. Similar to other neural network based methods, NMT
also suffers from low performance for the domains with less available training data. Domain
adaptation deals with improving performance of a model trained on large general domain data
over test instances from a new domain. Fine-tuning is a fast and simple domain adaptation
method which has demonstrated substantial improvements for various neural network based
tasks including NMT. However, it suffers from drastic performance degradation on the general
or source domain test sentences, which is undesirable in real-time applications. To address this
problem of drastic degradation, in this paper, we propose two simple modifications to the fine-
tuning approach, namely multi-objective learning and multi-output learning which are based on
the “Knowledge distillation” framework. Experiments on English-German translations demon-
strate that our approaches achieve results comparable to simple fine-tuning on the target domain
task with comparatively little loss on the general domain task.

1 Introduction

Standard neural MT (Bahdanau et al., 2015) is an end-to-end neural network which allows for
easy training of the NMT system without the need to separately train large phrase table and
n-gram language models. However, neural methods including NMT, are known to be data-
hungry and do not generalize well for rare events. As a result, NMT systems trained only on
a specific domain with less available parallel data quickly overfit and do not perform better or
even comparable to standard statistical MT approaches (Zoph et al., 2016).

Research in domain adaptation deals with the problem of improving the performance of
a model trained on a general domain data over test instances from a new domain. A simple
solution to achieve better performance on both domains will be to train the network on the com-
bined in-domain and general domain parallel data. However, as already discussed in (Freitag
and Al-Onaizan, 2016) there are two problems with this approach. First, re-training the model
from scratch on the combined data is time consuming and second due to the relatively small size
of in-domain data, the learned model will be biased towards the general domain and may not
perform comparatively on the in-domain test instances. Moreover, this solution is not efficient
in real life applications because in situations where a general domain model is already deployed
in an application, the original training data may not be available at the production time.
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A fast and efficient method for domain adaptation for neural methods is “Fine-tuning”
which has also been recently applied for Neural Machine translation (Freitag and Al-Onaizan,
2016; Chu et al., 2017). In fine-tuning, a neural network which is already trained on large
general domain data is further trained on the small data available for the new target domain (also
called in-domain data). Fine-tuning provides significant improvements as compared to both
only in-domain training or only out-of-domain (general domain data) training. This is because
pre-initialization with the parameters trained on large data prevents overfitting on the small in-
domain data while at the same time, training on the new data performs a complete transform
of the parameters space corresponding to the events observed in the new data. However, as a
result of this transformation to the new parameter space, performance of the resulting model
decreases drastically for the test instances from the general domain as there is no guidance for
the general domain events while fine-tuning (Li and Hoiem, 2016). In a real-time application
such a degradation of translation performance on either of the tasks is undesirable because even
after adaptation one would like to use the model for translating sentences from both domains.

To address this problem of drastic degradation by fine tuning, in this paper, we propose two
simple modifications to the fine-tuning approach. Both approaches are based on the “Knowl-
edge distillation” framework of (Hinton et al., 2014) where a smaller “student” network learns
to mimic a large “teacher” network by minimizing the loss between the output distributions of
the two networks. We are motivated by the idea that new tasks can be learned without degrad-
ing performance on old tasks, by preserving the parameters shared between the two tasks and
fine-tuning the task specific parameters with respect to the supervision from the corresponding
labels or distributions (Li and Hoiem, 2016).

Our first modification is a simple multi-objective learning which involves fine-tuning a
general domain model on a small in-domain data while at the same time minimizing the loss
between the output distributions of the “student” network (the model learned by fine-tuning)
and the baseline teacher network (model trained on large general domain data). In our second
modification, we propose adding multiple output layers to the “student” network corresponding
to the different tasks (domains) and learning task-specific parameters for both domains using
only the in-domain data while simply fine-tuning the parameters shared between the two tasks.
Our experiments demonstrate that both the proposed approaches multi-objective fine-tuning and
multi-output fine-tuning, achieve translation performance comparable to vanilla fine-tuning on
the target domain task and at the same time suffer little degradation on the original general
domain task.

In Section 2 we discuss the related work on domain adaptation for traditional statistical
MT as well as recent approaches in neural MT. We briefly introduce neural MT architecture of
(Bahdanau et al., 2015) and Knowledge distillation framework of (Hinton et al., 2014) in Section
3. We introduce and explain our approaches in section 4 and finally discuss experiments and
results in section 5 and 6 respectively.

2 Related work

Domain adaptation for Phrase-based MT has been studied excessively in last few years. The
main approaches in domain adaptation involves either data selection (Moore and Lewis, 2010;
Axelrod et al., 2011), instance weighting (Matsoukas et al., 2009; Foster et al., 2010) or multiple
model interpolation (Nakov, 2008; Bisazza et al., 2011; Sennrich, 2011). The model interpola-
tion is the most effective, however a complex approach, as it requires training multiple models
including phrase-tables, re-ordering and language models corresponding to each of the domains
and then learning the corresponding interpolation weights. In case of SMT, Wei wang et al.
(2012) has goals similar to that of our approach i.e. to adapt an SMT system for newer domain
while at the same time preserve the original generic performance. This approach pre-classifies
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the incoming sentence and accordingly select the corresponding model weights.
For domain adaptation in neural machine translation, most of the recent research has fo-

cused mainly on “fine-tuning” over the additional in-domain data. This is due to the fact that
the end-to-end architecture of NMT enables fast and efficient training without complexity of
re-training individual component for each domain. The first attempt for applying fine-tuning
to NMT was Luong and Manning (2015), where they simply adapted an NMT system trained
on large general domain data by further training on a small in-domain data. Recently, (Freitag
and Al-Onaizan, 2016) extended the fine-tuning approach by using an ensemble of the baseline
general domain model and the fine-tuned model. They proposed that the ensemble provides
better translation on new domain as well as retain much of the performance on the general do-
main. Their experiments using TED talks (Cettolo et al., 2012) as in-domain data demonstrated
improvements on the in-domain and less performance drop on the general domain. However,
as we will discuss in section 6, our experiments demonstrate that even with an ensemble, the
performance of the fine-tuned model still degrades significantly on the general domain task,
especially on a target domain such as medical documents for which vocabulary, style and lex-
ical translation probabilities are highly different from source domain of news articles. On the
other hand, our approach of using the “baseline supervision” while fine-tuning, not only retains
general domain performance better than ensemble for two different target domains but also pro-
vides a faster and efficient decoding procedure by avoiding the requirement to compute the two
output distributions separately as required in the ensemble approach.

Another recent approach for NMT domain adaptation is the “mixed fine-tuning” by Chu
et al. (2017). They proposed to fine-tune the baseline model on a parallel corpus which is
mix of the in-domain and general domain corpora instead of only in-domain data. They also
perform multi-domain NMT by augmenting all the corpora with domain tags. However, as they
pointed out “mixed fine-tuning” takes longer training time than vanilla fine-tuning depending
on the size of the “mixed” data. Also, this requires robust data selection heuristics to extract
only relevant sentences from the general domain and avoid selection of noise. On the other
hand, in our approach we completely remove any dependence on the general domain data while
fine-tuning. Similary, Sennrich et al. (2016) adapt to the new domain by back translating the
target in-domain sentences, adding the new data to the training corpus and fine-tuning on the
extended bitext.

A related line of research to our approach is in computer vision where the supervision from
the baseline model based on the “Knowledge distillation” framework has been extensively used
in various domain adaptation paradigms such as “Deep domain transfer” (Tzeng et al., 2015),
“Knowledge adaptation” (Ruder et al., 2017) and “Learning without forgetting” (Li and Hoiem,
2016). The “Learning without forgetting” approach of Li and Hoiem (2016) is very similar
to our approach since they propose to reduce the general domain performance degradation by
adding multiple nodes in the output layer of a convolutional neural network and fine-tune the
parameters on the in-domain data using the supervision from the baseline model. However,
we differ from (Li and Hoiem, 2016) in that we not only apply this method to neural machine
translation, but we also experiment by training with multiple objectives as well as multiple
output layers instead of simply adding new nodes corresponding to the new classes.

3 Background

3.1 Neural Machine Translation

We employ an NMT system based on Luong et al. (2015) which is a simple encoder-decoder
network. The encoder is a multi-layer recurrent network (we use LSTMs) which converts an
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input sentence x = [(x1, x2, ...., xn)] into a sequence of hidden states [(h1, h2, ...., hn)].

hi = fenc(xi, hi−1) (1)

Here, fenc is an LSTM unit. The decoder is another multi-layer recurrent network which pre-
dicts a target sequence y = (y1, y2, ....ym). Each word in the sequence is predicted based on
the last target word yi−1, the current hidden state of the decoder sj and the context vector cj .
The context vector cj in turn is calculated using an attention mechanism Luong et al. (2015) as
weighted sum of annotations of the encoder states hi’s.

cj =
n∑
i=1

αjihi (2)

where αji are attention weights corresponding to each encoder hidden state output hi calculated
as follows :

αji =
exp(a(sj−1, hi))∑n
k=1 exp(a(sj−1, hk))

(3)

sj is the decoder hidden state generated by LSTM units similar to the encoder.

sj = fdec(sj−1, yj−1, cj) (4)

Given, the target hidden state and the context vector, a simple concatenation combines the
information from both vectors into an attentional hidden state s̃t.

s̃t = tanh(Wc[ct;ht]) (5)

This attentional vector s̃t is then projected to the output vocabulary size using a linear transfor-
mation and then passed through a softmax layer to produce the output probability of each word
in the target vocabulary.

p(yj |y1, ...yj−1, x) = softmax(Ws s̃t) (6)

The probability of the sentence is modelled as product of the probability of each target
word.

p(y) =
m∏
j

p(yj |y1, ...yj−1, x) (7)

The end-to-end network is trained by maximizing log-likelihood over the training data. The
log-likelihood loss is defined as

LNLL(θ) = −
n∑
j=1

|V |∑
k=1

(yj = k) ∗ log(p(yj = k|x : θ)) (8)

Where yj is the output distribution generated by the network at each timestep and ‘k’ is the
true class label, i.e., the reference target word at each timestep which is selected from a fixed
vocabulary ‘V’. The outer summation represent that the total loss is computed as the sum over
complete target sequence.
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3.2 Knowledge Distillation

Knowledge Distillation is a framework proposed by Hinton et al. (2014) for training compressed
“student” networks by using supervision from a large teacher network. Assuming, we have a
teacher network with large dimension sizes, trained on a large amount of data, a smaller student
network with much smaller dimension sizes can be trained to perform comparable or even better
than the teacher by learning to mimic the output distributions of the teacher network on the same
data. This is usually done by minimizing the cross-entropy or KL-divergence loss between the
two distributions. Formally, if we have a teacher network trained on the same data and with a
learned distribution q(y|x; θT ), the student network (model parameters represented by θ) can
be trained by minimizing the following loss:

LKD(θ, θT ) = −
|V |∑
k=1

KLdiv
(
q(y|x; θT ) p(y|x; θ)

)
(9)

where θT is the parameter distribution of the teacher network. Commonly, this loss is inter-
polated with the log-likelihood loss which is calculated with regard to the target labels for the
in-domain data

L(θ, θT ) = (1− λ)LNLL(θ) + λLKD(θ, θT ) (10)

In order to allow the student network to encode the similarities among the output classes,
(Hinton et al., 2014) suggests to generate a smoother distribution called “soft-targets” by in-
creasing the temperature of the softmax of both teacher and student network.

Note that “Knowledge distillation” for model compression has been applied for neural
machine translation by (Kim and Rush, 2016). However, we use the supervision from teacher
network for domain adaptation while fine-tuning.

4 Domain adaptation with baseline supervision

As described in Section 1, in fine-tuning a model pre-trained on general domain data is further
trained on the in-domain data which largely shifts the parameter space of the model to the
target domain resulting in a performance degradation on the general domain test instances.
We propose that fine-tuning on the target domain using an objective similar to one defined
in equation (10) using the supervision from both general and the target domain can avoid the
performance degradation on the general domain while achieving performance comparable to
vanilla fine-tuning on the target domain. We explore this idea by proposing two modifications
to the fine-tuning approach.

4.1 Multi-objective fine-tuning (MCL)

In the first modification, we train the network on a joint objective which includes the supervision
provided by the hard target labels in the in-domain data as well as the output distribution of the
general domain model on the in-domain data. We believe that with such a joint objective, the
network can learn a parameter space common to both domains.

Assuming that we have trained an NMT model on large general domain data, we first
record the output distribution of this model on all the in-domain data, then fine-tune this baseline
model on the in-domain data by minimizing the log likelihood loss between the target references
and the output distribution of the network. However, at the same time, for each sentence, we
also minimize the KL-divergence (or cross-entropy) loss between recorded teacher distribution
and the distribution produced by the student network as shown in Figure 1. Let the general
domain data on which the baseline model is trained be represented by xout and the in-domain
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Figure 1: Multi-objective fine-tuning. Both the teacher and student network have same ar-
chitecture. Student network is initialized with parameters trained for teacher network. While
fine-tuning parameters of teacher network are frozen.

data be represented by xin, then the final learning objective becomes :

L(θ, θT ) =

(1− λ)
|V |∑
k=1

(yj = k)× log(p(yj = k|xin : θ))

+ λ(−
|V |∑
k=1

KLdiv
(
q(y|x; θT ) p(y|xin; θ)

)
)

(11)

Where θT is learned over the general domain data using the standard learning objective in equa-
tion 8. Note that as discussed in section 3.2 both distributions here are obtained by increasing
the temperature of the softmax as defined in equation 6. This is done by dividing the input by a
constant hyper-parameter ε

pε(y|x; θ) = softmax(
Ws s̃t
ε

) (12)

Note that Equation 11 clearly indicates that the proposed approach does not require the original
data while fine-tuning but only the parameters of the trained baseline model.

4.2 Multiple-output layer fine tuning (MLL)
Though learning on a joint objective as discussed in section 4.1 can reduce the degradation on
the general domain task to some extent, a much better solution in order to retain the performance
on the old-task could be to preserve task specific parameters corresponding the old-task and at
the same time slightly transform parameters shared across the two tasks. Therefore, as a second
modification, we propose modifying the baseline model by adding parameter specific to the new
task and learning the task-specific parameters with respective learning objectives.
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Figure 2: Multi-output-layer learning. Student network has two output layers. The additional
layer is trained wrt distribution from teacher network

In this work, we consider only the parameters of the final output-layer (Ws as defined
in equation 6) of the NMT network as task-specific, while all the parameters corresponding to
encoder, decoder, attention mechanism and the concatenation layer in equation 5 are considered
to be shared. Let θs to be the set of all the shared parameters, θo and θn to be the task-specific
output-layer parameters corresponding to the old (general domain) and new (in-domain) task.

Training the general domain baseline model results in initial-learning of the shared pa-
rameters θs and the output layer for the out-of-domain task θo. For training the in-domain
student model, we first modify the network by adding another output layer to the standard NMT
network as shown in Figure 2. Similar to multi-objective fine-tuning, we first note the output
distribution of the general domain teacher model on the “in-domain” data. Then the shared
parameters for the student network corresponding to encoder-decoder and attention mechanism
are initialized with θs which are learned from the baseline model. Similarly, the parameters
of the output layer corresponding the old-domain task are also initialized with parameters θo
learned on the general domain task. Parameters specific to the in-domain task θn are initialized
randomly. Then we first train the new parameters θn using the ground-truth with the standard
log-likelihood objective as defined in equation 8. This is a simple warm-up procedure which
enhances the fine-tuning performance (Li and Hoiem, 2016). During this warm-up, we freeze
θs and θn. Finally all the parameters are fine-tuned by minimizing the joint objective. Consider
xn, yn to be a sentence pair from the in-domain data. Then yo be the recorded output of the
“teacher” model for the new data, i.e.,

yo = q(xn, θs, θo) (13)

For the “student” network, let y′o and y′n be the output distributions from the old and new output-
layer respectively corresponding to θ′o and θ′n

y′o = p(xn, θ
′
s, θ
′
o) (14)
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y′n = p(xn, θ
′
s, θ
′
n) (15)

Then similar to equation 11, we define two objectives. First is the standard log-likelihood
loss for the shared parameters θs and the parameters for new task θn with respect to the target
references in the in-domain data

Ln = −yn × log(p(xn|θ′s, θ′n)) (16)

The second objective is the KL-divergence between the output distribution of the old-layer of
the student network with respect to the recorded distribution of the teacher network on the same
in-domain data.

Lo = −
|V |∑
k=1

KLdiv
(
yo, p(y

′
o|xn; θ′s, θ′o)

)
(17)

The student network is finally trained on the joint objective defined as:

Lcombined = (1− λ)Ln + λLo (18)

While decoding, the output layer corresponding to the domain label of the test sentences is used
to compute the output distribution.

5 Experimental settings

5.1 NMT parameters
In all our experiments, we use an NMT system based on Luong et al. (2015) and implemented
using the Torch7 deep learning framework. It is a two layer unidirectional LSTM encoder-
decoder with a global attention (dot product) mechanism. Both the encoder and decoder have
input embedding and hidden layer of size 1000. As it is common practice, we limit the vocab-
ulary sizes to 60k for the source and 40k for the target side. Parameters are optimized using
stochastic gradient descent. We set the initial learning rate as 1 with a decay rate of 0.5 for each
epoch after 5th epoch. Model weights are initialized uniformly within [-0.02, 0.02]. A dropout
value of 0.2 is applied for each layer. The mini-batch size for out-of-domain is fixed to 64, while
for each of the in-domain fine-tunings, we use a batch size of 32. We train for a maximum of
20 epochs and decode with standard beam search with beam size of 10. All models are trained
on NVIDIA Titan-X (Pascal) devices.

For the in-domain trainings, we use the same vocabulary extracted from the baseline gen-
eral domain bitext. Note that our multiple-output layer approach allows for use of a different
vocabulary (that can be extracted from the new data) for the in-domain fine-tuning. We exper-
imented with different values of interpolation weights λ (as used in equation 11 and 18) and
also with temperature ε (defined in equation 12) and obtained the optimal values to be 0.9 and
2 respectively for these hyper-parameters for all the experiments.

5.2 Data
We conducted experiments on English-German translation. For all the settings we use WMT-
2015 Bojar et al. (2015) training set as the general domain training data. This training set
contains approximately 4.2 million parallel sentences from multiple sources Europarl, news
commentary and common crawled articles. We constrain the maximum sequence length to be
80 and remove the sentences greater than this length along with the duplicates. Thus we are
left with a bitext of size approximately 4 million, out of which we reserve 5000 sentence for
perplexity validation and use the rest for training the general domain baseline model. We use
newstest15 (official test set for WMT-2015) as general domain test set.
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Epo. iwslt newstest’15
Standard NMT baselines

TEDonly 17.95
WMTonly 19.46* 18.54*
Combined training (WMT+ TED) 22.86N (+3.4) 17.57H (-0.97)

Fine-tuning methods

FT 1 19.69M(+0.23) 13.94H(-4.6)
3 21.90N(+2.44) 12.68H(-5.86)

FTEns 22.90N(+3.44) 16.70H(-1.84)
Proposed approaches

MCL 1 21.77N(+2.21) 16.95H(-1.59)
7 22.19N(+2.73) 16.55H(-1.99)

MLL 1 20.26M(+0.8) 18.24O(-0.3)
9 21.70N(+2.24) 16.90H(-1.64)

Table 1: BLEU scores for different approaches over TED data domain adaptation. iwslt =
IWSLT (2011+2012+2013). * represents the baseline setting for these experiments N/H and
M/O indicates a statistically significant gain/drop at p < 0.01 and p < 0.05 respectively over the
baseline. TEDonly = only in-domain training, WMTonly = only general domain training, FT =
Vanilla fine-tuning, FTEns = Ensemble fine tuning, MCL = Multi-objective fine-tuning, MLL
= Multi-output-layer fine-tuning

For in-domain training we consider two different domains namely the TED-talks bitext
(IWSLT 2013) Cettolo et al. (2012) (approx 170k sentences) and EMEA corpus (Tiedemann,
2009) (approx 200k sentence) which is a parallel text of medical guidelines. From each of
these, we reserve 5000 sentence for respective perplexity validation. For the TED talk domain,
we use a combination of official test sets for IWSLT 2011, 2012 and 2013 as evaluation set and
for EMEA, we reserve a set of 2000 sentences (excluded from training corpus) from the EMEA
corpus as evaluation set. Results are reported in terms of case-insensitive BLEU-4 (Papineni
et al., 2002). Approximate randomization (Noreen., 1989; Riezler and Maxwell, 2005) is used
to detect statistically significant differences.

6 Results

We define multiple baselines to compare the proposed approaches. Firstly, we obtain the BLEU
scores for a model trained only on general domain data and note its performance on the general
domain (source domain) test set as well as on the in-domain test sets. Similarly, for baseline
comparisons we train models only on the small in-domain data for each of the target domains.
We compare our approaches to the vanilla fine-tuning and ensemble methods (Freitag and Al-
Onaizan, 2016) in terms of the BLEU improvements on the in-domain test sets and degradation
on the general domain test-set. Finally, we also train baseline models on the combined general
and in-domain bitext and test it on both test sets. Note that this baseline act as ceiling for our
approaches as this setting can only be trained when data from both general as well as target
domain are available beforehand.

For the domain adaptation over TED data, Table 1 summarizes the BLEU scores over
different settings and also the highest and lowest BLEU scores for fine-tuning as well as the
proposed approaches. The performance of general-domain-only (WMTonly) model (19.46) is
higher than that of in-domain-only (TEDonly) model (17.95) for the iwslt test set. Hence, we
consider BLEU scores of the general-domain-only model on the two test sets as our baselines.
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Figure 3: Epoch-wise BLEU (i) improvement over in-domain test set (TED) (ii) degradation
over general domain (WMT)

To compare the gradual degradation of the vanilla fine-tuning with the proposed approaches, we
report the BLEU scores corresponding to first epoch as well as highest BLEU score achieved
for the in-domain test set. The last column shows the corresponding BLEU scores over the
general domain test set.

Vanilla fine-tuning improves over the baseline by up to 2.4 BLEU in the third epoch for
the target domain task. However, it drops substantially even in the first epoch by 4.6 BLEU on
the general domain task and by 5.8 corresponding to third epoch (best model for target domain
test-set). On the other hand, for the target domain, multi-objective learning improves over the
baseline by up-to 2.7 BLEU (in third epoch) which is slightly better than vanilla fine-tuning
while at the same time, performance degradation on the source domain is only -1.99 which is
substantially less than that of fine-tuning. Similarly, for multi-output-layer learning, we observe
improvements of up to 2.2 BLEU over the baseline on the target domain which is almost equal
to fine-tuning and the drop in BLEU over the source domain for the 9th epoch is only 1.64. The
ensemble method of (Freitag and Al-Onaizan, 2016) achieves an improvement of 1 BLEU over
simple fine-tuning for in-domain test set (iwslt) which is higher than both proposed methods
and also suffers similar degradation for general domain (newstest’15). This is due to the fact
that though TED talk is considered to be a different domain, the vocabulary and style of the
TED data is very similar to that of the general domain data. Also, the model trained on the
combined data performs comparable to the best setting i.e, the ensemble method for both test
sets. Figure 3 shows the epochwise comparison of BLEU score over source and target domain
test sets for TED data domain adaptation. For the source domain fine-tuning performance drops
rapidly starting from the first epoch. However, performance degradation of the two proposed
approaches on general domain is relatively slow

In conclusion, We observe that for the TED data, our approaches show comparable im-
provement to fine-tuning while suffering less degradation over source domain. However, the
ensemble method of (Freitag and Al-Onaizan, 2016) also demonstrates similar results. There-
fore, we repeat our experiments for domain adaptation over the EMEA corpus for which the
vocabulary is substantially different from the source domain of news article as compared to the
TED data.

Table 3 summarizes our experiments for domain adaptation for EMEA data. First impor-
tant observation the BLEU score for the EMEAonly model is substantially higher (6.5 BLEU
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Epo. EMEA-test newstest’15
Standard NMT baselines

EMEAonly 20.08 *
WMTonly 13.54 18.54*
Combined training (WMT+ EMEA) 20.84M(+0.76) 17.60H(-0.94)

Fine-tuning methods

FT 1 12.34 7.10H(-11.44)
6 22.57N(+2.49) 4.50H(-14.04)

FTEns 19.43H(-0.65) 13.63H(-4.91)
Proposed approaches

MCL 1 18.14H(-1.94) 15.50H(-3.04)
11 22.50N(+2.42) 13.29H(-5.25)

MLL 1 20.6(-0.02) 17.17H(-1.37)
6 22.33N(+2.25) 14.67H(-3.87)

Table 2: BLEU score for different approaches for EMEA data domain adaptation. * represents
the baseline setting for these experiments. EMEA-test = test set for medical domain, EMEAonly
= training only on in-domain medical data, WMTonly = training only on general domain data.
Other abbreviations are same as Table 1

points) than the WMTonly(this is contrast to the experiments on TED data where the WMTonly
model performed better than TEDonly model). Hence, for this set of experiments we consider
the general domain performance (20.08) as our baseline. Also, for medical domain adaptation,
the model trained on the combined data performs only slightly better than the in-domain base-
line over the EMEA test set while comparable to the general domain model on the WMT test
set. This implies that this joint model is more biased towards the general domain and hence
does not perform better than fine-tuning on the in-domain test set.

Vanilla fine-tuning shows an improvement of up to 2.5 BLEU (in the 6th epoch) over the
in-domain-only model on EMEA test-set. However, the drop in performance over the gen-
eral domain test set is drastic i.e. 11.3 in the first epoch and 14 BLEU in the 6th epoch. Also,
though ensemble method suffers less degradation in performance over newstest’15 (4.9 BLEU),
it performs slightly lower than the baseline for the EMEA test (-0.6) as compared to vanilla
fine-tuning. This implies that a simple ensemble is more biased towards general domain. On
the other hand, multi-objective learning performs comparable to fine-tuning on the EMEA test
set (+2.4 improvement over baseline) while the drop in general domain performance (-5.25)
is not as drastic as vanilla fine-tuning. Similarly, for multi-output-layer approach, while the
improvement on EMEA test-set is comparable to both approaches, it shows least drop in perfor-
mance for newstest’15. Figure 4 shows the comparison of BLEU scores over EMEA test sets
and newstest’15 for medical data domain adaptation. Similar to TED data experiments, while
fine-tuning performance drops rapidly on newstest’15, for the proposed methods, it is relatively
slow.

In conclusion, for the medical domain, proposed methods of multi-objective and multi-
output-layer learning show improvements comparable to fine-tuning on the target domain with
relatively little loss on the source domain as compared to fine-tuning. On the other hand, en-
semble method is biased towards the general domain and fails to add any improvement for the
target domain.

Finally, we compare the average decoding time per sentence for ensemble decoding and
multi-objective learning in Table 3. The decoding time for ensemble method is twice that of
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Average time(ms)
Fine tuning 0.131
Ensemble decoding 0.277
Multi-objective learning 0.147

Table 3: Average decoding time (in millisecond) on GPU devices per sentence for ensemble
decoding and multi-objective learning. Average sentence length for the used test set is 20.9
tokens
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Figure 4: Epoch-wise BLEU (i) improvement over in-domain test set (EMEA) (ii) degradation
over general domain test-set (WMT)

fine-tuning due to computation on two different models while for multi-objective learning it is
same as that of fine-tuning.

7 Conclusion and future work

In this paper, we proposed two modifications to the well-known fine-tuning method for do-
main adaptation for neural machine translation in order to retain the performance on the source
domain. We observe that both proposed approaches achieve performance comparable to the
vanilla fine-tuning while still retaining performance on the source (general) domain. Moreover,
the decoding speeds of the proposed methods are same as fine-tuning as compared, while the
ensemble method requires almost twice decoding time than the fine-tuning.

In this work, we mainly focused on adapting a general domain model to a new domain. As
future work, we plan to experiment by extending the two approaches for iteratively adapting a
single model for multiple domains.
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Abstract
We describe a data selection method for domain adaptation in machine translation, based on
relative frequency ratios computed between in-domain and out-of-domain corpora. Our method
is compared to a state-of-the-art approach based on cross-entropy differences, outperforming
it significantly in terms of data sparseness reduction and BLEU scores on the models created
from various data slices. This approach is also shown to either perform significantly better
or provide competitive results in terms of perplexity when compared to a method designed to
minimise cross-entropy. A novel method to mine unknown words in out-of-domain datasets
is also presented, resulting in the best models across the board when used to weight sentences
whose similarity to the primary domain is determined by relative frequency ratios. The pro-
posed method is simple, requiring neither external resources nor complex setups, which makes
it highly portable across domain adaptation scenarios.

1 Introduction

Data-driven approaches to machine translation, such as statistical machine translation (SMT)
(Brown et al., 1990) or neural machine translation (NMT) (Bahdanau et al., 2014), need large
volumes of quality bilingual data to be trained effectively. In most scenarios, machine transla-
tion systems trained only on available in-domain bilingual corpora face data sparseness issues
which hinder on their coverage and accuracy. Identifying useful subsets of out-domain data
through automated bilingual data selection has thus become an important method for domain
adaptation.

While no fully accurate method has been designed yet to identify subsets of out-of-domain
data that are useful and sufficient to improve machine translations models, the main character-
istics of the data being sought can be safely assumed to cover two main aspects.

First, the selected out-of-domain sentences should cover lexical and syntactic gaps in the
domain, in order to improve the in-domain translation models. This aspect can be controled by
measuring the amount of unknown words after incorporating the selected data and by evaluating
the impact of the out-of-domain data on the quality of the resulting machine translation models
via automated metrics.

Secondly, the selected data should not add confusion to the models, an aspect which can be
measured in terms of language model perplexity on either side of the bilingual data. A method
that would partially cover lexical and syntactic gaps while also adding significant subsets of
data unrelated to the domain at hand would be adding statistical noise to the translation models,
thus lowering their accuracy.

These two aspects in combination render the selection task particularly difficult, as the
optimal target data should be similar to the in-domain data, in order to reduce the noise added
to the models, while also provide enough new material to improve the primary models.
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In this paper, we explore the potential of a simple approach based on relative frequency
ratios between in-domain and out-of-domain distributions. We evaluate the benefits of our ap-
proach in two domain adaptation scenarios featuring large volumes of out-of-domain data and
compare it to a state-of-the-art data selection method based on bilingual cross-entropy differ-
ences. We show that our approach outperforms data selection based on cross-entropy, achieving
significantly better results in terms of translation metrics, while also significantly reducing the
amount of out-of-vocabulary words and equating or improving perplexity results.

The remainder of this article is organised as follows: Section 2 summarises related work in
bilingual data selection, in particular for domain adaptation; Section 3 describes the proposed
approach based on relative frequencies; in Section 4, we present the corpora, models and results
of our comparative experiments; finally, in Section 5 we draw conclusions from this work.

2 Related Work

Selecting subsets of bilingual corpora has been a popular approach to create domain-adapted
and/or more compact translation systems, see (Eetemadi et al., 2015) for a recent detailed sur-
vey. For domain adaptation in particular, the main goal has been to better exploit available
parallel corpora, by selecting the minimal subsets of bilingual sentence pairs that maximise the
accuracy gains of machine translation systems for a specific domain, where training resources
are usually scarce.

Several approaches have been explored over the years for bilingual data selection. TF-IDF
weighting has been used for instance by (Lü et al., 2007) for similar sentence identification and
weighted training, and by (Eck et al., 2005), who combine it with unseen n-gram frequency
scoring to create competitive SMT systems based on smaller training sets. Foster et al. (2010)
first rank the out-of-domain sentence pairs according to the perplexity of the in-domain target
side language model, then retain the number of top-ranked pair that maximizes the BLEU score
on a development set. They further refine the selection process by extending the weight learning
approach in Matsoukas et al. (2009), through phrase pair weighting, feature-based measures of
the usefulness of phrases and incorporating instance-weighting into a linear combination model.

Perplexity-based methods have figured prominently in work focusing on bilingual data
selection. (Foster et al., 2010), for instance, use in-domain target side perplexity to rank out-of-
domain sentence pairs and select top-ranked pair that maximize the BLEU score on held-out sets,
whereas (Mansour et al., 2011) combine language model and translation model cross-entropy
scores to the task of data selection. In (Aydın and Ozgür, 2014), the out-of-domain corpora are
ranked according to in-domain perplexity and proper subsets of the data are selected using the
vocabulary saturation technique of (Lewis and Eetemadi, 2013). One the most popular data se-
lection methods is that of (Axelrod et al., 2011), who extend work by (Moore and Lewis, 2010)
by ranking out-of-domain sentences according to bilingual cross-entropy differences as deter-
mined by source and target in-domain and out-of-domain language models.1 Cross-entropy
differences select sentences that are both similar to the in-domain data, and unlike the aver-
age out-of-domain data. Generalisations of word-based cross-entropy differences have been
proposed by (Axelrod et al., 2015a) and (Axelrod et al., 2015b), improving over the standard
approach by means of part-of-speech generalisation and class-based language models.

Whereas most approaches attempt to design optimal similarity measures between domains,
(Banerjee et al., 2012) use translation quality to guide data selection. In their approach, batches
of out-of-domain data are incrementally added to an existing baseline system, evaluated in terms
of translation quality on a development set, and a given batch is selected only if its inclusion
improves translation quality. Also not focused on sentence similarity is work by (Daumé III and

1We will refer to their approach as Modified Moore-Lewis (MML), although it has received a large variety of
acronyms in the literature.
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Jagarlamudi, 2011), who address the lexical coverage aspect of supplementary data selection by
mining unknown words via canonical correlation analysis. (Gascó et al., 2012) use approxima-
tions of in-domain probability distributions and n-gram infrequency scores to achieve signifi-
cant improvements over the baselines and over random selection. In recent work, (Wong et al.,
2016) report significant improvements over perplexity-based selection for Chinese-English, by
training recurrent neural networks to select supplementary data.

Selection based on bilingual cross-entropy differences can be considered the de facto state-
of-the-art approach and is standardly used as baseline by competing approaches. In (Kirchhoff
and Bilmes, 2014), the use of submodular functions for data selection obtained minor but sta-
tistically significant BLEU score gains over MML, whereas (Peris et al., 2017) achieve slight
improvements in terms of BLEU scores via neural network-based classification while using less
data. (Banerjee et al., 2013) also compare their data selection method, based on quality esti-
mation, to MML and obtain slightly better BLEU scores while using smaller amounts of data as
well. Overall, albeit statistically significant in most reported cases, improvements over MML
have been small in terms of automated translation metrics and this method can thus still be
considered a strong baseline for comparative evaluations.

Although we focus our work on bilingual data selection, it is worth noting that monolin-
gual data selection for language model adaptation has also been a fruitful approach, explored
in several studies. (Mediani et al., 2014), for instance, improve over cross-entropy selection by
drawing better samples of out-of-domain data and using word association as a mean to add se-
mantic similarity into the selection process. (Mansour et al., 2011) describe a filtering approach
based on combined cross-entropy scores for the language and translation models, and report
small but statistically significant improvements over standalone methods. Recently, (Duh et al.,
2013) have explored the use of neural language models for data selection, and in particular the
advantages of continuous vector spaces over n-gram-based approaches on handling unknown
words in out-of-domain corpora. We leave monolingual data selection aside in what follows,
although we believe our approach to be worth exploring on these grounds as well, given the
results in terms of perplexity and data sparseness reduction described in Section 4.

3 Exploiting Relative Frequencies

By their very nature, perplexity-based approaches tend to favour short out-of-domain sentences
that exhibit n-gram distributions close to the primary domain. Although this has been shown to
be a fruitful approach in some data selection scenarios, it leaves aside the potential contribution
of data that is related to the primary domain while also exhibiting different distributions. In
the worst case, perplexity-based methods could select out-of-domain sentences that are already
present in the in-domain pool, thus defeating the purpose of increasing model coverage using
additional data. Although this is not usually the case with contrasted domains, the main expec-
tation is that machine translation models should benefit more from additional data that cover
both lexical gaps and unseen syntactic configurations. In order to test this hypothesis, we de-
sign a method that scores out-of-domain sentences according to their similarity to the domain
of interest, while not biasing selection towards the in-domain n-gram distributions.

3.1 Relative Frequency Ratios
The approach we propose estimates similarity via relative frequency ratios between the in-
domain and out-of-domain data. More specifically, we first compute relative frequencies for
each word w in corpus c through token counts C as in Equation 1:

φc(w) =
C(w)∑|c|
i=1 C(wi)

(1)

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 172



For each out-of-domain pair (s, t), where s is the set of source words and t the set of target
words, the relative frequency score is then computed as the sum of the ratios of in-domain and
out-of-domain relative frequencies as in Equation 2, taking the arithmetic mean of the scores
for the source and target sentences.

rfr(s, t) =

∑|s|
i=1

φd(wi)
φo(wi)

+
∑|t|
i=1

φd(wi)
φo(wi)

2
(2)

In the above equation, φd and φo denote the relative frequencies computed on the in-
domain and out-of-domain corpora, respectively. To reduce the impact of large differences in
terms of sentence length, scoring is applied to the sets of tokens composing each sentence. Out-
of-domain words that are not represented in the in-domain corpus are ignored, as the frequency
ratio would not be computable in this case.

The metric thus favours sentences with the largest amount of words that are more repre-
sented in the in-domain than in the out-of-domain. Additionally, it refrains from ignoring the
relative distributions of frequent words, such as function words, under the assumption that all
words in a given sentence are important to identify similarity as defined in terms of content, reg-
ister and style. Finally, the metric remains neutral regarding out-of-in-domain words, as they
do not impact the score of a given sentence, and does not favour known n-gram distributions as
it is based solely on cumulative word frequency ratios.2

3.2 Mining Unknown Words
As previously mentioned, the metric described in the previous section ignores words that are
not part of the in-domain vocabulary. Out-of-domain sentences that contain out-of-vocabulary
(OOV) words will thus be scored according only to the words in the sentence that do pertain to
the in-domain data. This might not be optimal in two respects.

First, large pools of out-of-domain corpora are typically noisy, containing, for instance,
sentences in languages other than the expected ones or sequences of corrupt characters. The
similarity score in this case would only be determined by the known words, typically punctua-
tion, leaving aside the fact that sentences containing mostly OOV words are not likely to improve
the translation models.

Secondly, since adding corpora to the models aims at improving model coverage on both
lexical and syntactic grounds, sentences that resemble the in-domain data while also providing
new vocabulary, and by extension, phrases, should be favoured over those that are only based
on known vocabulary.

Taking these two aspects into account, we aim to promote those sentences that exhibit
a reasonable amount of out-of-vocabulary words and minimise the score of those with large
amounts of OOV words. In order to do so, we complement the core metric with a weighting
scheme related to the percentage of OOV words in each out-of-domain sentence.

Let u be the percentage of out-of-vocabulary items in an out-of-domain sentence, given
the in-domain vocabulary. The value u is first assigned a weight according to Equation 3:

W (u) = sin(α · uk) (3)

Using this sinusoidal function over percentage of unknown words gives us the expected
behaviour: sentences above a given threshold of OOV words will be scored negatively, while the

2In additional experiments not reported here, data selection based on relative frequency ratios performed better than
log-likelihood-based termhood as in (Gelbukh et al., 2010). We hypothesize that this result is due to the latter both
ignoring words that have higher relative frequency in the out-of-domain corpus and to the relative demotion of weaker
terms.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 173



0.2 0.5 0.8 1

−1

−0.5

0.5

1

x

sin(5 · x0.5)

Figure 1: Graph of weighting function for the selected hyper-parameters

higher values from this function will be obtained with a small percentage of unknown words;
sentences containing only known words are assigned a value of zero.

The hyper-parameters α and k need to be set empirically, according to how aggressively
one wants to mine out-of-vocabulary items. The graph of the function for hyper-parameters
α=5 and k=0.5, which were the ones selected for the experiments reported here, is given in
Figure 1.

With the selected hyper-parameters, sentences with a percentage of unknown words around
10% will thus be promoted while amounts over 40% will be considered detrimental. The inte-
gration of this weighting scheme to the core metric is described in Equation 4.

wrfr(s, t) =
exp(W (us)) ·

∑|s|
i=1

φd(wi)
φo(wi)

+ exp(W (ut)) ·
∑|t|
i=1

φd(wi)
φo(wi)

2
(4)

Since the core metric is based on relative frequency sums while the weighting scheme
ranges over positives and negatives, the values of the W function are mapped to the positive
space via exponentiation. Thus, sentences with no unknown words are scored only according
to their relative frequency ratios, those with amounts above forty percent will receive a weight
between 0 and 1, and the remainder will be favoured with weights above 1. In the next sections,
we evaluate the impact of this weighting scheme on the data selection process.

4 Experiments

The experiments described in this section were designed to compare data selection methods in
realistic scenarios, where only a fraction of the large out-of-domain data is typically sought. The
out-of-domain data, as ranked by each method, were thus sliced from one percent up to twenty
percent of the data to perform the evaluations reported here. We compare the two variants of
our approach to Modified Moore-Lewis as representative of the state of the art among methods
that do not require sophisticated setups and are thus easily portable across domain adaptation
scenarios.3

3MML data selection was performed with the XenC tool (Rousseau, 2013): https://github.com/rousseau-lium/XenC.
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LANGS CORPUS TRAIN DEV TEST

EN-ES NewsCommentary 207,137 3,003 3,000
EN-FR EMEA 354,288 500 1000

Table 1: In-domain corpora

LANGS CommonCrawl Europarl UN POOL

EN-ES 1,814,883 1,842,496 8,079,790 11,661,326
EN-FR 3,065,194 1,826,770 9,142,161 13,864,506

Table 2: Out-of-domain corpora

The data slices used here are similar to those employed by (Axelrod et al., 2011), who
experimented with subsets corresponding to 1 time, 2 times and 4 times the size of the in-
domain corpus, and by (Axelrod et al., 2012), who opted to select 10% of the out-of-domain
data for all of their experiments.4

4.1 Corpora
As in-domain corpora, for English-Spanish we used the NewsCommentary datasets from the
WMT news translation shared task, with newstest2012 as development set and newstest2013 as
test set; for English-French we used the data from the WMT medical translation task, with EMEA
as training set and the khresmoi-summary development and test sets.5

As out-of-domain corpora, we used three of the available corpora in the aforementioned
WMT tasks, namely: CommonCrawl, Europarl and UN. All three corpora were pooled in a
single corpus, whose data was then ranked by each method. The statistics for the corpora, after
filtering sentences larger than 60 tokens and removing duplicates, are shown in Table 1 and
Table 2.

This setup responds to two main goals. First, data selection is applied to a large pool of
publicly available out-of-domain data composed of three different sub-domains with varying
amounts of noise.6 This allows for an evaluation of the robustness of each method.

Secondly, the in-domain datasets were selected to be largely different, one covering news
commentary and the other medical data, while the out-of-domain data pool remains constant.
This provides results in a data selection scenario where the out-of-domain datasets are not pre-
selected according to their closeness to the in-domain data. It also allows for a contrastive
evaluation of the benefits of the same out-of-domain data for different in-domain corpora.

4.2 Selected Data
The compared methods select different subsets of data at every slice, as shown in Table 3. This is
not unexpected given their respective scoring schemes, with short pseudo in-domain sentences
being targeted by MML and longer lexically similar sentences by cumulative frequency ratios.
The two variants of our approach have a significant amount of common selected sentences on
the EN-FR dataset, but more than half of the sentences they select are different up to the 10%
slice in EN-ES. This demonstrates the marked impact of the technique we adopted to mine
unknown words on the selection of sentences deemed similar by their relative frequency ratios.

The results in Table 3 also show that the two adaptation scenarios differ markedly with

4Note that the dichotomic search for optimal slices, computed by the XenC tool using perplexity scores on held-out
sets, identified best points at 1% and 14% for the English-French and English-Spanish datasets, respectively.

5All datasets are available at http://www.statmt.org/wmt13/ and http://www.statmt.org/wmt14/.
6The CommonCrawl corpus contains large sections of noisy data, for instance.
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LANGS METHODS 1PCT 2PCT 5PCT 10PCT 20PCT 30PCT 40PCT 50PCT

EN-ES

MML-RFR 11.72 15.88 23.86 32.59 44.12 52.88 60.59 67.91
MML-WRFR 5.16 7.19 12.17 19.12 30.85 41.39 51.30 60.79
RFR-WRFR 44.81 43.72 45.42 49.65 57.51 64.40 70.81 77.13

EN-FR

MML-RFR 24.55 24.30 24.72 27.31 34.45 42.08 49.90 57.95
MML-WRFR 21.09 21.30 22.08 24.88 32.13 39.94 48.04 56.49
RFR-WRFR 84.20 83.66 82.59 82.59 83.70 85.04 86.39 87.81

Table 3: Percentage of common selected sentence pairs per data slice

LANGS METHOD 1PCT 2PCT 5PCT 10PCT 20PCT 30PCT 40PCT 50PCT

EN-ES

MML 17.5 19.3 21.6 23.2 24.6 25.4 25.8 26.1
RFR 40.11 40.03 39.18 37.90 36.03 34.63 33.44 32.30

WRFR 39.41 40.04 39.85 38.86 37.07 35.52 34.08 32.70

EN-FR

MML 14.2 15.7 17.9 19.7 21.8 23.0 23.7 24.2
RFR 28.44 29.72 31.86 33.14 33.56 33.10 32.31 31.35

WRFR 29.77 31.04 33.12 34.19 34.29 33.60 32.63 31.53

Table 4: Average source sentence length per data slice

respect to the distribution of similar sentences in the out-of-domain corpus. Whereas there is a
significant portion of similar material in the in-domain and out-of-domain data for EN-ES, due
to the presence of the Europarl and UN corpora, for EN-FR the amount of out-of-domain data
related to the medical domain is sparser. This produces the expected larger selection differences
between methods in the first case as compared to the second one.

As previously noted, the methods are expected to differ in terms of length, given their
respective scoring schemes. The comparative data shown in Table 4 confirm this expectation,
with the two methods based on relative frequency ratios selecting sentences that are on average
double the length of those selected by MML in the first three slices. Length differences tend
to reduce in larger slices, although the perplexity-based approach still tends to select shorter
sentences overall.

All three methods select data that seem related to the in-domain at first glance, as illustrated
in Table 5 with examples of the type of out-of-domain sentences uniquely selected by each
method in their respective 1% slices. In the next sections, we measure more precisely how
related the selected data are to the in-domain in terms of capturing out-of-vocabulary words,
perplexity and automated translation metrics.

4.3 Unknown Words
One of the main motivations for an approach based on cumulative frequency ratios is its se-
lection of longer sentences similar to the in-domain, which is meant to increase the amount of
unknown words that can be captured, indirectly in the case of RFR and directly in the case of
WRFR.

To evaluate the differences between the three methods in terms of increasing in-domain
coverage, we measured the number of out-of-vocabulary items a posteriori on the test sets for
each data slice. Figure 2 shows the results on the source side in EN-ES.

For this language pair, the amount of OOV items under MML is more than double that of
WRFR, and nearly double that of RFR, for the lower slices. At the 1% mark in EN-ES, for
instance, the slices contain 2669, 1529 and 1146 unknown words when selected by MML, RFR
and WRFR, respectively. The amounts of OOV words only start to be similar around the 50
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LANGS METHOD SENTENCES

EN-ES

MML

where are we heading ?
—
trillions of dollars more are waiting in the wings .
—
the implications are dire .

RFR

the assumption that only an enlightened minority is in a position to respect
human rights and freedoms .
—
greenhouse gas emissions can be cut through the use of nuclear energy , clean
coal and low carbon-emitting renewable energies .
—
coupled with extensive deregulation of financial markets and excess liquidity
, these imbalances encouraged investors to engage in leveraged risk-taking in
search of profits .

WRFR

during that period , their debt actually increased from $ 618 billion in 1980 to $
3.25 trillion in 2006 .
—
Mr. Snowden ( United States of America ) said that the Commission for Sus-
tainable Development had galvanized action and helped shape the agendas of a
wide range of organizations around the world .
—
there has been a temptation for the West – Europe and the United States – to
stress continuity and so-called stability .

EN-FR

MML

avoid contact with skin , eyes or clothing .
—
the unused portion should be discarded .
—
peel open the package with dry hands and place the tablet on your tongue .

RFR

in terms of public health , the environmental impact of the new medicinal prod-
ucts should be assessed .
—
antiretroviral treatment can be effective only if it is administered and monitored
by health professionals working in a well-functioning national health system .
—
finally , it recognises the need for studies on vaccines and anti-viral medications
that are independent of the pharmaceutical industry , including with regard to
the monitoring of vaccination coverage .

WRFR

during the final process , an operator peers through a microscope at the die
surfaces , polishing them carefully with a diamond abrasive tool head that is
vibrated by supersonic waves .
—
concentrations of petroleum contaminants in fish and crab tissue , as well as
contamination of shellfish could have potentially significant adverse effects on
health .
—
the first three , namely glycerine , brake fluid and anti-freeze , are considered to
present the most extreme incompatibility with calcium hypochlorite .

Table 5: Uniquely selected English sentences in 1% slices
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Figure 2: Source out-of-vocabulary words per English-Spanish data slice

percent mark, although WRFR still captures more unknown words in all cases.
The results for the source side in EN-FR are shown in Figure 3.
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Figure 3: Source out-of-vocabulary words per English-French data slice

For this language pair, the tendencies are similar, with MML being markedly outperformed
by both RFR and WRFR, and the latter being the best of all three methods in terms of selecting
out-of-domain data that reduce data sparseness.

4.4 Perplexity
As seen in the previous section, the compared approaches differ significantly in terms of se-
lected data, in terms of both average length and amount of OOV items they capture. In addition
to these measures, it is important to evaluate the increase or reduction in their respective sta-
tistical modelling of sequences. Table 6 indicates the perplexities, including OOV words in
the computation of entropy, obtained by each method on the respective test sets after training
language models on each data slice.

Since MML is designed to target those sentences that have low in-domain perplexity and
high out-of-domain perplexity, one could expect this method to significantly outperform meth-
ods based on relative frequency ratios, which make no attempt at minimizing perplexity. As
shown above, this is not the case, with both RFR and WRFR significantly outperforming MML

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 178



LANG METHOD 1PCT 2PCT 5PCT 10PCT 20PCT 30PCT 40PCT 50PCT

ES

MML 335.55 295.46 249.95 217.95 196.59 188.95 186.60 186.60
RFR 281.53 252.06 224.52 210.23 201.26 198.49 197.38 197.17

WRFR 257.67 232.76 211.72 202.32 197.93 197.15 196.85 196.79

FR

MML 151.90 147.55 151.63 161.38 175.67 187.42 196.67 203.95
RFR 153.63 154.66 163.54 173.54 187.74 197.88 205.13 210.47

WRFR 157.64 158.75 166.89 177.64 191.15 200.44 207.20 212.14

Table 6: Target language perplexity with OOV per data slice

up to the 10% slice in EN-ES. For EN-FR, the MML approach provides better results on all slices,
but only marginally so when compared to the differences obtained in EN-ES.

With both RFR and WRFR outperforming MML in terms of OOV coverage, it could be
hypothesised that the competitive results in terms of perplexity are largely due to differences in
the amount of captured unknown words. To evaluate this specific point, we computed perplexity
using the same language models but ignoring OOV words, with the results shown in Table 7.

LANG METHOD 1PCT 2PCT 5PCT 10PCT 20PCT 30PCT 40PCT 50PCT

ES

MML 221.38 211.69 193.56 177.30 165.77 162.42 161.72 161.72
RFR 217.07 202.41 186.75 178.65 173.77 172.45 172.28 172.57

WRFR 211.53 196.18 182.75 176.67 173.97 173.61 173.51 173.38

FR

MML 116.81 116.01 121.36 129.67 140.90 149.75 157.47 163.06
RFR 123.81 125.72 132.94 140.82 151.35 159.15 164.47 168.46

WRFR 127.86 128.82 135.70 144.10 154.29 161.20 166.20 169.95

Table 7: Target language perplexity without OOV per data slice

The tendencies observed for perplexity including all words are maintained, with RFR and
WRFR obtaining the best scores on the first slices in EN-ES and MML obtaining lower perplex-
ities across the board for EN-FR. The differences between the methods are less marked in this
case, due to ignoring out-of-vocabulary items in the computation of perplexity.

Overall, the two variants based on relative frequencies perform well in terms of perplexity,
either outperforming the perplexity-minimising MML approach or reaching comparable results.

4.5 Extrinsic Evaluation
Finally, we performed extrinsic evaluations using SMT models trained on the in-domain and
out-of-domain corpora, as there exist well-established methods to perform domain adaptation
with said models. All translation models are phrase-based (Koehn et al., 2003), trained using
the Moses toolkit (Koehn et al., 2007) with default hyper-parameters and phrases of maximum
length 5. The phrase tables were pruned according to statistical significance (Johnson et al.,
2007) and the parameters of the log-linear models were tuned with MERT (Och, 2003). All
language models are of order 5, trained with the KENLM toolkit (Heafield, 2011). The indi-
vidual in-domain and out-of-domain translation models were then combined by filling up the
in-domain phrase table with out-of-domain phrases, with a binary feature denoting the origin of
each phrase (Bisazza et al., 2011).

We did not perform additional extrinsic evaluations using neural machine translation mod-
els for this work. Although this could provide valuable additional information, domain adapta-
tion with NMT is an ongoing research activity where current approaches have certain limitations.
One of the main methods currently employed is that of specialisation, where a network trained
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MODEL 100PCT 1PCT 2PCT 5PCT 10PCT 20PCT

NEWSCOM 23.285
POOL 27.746
RAND 24.065 24.246 25.194 26.273 27.01
MML 23.637 24.121 24.999 26.101 26.878
RFR 24.547 † ‡ 25.102 † ‡ 26.0 † ‡ 26.563 † ‡ 27.166 ‡

WRFR 24.823 † ‡ ∗ 25.458 † ‡ ∗ 26.142 † ‡ 26.914 † ‡ ∗ 27.258 † ‡

Table 8: BLEU scores per data slice for English-Spanish

MODEL 100PCT 1PCT 2PCT 5PCT 10PCT 20PCT

EMEA 27.099
POOL 37.958
RAND 31.564 31.747 33.234 34.52 37.43
MML 33.695 † 34.805 † 35.907 † 36.539 † 37.43
RFR 34.791 † ‡ 35.48 † ‡ 35.979 † 37.438 † ‡ ∗ 37.276

WRFR 35.124 † ‡ ∗ 35.325 † ‡ 36.298 † 36.987 † ‡ 37.268

Table 9: BLEU scores per data slice for English-French

on generic data is subsequently extended with additional in-domain data (Crego et al., 2016). As
it stands, this method requires the new data to be constrained to the vocabulary of the already
trained network, which prevents a direct contribution of in-domain vocabulary. This specific
issue is typically mitigated via external dictionaries along with a copy mechanism for words
that are not part of the generic vocabulary, a working solution which does not however allow
for a complete modelling of the in-domain data. Adopting a reversed approach would result
in training an in-domain model and add the selected out-of-domain data, as is typically done
in SMT domain adaptation. However, the networks would specialise towards the selected out-
of-domain data in this case, which would not provide the expected domain adaptation results.
A third approach would be to train several models from scratch using a combination of all the
in-domain data along with each slice of selected out-of-domain data, a highly computationally
expensive approach since each addition of selected data slices would require the training of an
entire network.

The time-tested SMT-based approach we chose for our experiments has the advantage of
not putting internal restrictions on the available vocabulary and allows for a straightforward
comparison between the different data selection approaches. We thus leave additional NMT-
based contrastive experiments for future work, noting that evaluating the contribution of se-
lected portions of out-of-domain data, as determined by each one of the compared methods, on
NMT models, would undoubtedly provide interesting additional results.

In addition to the models trained on each slice as selected by the three compared methods,
for both scenarios we trained a POOL model by combining the in-domain model with a model
trained on all out-of-domain data, and used randomly sampled data to train a random baseline
(RAND). The comparative results for the two domain adaptation scenarios in terms of BLEU
scores (Papineni et al., 2002) are shown in Tables 8 and 9 for English-Spanish and English-
French, respectively.7

7Statistical significance was measured using the paired bootstrap resampling test of (Koehn, 2004) over average
BLEU scores. † indicates statistical significance, at p < 0.05, as computed between a given model and the random
baseline; ‡ between RFR or WRFR and MML; and ∗ between RFR and WRFR.
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Overall, the RFR and WRFR approach outperformed MML across the board, with results
exhibiting no statistically significant differences between the three models obtained only at the
20% slice mark in EN-FR. Using only 1% of the data, the WRFR approach improves over MML
by 1.2 BLEU points for EN-ES and by 1.4 for EN-FR. Given the usually minor improvements
obtained by alternatives against MML, these results are indicative of the ability of approaches
based on relative frequencies to select useful data that help reach significant improvements of
machine translation models.

Note that, for EN-ES, there is no statistically significant difference between MML and the
random baseline, although all methods perform better than random selection throughout in EN-
FR. This difference might be attributable to the fact that MML tends to select already known
material, which is more likely to be selected in this out-of-domain pool when the in-domain
contains news-related data. Thus, the selected data bring less new and useful data than is the
case for EN-FR, where there is a wider gap between medical in-domain data and the average
data in the out-of-domain pool.8

Also interesting to note is the fact that no model performs better than the ones created with
all out-of-domain data. Note that several reports of models trained on a subset of the data having
outperformed the reference models trained on all data indicated such results when using larger
slices than the ones reported here (see e.g., Banerjee et al. (2012); Wong et al. (2016)); in other
cases, the best results do not outperform the larger models (see, e.g., Peris et al. (2017)). Results
on these grounds are also largely dependent on the volumes and nature of out-of-domain data
being used; in our case, the pools are on the larger side of the reported experimental scales and
contain merged data from different domains, which renders the task more difficult for any data
selection method. In any case, the methods evaluated here already reach results that are close to
those obtained using all the available data, while using only a fraction of the data, which is one
of the main reasons to apply data selection.

5 Conclusion

We described a data selection method for domain adaptation in machine translation, based on
relative frequency ratios computed between in-domain and out-of-domain corpora. Our method
was compared to a state-of-the-art approach based on cross-entropy differences, outperforming
it in terms of data sparseness reduction and BLEU scores on the models created from various data
slices. Although not meant to minimise perplexity, our approach was shown to either perform
significantly better with fewer data or provide competitive results.

A novel method to mine unknown words in out-of-domain datasets was also presented,
which resulted in the best models across the board when used to weight sentences whose simi-
larity to the primary domain was determined by relative frequency ratios. This empirical method
can be applied to other scenarios as well, where the goal is to target sentences according to the
desired amount of unknown words.

The proposed method is simple, requiring neither external resources nor complex setups,
which makes it highly portable across domain adaptation scenarios. In future work, we will
pursue improvements and comparative evaluations of the presented methods, in particular with
neural machine translation models, where the comparatively larger amounts of useful data re-
trieved by the method we described might also contribute to increase model accuracy.

8Since MML depends on sampling the out-of-domain data in similar proportion to the size of the in-domain, different
samples might give different results, especially on large datasets. Several samples could be drawn from the same out-
of-domain datasets, a functionality that is provided by the XenC toolkit. However, results along these lines have not
been fully explored, to the best of our knowledge, and we opted to use the MML method in its standard variant with
single sampling.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 181



References

Axelrod, A., He, X., and Gao, J. (2011). Domain adaptation via pseudo in-domain data selection. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 355–
362. Association for Computational Linguistics.

Axelrod, A., He, X., Resnik, P., and Ostendorf, M. (2015a). Data selection with fewer words. pages
58–65.

Axelrod, A., Li, Q., and Lewis, W. D. (2012). Applications of data selection via cross-entropy difference
for real-world statistical machine translation. In Proceedings of the International Workshop on Spoken
Language Translation, pages 201–208.

Axelrod, A., Vyas, Y., Martindale, M., Carpuat, M., and Hopkins, J. (2015b). Class-based n-gram lan-
guage difference models for data selection. In Proceedings of the 12th International Workshop on
Spoken Language Translation.

Aydın, B. and Ozgür, A. (2014). Expanding machine translation training data with an out-of-domain cor-
pus using language modeling based vocabulary saturation. In Proceedings of the Eleventh Conference
of the Association for Machine Translation in the Americas (AMTA).

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and
translate. arXiv:1409.0473.

Banerjee, P., Naskar, S. K., Roturier, J., Way, A., and van Genabith, J. (2012). Translation quality-based
supplementary data selection by incremental update of translation models. In Proceedings of COLING
2012: Technical Papers, pages 149–166.

Banerjee, P., Rubino, R., Roturier, J., and van Genabith, J. (2013). Quality estimation-guided data selection
for domain adaptation of smt. MT Summit XIV: proceedings of the fourteenth Machine Translation
Summit, pages 101–108.

Bisazza, A., Ruiz, N., Federico, M., and Kessler, F.-F. B. (2011). Fill-up versus interpolation methods
for phrase-based smt adaptation. In Proceedings of the International Workshop on Spoken Language
Translation, pages 136–143.

Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D., Mercer, R. L.,
and Roossin, P. S. (1990). A statistical approach to machine translation. Computational linguistics,
16(2):79–85.

Crego, J., Kim, J., Klein, G., Rebollo, A., Yang, K., Senellart, J., Akhanov, E., Brunelle, P., Co-
quard, A., Deng, Y., et al. (2016). Systran’s pure neural machine translation systems. arXiv preprint
arXiv:1610.05540.
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Abstract

We present the second ever evaluated Arabic dialect-to-dialect machine translation effort,
and the first to leverage external resources beyond a small parallel corpus. The subject has
not previously received serious attention due to lack of naturally occurring parallel data; yet its
importance is evidenced by dialectal Arabic’s wide usage and breadth of inter-dialect variation,
comparable to that of Romance languages. Our results suggest that modeling morphology and
syntax significantly improves dialect-to-dialect translation, though optimizing such data-sparse
models requires consideration of the linguistic differences between dialects and the nature of
available data and resources. On a single-reference blind test set where untranslated input scores
6.5 BLEU and a model trained only on parallel data reaches 14.6, pivot techniques and morpho-
syntactic modeling significantly improve performance to 17.5.

1 Introduction

Arabic is widely spoken and highly diglossic, with Modern Standard Arabic (MSA) represent-
ing the high register shared across the Arab World in educated circles. In contrast, the many
spoken dialectal Arabic varieties (DA) are somewhat if not entirely mutually unintelligible, e.g.,
Moroccan and Kuwaiti. Chiang et al. (2006) compare the linguistic variation among Arabic di-
alects to that among Romance languages, indicating the need for machine translation (MT)
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between these dialects. However, while much MT research has been devoted to translating
between Romance languages (Corbí Bellot et al., 2005; Armentano-Oller et al., 2006; Koehn
et al., 2009), we are aware of only one work on Arabic DA-to-DA MT (Meftouh et al., 2015).
It deals mainly with Maghrebi dialects and utilizes only a small parallel corpus.1 This work fo-
cuses on the Egyptian and Levantine dialects, leveraging various available resources such as a
morphological analyzer and additional monolingual and multilingual data.2 Compared to other
dialects, Egyptian and Levantine’s wider range of available data/resources allows us to evaluate
more MT approaches using different combinations of these data/resources. Thus, in future work
on DA pairs which may not have the same data/resources, we can tailor MT systems based on
this paper’s findings.

The main challenge in developing DA-to-DA MT systems is the lack of data. While many
Romance languages are official languages with written standards, naturally occurring in parallel
corpora like the European Parliament (Koehn, 2005), DA has no official status and was rarely
written until the advent of social media.3 The recent release of the first parallel multi-dialectal
corpora (Bouamor et al., 2014; Meftouh et al., 2015) has enabled seminal, albeit low-resource
MT experiments. We present some shortcomings of these corpora and introduce an in-house,
under-development corpus. Then we explore different means of leveraging external resources,
e.g., Egyptian-to-English and Levantine-to-English data and an Egyptian tokenizer and morpho-
logical analyzer (Habash et al., 2012b; Maamouri et al., 2014; Pasha et al., 2014). We conduct
experiments in a range of data-sparse settings and show the effect of morpho-syntactic features
on the DA-to-DA MT performance. Our approach can be extended to other DA pairs and other
closely related languages and dialects (Tyers et al., 2017).

2 Related Work

An increasing amount of research has been conducted on dialectal Arabic NLP; however, most
dialectal MT efforts translate from DA to MSA or English. The only other DA-to-DA work we
are aware of focuses on manipulating language model smoothing parameters to optimize data
sparse MT performance (Meftouh et al., 2015).

2.1 Dialectal Arabic Machine Translation

While only Meftouh et al. (2015) have evaluated DA-to-DA MT, many others have addressed
MT between DA and other languages. Zbib et al. (2012) attempted to translate from Egyptian
and Levantine to English and found that pivoting through better resourced MSA was not useful
due to register and domain differences. MSA, the higher register, is rarely used to discuss the
day-to-day matters frequently treated with DA, causing a domain mismatch. However, several
approaches have since presented alternative results (Sawaf, 2010; Salloum and Habash, 2011,
2012; Sajjad et al., 2013; Durrani et al., 2014). These use rule-based or hybrid methods to
identify mappings from DA to MSA before translating to a target language (usually English).
Additionally, Tachicart and Bouzoubaa (2014) report results on adapting an approach designed
for MSA to Moroccan translation to translate in the inverse direction (Moroccan to MSA).

2.2 Dialectal Arabic Data

Several newly developed corpora have facilitated the recent surge in dialectal NLP work.

1Maghrebi dialects are those spoken in Morocco, Algeria, Tunisia and Libya.
2Levantine covers the dialects spoken in Lebanon, Syria, Palestine and Jordan.
3Recently, two parallel Arabic translations were created for 12,000 sentences from the European Parliamentary

proceedings, but both are in MSA (Habash et al., 2017).
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The DARPA BOLT (Broad Operational Language Translation) project sponsored the cre-
ation of a large number of resources,4 including a sizeable data set of DA sentences paired
with their English translations. This data set consists of 2.2 million words of Egyptian and 1.5
million words of Levantine which were harvested from SMS messages and online sources like
weblogs before being translated.

As for monolingual corpora, Zaidan and Callison-Burch (2011)’s Arabic Online Commen-
tary (AOC) corpus contains 52 million words of mixed MSA and DA from news articles and
readers’ comments. Cotterell and Callison-Burch (2014) add modest amounts of Twitter data
to this corpus, though we find the domain difference harmful for language modeling and drop
it in our experiments. Khalifa et al. (2016)’s GUMAR corpus contains over 100 million words
of Gulf Arabic and a smattering of other dialects, all taken from internet novels, a genre of long
conversational novels shared anonymously on online forums popular among female teenagers.
Other monolingual DA corpora like Tunisiya (McNeil and Faiza, 2011), the Curras corpus
of Palestinian-Levantine (Jarrar et al., 2014), and those corpora presented in Al-Shargi et al.
(2016), focus on different dialects or are too small to be relevant to Egyptian-to-Levantine MT.

As for DA-to-DA data, Bouamor et al. (2014) present the first corpus with 2,000 7-way par-
allel sentences of Egyptian, Tunisian, three Levantine dialects (Syrian, Jordanian, Palestinian),
MSA, and English, all translated from Egyptian sentences harvested from the web. The authors
concede that many Levantine sentences seem to be influenced by the Egyptian, likely because
translators were primed with Egyptian expressions they might understand, but would not pro-
duce naturally. The same concern applies to the 6,400 sentence, 6-way parallel PADIC corpus
used in Meftouh et al. (2015), as all translations were derived from DA or MSA. When de-
veloping the 12,000 sentence multi-dialectal corpus used in our experiments, we avoided such
priming effects by asking translators to produce translations starting from English sentences
taken from the Basic Travel Expressions Corpus (BTEC) (Takezawa et al., 2002).

Other relevant resources include AVIA,5 a small but rich multi-dialect reference grammar
with contextual examples, and Tharwa (Diab et al., 2014), a 4-way English, MSA, Egyptian,
Levantine lexicon with rich linguistic annotation.

2.3 Pivot Machine Translation

Pivoting is an MT technique used to combat data sparsity when more source-to-pivot and pivot-
to-target data is available than source-to-target parallel data (Muraki, 1987; Hajič et al., 2004;
Wu and Wang, 2007; Habash and Hu, 2009). In this work, we use a specific form of pivoting:
phrase pivoting. This involves aligning source-to-pivot and pivot-to-target data, extracting pairs
of phrases into two phrase tables, then combining them into a single source-to-target phrase
table based on shared pivot phrases (Utiyama and Isahara, 2007).

Our work is similar to El Kholy et al. (2013), who use English to translate from Per-
sian to Arabic via phrase pivoting. They introduce connectivity strength constraints to weight
learned Persian-to-Arabic phrase-pairs in the table by considering how well each pair can be
aligned through an English pivot phrase (discussed further in Sections 4 and 5). In follow-
up work, El Kholy and Habash (2015) add morphological constraints for translating related,
morphologically rich languages Arabic and Hebrew, via morphologically-poor English. These
constraints help preserve fine grained morphological distinctions like gender agreement which
cannot otherwise be accurately translated via a morphologically poor pivot that does not make
such distinctions, i.e., English.

4Pointers to the Linguistic Data Consortium’s BOLT resources can be found here: https://www.ldc.upenn.
edu/collaborations/current-projects/bolt.

5http://www.umventures.org/technologies/arabic-variant-identification-aid-avia
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3 Data Preparation

All data used in our experiments comes from sources mentioned in Section 2.2. As displayed
in Table 1, we split our 12,000 sentence BTEC parallel corpus into training, tuning, dev, and
blind test sets, which are constant across all experiments. Also, in some experiments, we use
additional monolingual and pivot data from AOC and the BOLT corpus, respectively.

Data Set Dialect Description Size
BTEC-train Egy–Lev Parallel 8,000
BTEC-tune Egy–Lev Parallel 500
BTEC-dev Egy–Lev Parallel 1,500
BTEC-test Egy–Lev Parallel 2,000
BOLT-egy Egy–Eng Pivot 410,000
BOLT-lev Eng–Lev Pivot 180,000
AOC-egy Egy Monolingual 9,000
AOC-lev Lev Monolingual 5,000

Table 1: Data used in all experiments. Size reported in number of sentences.

Similar to MSA, DA is morphologically and syntactically rich, posing several challenges
for MT systems. To be able to leverage morpho-syntactic features, we ran our Egyptian and
Levantine data through MADAMIRA (Pasha et al., 2014), an Arabic morphological analyzer
and disambiguator trained for MSA (MADAMIRA-MSA) and Egyptian (MADAMIRA-EGY).
Unfortunately, the Levantine version of MADAMIRA is still under development (Eskander
et al., 2016), so we use MADAMIRA-EGY to process both our Egyptian and Levantine corpora.
Jarrar et al. (2014) and Khalifa et al. (2016) show that using MADAMIRA-EGY to process non-
Egyptian DA data yields better results than MADAMIRA-MSA. To minimize the analyzer’s
bias towards Egyptian when processing Levantine data, we do not allow it to make orthographic
changes. This limits the effects of misanalyzing many Levantine words, such as 	

¡mÌ'Aë hAlHĎ

‘this luck’, which can be incorrectly Epgyptianized as 	
¡mÌ'


Ag HÂlHĎ – the Egyptian future

particle +h H+ together with an MSA verb 	
¡mÌ'


@ ÂlHĎ ‘I perceive’.6

A number of tokenization and segmentation schemes are available for Arabic (Habash,
2010). Some separate only punctuation and digits. Others, such as ATB and D3, separate dif-
ferent sets of clitics from the base word. Whereas D3 segments all clitics, ATB leaves attached
the definite article, È@ Al. The optimal segmentation for our task is D3 (Sadat and Habash, 2006),
as the aggressive tokenization mitigates for data sparsity. Typically, these tokenization schemes
involve orthographic rewrite rules to ensure that the base word matches its non-cliticized form
to minimize sparsity (El Kholy and Habash, 2012). Such rules depend on the morphological
template of the word and the clitics attached to it. For a word such as AëñJ.

�
JºJ
k HyktbwhA ‘and

they will write it’, the basic D3 tokenization is H+ yktbwA +hA. The extra A is added to the
base word to minimize sparsity as this is how it would appear if no suffix had been appended.7

Since we do not have ideal tools for processing (tokenizing and detokenizing) Levantine,
we opt for a stricter surface-word-oriented segmentation that guarantees recovering the form by
simple concatenation when detokenizing. Thus, for AëñJ.

�
JºJ
k HyktbwhA ‘and they will write

it’, the desired D3 segmentation is H+ yktbw +hA. This may increase data sparsity slightly,
but more importantly, as mentioned previously, this limits the extent to which words can be

6Arabic transliteration is presented in the Habash-Soudi-Buckwalter scheme (Habash et al., 2007).
7In all of the work presented in this paper we apply ø/ @ Alif/Ya normalization (El Kholy and Habash, 2012).
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Required Data
Model BLEU Out-of-vocabulary Parallel Monolingual Pivot

NO-TRANSLATION 6.48 N/A
DIRECT 15.44 4.6 X

SYNTHETIC 16.75 0.8 X X
PHRASE PIVOT 6.77 1.4 X

DIR+PP 17.41 0.9 X X
SYNTHETIC-DIR+PP 16.81 0.8 X X X

Table 2: Baseline BLEU scores given different requirements: parallel, monolingual, or pivot
data. Out-of-vocabulary rates are presented as percentages for each model.

misanalyzed or overly Egyptianized. To achieve this, we extend a DA morphological database
with suffix and prefix segmentations, adding a wrapper on top of MADAMIRA to generate the
proper segmentation for each analysis. The database extension is automatic and the segmenta-
tion is deterministic, following D3 segmentation rules. This allows us to (i) apply this extension
to other databases in other dialects that follow the structure of the MADAMIRA database, and
(ii) expand our application to dialects that do not have any available analyzers yet.

4 Baseline Models

We use the phrase-based statistical MT platform, Moses (Koehn et al., 2007) to build multiple
Egyptian-to-Levantine MT systems: one that only trains on parallel data, another that fabricates
pseudo-parallel training data from additional monolingual data, and a third model utilizing pivot
data through English. While neural MT has been successfully applied to MSA (Almahairi et al.,
2016), we opt for statistical MT as data sparsity and other factors render neural techniques im-
possible for DA (Zhang et al., 2016). Luong and Manning (2015)’s English-to-Vietnamese
neural MT system, for instance, leverages 10 times more parallel data then we use in our ex-
periments, yet still fails to outperform a statistical baseline. Furthermore, their training and
testing data is from a single domain with standardized spelling, i.e., limited token:type ratio,
which Farajian et al. (2017) suggest should greatly facilitate neural MT performance. Given
our sparsity of DA data and lack of spelling conventions, we can neither rely on homogeneous
training/testing domains nor low token:type ratios and must resort to statistical MT.

We evaluate the output of our MT systems via BLEU scores (Papineni et al., 2002), com-
paring them to a single reference in detokenized space. NO-TRANSLATION, scoring 6.48, com-
pares the original, unchanged Egyptian input to the Levantine reference. The results as well as
data requirements are reported in Table 2.

4.1 The Direct Model

The most basic statistical system, the DIRECT model can be extended to any dialect pair with
parallel data. It is trained only on our BTEC parallel corpus, with some additional monolingual
data for language modeling. This model leverages a 2.4 million token 5-gram language model
trained using KenLM (Heafield, 2011), consisting of Levantine data from the AOC corpus,
BOLT, and BTEC.

Following El Kholy and Habash (2015), we perform word alignment using the grow-diag-
final algorithm (Och and Ney, 2003) and we restrict the maximum length of extracted phrases
to 8 tokens. Our D3 tokenization is slightly more aggressive than El Kholy and Habash (2015)
who use ATB, so we experimented with marginal increases in the maximum allowable phrase
length but found them to have no significant effects on performance.
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As shown in Table 2, this basic model greatly outperforms the NO-TRANSLATION baseline
at 15.44 BLEU, but suffers from a high rate of out-of-vocabulary (OOV) words given that it is
only trained on a small amount of parallel data. Furthermore, the model seems to learn noisy
weights for many of the phrase pairs it extracts due to the infrequency with which they are
encountered during training.

4.2 The Synthetic Model

Inspired by Schwenk and Senellart (2009), we use additional monolingual data to build a SYN-
THETIC MT system. First, we use the DIRECT model to translate all of the BOLT Egyptian
data to Levantine. Then we build an inverse model identical to the DIRECT model, but from
Levantine to Egyptian, and use it to translate the BOLT Levantine data into Egyptian. Finally,
we learn a new phrase table from our newly generated parallel corpus consisting of the orig-
inal 8,000 training sentences, 410,000 BOLT Egyptian-to-generated-Levantine sentences, and
180,000 BOLT Levantine-to-generated-Egyptian sentences.

While Schwenk and Senellart (2009) implement this technique in a slightly different man-
ner for the purpose of domain adaptation, we use it to reduce noise in the phrase table. Due to
sparsity of parallel data, the DIRECT model is hard pressed to distinguish good low frequency
phrase pairs from bad ones. Adding synthetic data to the model enables it to learn better align-
ments for low frequency phrase pairs by getting exposure to a variety of different contexts in
which such phrases can occur. This system significantly improves over the DIRECT model,
scoring 16.75 BLEU, representing our best solution for DA-to-DA MT that does not require
pivot data.

4.3 The Phrase Pivot Model

Following El Kholy et al. (2013), we use the BOLT data to phrase pivot through English. Phrase
pivoting drastically increases vocabulary coverage; however, it also produces a phrase table with
many poorly connected phrase pairs as well as phrase pairs which erroneously translate morpho-
syntactic features that cannot be conveyed through morphologically-poor English. The PHRASE
PIVOT model addresses the poor connectivity issue by adding El Kholy et al. (2013)’s connec-
tivity strength constraints. These identify how many Egyptian and Levantine tokens in a given
Egyptian-to-Levantine-via-English phrase pair can be aligned to each other via corresponding
alignments to the same English token.

Figure 1: Identifying the connections between
an Egyptian phrase and Levantine phrase which
were both independently (and noisily) mapped
to the same English phrase during pivoting.

For example, the noisy Egyptian-to-
Levantine phrase pair in Figure 1, would
receive a connectivity score of 0.75 from
the Egyptian side because 3 of the 4
alignments—those to ‘wants’, ‘to’, and
‘go’—connect through the English pivot
phrase to a Levantine token on the other side.
The connectivity score from the Levantine
side would be 0.6 because 3 of the 5 Levan-
tine alignments connect all the way through.
hlq does not count towards the 3 connections
because while it connects to the English to-
ken ‘now’, no Egyptian token connects to ‘now’ from the other side. This example also exhibits
the issue that will be addressed in Section 5, that morpho-syntactic properties are not accurately
conveyed through morphologically deprived English, as ςAyz and bd connect through ‘want’,
though ςAyz implies a masculine subject whereas the suffix of bd, hA, entails that the subject of
the Levantine sentence is in fact third-person feminine.
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This PHRASE PIVOT model can be extended to any DA pair with pivot data, but only
marginally outperforms the NO-TRANSLATION baseline at 6.77 BLEU. However, used in con-
junction with the DIRECT model, the Direct + Phrase Pivot (DIR+PP) model increases OOV
coverage, boosting performance to 17.41 BLEU, almost 2 full BLEU points over the DIRECT
baseline. We also re-ran the SYNTHETIC model using DIR+PP to fabricate parallel data instead
of DIRECT, however, this did not improve performance. It is possible that the types of DIRECT
model errors which are corrected by DIR+PP versus those corrected by SYNTHETIC are similar.
Thus, when training on fabricated parallel data, the SYNTHETIC-DIR+PP model may reinforce
its own errors more than learn to fix them.

5 Leveraging Morphology and Syntax

The best baseline system, DIR+PP still fails to adequately handle Arabic’s rich morphology and
syntax, as illustrated by Figure 2, where part-of-speech (POS) is not preserved in the output.
A minimally different correct version of the example in Figure 2 would simply replace verbal
third-person singular i

�
J
	
®J
K. byftH ‘he opens’, with the nominal form i

�
J
	
¯ ú




	
¯ fy ftH ‘in opening’.

Source: H. AJ. Ë @ [[i
�
J
	
¯ ú




	
¯]] �

éÊ¾
�

�Ó ø



Y
	
J« A

	
K @

AnA ςndy mšklh̄ [[fy ftH]] AlbAb
I to-me problem [[in opening.N]] the-door

Output: H. AJ. Ë @ [[i
�
J

	
®J
K.]]

�
éÊ¾

�
�Ó ø



Y

	
J« A

	
K @

AnA ςndy mšklh̄ [[byftH]] AlbAb
I to-me problem [[with-opens.3MS]] the-door

Reference: I’m having trouble opening the door

Figure 2: Example DIR+PP error where the output does not preserve the POS of the source.

Because Arabic verbs convey person in much finer granularity than do English verbs,
which only inflect for third-person singular forms in present tense, many Arabic verb inflections
in the source-to-pivot and pivot-to-target phrase tables will be aligned to the same morpholog-
ically deprived English verb, e.g., ‘opening’. Thus, when the phrase tables are combined via
shared English phrases, any given inflected Egyptian verb can be mapped to a large number
of Levantine inflections, which, mostly, will not share the same morpho-syntactic properties.
In this case, because ‘opening’, like many ‘ing’-suffixed forms in English, can be nominal or
verbal, it is not just inflectional morphology that is confused but derivational morphology, as
the POS is misinterpreted.

5.1 Addressing Resource Limitations

El Kholy and Habash (2015) use AMEANA (El Kholy and Habash, 2011), an automatic error
analysis tool, to determine that definiteness, gender, and number are the features that most fre-
quently contribute to such errors in Hebrew-to-MSA MT. In this work, we were not able to use
AMEANA, as it relies on accurate morphological analyses that we cannot produce automati-
cally for Levantine. Furthermore, even if we knew what were the most problematic features for
translating Egyptian to Levantine, we might not be able to leverage them, as there is non-trivial
noise and Egyptian bias in how the analyses were generated (Section 3).

Our approach focuses instead on identifying features that: (i) MADAMIRA-EGY can rec-
ognize relatively accurately (ii) tend to be consistently translated from Egyptian to Levantine.
For instance, second-person and third-person verbal forms are frequently orthographically am-
biguous in Arabic, making person challenging for our analyzer to correctly identify. Thus,
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adding a constraint to the model promoting consistent translation of the person feature value
would be useless because we are not likely to know the correct property of person in the first
place. Furthermore, if the possible values of a given feature can be translated freely, modeling
that feature will be similarly useless. This is often the case with tense, as ½

	
¯ñ

�
��. bšwfk ‘see you’

in Egyptian could conceivably be translated as ½
	
¯ñ

�
� hP rH šwfk in Levantine, changing the

value from progressive (realized by the cliticized particle H. b) to future tense (realized by the
particle hP rH).

Without gold, morphologically annotated data in Levantine, we cannot independently mea-
sure either our ability to identify morpho-syntactic feature values correctly, or the consistency
with which they should be translated. However, we can approximate both jointly. Assuming
that Egyptian feature values should correspond to the same feature values on the Levantine
side, we measure, for each morpho-syntactic feature, how frequently the realized property on
the Egyptian side is aligned to the same property on the Levantine side.

As shown in Table 3, definiteness, gender, number, and POS are the only features which
map consistently across aligned tokens in more than 50% of their occurrences throughout the
BTEC training set. This suggests that they both can be recognized accurately and are con-
sistently preserved in human translation. Even so, the fact that none of these features map
consistently over 80% of the time, suggests that modeling such features will be noisy.

Definiteness Number Gender POS Aspect Person
75 75 62 56 32 29

Table 3: Percentage rates over all training set token alignments at which the feature’s values
were preserved from Egyptian to Levantine.

5.2 Computing Constraint Scores

Similar to El Kholy and Habash (2015), we design morpho-syntactic constraints by calculat-
ing probability distributions from Egyptian to Levantine and vice versa. These reflect how
likely each morpho-syntactic property set on one side is to be aligned to each morpho-syntactic
property set on the other, based on how often such alignments occured in the training data.
Properties sets are defined as the conjunction of values for all morpho-syntactic features under
consideration, which for us, include the four most "consistent" features as identified in Table
3: definiteness, number, gender—which were used by El Kholy and Habash (2015)—and also
POS (thus, masculine-singular-verb and definite-feminine-noun are property sets). Unaligned
tokens are considered to be aligned to a null token on the opposite side, and thus are mapped
to an empty property set. We use these probability distributions to add two constraint scores to
every phrase pair in the phrase pivot table, one calculated from Egyptian to Levantine and the
other, Levantine to Egyptian, as defined in Equations 1 and 2.

Ws =
1

A

∑
∀(i,j)∈a

P (MLE(i)|MLE(j)) (1)

Wt =
1

B

∑
∀(i,j)∈b

P (MLE(j)|MLE(i)) (2)
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We calculate Ws by summing over every alignment a from source token i to target token
j (if i is unaligned, j is the null token), the probability of i’s property set given j’s. While
El Kholy and Habash (2015) normalize this sum by the quantity of source tokens, we normalize
by the total number of alignments A. Otherwise, many-to-one and one-to-many alignments
would bias the scores and enable some to exceed one, making them impossible to interpret as
probabilities. The property sets of i and j are determined from the set of all possible property
sets for that type (defined as the list of all unique analyses it received over every occurrence in
BOLT, AOC, and the BTEC training data) via maximum likelihood estimation, MLE, so as to
maximize the likelihood of the source property set given the target property set.

This entails that individual tokens’ property sets can be analyzed differenlty from the
source side than from the target side. Also, sequences of MLE property sets over multiple
tokens on a single side can be syntactically infeasible, e.g., containing 5 consecutive verbs.
Thus, we experimented with additional constraints, requiring (i) aligned MLE property sets to
have been aligned at least once in the training set (ii) syntactic feasibility on source and target
sides independently (iii) alignment of the sequence of property sets on the source side to that
on the target side to have appeared at least once in the training set. However, none of these
experiments boosted performance, suggesting that MLE inconsistency is not a problematic
issue.

Wt is calculated equivalently to Ws from the target side. Adding these constraint weights
to each phrase pair in the phrase pivot table, we re-tune the DIR+PP system, re-test, and obtain
a statistically significant improvement with a score of 18.03 BLEU on the development set.

We then evaluate the DIRECT, DIR+PP, and Direct + Phrase Pivot with Morpho-syntactic
Features (DIR+PP+MORPH) systems on the 2,000 sentence blind test set from our BTEC cor-
pus. The results in Table 4 confirm the utility of our added constraints, as each successive model
significantly improves over the last, as in the development set.

Model Dev Dev OOV Test Test OOV
NO-TRANSLATION 6.48 N/A 6.45 N/A

DIRECT 15.44 4.6 14.61 5.4
DIR+PP 17.41 0.9 16.69 1.0

DIR+PP+MORPH 18.03 0.9 17.48 1.0

Table 4: Comparing BLEU scores of systems with and without morpho-syntactic features on
development and blind test sets. Out-of-vocabulary rates are reported as percentages.

6 Error Analysis

We analyized the output of the DIR+PP and DIR+PP+MORPH models on 100 development set
sentences to investigate the effects of morpho-syntactic features and to identify issues for future
work. Table 5 reveals a stark contrast—about a 30% gap in both models—between the quantity
of output tokens matching a reference token letter-for-letter (row 3), and the quantity of output
tokens manually judged to be acceptable (row 2). Approximately 10% of that 30% gap is due
to lack of spelling standards in DA (row 4). Habash et al. (2012a) developed a Conventional
Orthography for Dialectal Arabic (CODA) to standardize spelling while preprocessing DA and
a prototype system can CODAfy Egyptian (Eskander et al., 2013), though no such system is yet
available for Levantine. Once developed, we expect such a system to improve MT quality not
only by imposing consistent output, but also by reducing sparsity in all translation and language
models during training.

The remaining 90% of the 30% gap between exactly matched tokens and tokens judged
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to be correct can be approximately split into thirds. One third cannot be directly linked to any
reference token (row 7), e.g., tokens in paraphrasal or idiomatic constructions. Another third is
tokens which can be linked to a reference token, but take a different root (row 5). The final third
are inflectional or derivational variants of the corresponding reference token (row 6). The fact
that so many inflectional/derivational variants are judged correct demonstrates that morpho-
syntactic modeling is necessarily noisy as property sets are frequently not preserved, even in
acceptable translations. On the other hand, the success of DIR+PP+MORPH suggests that some
features’ properties tend to be preserved through translation or at least altered predictably, as
otherwise, the system would not benefit from modeling them.

DIR+PP DIR+PP
MORPH

1 Words 665 670
2 Words Judged Correct 569 (85.6) 594 (88.7)
3 Exact Match 377 (56.7) 382 (57.0)
4 CODA Variant 23 (3.5) 25 (3.7)
5 Different Root 47 (7.1) 51 (7.6)
6 Different Properties 61 (9.2) 65 (9.8)
7 Otherwise Different 61 (9.2) 71 (10.7)
8 Words Judged Incorrect 96 (14.4) 76 (11.3)
9 Morpho-syntactic Properties 49 (7.4) 41 (6.1)

10 Other Problems 47 (7.1) 35 (5.2)
11 Properties: Modeled 33 (5.0) 26 (3.9)
12 Not Modeled 16 (2.4) 15 (2.2)
13 Other: Wrong Word Sense 18 (2.7) 17 (2.5)
14 Apparent Phrasal Issue 13 (2.0) 7 (1.0)
15 Unclear Reason 13 (2.0) 7 (1.0)
16 OOV 2 (0.3) 3 (0.4)
17 Copies Egyptian 1 (0.2) 1 (0.1)
18 Word Error Reduction N/A (20.2)
19 Sentences 100 100
20 Correct Sentences 48 55
21 Sentence Error Reduction N/A (13.5)

Table 5: Comprehensive manual error analysis of 100 sentences from the development set.
Values within parentheses are percentages.

6.1 Direct Effects of Added Features

The second major insight of the error analysis is that the error reduction from adding morpho-
syntactic constraints is far more significant (20.2%, row 18), than the improvement registered
by the automatic BLEU scores. Example sentences illustrating some of these improvements
are contained in Figure 3. For 7.4% of the tokens DIR+PP outputs, its only mistake is mis-
representing one or more morpho-syntactic property (row 9). Comparing that to 6.1% for
DIR+PP+MORPH (row 9), the new model makes a 17% error reduction in the area it is de-
signed to improve. Furthermore, essentially all of this improvement takes place in sentences
where DIR+PP+MORPH corrects a mistake involving a feature we model: definiteness, gender,
number, or POS. For example, the definite article is correctly added to the word �

é
�
®J


�
®mÌ'@ AlHqyqh̄

‘the truth’ in Figure 3a.
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(a)

ENGLISH: Actually, inside it [...] Do you mind if I take it out?
REFERENCE: ?ñ

�
JÊ

�
� @ 	P@ ©

	
KAÓ ¼Y

	
J« [...] ñJ. Ë AK. ú




	
¯

�
é
�
®J


�
®mÌ'AK.

bAlHqyqh̄ fy bAlbw [...] ςndk mAnς AzA šltw?
with-the-truth exists in-heart-its [...] to-you problem if take-1SPast-it

DIR+PP: *? ñªÊ£ @
	
X@ ©

	
KAÓ ¼Y

	
J« [...] AJ. Ë AK. ú




	
¯ * �

é
�
®J


�
®k

Hqyqh̄* fy bAlbA [...] ςndk mAnς AðA Tlςw?*
truth* exists in-heart-its [...] to-you problem if remove.3SPast-it*

DIR+PP+MORPH: ?ñ
�
JÊ

�
� @

	
X @ ©

	
KAÓ ¼Y

	
J« [...] ñJ. Ê

�
®K. ø



ñë ,

�
é
�
®J


�
®mÌ'@

AlHqyqh̄ hwy bqlbw [...] ςndk mAnς AðA šltw?
the-truth it in-heart-its [...] to-you problem if take.1SPast-it?

(b)

ENGLISH: I’ll bring one right away
REFERENCE: Cë Yg@ð I. J
k. hP

rH jyb wAHd hlA
will bring.1S one now

DIR+PP: �
�Êë Yg@ð * �

éJ. J
m.
Ì'AK.

bAljybh̄* wAHd hlq
with-the-pocket* one now

DIR+PP+MORPH: �
�Êë Yg@ð I. J
k. hP

rH jyb wAHd hlq
will bring.1S one now

(c)

ENGLISH: What kind of fruit do you have?
REFERENCE: ? ¼Y

	
J« ú



» @ñ

	
¯ ¨ñ

	
K ø



@

Ay nwς fwAky ςndk?
which kind fruit at-you

DIR+PP: *?ñ
�

�
�
éê» A

	
®Ë @ 	áÓ ¨ñ

	
K ø



@ ¼Y

	
J«

ςndk Ay nwς mn AlfAkhh̄ šw?*
at-you which kind from the-fruit what*

DIR+PP+MORPH: ?
�
éê» A

	
®Ë @ 	áÓ ¨ñ

	
K ø



@ ¼Y

	
J«

ςndk Ay nwς mn AlfAkhh̄?
at-you which kind from the-fruit

Figure 3: Example translation errors (marked with *) corrected by adding morpho-syntactic
constraints to the model.

6.2 Indirect Effects of Added Features

Surprisingly, most of the overall error reduction actually comes from mistakes other than mis-
representation of morpho-syntactic properties, as such mistakes decrease by 26%, from 7.1%
to 5.2% (row 10). The morpho-syntactic constraints seem to teach the model about syntax at
the phrase level, as sentences like Figure 3b are corrected, which were originally over-chunked
into small phrases by DIR+PP. �

éJ. J
m.
Ì'AK. bAljybh̄ ‘with the pocket’ is likely a misanalysis of the

source word I. J
k. Aë hAjyb ‘I’ll get’ translated as a single-word phrase, as it would have made
for an infrequent or non-existent bigram or trigram when combined with the following words
in the output. The DIR+PP model likely had access to longer phrase pairs such as Yg@ð I. J
k. Aë

hAjyb wAHd ‘I’ll get one’ mapping to Yg@ð I. J
k. hP rH jyb wAHd—the corresponding ref-
erence phrase—but likely did not select it because longer phrases are inherently less frequent,
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i.e., noisier to model.
Morpho-syntactic constraints enable DIR+PP+MORPH to increasingly select longer, in-

frequent phrase pairs by distinguishing those that are morpho-syntactically feasible from com-
peting shorter alternatives. Translating larger phrasal chunks leads to more fluent output by
reducing opportunities to incorrectly chunk phrase boundaries. This is why much of the er-
ror reduction does not appear to be, superficially at least, related to morpho-syntactic features
targeted by DIR+PP+MORPH.

Figure 3c exhibits another benefit of morpho-syntactic features, as DIR+PP+MORPH often
corrects the insertion of gratuitous words, here, ñ

�
� šw ‘what’. Such features teach the model

that certain POS’s are less likely to align to the null token, even if the language model favors
the sequence with the gratuitous token monolingually.

7 Conclusion and Future Work

In this work, we presented the second ever evaluated Arabic DA-to-DA MT effort. The sub-
ject has not previously received serious attention due to lack of naturally occurring parallel data,
though DA is widely spoken and dialects are frequently mutually unintelligible, exhibiting com-
parable linguistic variation to the Romance languages. Our results suggest that modeling mor-
phology and syntax can significantly improve DA-to-DA MT despite data sparsity. However,
optimizing models under such circumstances requires careful consideration of the linguistic
differences between dialects and careful tailoring and implementation of all available data and
resources.

Given that many DA pairs may not have pivot data available, the most pressing future work
is to develop a dialect-agnostic tokenizer and analyzer which does not suffer from the Egyptian
bias that ours does. This will reduce data sparsity regardless of the nature of the low-resourced
MT settings for any DA pair, and it will enable better morpho-syntactic modeling.

Additionally, improving on the dialect identification work of Diab et al. (2010), Zaidan and
Callison-Burch (2011), and Elfardy and Diab (2013) will enable us to collect more monolingual
data. This data is not only useful for language modeling but can also be mined for comparable
sentences to augment the parallel training set. The process typically involves using metadata
(Resnik and Smith, 2003) and seed data (Munteanu and Marcu, 2005) to identify pairs of re-
lated sentences or phrases in the source and target languages (Cettolo et al., 2010; Max et al.,
2012). These are then iteratively classified via expectation maximization with phrases identi-
fied as parallel being added to the seed data (Dong et al., 2015). Models trained thusly produce
noisy phrase pairs, often imperfectly modeling morpho-syntactic property sets. Thus, the same
morpho-syntactic constraints that improved DIR+PP+MORPH can be adapted to improve MT
via comparable corpora.
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Abstract
Elastic-substitution decoding (ESD), first introduced by Chiang (2010), can be important
for obtaining good results when applying labels to enrich hierarchical statistical machine
translation (SMT). However, an efficient implementation is essential for scalable application.
We describe how to achieve this, contributing essential details that were missing in the original
exposition. We compare ESD to strict matching and show its superiority for both reordering
and syntactic labels. To overcome the sub-optimal performance due to the late evaluation
of features marking label substitution types, we increase the diversity of the rules explored
during cube pruning initialization with respect to labels their labels. This approach gives
significant improvements over basic ESD and performs favorably compared to extending the
search by increasing the cube pruning pop-limit. Finally, we look at combining multiple
labels. The combination of reordering labels and target-side boundary-tags yields a significant
improvement in terms of the word-order sensitive metrics Kendall reordering score and
METEOR. This confirms our intuition that the combination of reordering labels and syntactic
labels can yield improvements over either label by itself, despite increased sparsity.

1 Introduction

Elastic-substitution decoding (ESD) – also known as soft label matching or soft-constraint
decoding – is an effective method to gain maximal benefit from the use of labels to enrich
hierarchical phrase-based statistical machine translation (SMT), and was first introduced by
Chiang (2010). This method removes many of the disadvantages of working with labeled
grammars when labels are strictly enforced. We discuss the requirements and details of an
efficient implementation in the first part of this paper, to benefit other researchers that want to
apply ESD. In the second part of the paper we further strengthen the empirical evidence for the
success of ESD. This is done by comparing strict and soft-labeled (ESD) systems for Chinese–
English translation, using four different types of labels. Next, we describe how the results
of ESD can be further improved for small label sets by diversifying the search, exploring all
alternatively labeled versions of each rule source-side type during cube pruning initialization
instead of only the single best one. This is compared against the more crude approach of just
increasing the search space by increasing the cube pruning pop-limit. Finally, we explore the
effect of combining multiple labels, either the two types of reordering labels or a reordering
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label with a syntactic label. All source code for both ESD and labeled grammar extraction is
made publicly available with this publication.1

2 Background and Related Work

Hierarchical phrase-based SMT (or hierarchical SMT for short) (Chiang, 2005) is the
hierarchical generalization of phrase-based SMT (Koehn et al., 2003). It generalizes phrase-
pairs into synchronous context-free grammar (SCFG) rules by adding variables to them. This
yields a weighted SCFG (Aho and Ullman, 1969). The particular form of SCFGs used in this
paper is called HIERO (Chiang, 2005), and allows only up to two nonterminals (variables) in
the right-hand-side of rules. This gives the following four HIERO rule types:

X → 〈α, δ〉 (1)

X → 〈α X1 γ, δ X1 η〉 (2)
X → 〈α X1 β X2 γ , δ X1 ζ X2 η 〉 (3)
X → 〈α X1 β X2 γ , δ X2 ζ X1 η 〉 (4)

Here α, β, γ, δ, ζ, η are terminal sequences that can be empty, except for β, since HIERO
prohibits rules with nonterminals that are adjacent on the source side. HIERO additionally
requires all rules to have at least one pair of aligned words. These extra constraints are intended
to reduce the amount of spurious ambiguity. Equation (1) corresponds to a normal phrase pair,
(2) to a rule with one gap and (3) and (4) to the monotone and inverting rules, respectively.

In addition, HIERO has a special glue rule: (g1) GOAL → 〈GOAL1 X2 , GOAL1 X2〉
as well as two special start/end rules: (g2) GOAL → 〈GOAL1 </s> , GOAL1 </s >〉
and (g3) GOAL → 〈< s >,< s >〉, with < s > and < /s > being the dedicated start/end
symbols.

HIERO makes very strong independence assumptions, since it uses only one label “X”
apart from the glue symbol GOAL, allowing any HIERO rule to substitute to any other rule.
A lot of work has been done on relaxing these assumptions by labeling HIERO with labels
derived from syntax (Zollmann and Venugopal, 2006; Almaghout et al., 2011), dependency
information (Li et al., 2012), word classes such as POS-tags (Zollmann and Vogel, 2011),
reordering information (Maillette de Buy Wenniger and Sima’an, 2014) and other types of
information.

However, labeling with strict matching of labels splits the rules of HIERO into many
alternatively labeled variants, increasing spurious ambiguity. Venugopal et al. (2009) introduced
preference grammars as a way to avoid this increase and to relax the assumptions of decoding
with strict matching. Every rule is equipped with label distributions instead of single labels, for
both the left- and right-hand-side rule nonterminals. Using a dynamic programming approach,
these label distributions are then multiplied during decoding, to approximate the probability
over the full set of alternatively labeled derivations. Unlike preference grammars, ESD does
not approximate selection of the most likely unlabeled derivation. However, in contrast it can
learn to treat different substitutions such as NP→NPP differently from others such as NP→VP
which the formalism of preference grammars cannot, as it lacks a learning component. This is
a clear advantage for heuristically created labels such as syntax-augmented machine translation
(SAMT) and others used in this paper.

1Source code URLs: ESD: https://github.com/gwenniger/joshua/commits/gideon/cubePruningFixForFuzzyMatching
Grammar extraction: https://bitbucket.org/gwenniger/labeled-translation https://bitbucket.org/teamwildtreechase/hatparsing
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The work by Chiang (2010) on ESD, the foundation of the work in this paper, is discussed
next.

3 Elastic-substitution decoding

ESD was introduced by Chiang (2010), who describes it as follows: “ . . . we allow any rule to
substitute into any site, but let the model learn which substitutions are better than others.”

With respect to decoding it is remarked that: “The decoding algorithm then operates as in
hierarchical phrase-based translation. The decoder has to store in each hypothesis the source and target
root labels of the partial derivation, but these labels are used for calculating feature vectors only and not
for checking well-formedness of derivations.”

In summary ESD entails:

(A) Adapting the decoder to support soft-matching of labels, which means finding all matching
rules while ignoring the labels.

(B) Adding label-substitution features that mark different types of substitutions: (i) matching
and mismatching substitutions, and (ii) substitutions of particular types of labels to
particular gaps to enable learning what type of substitutions are preferable.

To enable computing the label-substitution features (B), the labels must be left present in the
hypergraph (the packed hypotheses) computed by the decoder.

3.1 ESD: a naive implementation
With strict matching, the inner loop of the decoder finds all matching rules rmatch for an input
word span s<i,j> = wi . . . wj . For the rule right-hand-side rhs = RHS(rmatch), given the
ordered words wk ∈ rhs and nonterminals ntl ∈ rhs, wk must match the corresponding
word in s<i,j> and ntl must match the label of a corresponding chart span that was previously
covered by the decoder (so-called "rule gap"); both must be matched in accordance with the
input order. Adding ESD to this process, a naive implementation explicitly matches all best
alternatively labeled rule variants for an (unlabeled) source-rule type, to all alternatively labeled
gaps. This naive implementation is, however, computationally expensive. For rules with up to
two gaps the number of source rule variants can increase quadratically with the size of the label
set N , and analogously the same holds for the two substituted-to gaps of these rules. Hence this
naive approach gives an increase in computational complexity of O(N4).

3.2 How is ESD implemented efficiently?
During normal (strict) decoding, matching rules are found through lookup in a dedicated rule
indexing data-structure called a trie (De La Briandais, 1959). An efficient ESD implementation
requires adaptation of this trie, rather than explicitly generating all types of label matches.
Figure 1 shows rule tries used by the decoder to find matching rules during decoding, for three
cases: (a) HIERO, (b) labeled system with strict matching, and (c) labeled system with ESD.
Note that for (a) there are no labels except the default label “X” and the glue rule label “GOAL”.
In (b), labels are present both in the internal nodes and also in the leaf nodes containing the
complete rules. Note that the rules “S→ 〈NP1 marche lentement, NP1 walks slowly〉” and “S
→ 〈N1 marche lentement, N1 walks calmly〉” which are identical on the source-side except for
their right-hand side nonterminal label (NP versusN ), have distinct paths in the trie. For ESD,
labels are not used as constraints and therefore need to be removed. This allows the decoder
to quickly find all matching rules for a sequence of nonterminals and lexical items, without
unnecessarily splitting the trie into many paths for different labelings. However, when during
cube-pruning complete rules are added to the chart, the labels should still be obtainable from
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ROOT

· · ·

le · · ·

[GOAL,1] · · ·

[X,2] · · ·

[X,1]

· · ·

marche

vite · · ·

lentement

X → 〈 [X,1] marche lentement
, [X,1] walks calmly 〉

X → 〈 [X,1] marche
lentement , [X,1] strolls 〉

X → 〈 [X,1] marche lentement
, [X,1] walks slowly 〉

[X,2]

joue · · ·

(a) Rule trie for HIERO.

ROOT

· · ·

le · · ·

[GOAL,1] · · ·

[VP,2] · · ·

[N,1]
· · ·

marche
· · ·

lentement
S → 〈 [N,1] marche lentement

, [N,1] walks calmly〉

[NP,1]

· · ·

marche

vite · · ·

lentement
S → 〈 [NP,1] marche

lentement , [NP,1] strolls 〉

S → 〈 [NP,1] marche lentement
, [NP,1] walks slowly 〉

[ADJ,2]

joue · · ·

(b) Rule trie for a labeled system with strict label matching.

ROOT

· · ·

le · · ·

[GOAL,1] · · ·

[X,2] · · ·

[X,1]

· · ·

marche

vite · · ·

lentement

S → 〈 [N,1] marche lentement
, [N,1] walks calmly 〉

S → 〈 [NP,1] marche
lentement , [NP,1] strolls 〉

S → 〈 [NP,1] marche lentement
, [NP,1] walks slowly 〉

[X,2]

joue · · ·

(c) Rule trie for a labeled system with soft label matching (ESD).

Figure 1: Rule tries for three different system types.
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them because they are required for computing label-substitution features. This is achieved by
keeping the labels outside the trie nodes but retaining them inside the rules that are stored in
lists at each leaf node in the trie. This is exactly what is done in the trie for ESD (Figure 1 (c)).
As an illustration, note how in (c) the rules “S→ 〈NP1 marche lentement, NP1 walks slowly〉”
and “S→ 〈N1 marche lentement, N1 walks slowly〉” share the same unlabeled path in the trie
as in (a), but their labels are still retained in the complete rules stored at the leaf node.

During decoding, ESD extends hypotheses with all rules matching the source input, while
ignoring labels. This is done by substituting the actual labels from the hypergraph with surrogate
“X” labels and using those labels to retrieve matching rules from the rule trie. There is, however,
an important exception to this that requires special treatment, namely the nonterminal label
occurring in glue rules. Glue rules of the form

GOAL→ 〈GOAL1 X2 , GOAL1 X2〉

contain two types of labels. The “X” symbol in the rule is the symbol that will be substituted
to HIERO (non-glue) rules. The GOAL label, occurring on the left-hand side of the rule and
as the first nonterminal on the right-hand side, is also known as the start symbol. It serves to
start the gluing extension and allows for the glue rule to be used repeatedly. This GOAL label
needs to be strictly matched, to prevent the left-hand side of glue rules from softly matching
other nonterminals and hence substituting for HIERO rules. The strict matching of the GOAL
label is achieved in the grammar by retaining it as a label in the trie used by ESD (see the
“GOAL” labeled internal node in Figure 1 (c), the third child of ROOT), and requiring the
GOAL symbols observed in the hypergraph to be strictly matched against the symbols in the
trie. Furthermore, labels inside HIERO rules should not be allowed to match the GOAL label
but only the surrogate label X that represents the rest of the labels, when retrieving matching
rules from the trie. This implementation ensures correct and efficient rule matching given either
GOAL labels (strict-matching) or other labels (ESD).

One other important detail enabling efficient ESD decoding is that the used labeled ESD
grammars are identical in size to HIERO. Let the HIERO-rule-signature of a labeled rule be
that rule with the labels removed. Given a rule labeling scheme, grammars used with ESD are
formed by labeling every HIERO rule with a single canonical labeling: the most frequent labeled
version across extracted rules that share the HIERO-rule-signature of that rule. These grammars
also use the same feature set as HIERO, only adding label-substitution features. In contrast,
because strict matching systems combine all differently labeled extracted rule versions, they
use grammars that are much bigger than HIERO grammars.

4 Experiments

We evaluate our models on Chinese–English, since it facilitates the best comparison with
experiments in earlier work. All data is lowercased as a last pre-processing step. The training
data for our experiments is formed by combining the full sentence-aligned MultiUN (Eisele
and Chen, 2010; Tiedemann, 2012)2 parallel corpus with the full sentence-aligned Hong Kong
Parallel Text parallel corpus from the Linguistic Data Consortium.3 We used a maximum
sentence length of 40 for filtering the training data. The combined dataset has 7,340,000
sentence pairs. For the development and test sets we use the Multiple-Translation Chinese
datasets from LDC, parts 1–4,4 which contain sentences from the News domain. We combined
parts 2 and 3 to form the development set (1,813 sentence pairs) and parts 1 and 4 to form the

2Freely available from http://opus.lingfil.uu.se/
3The LDC catalog number of this dataset is LDC2004T08.
4LDC catalog numbers: LDC2002T01, DC2003T17, LDC2004T07 and LDC2004T07.
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test set (1,912 sentence pairs). For both development and testing we use 4 references. For these
experiments both the baseline and our method use a 4-gram language model with Kneser-Ney
smoothing (Kneser and Ney, 1995) trained on 5,427,696 sentences of domain-specific5 news
data taken from the “Xinhua” subcorpus of LDC’s English Gigaword corpus.6

4.1 Training and decoding details

Our experiments use Joshua (Ganitkevitch et al., 2012) with Viterbi best derivation. Baseline ex-
periments use normal decoding, whereas ESD experiments relax the label-matching constraints
while adding label-substitution features to facilitate learning of label-substitution preferences.

For training we use standard HIERO grammar extraction constraints (Chiang, 2007) (phrase
pairs with source spans up to 10 words; abstract rules are forbidden). During decoding a
maximum span of 10 words on the source side is maintained. In our experiments, for HIERO we
use a standard feature set that is comparable to that of Chiang (2005). We follow Chiang (2010)
in using, except for the label-substitution features, exactly the same features for ESD as for
HIERO. This includes the usage of phrase-weights taken from the HIERO (label-stripped) rules
as opposed to the labeled rules. For the labeled systems with strict matching (-Str), we follow
Zollmann (2011) in using phrase weights for the labeled versions of the rules, but also adding
smoothed versions of these features, including the HIERO (unlabeled) phrase weights. We
train our systems using (batch k-best) MIRA (Cherry and Foster, 2012) as borrowed by Joshua
from the Moses codebase, allowing up to 30 tuning iterations. Following standard practice,
we tune on BLEU (Papineni et al., 2002), and after tuning we use the configuration with the
highest scores on the development set with actual (corpus-level) BLEU evaluation. We report
lowercase BLEU, METEOR (Denkowski and Lavie, 2011), BEER (Stanojević and Sima’an,
2014) and TER (Snover et al., 2006) scores for the test set. We also report average translation
length as a percentage of the reference length for all systems.

To counter unreliable conclusions due to optimizer variance, we repeated all experiments
three times (tuning plus testing), and compute the scores as averages over these runs; using
Multeval Clark et al. (2011) version 0.5.1.7 We also use MultEval’s implementation of
statistical significance testing between systems, which is based on multiple optimizer runs and
approximate randomization. Differences that are statistically significant with respect to a HIERO
baseline and correspond to improvement/worsening are marked with 4H/OH at the p ≤ .05
level and NH/HH at the p ≤ .01 level. For average translation length, where either higher or
lower may be better, we use �H/�H to mark significant change with respect to the baseline at
the p ≤ .05 / p ≤ .01 level.

We also report the Kendall reordering score (KRS), which is the reordering-only variant of
the LR-score (Birch et al., 2010) (without the optional interpolation with BLEU) and which is
a sentence-level score. For the computation of statistical significance of this metric we use our
own implementation of the sign test (Dixon and Mood, 1946), described also by Koehn (2010).

Finally we report the average CPU time per translated sentence in the test set. These times
are obtained using special Java system methods, and aggregated over all decoder threads and
the main thread. These time statistics are robust to variations in the number of decoder threads
and the amount of other jobs running on the server, factors that can easily confound statistics
based on regular wall-clock time.

5The different domain of the training data (mainly parliament) and development/test data (news) requires usage of
a domain-specific language model to obtain optimal results.

6The LDC catalog number of this dataset is LDC2003T05.
7https://github.com/jhclark/multeval
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System Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length CPU time
HIERO 31.63 30.56 13.15 59.28 58.03 97.15 3.34
HIERO-0th-Str 31.90 NH 30.79 NH 13.45 60.11 HH 59.68 NH 98.65 �H 2.87
HIERO -0th 32.03NH 30.70NHHS 13.42NH 59.58HHNS 58.87NHHS 97.87�H�S 8.99
HIERO-1st-Str 31.77 30.62 13.20 60.13 HH 59.89 NH 98.47 �H 4.63
HIERO -1st 32.35NHNS 30.98NHNS 13.75NHNS 60.26HH 60.01NH 99.11�HNS 8.45
SAMT-Str 31.87 4H 30.61 13.38 59.97 HH 59.94 NH 98.46 �H 25.59
SAMT 32.40NHNS 31.20NHNS 14.01NHNS 60.19HHOS 60.38NH4S 99.37�H�H 8.09
BoundaryTag-Str 32.26NH 30.94NH 13.91NH 60.20HH 58.78NH 98.98NH 29.29
BoundaryTag 32.77NHNS 31.27NHNS 14.17NHNS 60.15HH 60.83NHNS 99.72�H�S 8.60

Table 1: Results for labeled systems with strict or soft label matching. Statistical significance is given
against the HIERO baseline (H) and pair-wise for every soft-matching system against its strict-matching
variant (-Str). Statistical significance for the latter comparison is marked with (S). For every experiment
we use boldface to accentuate the highest score across systems for all metrics, with for TER, an error
metric, the lowest score instead. For length we boldface the value that is closest to 100, in absolute terms.

4.2 Is soft label matching always superior to strict matching?

In Table 1 we compare four labeled systems for decoding with strict matching and decoding
with soft label matching. This extends the earlier comparison by Maillette de Buy Wenniger and
Sima’an (2014, 2016), attempting to give a more general answer to the question as to whether
soft label matching is always superior to strict matching. The first two systems are reordering
labeled systems (Maillette de Buy Wenniger and Sima’an, 2013, 2014, 2016), and the last two
systems are syntactically labeled systems, namely SAMT (Zollmann and Venugopal, 2006) and
a target-side boundary-tag labeled system (Zollmann, 2011; Zollmann and Vogel, 2011).

Label Types: Our reordering labels are heuristic labels, created using hierarchical
reordering information induced from word alignments. These labels come in two forms:1)
0th-order reordering labels (HIERO-0th) describe for each nonterminal the reordering that
happens at its child nonterminals, 2) 1st-order reordering labels (HIERO-1st) describe the
reordering of the nonterminal itself relative to an embedding parent nonterminal. SAMT is a
heuristic syntactic labeling scheme, similar in spirit to combinatory categorial grammar (CCG)
(Steedman, 1987, 2000). SAMT uses constituency-parse information and finds the simplest
syntactic label describing a (target) span. Similar to SAMT, target-side boundary-tags are
heuristic syntactic labels formed by combining the POS-tags of (target) words at the boundaries
of phrase pairs. Since limited space allows only a short description of the used labels and
systems, we refer the reader to the original papers for more details.

For three of the four label types tested, the soft-labeled system gives significantly better
scores for BLEU, METEOR and BEER. Only the HIERO-0th label type does not show
significantly better results for those metrics. However, later in this section we discuss how these
results too are improved by extending the search. Although it is not statistically significant,
HIERO-0th still shows improved BLEU for the soft-labeled version over the strict matching
system. For SAMT and the target-side boundary-tag labeled system, apart from the other
improvements, there are also significant improvements of KRS. The results show that soft
matching is typically, although not always significantly, better than strict matching.

4.3 Challenges of soft label matching

In the previous section we saw that decoding with soft label matching typically outperforms
both unlabeled systems and systems that use labels with strict matching. Nevertheless, efficient
soft label matching faces two challenges: (i) increased search space, and (ii) label matching
blindness.

The addition of labels increases the search space dramatically, even with soft matching.
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During decoding, a rule is applied to extend an existing hypothesis. Since in practice decoding
proceeds bottom up, this means any right-hand-side nonterminal label(s) of the rule are matched
with the labels of the corresponding substituted to nonterminal gaps in the chart. WithN labels,
there are there are potentiallyN alternative versions per language model state in the chart entries
of each gap. For a rule with 2 gaps, this means a particular rule substitution only covers one of
up to N2 possible options arising from the splitting of the language model states by labeling.
Because soft matching keeps only one labeled version per HIERO-rule-signature, on the rule
side the number of options does not increase compared to HIERO.8

The second challenge, which we call label matching blindness, is that the type of applied
label substitutions (and whether or not these are matching) is only evaluated late in the search
process. During initialization, cube pruning explores the combination of the best rule with the
best leaf nodes for the matched-to rule gaps in the chart. However, the quality of the rule and
the leaf nodes is only computed based on local (stateless) features, such as lexical probabilities
and phrase weights. Features such as the language model cost cannot be computed because
they cross rule boundaries. They may still be approximated given the available information, but
this is generally inaccurate. In the case of label-substitution features, no meaningful stateless
computation is possible. These features are therefore simply ignored until the rule-nonterminal
to labeled-gap substitutions have already been decided during cube-pruning initialization.

4.4 Enriching the search
The challenges resulting from soft label matching mentioned in the last section motivate
enrichment of the search during soft label matching decoding. A crude approach is to just extend
the search space by increasing the value of the decoder parameter pop-limit, which controls
the number of hypotheses that are added to the stack by cube pruning during decoding. This
may improve the quality of the produced translations at the price of a higher computational
cost. However, this approach is computationally expensive and inefficient, since it does not
directly target an exploration of rule-to-gap substitutions with diverse labels. The initial label
substitution diversity is determined by the diversity of label pairs within the set of rule-
RHS-nonterminal to chart-gap substitutions explored during cube-pruning initialization. For
small label sets it is feasible to enrich the set of those initially explored substitutions, thereby
drastically increasing this diversity. Three ways to implement this are:

a) Exploring all alternatively labeled versions of a HIERO source rule type.9

b) Exploring all alternatively labeled gap substitutions, given the single best labeled version
of a HIERO source rule type.

c) Combining (a) and (b), i.e. exploring all labeled rule versions and for each of those all
alternatively labeled gap substitutions.

Why should this help? Assume that we explore all alternatively labeled rule versions for
a HIERO rule type (a), while keeping the gap labels fixed to those of the best language model
state. Then, a matching substitution will be explored if yielded by substituting the nonterminal
labels for any of these alternatively labeled rule versions to those fixed gap labels. Similarly for

8However, with larger label sets, the canonical labeled rule form represents a larger number of rules, and will
consequently be a more approximate representation of those.

9Note that whereas there is only one canonical labeled version per HIERO-rule-signature, there are potentially many
labeled versions of the source rule type, in which the target side is ignored. Furthermore, the LHS label of the rule is
ignored when collecting the best alternatively labeled versions given a HIERO rule source side, since it has no effect on
label matching in bottom-up decoding.
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(a) Evaluation order and final order without
shuffling.

(b) Evaluation order and final order with
shuffling.

Figure 2: Example of the effect of shuffling on the decoding, translating the source phrase “Elle
marche lentement”.

(b), given a single fixed labeled rule version, a matching substitution is explored if achievable
in combination with the available gap labelings.

With respect to computational complexity, (a) and (b) potentially increase the number of
explored combinations by a factor of N2 with N being the size of the label set, whereas (c)
even increases it by N4. These increases are with respect to the number of applicable HIERO
rule types, since the increased exploration only concerns the cube pruning initialization and
not the whole cube pruning process. Consequently, if N is small, the empirical increase in
computational cost is limited. With larger N however, the increase in computational cost of the
initialization (quadratic for (a) and (b) and N4 for (c)), starts to dominate the total cost, so that
none of these approaches scale to large10 label sets, with (c) scaling up worst.

Ie what follows, we only explore (a), which is very similar to (b). We will refer to this
setting as diverse rule labeling exploration (DRLE) in the rest of the paper. We do not explore
(c) here, because of its very restricted scalability.

4.5 Shuffling
In cube-pruning initialization, applicable rules are substituted to particular gaps, and every
complete rule substitution leads to a total score that includes the label-substitution features and
language-model cost amongst other things. These complete rule substitutions are then added as
initial options to the cube-pruning queue.

In our initial implementation of DRLE (see Section 4.4), we consecutively evaluated all
alternative labeled versions for a specific HIERO source-rule type before moving on to the next
type. Independent of this evaluation order, rules are placed on the cube-pruning queue in the
order of their evaluation scores. Nevertheless, we discovered that it helps if we shuffle the order
of the rules before we evaluate them. This might seem odd, since this shuffling (-Sh) can only
affect the order of rules yielding the same score. However, that is exactly how we think shuffling
helps; without shuffling, all labeled versions of the same rule source-side with the same score
are lumped together in the cube pruning queue. Shuffling mixes them with other rules that tie
for the same score. This increases diversity when neither the labels nor the translation for a
rule source-side are discriminative, as is common for certain rules at the start of tuning when

10The approaches were still feasible for at least N = 25 labels, the highest number we have tested. We acknowledge
however, that once N increases significantly, problems will be encountered due to computational complexity.
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label-substitution feature weights are initialized to zero.
To better understand shuffling and how it effects the order of hypotheses in the cube-

pruning queue, it is helpful to look at an example. In Figure 2 we show the effect of shuffling
on the translation of the French source phase “Elle marche lentmentent”. Here, we assume that
the first source word (“Elle”) and last source word (“lentement”) have already been translated
before. Hence, a full translation can be formed by combining these previous translations with
HIERO rules that additionally translate the first two words (”Elle marche”) or last two words
(“marche lentement”) respectively, substituting the earlier translated last/first word as a gap. In
Figure 2a we show the evaluation order and final order of hypotheses without shuffling. As
mentioned before, without shuffling all rules that share the same source-side (ignoring labels) –
in this case rules A,B and C – are evaluated consecutively. Then in the next step the scored rules
are sorted by their score, which in this example does not further change the order. In Figure
2b in contrast, the rules are shuffled, randomly permuting their order before evaluation. In this
case the random order of rule evaluation is D,A,C,B. Then after scoring, rule A again comes
to the top, because it has the highest score. The relative order of D,C and B however remains
changed because rules B, C and D tie for the same score, so their relative order before scoring
determines their relative final order. Notice in particular how rule D (in boldface), which has a
different source side from rules A, B and C, now comes directly after rule A in the final order.

Note that shuffling only randomizes the relative order in which rules tying for the same
score are added to the cube-pruning queue, eliminating implementation-specific bias for the
order of such rules. This avoids different labeled versions of the same rule with the same score
all clinging together in the queue as an undesirable side-effect of the specifics of the DRLE
implementation. Because shuffling randomizes the order of rules with the same score in the
final queue, it also removes the opportunity for the tuner to lazily exploit partially deterministic
order in development set hypotheses which is of no use for translation of the test set. Possibly,
this by itself also has a positive effect in making tuning more robust and reducing the chance of
overfitting. We leave it for future work to further investigate this. Crucially, shuffling does not
specifically add additional search errors.

4.6 Effects of search extension strategies

Table 2 shows the effects of the different strategies described in the previous sections to expand
the search space. The table first repeats the results for the HIERO baseline and then lists
results for the HIERO 1st and HIERO 0th reordering labels. For each we then use either the
standard setting for rule exploration during cube-pruning initialization, or DRLE. We do this in
combination with shuffling, and also vary the pop-limit. This provides insight into the effect of
these factors when applied independently or combined.

In addition to the HIERO baseline, our second baseline (B0/B1) for each of the two separate
reordering labels is a basic ESD system without changes to the default pop-limit (1000) and
without DRLE. For each reordering label we then test the significance of improvements against
both HIERO and B0/B1. We see that both increasing the pop-limit and DRLE improves results
for both label types. However, when only the pop-limit is increased without DRLE, HIERO
0th improves significantly over the basic (B0) system, while HIERO 1st gives no significant
improvements over the basic (B1) system. In addition, for HIERO 1st, comparing the effect
of just using DRLE to just changing the pop-limit, the former outperforms the latter for all
metrics except KRS over all tested values of the pop-limit. Adding shuffling makes this trend
is even sharper. For both label types, shuffling has a positive effect on the results. Note too that
DRLE has the highest impact with larger label sets; probably the resulting larger search space
increases the chance of missing certain desirable label substitutions in the normal cube pruning
initialization.
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System Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length CPU time
HIERO 31.63 30.56 13.15 59.28 58.03 97.15 3.34
HIERO 0th 32.50NH 30.88NH 13.68NH 59.66HH 59.30NH 98.40�H 29.50

Table 4: Analysis experiment: tuning with pop-limit 2000 and test-set decoding with pop-limit 4000.

Summarizing the results over both label types, we can conclude that DRLE is typically
better than just crudely increasing the pop-limit. Additionally, for small label sets it comes at a
lower computational cost.

4.7 Analysis: negative interaction DRLE with higher pop-limit explained.
Both DRLE and an increased pop limit by themselves have a positive effect on the translation
quality, but a surprising result is the sometimes relatively negative effect of using DRLE and
also maximally increasing the pop-limit. With HIERO 0th the results improve when increasing
the pop-limit to 2000, but then drop when further increasing it to 4000. For HIERO 1st, with
DRLE only BLEU benefits slightly from a pop-limit higher than 1000, whereas performance
decreases for the other metrics. Such negative interactions between DRLE and the increased
pop-limit could be caused by overfitting.11 To see if overfitting indeed occurs, we looked at
the evaluation scores for the development set, see Table 3. It can be seen that for HIERO 0th

with DRLE, the BLEU scores decrease when the pop-limit increases from 2000 and 4000, but
in particular the decrease in the development set BLEU score is less than the decrease in the
test set BLEU score, see Table 2. Furthermore, when looking at HIERO 1st with DRLE on
the development set, it can be seen that the BLEU score monotonically increases for increasing
pop-limit size. However, other metrics show a dip for a pop-limit of 2000, which was also seen
for the test set for all metrics except TER. To summarize, for certain increases in the pop-limit
in combination with DRLE, we made two observations that indicate overfitting:

• Loss of performance on the test set, for most metrics including BLEU, the tuning metric.
• Mostly retained or even increased performance for BLEU on the development set,

combined with performance loss for most other metrics.

Could it still be that a higher pop-limit is by itself harmful, independent of its role in the
assumed overfitting? We hypothesize that it is only harmful in as far as it facilitates overfitting
in combination with DRLE during the tuning process. To test this hypothesis we ran another
analysis experiment, whereby we use the final feature weights obtained from tuning with DRLE
with a pop-limit of 2000 and only increase the pop-limit to 4000 during the decoding of the test
set. The results are shown in Table 4. As can be seen, in this setting the results are highly similar
to the results obtained with DRLE and a pop-limit of 2000 used for both tuning and testing.
This confirms our hypothesis that a higher pop-limit (more search) is not generally harmful, but
can be harmful in the tuning stage because it facilitates more overfitting.

4.8 Combining Labels
In this section we look at the effect of combining multiple labels. The first successful
combination we explore is 0th-order and 1st-order reordering labels. Since both labels
individually give good results, and encode somewhat different information about word order,
their combination could work even better. The other two combinations we test are 1th-order
reordering labels combined with SAMT or target-side boundary-tags. These combinations are

11DRLE groups the translations of the source side by their labels and uses the best translation for each distinct
labeling, as opposed to only a single best translation. This may cause also more suboptimal source rule-side translations
to be added to the initial cube-pruning queue; and with a higher pop-limit there is a higher chance of those being retained
and causing problems such as overfitting.
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System
Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length CPU

time
HIERO 31.63 30.56 13.15 59.28 58.03 97.15 3.34
HIERO 0th

+ HIERO 1st
32.30NHNH0 30.95NHNH0 13.75NHNH0 60.16HHHH0 60.13NHNH0 99.07NH�H0 7.18

SAMT+
HIERO 1st 32.57NH4H1 31.07NHHSNH1 13.84NHOS 59.94HHNH1 60.18NH 99.13�H�S 11.63

Bnd.Tags+
HIERO 1st 32.65NHNH1 31.36NHNBNH1 14.16NHNH1 60.21HH 61.46NHNBNH1 99.86�H�H1 10.32

Table 5: Double-labeled systems with soft matching. Result are for exploring only the best rule labeling
and label substitution during cube pruning initialization. Statistical significance is given against the HIERO

baseline (H) and for every double-labeled system against the single-labeled systems from which the double
label is composed: HIERO 0th (H0), HIERO 1st (H1), SAMT (S) and target-side boundary-tags (B).

intuitively promising since reordering labels and syntactic labels are expected to give at least
partially different information that may be expected to be complementary.

When combined labels are directly applied to form label-substitution features, this yields
a quadratic increase in the number of these features, causing extreme sparsity and hence
overfitting problems. We thus take another approach; during feature generation, we split
every combined label into its two constituent parts and compute individual label-substitution
features for each. Table 5 shows the results of the label-combination experiments. Most
of the double-labeled systems come to the level of the best of the two constituent labels, but
do not improve beyond it. However, the system that combines target-side boundary-tags and
1th-order reordering labels significantly improves over both these labels individually for both
METEOR and KRS. These metrics are particularly concerned with assessing the quality of the
word order, which receives less or no attention in the other metrics. Since reordering labels are
particularly expected to improve word order, it is positive that they help to further improve it
for the best-performing single label in our experiments.

5 Conclusion

In this work, we examined key aspects of effective and efficient ESD. We first gave a detailed
description of how this method can be efficiently implemented, and then examined three
empirical questions. First, based on experiments for four different label types, we demonstrated
that ESD is empirically at least equal but typically superior to strict matching. Next, we
demonstrated that ESD can benefit from richer search. Our experiments show that it is
more effective to specifically target the search effort towards the exploration of more diverse
label substitutions instead of crudely increasing search in general by using a higher pop-limit.
Finally, we explored the effect of double labels, and showed that while these are not successful
in general, the specific combination of target-side boundary-tags and reordering labels does
significantly improve word order as measured by METEOR and KRS, without significantly
changing the other metrics.
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Abstract
Although classifiers/quantifiers (CQs) expressions appear frequently in everyday communi-
cations or written documents, they are described neither in classical bilingual paper dictio-
naries, nor in machine-readable dictionaries. The paper describes a CQs dictionary, edited
from the corpus we have annotated, and its usage in the framework of French-Japanese ma-
chine translation (MT).
CQs treatment inMT often causes problems of lexical ambiguity, polylexical phrase recog-
nition difficulties in analysis and doubtful output in transfer-generation, in particular for
distant languages pairs like French and Japanese.
Our basic treatment of CQs is to annotate the corpus by UNL-UWs (Universal Network-
ing Language - Universal words)1, and then to produce a bilingual or multilingual dictionary
of CQs, based on synonymy through identity of UWs.

Keywords: classifiers, quantifiers, corpus annotation, UNL,UWs dictionary, phraseology
study, Tori Bank, French-Japanese MT

Introduction
We call CQs (classifiers/quantifiers) words or phrases which are used in some languages to
indicate the class of a noun or a nominal phrase, depending upon the type of its referent or
upon speaker’s observation of the referent, when they appear in quantitative expressions.
They denote:

(a) CQs expressing quantity of the referent by counting.
Eg. pièce (piece) (in French),枚(mai, sheet),点 (ten, piece) (in Japanese), cm, gram

(b) CQs representing quantity concept, based on speaker’s observation or general
metonymy.
Eg. un brin de (a little), bribes de (scraps of), ひとつまみの (hito-tsumami no, a pinch of),
山盛りの (yama-mori no, a pile of).

There are two cases for a CQ: (1) it can belong to only the (a) type or the (b) type, and
(2) it can belong at the same time to both the (a) and (b) types. That is because, on the

1TheUNL (Universal Networking Language) project was founded at the Institute of Advanced Studies (IAS) of
the United Nations University in Tokyo in April 1996 under the aegis of UNU (United Nations University, Tokyo)
and with financial support from ASCII corporation (a Japanese publishing company, 1977-2002) and UNL-IAS.
http://www.undl.org/unlsys/unl/unl2005/attribute.htm
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one hand, there are some CQs that play only the role of classifier or quantifier, and, on the
other hand, there are CQs that play both of these roles.

Eg. un brin de paille (a wisp of straw), un brin de folie (a touch of madness)2.
When we started to deal with CQs expressions in the framework of French-Japanese

MT, we met mainly the following difficulties, which were inherent in QCs:
1. Resolution of lexical ambiguity of polysemic nouns

Eg. pièce (piece) : (Japanese translation as CQs)枚(mai, sheet or ϕ3),点 (ten, ϕ),頭(tou,
ϕ),樽(taru, cask), etc.

2. Producing adequate CQs in Japanese when they are absent in French
Eg. deux livres (two books) : (Japanese translation)二冊の本 (ni-satsu no hon)

ni = two, satsu = ϕ, no = postposition, hon = book, where 冊 (satsu) is one of the
Japanese CQs for books, notebooks, albums, etc.

3. Normalization for floating quantifier phenomenon in Japanese

4. Recognition of QC polylexical expressions over the course of corpus development
Eg. une pincée de sel (a pinch of salt): (Japanese translation) ひとつまみの塩 (hito-
tsumami no shio)

hito = 1, tsumami = pinch, no = of , shio = salt
To handle these linguistic behaviours of CQs in a comprehensive manner, we have

adopted the UNL-UWs format for our corpus annotations and dictionary descriptions.
Another motivation is the desire to be able to extend this work to many other languages,
in the framework of MT based on the passage through the UNL semantic pivot.

In this paper, we first examine the behaviour of CQs and the related problematic is-
sues more concretely, from the point of view of French↔Japanese MT, and then propose
a resolution of the above-mentioned problems by extending the UNL-UWs dictionary.

1 Lexical ambiguity for classifiers/quantifiers
According to our studies on ambiguities for MT, 14% of analysis errors are due to poly-
semous words4 [Boitet and Tomokiyo (1995), Boitet and Tomokiyo (1996), Tomokiyo and
Axtmeyer (1996)]. Also, Wisniewski et al. (2013) say the most frequent necessary post-
editing operation in their French corpus translation into English is to correct articles like
“les”, “le”, “du”, etc., and the next one concerns lexical transfer errors of polysemous words.

We have also confirmed that, when polysemous words are used in their abstract or
figurative meaning in CQs expressions, translation results produced by currentMT systems
are not at all good, because words contained in CQ phrases are often at the same time
polysemous and are used in their figurative meaning.

The following example shows « pincée (pinch,つまみ, tsumami) » appearing in a quan-
tifier phrase « une pincée de », and used in its figurative meaning. When one looks at the
translation outputs produced by free as well as commercial MT systems, it appears that
there is a lack of phraseology studies and polysemy disambiguation method for the word
« pincée »5.

2”brin” means (1) a small stalk, and (2) ”a bit, a little” in ”un brin de”
3The symbol ϕ means the absence of corresponding translation in French.
4We have carried on a research on ambiguity analysis from the lexical, semantic and contextual points of view

since 1996. Ambiguities have been defined, categorized, and formalized as objects in an ambiguity database, and
we have used this theoretical background to label ambiguities in Japanese-English interpreted dialogues, collected
for the development of a speech translation system at ATR in Japan (1996 ).

5Theword “pincée” is used as CQs in form of “une pincée de”+noun without particle” for pulverized substances.
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Table 1: problem of CQ words ambiguity in French-Japanese MT

French
word

Examples7 English translation Japanese translation

pièce une pièce de toile a piece of cloth 一枚 (ichi-mai)の布
une pièce de mobilier a piece of furniture 一点 (it-ten)の家具
dix pièces de bétail8 ten pieces of cattle １０種 (jyut-tou)の家畜
plusieurs pièces de bois several pieces of

wood
数枚 (suu-mai)の板

Une pièce de vin est un ton-
neau de vin contenant env-
iron 220 litres.

A cask of wine is
a barrel of wine
containing about
220 liters.

一樽 (hito-taru) のワインとは
約２２０リットルを含むワイン
樽である。

J’ai reçu une demi-pièce de
ce vin.

I received half a cask
of this wine.

わたしは半樽(han-taru)
のワインを受け取った。

Dans une pièce de théâtre,
il n’y a pas de narrateur
pour raconter les faits.

In a play, there is no
narrator to tell the
facts.

ある作品 (aru-sakuhin)
では事実を語るナレータが いない。

une pièce de viande a piece of meat 一切れの肉 (hito-kire)
une pièce de blé a wheat field 一枚 (ichi-mai) の麦畑 (no mugi-

batake)

Eg. Ajoutez une pincée de sel. ( ひとつまみの塩を加えなさい (hitotsumami-no shio-
wo kuwaenasai), Add( 加えなさい) a pinch of (ひとつまみの) salt (塩).) → (translation out-
puts) 塩のつねり (tsuneri) を加えなさい / 塩のピンチ (pinchi) を加えなさい / 塩のピンチ (pinchi)
を追加します (shio no tsuneri wo kuwaenasai / shio no pinchi wo kuwaenasai / shio no pinchi
wo tsuikashimasu)6.

Even measure words like cm, km, kg, etc. have acronym ambiguity [Mari (2011)].
Eg. cm← centimètre, congrégation de la mission, coût marginal, etc.

To disambiguate a polysemic CQ, we describe each of its meanings, with the associated
conditions of occurrence, as a UW (contained in our Universal Words dictionary).

In our fr-UW dictionary, the description for the ambiguous word ”pièce” is as follows:
pièce→ cask(icl>wine)
pièce→ piece(icl>cloth)
pièce→ piece(icl>furniture)
pièce→ piece(icl>meat)
pièce→ room(icl>place)

6The translations on following MT systems don’t make sense.
http://www.reverso.net/translationresults.aspx?langF̄R&directionf̄rancais-japonais.
http://www.worldlingo.com/fr/products_services/worldlingo_translator.html. https://translate.google.com/#fr/en/a

7The sources of the examples are the French-Japanese dictionary ”Royal”, the information on ”pièce” in
the Wiktionary ”Vinothèque” article, see https://fr.wiktionary.org/wiki/pièce_de_vin, and http://www.etudes-
litteraires.com/etudier-piece-de-theatre.php

8Each animal, like ox, cow, etc., that belongs to cattle. One says rather ”head of cattle” today.
9The actant means here an expression that helps complete the meaning of a predicate.

10The semantic relation labels are created fromUNL ontology, which store all relational information in a lattice
structure, where UWs are interconnected through relations including hierarchical relations (10 levels) such as ”icl”
(a-kind-of) and ”iof” (an-instance-of), and mean headword’s sub-meaning and equivalent quantity, respectively.
http://www.undl.org/unlexp/
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Table 2: UWs and UWs dictionary

A UW is a character string of the form ”headword(constraint_list)” which represents
a concept associated to the headword. For example, ”look(agt>thing, equ>search,
icl>examine(icl>do, obj>thing))” is a possible UW for the meaning of the verb ”look”
corresponding to ”examine”. Other UWs will be used for various meanings of ”look” as
a noun: appearance (Paul’s look(s)), or action (after a quick look,...).
The semantic representation of an utterance in UNL is a hypergraph, where each node
bears a UW, possibly augmented by semantic attributes, and arcs bear semantic relations
from a small list of about 40, like ”agt”, ”obj”, ”aoj”, ”ben”.
In fact, there are three types of UW: restricted UWs, which are formed as said above
(headword plus constraint list), extra UWs, which are a special type of restricted UWs,
and basic UWs, which are bare headwords, with no constraint list.
The syntax for dictionary description is:
<UW> ::= <Headword>[’(’<Constraint_List>’)’]

The constraint list restricts the interpretation of a UW to a specific concept included
within those covered by the Basic UW [Uchida et al. (2006)], or to a subset of them. Eg.

look(agt>thing, equ>search, icl>examine(icl>do, obj>thing))
relever (to season): season(agt>person, obj>dish, icl>action)
樽 (taru, to cask): cask(icl>wine, equ>220 litres)

The semantic relation “agt” denotes that the first actant9 of “look” is a “thing”, “look”
belongs to equivalent semantic level in UNL ontology map10 with “search”, and includes
the meaning of “examine”, “examine” is an action verb and its grammatical object is a
noun meaning things.
The UNL-lang dictionaries contained, at the moment of writing, 1269421 headwords for
Japanese, 520305 headwords for French and 1458686 headwords for English. The seman-
tic attributes consist of 58 labels and semantic relation labels [Uchida et al. (2006)].
For French-Japanese translation, French words are converted into UWs by using a UNL-
French dictionary, and a UNL-Japanese dictionary is used for generating Japanese trans-
lations.
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2 Handling dummy classifiers
A frequent but difficult case appears when a CQ does not appear explicitly in one language
of a source-target language pair11, nevertheless they aremandatory in type (a) CQ usage, like
冊 (satsu) for counting books, notebooks, albums, etc.,匹 (hiki) for counting small animals,
台 (dai) for counting cars, bicycles, pianos, computers, etc. Eg.
2 livres (two books)→二冊の本 (ni-satsu no hon)

ni = 2, satsu = ϕ, no =ϕ, hon = books
un chat (a cat)→一匹の猫 (i-ppiki no neko)

i = 1, ppiki = ϕ, no = ϕ, neko = cat
There is no lexeme in French corresponding to 冊 (satsu), but if 冊 (satsu) is omitted

in the translation into Japanese, the sentence doesn’t make sense. In order to represent
such Japanese sentences in UNL, which is based on English, when these CQs don’t exist
in English, we create new UWs beginning by ”CQ-<romanized Japanese CQ>”, followed
by a list of some English referent nouns. For example: CQ-satsu-books-notebooks-albums,
”CQ-dai-cars-bicycles-computers-pianos”12.

Absent CQs in French are marked by the attribute ”@eld” (elided), which we have
added to the original attribute list.

Eg. Description for冊 (satsu) in Japanese-UW dictionary:
冊 (satsu) (icl>CQ-books, notebooks, albums)
Accordingly, the graphs for二冊の本 (two books) is as follows:
qua(book(icl>thing).@pl, :01)
mod:01(CQ-satsu-books-notebooks-albums(icl>CQ).@entry.@eld, 2)

(a) Tentative japanized UNL-graph for
”二冊の本 (two books )”

(b) Tentative frenchized UNL-graph for
”deux livres (two books)”

11This happens not only between Japanese and western languages, but also between French and English: eg.
une pièce de blé → a wheat field, une pièce de théâtre → a play

12At present, new CQs are made by indicating only some modifiable nouns, but this should be completed by
labels coming from Mel’chuk’s labels in the ”Dictionnaire explicatif et combinatoire du français contemporain
(DEC)” (1999,Montréal, UdMPress). In theDEC, a word is analyzed from 5 points of view: generalmorphosyntax,
semantics, syntactic combinatorics, lexical co-occurence, phraseology. The analysis of the lexical co-occurences
is made by using 60 labels corresponding to as many lexico-semantic functions (FLs) such as Magn, Anti-Magn,
Mult, Sing, etc. Magn(X) is ”very X”, Mult(X) is ”a regular quantity of X” and Sing(X) is ”a regular quantum of X”.

Values of FLs are subsets of lexemes, ordered by degree of intensity of the relation. For example, Magn(fever)
= {high,̃ strong;̃ horse}̃, Mult(fish) = {shoal, school}, and Sing(wine) = {glass, bottle, cask, liter…}.

When possible, we will use these labels instead of the above labels such as ”CQ-concrete nouns”. Note that it is
not possible in cases where two or more Japanese counters corresponding to different measures can apply to the
same nominal concept, but don’t exist in English: to use only the FL label would lead to a loss of information and
to the impossibility of exact translation. Examples:
CQ-tou = [qua(mod(icl>animal, Magn), number]
CQ-piki = [qua(mod(icl>animal, Anti-Magn), number]
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Table 3: Positions of numerical phrases in Japanese

Morphology Japanese sentence and
English translation

words order and word-to-word corre-
spondance to English translation

Numerical word and
CQs

本を二冊買いました (I
bought two books.)

hon = book, wo = postposition(ϕ), ni =
2, satsu= ϕ, kaimashita = bought

Numerical word
+CQs+の(no,
of)+Noun

二冊の本を買いました(I
bought two books.)

ni=2, satsu=ϕ, no = postposition(ϕ),
hon = books, wo = postposition(ϕ)
kaimashita = bought

Noun+Numerical
word+CQs

本二冊買いました(I
bought two books.)

hon = books, ni = 2, satsu = ϕ,
kaimashita = bought

Numerical
word+CQs

本を買いました, 二冊 (I
bought books, two.)

hon = books, wo = postposition(ϕ),
kaimashita = bought, ,=comma, ni= 2,
satsu = ϕ

3 Association of numerical phrase with its host phrase

There are two different aspects concerning the floating quantifier behaviour in Japanese
[Miyagawa (1989)].

Firstly, the problem we have encountered in the process of Japanese-French MT, lies
in the fact that the Japanese quantifiers can be freely positioned among phrase units in a
sentence.

The “Numerical word + CQ +の (no, of) + Noun” type can be split into the CQ phrase
and the «Noun» part, in which case a CQ phrase behaves like an adverb before the predica-
tive verb in a sentence. Hence, three types of expressions are possible for the samemeaning
[Miyagawa (1989)].

Standardization of a floating CQ position consists in determining the CQ phrase and
its host phrase, when they are separated in a sentence. In fact, the floating quantifier
phenomenon exists also in French, although its linguistic behaviour is different13 from the
Japanese case. Hence, we need modifiable nouns information for each quantifier in order
to find out their host noun phrase.

Secondly, there is a risk of generating meaningless expressions as a Japanese translation
outputs in some cases, when the association condition between a floating CQ and its host
phrase is not given. For instance, “3kgの子豚がいました” (3kg-no kobuta-ga imashita) (There
was a 3kg piglet.) is acceptable as a Japanese sentence, but “子豚が3kgいました” (kobuta-ga
3kg imashita)*14 doesn’t make sense, because «子豚 (kobuta, piglet)» means only an alive
piglet and co-occurs with ”いました” (there was), but “3kg” cannot15. Hence, to avoid a ma-
chine translation output such as “子豚が3kgいました” (observed), supplementary informa-
tion on “子豚” on the verb “いる” (iru, there is, or exists) and on how to use that information
is necessary. For that reason, we also use a UNL-jp dictionary, which enables us to describe
semantic cooccurence information between words (here, japanese lemmas).

In order to find the host phrase of a floating CQ, that is, to get the same translation
results for the sentences which are morphologically different but have the same meaning,

13Floating CQs in French are “tous”, “toutes”, etc., number and gender agreement is obligatory between two
phrases [Miyagawa (1989), Bobaljik (2001)], whereas there are neither number nor gender for common nouns in
Japanese.

14子豚が3kgいました*, For the piglet, there were 3 kg*.
15There are two verbs expressing ”existence” or ”presence” in Japanese: ”いる (iru)” for human being and animals

and ”ある” (aru) for things

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 221



we add some information to “aoj”, mentioned above in the square.
Descriptions forいる (iru) andある (aru) are as follows.
いる (iru) : there-be(obj>animal)
いる (iru) : there-be(obj>person)
ある (aru) : there-be(obj>thing)

4 Recognition of quantifiers/classifiers and phraseology

The Type (a) CQs above-mentioned come from Phrase Book II, Tori Bank16 (see Annex 1),
while referring to existing weights and measures dictionaries17. Phrases book II includes
basic CQs which were manually or semi-automatically collected from journals, novels, nu-
merous articles on the Web, etc. in French and Japanese18. To extend this, we are using the
”Cesselin” Japanese-French dictionary19 and the ”Tangorin” Japanese-English dictionary20,
in which we have annotated some headwords as potential CQs, according to originally given
indications21. For the Type (b) one, it’s laborious to pin down phrasemes22 in row data.
Eg.
une poignée de sable (a handful of sand), une pointe d’ironie (a touch of irony), un pouce de
terre (a handful of soil).

French and English phrasemes are, however in many cases, composed of “Number +
Noun + preposition (de, of) + Noun without article”.

The Type (b) CQs in the Phrase Book II have been collected from a parallel corpus
according to the frequency of polylexical expressions, by using a software that can produce
a list of keywords in context 23. We have filtered the collected data as CQs by checking
them with the UWs in the dictionary.

5 Specification of classifiers/quantifiers dictionary

We anticipate that our CQs dictionary will include about 8000 entries for each language
according to manual count by 1% (8269 entries) random sampling from the Cesselin dictio-
nary (its total number of entries is 826970).

At present, our CQs dictionary contains 3000 entries. The specification (microstruc-
ture) of its entries is as follows:

16Tori Bank is a sentence corpus which has developed at Tottori Unversity in Japan in 2007.
http://unicorn.ike.tottori-u.ac.jp/toribank/about_toribank.html

17Cassell’s French-English, English-French dictionary: with appendices of proper names, French coins, weights,
and measures with conversion tables.

18At present, the total number of registered entries is about 2000 for the Type (a) CQs and 1000 for Type (b)
CQs, and it is becoming larger day by day.)

19The Cesselin is a printed dictionary published in 1939 and 1957 in Japan. It has been reprocessed into a
numeric version equipped with a search engine by Mathieu Mangeot-Nagata in 2015 [Mangeot-Nagata (2016)]:
https://jibiki.fr).

20http://tangorin.com/
21Eg. ken (軒) in the Cesselin (English translations have been added by us.)
ken (軒) n.m. Avant-toit, f. Maison. spé: s’emploie pour compter les maisons (special: used to count houses).

十二軒 (Jyû ni ken, 12 houses) douze maisons,二 軒目です (C’est la deuxième maison, It’s the second house)
けん ken軒 in the Tangorin dictionary:

suffix / counter:
1. counter for buildings (esp. houses)
彼女は鳥かごを軒からつるした。 She hung the cage from the eaves.
彼の叔父は家を十軒も持っている。His uncle owns no fewer than ten houses.

22By ”phraseme” we mean a set phrase, an idiomatic phrase, a polylexical expression, etc.
23http://en.wikipedia.org/wiki/Sketch_Engine
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Table 4: Type (b) CQs in Phrase Book II : “pointe”

French
word

examples Source Japanese translation English transla-
tion

Pointe une pointe d’ironie
mal placée

J.L.Carré 場違いの皮肉をちくりと the tip of , a hint
of, a note of, a
trace of

relever la sauce avec
une pointe d’ail

Livre de
cuisine

ソースにニンニクを
ちょっときかせる

pick up the sauce
with a hint of
garlic

avec une pointe
d’agacement dans la
voix

T.Jonquet 声にすこし苦しみを
にじませて

with a hint of
irritation in the
voice

Table 5: KWIC of “pointe” from Sketch Engine

doc#357 qui marque le déclin définitif de
cette

pointe de poussée et de sécrétions des
hormones

doc#397 la sierra Pacaraima, qui con-
stituent une

pointe avancée du Sertao brésilien.
</p><p> En janvier

doc#457 de nouveauté, un soupçon de
douceur, une

pointe d’exotisme : commence par te
mettre dans

doc#517 Tafer ne sont capables d’évoluer
seuls en

pointe . </p><p> Arles - Marseille En
concédant une

(a) Possible UNL-graph for ”Season the sauce
with a hint of garlic.” (b) UNL-graph for ”２冊の本を買いました”

Figure 2: Two UNL-graphs representing sentences containing CQs
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Table 6: Description of “pointe”

items description for ”pointe”
1.Identification
number

XX

2. Keywords and
class

pointe (n.)

3. English sentence Season the sauce with a hint of garlic
4. French sentence relever la sauce avec une pointe d’ail
5. Japanese sentence ソースにニンニクをちょっときかせる
6. Source Royal
7. UNL annotation

agt(season(agt>person, obj>dish, icl>action>thing).@entry.@imperative, you)
obj(season(agt>person, obj>dish, icl>action>thing).@entry.@imperative,
sauce(icl>cooking).@def)
met(season(agt>person, obj>dish, icl>action>thing).@entry.@imperative,
garlic(icl>cooking))
qua(garlic(icl>cooking), a hint of(icl>quantity))

Perspectives and Conclusion

We have studied the methodology for phraseology treatment on MT systems, while devel-
oping a French-Japanese-English parallel corpus and have known deeper linguistic analysis
[Petit (2004), Gouverneur (2005)] is necessary for CQs dictionary description.

The corpus will be made freely accessible, so that software developers can use it. It
should also be helpful for learners of languages, because it covers lexico-semantic informa-
tion which cannot yet be found in any bilingual dictionary. We intend to produce a tool
bilingual sentence-aligned corpus processing tool that will show corresponding (chunks of)
words between 2 languages are shown on demand by character blinking or where the mean-
ing of nouns or verbs in a sentence is shown without any ambiguity by interpreting UNL an-
notations. A prototype has been already presented by a Ph.D student in his thesis [Chenon
(2005)].
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Annex「鳥バンク」
(examples from the Tori-Bank)

Eg. 「 塁 (rui, base)」,「寸 (sun, approx. 3.03 cm)」
AC00046100 P11:二塁走者の生還を許し:VP@28:allowing the runner to score from sec-
ond:VP
AC00046100 P4:一塁へ悪投し、:VP@7:threw wild to first:VP
AC01599600 C6:一寸先も見え:CL@27:we could not see an inch ahea:CL
AC01599600 P6:一寸先も見え:VP@40:see an inch ahead:VP
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Abstract
Neural machine translation (NMT), a new approach to machine translation, has achieved
promising results comparable to those of traditional approaches such as statistical machine
translation (SMT). Despite its recent success, NMT cannot handle a larger vocabulary because
the training complexity and decoding complexity proportionally increase with the number of
target words. This problem becomes even more serious when translating patent documents,
which contain many technical terms that are observed infrequently. In this paper, we pro-
pose to select phrases that contain out-of-vocabulary words using the statistical approach of
branching entropy. This allows the proposed NMT system to be applied to a translation task
of any language pair without any language-specific knowledge about technical term identifica-
tion. The selected phrases are then replaced with tokens during training and post-translated by
the phrase translation table of SMT. Evaluation on Japanese-to-Chinese, Chinese-to-Japanese,
Japanese-to-English and English-to-Japanese patent sentence translation proved the effective-
ness of phrases selected with branching entropy, where the proposed NMT model achieves a
substantial improvement over a baseline NMT model without our proposed technique. More-
over, the number of translation errors of under-translation by the baseline NMT model without
our proposed technique reduces to around half by the proposed NMT model.

1 Introduction

Neural machine translation (NMT), a new approach to solvingmachine translation, has achieved
promising results (Bahdanau et al., 2015; Cho et al., 2014; Jean et al., 2014; Kalchbrenner and
Blunsom, 2013; Luong et al., 2015a,b; Sutskever et al., 2014). An NMT system builds a simple
large neural network that reads the entire input source sentence and generates an output transla-
tion. The entire neural network is jointly trained to maximize the conditional probability of the
correct translation of a source sentence with a bilingual corpus. Although NMT offers many
advantages over traditional phrase-based approaches, such as a small memory footprint and
simple decoder implementation, conventional NMT is limited when it comes to larger vocabu-
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Figure 1: Example of translation errors when translating patent sentences with technical terms
using NMT

laries. This is because the training complexity and decoding complexity proportionally increase
with the number of target words. Words that are out of vocabulary are represented by a single
“〈unk〉” token in translations, as illustrated in Figure 1. The problem becomes more serious
when translating patent documents, which contain several newly introduced technical terms.

There have been a number of related studies that address the vocabulary limitation of
NMT systems. Jean et al. (2014) provided an efficient approximation to the softmax function
to accommodate a very large vocabulary in an NMT system. Luong et al. (2015b) proposed
annotating the occurrences of the out-of-vocabulary token in the target sentence with positional
information to track its alignments, after which they replace the tokens with their translations
using simple word dictionary lookup or identity copy. Li et al. (2016) proposed replacing out-
of-vocabulary words with similar in-vocabulary words based on a similarity model learnt from
monolingual data. Sennrich et al. (2016) introduced an effective approach based on encoding
rare and out-of-vocabulary words as sequences of subword units. Luong and Manning (2016)
provided a character-level and word-level hybrid NMT model to achieve an open vocabulary,
and Costa-Jussà and Fonollosa (2016) proposed an NMT system that uses character-based em-
beddings.

However, these previous approaches have limitations when translating patent sentences.
This is because their methods only focus on addressing the problem of out-of-vocabularywords
even though the words are parts of technical terms. It is obvious that a technical term should
be considered as one word that comprises components that always have different meanings and
translations when they are used alone. An example is shown in Figure 1, where the Japanese
word “ ”(bridge) should be translated to Chinese word “ ” when included in technical
term “bridge interface”; however, it is always translated as “ ”.

To address this problem, Long et al. (2016) proposed extracting compound nouns as tech-
nical terms and replacing them with tokens. These compound nouns then are post-translated
with the phrase translation table of the statistical machine translation (SMT) system. However,
in their work on Japanese-to-Chinese patent translation, Japanese compound nouns are identi-
fied using several heuristic rules that use specific linguistic knowledge based on part-of-speech
tags of morphological analysis of Japanese language, and thus, the NMT system has limited
application to the translation task of other language pairs. In this paper, based on the approach
of training an NMT model on a bilingual corpus wherein technical term pairs are replaced with
tokens as in Long et al. (2016), we aim to select phrase pairs using the statistical approach of
branching entropy; this allows the proposed technique to be applied to the translation task on
any language pair without needing specific language knowledge to formulate the rules for tech-
nical term identification. Based on the results of our experiments on many pairs of languages:
Japanese-to-Chinese, Chinese-to-Japanese, Japanese-to-English and English-to-Japanese, the
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proposed NMT model achieves a substantial improvement over a baseline NMT model without
our proposed technique. Our proposed NMT model achieves an improvement of 1.2 BLEU
points over a baseline NMT model when translating Japanese sentences into Chinese, and an
improvement of 1.7 BLEU points when translating Chinese sentences into Japanese. Our pro-
posed NMT model achieves an improvement of 1.1 BLEU points over a baseline NMT model
when translating Japanese sentences into English, and an improvement of 1.4 BLEU points
when translating English sentences into Japanese. Moreover, the number of translation error of
under-translations1 by the the baseline NMT model without our proposed technique reduces to
around half by the proposed NMT model.

2 Neural Machine Translation

NMT uses a single neural network trained jointly to maximize the translation performance
(Bahdanau et al., 2015; Cho et al., 2014; Kalchbrenner and Blunsom, 2013; Luong et al.,
2015a; Sutskever et al., 2014). Given a source sentence x = (x 1, . . . , xN ) and target sen-
tence y = (y1, . . . , yM ), an NMT model uses a neural network to parameterize the conditional
distributions

p(yz | y<z,x)

for 1 ≤ z ≤ M . Consequently, it becomes possible to compute and maximize the log probabil-
ity of the target sentence given the source sentence as

log p(y | x) =
M∑

l=1

log p(yz|y<z,x)

In this paper, we use an NMT model similar to that used by Bahdanau et al. (2015), which
consists of an encoder of a bidirectional long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and another LSTM as decoder. In the model of Bahdanau et al. (2015),
the encoder consists of forward and backward LSTMs. The forward LSTM reads the source
sentence as it is ordered (from x1 to xN ) and calculates a sequence of forward hidden states,
while the backward LSTM reads the source sentence in the reverse order (from xN to x1) ,
resulting in a sequence of backward hidden states. The decoder then predicts target words using
not only a recurrent hidden state and the previously predicted word but also a context vector as
followings:

p(yz | y<z,x) = g(yz−1, sz−1, cz)

where sz−1 is an LSTM hidden state of decoder, and cz is a context vector computed from both
of the forward hidden states and backward hidden states, for 1 ≤ z ≤ M .

3 Phrase Pair Selection using Branching Entropy

Branching entropy has been applied to the procedure of text segmentation (e.g., (Jin and Tanaka-
Ishii, 2006)) and key phrases extraction (e.g., (Chen et al., 2010)). In this work, we use the
left/right branching entropy to detect the boundaries of phrases, and thus select phrase pairs
automatically.

1It is known that NMTmodels tend to have the problem of the under-translation. Tu et al. (2016) proposed coverage-
based NMT which considers the problem of the under-translation.
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3.1 Branching Entropy
The left branching entropy and right branching entropy of a phrase w are respectively defined
as

Hl(w) = −
∑

v∈Vwl

pl(v) log2 pl(v)

Hr(w) = −
∑

v∈Vwr

pr(v) log2 pr(v)

where w is the phrase of interest (e.g., “ / ” in the Japanese sentence shown
in Figure 1, which means “bridge interface”), V w

l is a set of words that are adjacent to the
left of w (e.g., “ ” in Figure 1, which is a Japanese particle) and V w

r is a set of words that
are adjacent to the right of w (e.g., “388” in Figure 1). The probabilities p l(v) and pr(v) are
respectively computed as

pl(v) =
fv,w
fw

pr(v) =
fw,v

fw

where fw is the frequency count of phrase w, and fv,w and fw,v are the frequency counts
of sequence “v,w” and sequence “w,v” respectively. According to the definition of branching
entropy, when a phrase w is a technical term that is always used as a compound word, both
its left branching entropyHl(w) and right branching entropyHr(w) have high values because
many different words, such as particles and numbers, can be adjacent to the phrase. However,
the left/right branching entropy of substrings ofw have low values because words contained in
w are always adjacent to each other.

3.2 Selecting Phrase Pairs
Given a parallel sentence pair 〈Ss, St〉, all n-grams phrases of source sentence Ss and target
sentence St are extracted and aligned using phrase translation table and word alignment of
SMT according to the approaches described in Long et al. (2016). Next, phrase translation pair
〈ts, tt〉 obtained from 〈Ss, St〉 that satisfies all the following conditions is selected as a phrase
pair and is extracted:

(1) Either ts or tt contains at least one out-of-vocabulary word. 2

(2) Neither ts nor tt contains predetermined stop words.

(3) Entropies Hl(ts), Hl(tt), Hr(ts) and Hr(tt) are larger than a lower bound, while the
left/right branching entropy of the substrings of t s and tt are lower than or equal to the
lower bound.

Here, the maximum length of a phrase as well as the lower bound of the branching entropy are
tuned with the validation set.3 All the selected source-target phrase pairs are then used in the

2One of the major focus of this paper is the comparison between the proposed method and Luong et al. (2015b).
Since Luong et al. (2015b) proposed to pre-process and post-translate only out-of-vocabulary words, we focus only on
compound terms which include at least one out-of-vocabulary words.

3Throughout the evaluations on patent translation of both language pairs of Japanese-Chinese and Japanese-English,
the maximum length of the extracted phrases is tuned as 7. The lower bounds of the branching entropy are tuned as
5 for patent translation of the language pair of Japanese-Chinese, and 8 for patent translation of the language pair of
Japanese-English. We also tune the number of stop words using the validation set, and use the 200 most-frequent
Japanese morphemes and Chinese words as stop words for the language pair of Japanese-Chinese, use the 100 most-
frequent Japanese morphemes and English words as stop words for the language pair of Japanese-English.
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Figure 2: NMT training after replacing phrase pairs with token pairs 〈T s
i , T

t
i 〉 (i = 1, 2, . . .)

next section as phrase pairs.4

4 NMT with a Large Phrase Vocabulary

In this work, the NMT model is trained on a bilingual corpus in which phrase pairs are replaced
with tokens. The NMT system is then used as a decoder to translate the source sentences and
replace the tokens with phrases translated using SMT.

4.1 NMT Training after Replacing Phrase Pairs with Tokens
Figure 2 illustrates the procedure for training the model with parallel patent sentence pairs in
which phrase pairs are replaced with phrase token pairs 〈T s

1 , T
t
1〉, 〈T s

2 , T
t
2〉, and so on.

In the step 1 of Figure 2, source-target phrase pairs that contain at least one out-of-
vocabulary word are selected from the training set using the branching entropy approach de-
scribed in Section 3.2. As shown in the step 2 of Figure 2, in each of the parallel patent sentence
pairs, occurrences of phrase pairs 〈ts1, tt1〉, 〈ts2, tt2〉, . . ., 〈tsk, ttk〉 are then replaced with token pairs
〈T s

1 , T
t
1〉, 〈T s

2 , T
t
2〉, . . ., 〈T s

k , T
t
k〉. Phrase pairs 〈ts1, tt1〉, 〈ts2, tt2〉, . . ., 〈tsk, ttk〉 are numbered in the

order of occurrence of the source phrases ts1 (i = 1, 2, . . . , k) in each source sentence Ss. Here
note that in all the parallel sentence pairs 〈Ss, St〉, the tokens pairs 〈T s

1 , T
t
1〉, 〈T s

2 , T
t
2〉, . . . that

are identical throughout all the parallel sentence pairs are used in this procedure. Therefore, for
example, in all the source patent sentences Ss, the phrase ts1 which appears earlier than other
phrases in Ss is replaced with T s

1 . We then train the NMTmodel on a bilingual corpus, in which
the phrase pairs are replaced by token pairs 〈T s

i , T
t
i 〉 (i = 1, 2, . . .), and obtain an NMT model

in which the phrases are represented as tokens.5

4We sampled 200 Japanese-Chinese sentence pairs, manually annotated compounds and evaluated the approach of
phrase extraction with the branching entropy. Based on the result, (a) 25% of them are correct, (b) 20% subsume correct
compounds as their substrings, (c) 18% are substrings of correct compounds, (d) 22% subsume substrings of correct
compounds but other than (b) nor (c), and (e) the remaining 15% are error strings such as functional compounds and
fragmental strings consisting of numerical expressions.

5We treat the NMT system as a black box, and the strategy we present in this paper could be applied to any NMT
system (Bahdanau et al., 2015; Cho et al., 2014; Kalchbrenner and Blunsom, 2013; Luong et al., 2015a; Sutskever et al.,
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Figure 3: NMT decoding with tokens “T s
i ” (i = 1, 2, . . .) and the SMT phrase translation

4.2 NMT Decoding and SMT Phrase Translation

Figure 3 illustrates the procedure for producing target translations by decoding the input source
sentence using the method proposed in this paper.

In the step 1 of Figure 3, when given an input source sentence, we first generate its trans-
lation by decoding of SMT translation model. Next, as shown in the step 2 of Figure 3, we
automatically extract the phrase pairs by branching entropy according to the procedure of Sec-
tion 3.2, where the input sentence and its SMT translation are considered as a pair of parallel
sentence. Phrase pairs that contains at least one out-of-vocabulary word are extracted and are
replaced with phrase token pairs 〈T s

i , T
t
i 〉 (i = 1, 2, . . .). Consequently, we have an input sen-

tence in which the tokens “T s
i ” (i = 1, 2, . . .) represent the positions of the phrases and a list of

SMT phrase translations of extracted Japanese phrases. Next, as shown in the step 3 of Figure 3,
the source Japanese sentence with tokens is translated using the NMT model trained according
to the procedure described in Section 4.1. Finally, in the step 4, we replace the tokens “T t

i ”
(i = 1, 2, . . .) of the target sentence translation with the phrase translations of the SMT.

5 Evaluation

5.1 Patent Documents

Japanese-Chinese parallel patent documents were collected from the Japanese patent documents
published by the Japanese Patent Office (JPO) during 2004-2012 and the Chinese patent doc-
uments published by the State Intellectual Property Office of the People’s Republic of China
(SIPO) during 2005-2010. From the collected documents, we extracted 312,492 patent fami-
lies, and the method of Utiyama and Isahara (2007) was applied 6 to the text of the extracted
patent families to align the Japanese and Chinese sentences. The Japanese sentences were seg-
mented into a sequence of morphemes using the Japanese morphological analyzer MeCab 7 with

2014).
6Herein, we used a Japanese-Chinese translation lexicon comprising around 170,000 Chinese entries.
7http://mecab.sourceforge.net/
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Table 1: Statistics of datasets
training set validation set test set

Japanese-Chinese 2,877,178 1,000 1,000
Japanese-English 1,167,198 1,000 1,000

Table 2: Automatic evaluation results (BLEU)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline SMT (Koehn et al., 2007) 52.5 57.1 32.3 32.1
Baseline NMT 56.5 62.5 39.9 41.5
NMT with PosUnk model 56.9 62.9 40.1 41.9(Luong et al., 2015b)
NMT with phrase translation by SMT (phrase 57.7 64.2 40.3 42.9pairs selected with branching entropy)

the morpheme lexicon IPAdic,8 and the Chinese sentences were segmented into a sequence of
words using the Chinese morphological analyzer Stanford Word Segment (Tseng et al., 2005)
trained using the Chinese Penn Treebank. In this study, Japanese-Chinese parallel patent sen-
tence pairs were ordered in descending order of sentence-alignment score and we used the
topmost 2.8M pairs, whose Japanese sentences contain fewer than 40 morphemes and Chinese
sentences contain fewer than 40 words.9

Japanese-English patent documents are provided in the NTCIR-7 workshop (Fujii et al.,
2008), which are collected from the 10 years of unexamined Japanese patent applications pub-
lished by the Japanese Patent Office (JPO) and the 10 years patent grant data published by
the U.S. Patent & Trademark Office (USPTO) in 1993-2000. The numbers of documents are
approximately 3,500,000 for Japanese and 1,300,000 for English. From these document sets,
patent families are automatically extracted and the fields of “Background of the Invention”
and “Detailed Description of the Preferred Embodiments” are selected. Then, the method of
Utiyama and Isahara (2007) is applied to the text of those fields, and Japanese and English
sentences are aligned. The Japanese sentences were segmented into a sequence of morphemes
using the Japanese morphological analyzer MeCab with the morpheme lexicon IPAdic. Simi-
lar to the case of Japanese-Chinese patent documents, in this study, out of the provided 1.8M
Japanese-English parallel sentences, 1.1M parallel sentences whose Japanese sentences contain
fewer than 40 morphemes and English sentences contain fewer than 40 words are used.

5.2 Training and Test Sets
We evaluated the effectiveness of the proposed NMT model at translating parallel patent sen-
tences described in Section 5.1. Among the selected parallel sentence pairs, we randomly ex-
tracted 1,000 sentence pairs for the test set and 1,000 sentence pairs for the validation set; the
remaining sentence pairs were used for the training set. Table 1 shows statistics of the datasets.

According to the procedure of Section 3.2, from the Japanese-Chinese sentence pairs of
the training set, we collected 426,551 occurrences of Japanese-Chinese phrase pairs, which

8http://sourceforge.jp/projects/ipadic/
9It is expected that the proposed NMT model can improve the baseline NMT without the proposed technique when

translating longer sentences that contain more than 40 morphemes / words. It is because the approach of replacing
phrases with tokens also shortens the input sentences, expected to contribute to solving the weakness of NMT model
when translating long sentences.
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Table 3: Human evaluation results of pairwise evaluation (the score ranges from−100 to 100)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline NMT - - - -
NMT with PosUnk model 9 10.5 8 6.5(Luong et al., 2015b)
NMT with phrase translation by SMT (phrase 14.5 17 11.5 15.5pairs selected with branching entropy)

are 254,794 types of phrase pairs with 171,757 unique types of Japanese phrases and 129,071
unique types of Chinese phrases. Within the total 1,000 Japanese patent sentences in the
Japanese-Chinese test set, 121 occurrences of Japanese phrases were extracted, which corre-
spond to 120 types. With the total 1,000 Chinese patent sentences in the Japanese-Chinese test
set, 130 occurrences of Chinese phrases were extracted, which correspond to 130 types.

From the Japanese-English sentence pairs of the training set, we collected 70,943 occur-
rences of Japanese-English phrase pairs, which are 61,017 types of phrase pairs with unique
57,675 types of Japanese phrases and 58,549 unique types of English phrases. Within the total
1,000 Japanese patent sentences in the Japanese-English test set, 59 occurrences of Japanese
phrases were extracted, which correspond to 59 types. With the total 1,000 English patent sen-
tences in the Japanese-English test set, 61 occurrences of English phrases were extracted, which
correspond to 61 types.

5.3 Training Details

For the training of the SMT model, including the word alignment and the phrase translation
table, we used Moses (Koehn et al., 2007), a toolkit for phrase-based SMT models. We trained
the SMT model on the training set and tuned it with the validation set.

For the training of the NMT model, our training procedure and hyperparameter choices
were similar to those of Bahdanau et al. (2015). The encoder consists of forward and backward
deep LSTM neural networks each consisting of three layers, with 512 cells in each layer. The
decoder is a three-layer deep LSTM with 512 cells in each layer. Both the source vocabulary
and the target vocabulary are limited to the 40K most-frequently used morphemes / words in
the training set. The size of the word embedding was set to 512. We ensured that all sentences
in a minibatch were roughly the same length. Further training details are given below: (1)
We set the size of a minibatch to 128. (2) All of the LSTM’s parameter were initialized with
a uniform distribution ranging between -0.06 and 0.06. (3) We used the stochastic gradient
descent, beginning at a fixed learning rate of 1. We trained our model for a total of 10 epochs,
and we began to halve the learning rate every epoch after the first seven epochs. (4) Similar
to Sutskever et al. (2014), we rescaled the normalized gradient to ensure that its norm does not
exceed 5. We trained the NMT model on the training set. The training time was around two
days when using the described parameters on a 1-GPU machine.

We compute the branching entropy using the frequency statistics from the training set.

5.4 Evaluation Results

In this work, we calculated automatic evaluation scores for the translation results using a popular
metrics called BLEU (Papineni et al., 2002). As shown in Table 2, we report the evaluation
scores, using the translations by Moses (Koehn et al., 2007) as the baseline SMT and the scores
using the translations produced by the baseline NMT system without our proposed approach
as the baseline NMT. As shown in Table 2, the BLEU score obtained by the proposed NMT
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Table 4: Human evaluation results of JPO adequacy evaluation (the score ranges from 1 to 5)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline SMT (Koehn et al., 2007) 3.5 3.7 3.1 3.2
Baseline NMT 4.2 4.3 3.9 4.1
NMT with PosUnk model 4.3 4.3 4.0 4.2(Luong et al., 2015b)
NMT with phrase translation by SMT (phrase 4.5 4.6 4.1 4.4pairs selected with branching entropy)

Table 5: Numbers of untranslated morphemes / words of input sentences (for the test set)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline NMT 89 92 415 226
NMT with phrase translation by SMT (phrase 43 45 246 134pairs selected with branching entropy)

model is clearly higher than those of the baselines. Here, as described in Section 3, the lower
bounds of branching entropy for phrase pair selection are tuned as 5 throughout the evaluation of
language pair of Japanese-Chinese, and tuned as 8 throughout the evaluation of language pair
of Japanese-English, respectively. When compared with the baseline SMT, the performance
gains of the proposed system are approximately 5.2 BLEU points when translating Japanese
into Chinese and 7.1 BLEU when translating Chinese into Japanese. When compared with the
baseline SMT, the performance gains of the proposed system are approximately 10.0 BLEU
points when translating Japanese into English and 10.8 BLEU when translating English into
Japanese. When compared with the result of the baseline NMT, the proposed NMT model
achieved performance gains of 1.2 BLEU points on the task of translating Japanese into Chinese
and 1.7 BLEU points on the task of translating Chinese into Japanese. When compared with
the result of the baseline NMT, the proposed NMT model achieved performance gains of 0.4
BLEU points on the task of translating Japanese into English and 1.4 BLEU points on the task
of translating English into Japanese.

Furthermore, we quantitatively compared our study with the work of Luong et al. (2015b).
Table 2 compares the NMT model with the PosUnk model, which is the best model proposed
by Luong et al. (2015b). The proposed NMT model achieves performance gains of 0.8 BLEU
points when translating Japanese into Chinese, and performance gains of 1.3 BLEU points when
translating Chinese into Japanese. The proposed NMT model achieves performance gains of
0.2 BLEU points when translating Japanese into English, and performance gains of 1.0 BLEU
points when translating English into Japanese.

We also compared our study with the work of Long et al. (2016). As reported in Long et al.
(2017), when translating Japanese into Chinese, the BLEU of the NMT system of Long et al.
(2016) in which all the selected compound nouns are replaced with tokens is 58.6, the BLEU
of the NMT system in which only compound nouns that contain out-of-vocabulary words are
selected and replaced with tokens is 57.4, while the BLEU of the proposed NMT system of this
paper is 57.7. Out of all the selected compound nouns of Long et al. (2016), around 22% contain
out-of-vocabulary words, of which around 36% share substrings with the phrases selected by
branching entropy. The remaining 78% compound nouns do not contain out-of-vocabulary
words and are considered to contribute to the improvement of BLEU points compared with the
proposed method. Based on this analysis, as one of our important future work, we revise the
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Figure 4: An example of correct translations produced by the proposed NMT model when
addressing the problem of out-of-vocabulary words (Japanese-to-Chinese)

Figure 5: An example of correct translations produced by the proposed NMT model when
addressing the problem of under-translation (Chinese-to-Japanese)

procedure in Section 3.2 of selecting phrases by branching entropy and then incorporate those
in-vocabulary compound nouns into the set of the phrases selected by the branching entropy.

In this study, we also conducted two types of human evaluations according to the work of
Nakazawa et al. (2015): pairwise evaluation and JPO adequacy evaluation. In the pairwise eval-
uation, we compared each translation produced by the baseline NMT with that produced by the
proposed NMT model as well as the NMT model with PosUnk model, and judged which trans-
lation is better or whether they have comparable quality. The score of the pairwise evaluation is
defined as below:

score = 100× W − L

W + L+ T

where W, L, and T are the numbers of translations that are better than, worse than, and com-
parable to the baseline NMT, respectively. The score of pairwise evaluation ranges from−100
to 100. In the JPO adequacy evaluation, Chinese translations are evaluated according to the
quality evaluation criterion for translated patent documents proposed by the Japanese Patent
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Figure 6: An example of correct translations produced by the proposed NMT model when
addressing the problem of out-of-vocabulary words (Japanese-to-English)

Figure 7: An example of correct translations produced by the proposed NMT model when
addressing the problem of under-translation (English-to-Japanese)

Office (JPO).10 The JPO adequacy criterion judges whether or not the technical factors and
their relationships included in Japanese patent sentences are correctly translated into Chinese.
The Chinese translations are then scored according to the percentage of correctly translated in-
formation, where a score of 5 means all of those information are translated correctly, while a
score of 1 means that most of those information are not translated correctly. The score of the
JPO adequacy evaluation is defined as the average over all the test sentences. In contrast to
the study conducted by Nakazawa et al. (2015), we randomly selected 200 sentence pairs from
the test set for human evaluation, and both human evaluations were conducted using only one
judgement. Table 3 and Table 4 shows the results of the human evaluation for the baseline SMT,
baseline NMT, NMT model with PosUnk model, and the proposed NMT model. We observe
that the proposed model achieves the best performance for both the pairwise and JPO adequacy
evaluations when we replace the tokens with SMT phrase translations after decoding the source
sentence with the tokens.

10https://www.jpo.go.jp/shiryou/toushin/chousa/pdf/tokkyohonyaku_hyouka/01.pdf

(in Japanese)
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For the test set, we also counted the numbers of the untranslated words of input sentences.
As shown in Table 5, the number of untranslated words by the baseline NMT reduced to around
50% in the cases of ja→ ch and ch→ ja by the proposed NMT model, and reduced to around
60% in the cases of ja→ en and en→ ja.11 12 This is mainly because part of untranslated source
words are out-of-vocabulary, and thus are untranslated by the baseline NMT. The proposed
system extracts those out-of-vocabulary words as a part of phrases and replaces those phrases
with tokens before the decoding of NMT. Those phrases are then translated by SMT and inserted
in the output translation, which ensures that those out-of-vocabulary words are translated.

Figure 4 compares an example of correct translation produced by the proposed system
with one produced by the baseline NMT. In this example, the translation is a translation error
because the Japanese word “ (Bridgman)” is an out-of-vocabulary word and is erro-
neously translated into the “〈unk〉” token. The proposed NMT model correctly translated the
Japanese sentence into Chinese, where the out-of-vocabulary word “ ” is correctly se-
lected by the approach of branching entropy as a part of the Japanese phrase “
(vertical Bridgman method)”. The selected Japanese phrase is then translated by the phrase
translation table of SMT. Figure 5 shows another example of correct translation produced by
the proposed system with one produced by the baseline NMT. As shown in Figure 5, the trans-
lation produced by baseline NMT is a translation error because the out-of-vocabulary Chinese
word “ (band pattern)” is an untranslated word and its translation is not contained in the
output translation of the baseline NMT. The proposed NMT model correctly translated the Chi-
nese word into Japanese because the Chinese word “ (band pattern)”is selected as a part of
Chinese phrase “ (typical band pattern)” with branching entropy and then is translated
by SMT. Moreover, Figure 6 and Figure 7 compare examples of correct translations produced
by the proposed system with those produced by the baseline NMT when translating patent sen-
tences in both directions of Japanese-to-English and English-to-Japanese.

6 Conclusion

This paper proposed selecting phrases that contain out-of-vocabularywords using the branching
entropy. These selected phrases are then replaced with tokens and post-translated using an SMT
phrase translation. Compared with the method of Long et al. (2016), the contribution of the pro-
posed NMT model is that it can be used on any language pair without language-specific knowl-
edge for technical terms selection. We observed that the proposed NMTmodel performedmuch
better than the baseline NMT system in all of the language pairs: Japanese-to-Chinese/Chinese-
to-Japanese and Japanese-to-English/English-to-Japanese. One of our important future tasks is
to compare the translation performance of the proposed NMT model with that based on sub-
word units (e.g. Sennrich et al. (2016)). Another future task is to improve the performance of
the present study by incorporating the in-vocabulary non-compositional phrases, whose transla-
tions cannot be obtained by translating their constituent words. It is expected to achieve a better
translation performance by translating those kinds of phrases using a phrase-based SMT instead
of using NMT.

11Although we omit the detail of the evaluation results of untranslated words of the NMT model with PosUnk
model (Luong et al., 2015b) in Table 5, the number of the untranslated words of the NMT model with PosUnk model
is almost the same as that of the baseline NMT, which is much more than that of the proposed NMT model.
12Following the result of an additional evaluation where having approximately similar size of the training parallel

sentences between the language pairs of Japanese-to-Chinese/Chinese-to-Japanese and Japanese-to-English/English-to-
Japanese, we concluded that the primary reason why the numbers of untranslated morphemes / words tend to be much
larger in the case of the language pair of Japanese-to-English/English-to-Japanese than in the case of the language pair
of Japanese-to-Chinese/Chinese-to-Japanese is simply the matter of a language specific issue.
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Abstract
The present paper describes and presents ongoing research on machine translation (MT) and
linguistic intercomprehension. One main goal, although not the only one, is to evaluate three
machine translation (MT) systems —Systran, Google Translate and Apertium— through an
analysis of the readers’ ability to understand the output generated. We compare the usefulness of
MT output for comprehension to that of non-native writing in the readers’ L1 and that of native
writing in languages similar to their L1. The methodology used is based on cloze tests and the
experiments are carried out using English, French and Italian as source languages and Spanish as
the target language. The subjects involved are native Spanish first-year-undergraduate students
and final-year secondary-school students. All of them have only very elementary knowledge, or
in some cases no knowledge at all, of English, French and Italian (that is, a level equal to or
lower than CEFRL B11). Although the results suggest that MT output resulting from translating
from English and French into Spanish is similar to natively-written Italian texts or texts written
in Spanish by non-native speakers in terms of usefulness, that depends quite often on the level
of specialty but also on the field and on the MT system used.

1 Introduction

The aim of the study, which is part of a broader research plan relating machine translation (MT)
and linguistic intercomprehehsion, is to assess and compare three MT systems when used for
assimilation2 or gisting – Systran, a hybrid system3 that combines statistical or corpus-based
MT and rule-based MT; Google Translate,4 a statistical corpus-based MT system at the time of
testing for the language pairs tested,5 and the Apertium rule-based system.6 The aim is achieved

1Common European Framework of Reference for Languages: Learning, Teaching, Assessment (http://www.
coe.int/t/dg4/linguistic/Source/Framework\_EN.pdf)

2MT systems can be divided into two groups: those aimed at assimilation or gisting, which allow the user to
understand the content of the text, and those aimed at dissemination, which helps to translate a text to be published.

3http://www.systran.es
4http://translate.google.com
5As of May 15, 2017, the English–Spanish system and the English–Italian systems are no longer statistical, but rather

neural; the French–Spanish system is still statistical.
6http://www.apertium.org
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by comparing the usefulness of their output to that of non-native writing in the reader’s first
language L1 and to that of native writings (or MT output) in a closely related language. This
will enable us to determine which of the three MT systems is the most useful for gisting, that is,
which MT system results in the highest level of usefulness when reading a text originally written
in a language unknown to the reader.

Linguistic intercomprehension, the ability to understand one foreign language based on
knowledge about another language (Meissner, 2004, 34), is an ability that the readers of a
language naturally have and use unconsciously but that they can also develop in order to
understand messages in another language without being able to produce them themselves
(Martı́n-Peris, 2011, 247). Linguistic intercomprehension —in this work, reading or written
intercomprehension, in contrast to listening or spoken intercomprehension— leverages on the
similarity or identity of word forms and structures (Martı́n-Peris, 2011, 276).

In recent decades, although only in Europe (within the framework of Euro-comprehension
or European intercomprehension), a new discipline focused on research into study methods has
been developed, which is aimed at the simultaneous studying or learning of multiple languages.
This discipline is centred on reading comprehension —as well as listening comprehension in
some cases— and seeks to save time and effort when learning languages from the same linguistic
family (Clua, 2003). Some of the methods designed have been adapted to Romance-language
learning, such as Eurom4 and Eurom5,7 Galatea,8 Miriadi,9 or EuroComRom10 (within Euro-
Com, whose name refers straightforwardly to Euro-comprehension). EuroComRom shows the
reader how to obtain information from texts in other languages —even if those languages are
completely unknown to the reader— through the so-called seven sieves (Klein and Stegmann,
2000): international vocabulary or internationalisms, pan-Romance vocabulary, sound corre-
spondences, spelling and pronunciation, basic structure of Romance sentence patterns, common
morpho-syntactic structures developed by the Pan-Romance community, and the transfer of
EuroFixes11 (Martı́n Peris et al., 2005).

The work in this paper explores the quantitative aspects of a line of research that aims
at exploring to what extent the differences between native text and MT output are similar to
the differences between languages within a language family or the differences between native
text and non-natively written text, and, then, explores whether spontaneous intercomprehension
strategies (Klein and Stegmann, 2000; Martı́n Peris et al., 2005) play a role in the processing of
raw machine-translated text by readers.

2 Research questions and hypotheses

We aim to answer four research questions: RQ1) To what extent are MT output and a text written
by a native speaker in a language L′ from the same language family as the reader’s first language
L1 similar to the reader in terms of usefulness?; RQ2) Could the MT output in a language L′ in
the same language family as the reader’s first language L1 be useful for comprehension when
translating texts originally written in a language from a language family different from that of
their first language L1?; RQ3) Are MT output and a text written in the reader’s first language
by non-native speakers similar to the reader in terms of usefulness?; and, lastly, RQ4) Which
MT system is the most useful for comprehension when translating a text originally written in a
language that is completely unknown to the reader?

7http://www.eurom5.com
8http://galatea.u-grenoble3.fr
9https://www.miriadi.net/en

10http://www.eurocomresearch.net
11Eurofixes are lexical components used in word formation, such as prefixes and suffixes, and which are shared across

European languages, Many of them are Latin- and Greek-based affixes (pseudo-, -phobia, inter-, etc.).

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 242



Regarding RQ1, one could argue that the relationship between the reader’s L1 (first language,
mother tongue) and MT output into L1 has similarities to that between L1 and other languages in
the family of L1 (common international vocabulary, common morpho-syntactic structures), and
that, therefore, the usefulness of MT output into L1 is similar to that of the related language L′.

Regarding RQ2, by analysing the usefulness to Spanish (ES) native speakers of MT output
when translating from English (EN) into Italian (IT), we can determine if MT could be used
to read texts originally written in a language from a different language family when a certain
language combination is not available; that is, if a speaker of (ES) wants to understand a text in
EN but there is no EN–ES MT available, they could use the EN–IT system and their linguistic
intercomprehension abilities.

3 Methodology

We explore the four research questions above using closure or cloze test methodology, a method
that involves filling in gaps corresponding to single words that have been removed from an extract
from a written text.12 Our study is grounded on these three pillars: (a) reading-comprehension
questionnaires with questions like Who was the president of the Green Party in 2011? have
repeatedly been used to evaluate the usefulness of machine-translated text (Jones et al., 2005,
2009, 2007; Berka et al., 2011; Weiss and Ahrenberg, 2012); (b) cloze testing or gap-filling
has extensively been used as an alternative way to measure reading comprehension (Rankin,
1959; Page, 1977); and (c) gap-filling may sometimes be considered to be roughly equivalent
to question answering: In 2011, was the president of the Green Party. Therefore, we
work upon the assumption that gap-filling success measures the usefulness of machine-translated
text for comprehension. Inspired in previous work (O’Regan and Forcada, 2013; Trosterud and
Unhammer, 2012; Ageeva et al., 2015), the method was used for 65- to 75-word-long target texts
previously translated by professionals with gaps every fifth word.13

Subjects (native ES speakers with an EN, FR and IT level equal to or lower than CEFRL
B1 were provided with different kinds of hints to help them fill in the gaps in professionally
translated ES text. The aim was to determine whether the hint was useful for comprehension,
as measured by the rate of success in filling out the gaps (that is, the fraction of correctly filled
gaps) in the incomplete professionally-translated ES text.

Forty-four test texts were taken from 4 different sources with different degrees of special-
ization, and were tested in four different hinting situations, distributed as follows:

a) Using machine translation into L1 as a hint: EN–ES and FR–ES MT output14 — one highly
specialized text on natural sciences (‘NAT’), one highly specialized text on human and
social sciences (‘SOC’), one journalistic or informative semi-specialized text (‘INF’), and
one non-specialized or general text (‘NO’) that had been translated by the three MT systems,
both from EN to ES and from FR to ES (total, 24 texts);

b) Using text in L′ ' L1 as a hint: native or professionally-translated IT texts — four texts
written by an IT native professional translator from four EN sources with the same degree
of specialization;

12Gaps should be filled with either the exact word removed from the source text, or with a synonym or a functionally
equivalent unit, that is, a lexical unit that creates a target text with the same meaning as the source in that specific context.

13Preliminary experiments showed that the readers’ gap-filling performance showed a marked reduction when gaps
occurred every five words. Note also that (O’Regan and Forcada, 2013) poke holes with a probability, not periodically as
it is done here, but this may be considered be equivalent.

14These translations were retrieved in November–December 2014 and it is worth mentioning that online MT systems
change over time as models get re-freshed or even when a technological change occurs (such as the recent switch from
statistical MT to neural MT for EN–ES and EN–IT)
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EN source text (not
shown to subjects)

If no formal authorisation has been given by the host state, a third-country
national’s presence may be considered unlawful by that state. Both EU and
ECHR law, however, set out circumstances in which a third-country
national’s presence must be considered lawful, even if unauthorised by the
state concerned.

Hint: Machine-
translated ES
text

Si no se ha dado ninguna autorización formal por el estado de anfitrión, la
presencia de un nacional de terceros paı́ses se puede considerar ilegal por ese
estado. La ley de la UE y del ECHR, sin embargo, estableció las
circunstancias en las cuales la presencia de un nacional de terceros paı́ses se
debe considerar legal, incluso si es desautorizado por el estado trató.

Problem:
Professionally-
translated ES text
with gaps

Si el Estado de acogida no le ha concedido una autorización formal, dicho
Estado [. . . ] considerar que la presencia [. . . ] un nacional de un [. . . ] paı́s es
irregular. Sin [. . . ], tanto el Derecho de [. . . ] UE como el CEDH [. . . ]
circunstancias en las que [. . . ] presencia de un nacional [. . . ] un tercer paı́s
se [. . . ] considerar legal, aunque el [. . . ] miembro de que se trate no la haya
autorizado.

Figure 1 – An example gap-filling problem: the subject has to fill with a single word the gaps (one every 5
words) introduced in the professionally-translated text, using the machine-translated text as a hint. The
source text is not shown. The solutions in this case are puede, de, tercer, embargo, la, establecen, la, de,
debe, Estado.

c) Using machine translation into L′ ' L1 as a hint: EN–IT MT output — eight texts from
the same four sources that were translated from EN into IT by two of the MT systems
(Google and Systran, as Apertium does not provide this combination);

d) Using non-natively produced L1 text as a hint: either an EN text translated into ES by an
EN native speaker or a FR text translated into ES by a FR native speaker (both with a ES
B2 level according to the CEFRL) — four texts from the same four sources translated from
EN into ES by a native speaker of EN and four texts from the same four sources translated
from FR into ES by a native speaker of FR (8 texts in total).

Figure 1 shows an example gap-filling problem in which a machine translated text from EN is
shown as a hint, that is, an example of the first hinting situation.

All the texts were extracted from institutional publications, that is, works published or
translated by staff for linguists in international institutions or organizations with the exception of
the non-specialized or general texts, which came from different translations of the Bible in the lan-
guages involved. “NAT” texts were taken from the different language versions of WHO document
http://www.who.int/pehemf/publications/en/EMF\_Risk\_ALL.pdf.
“SOC” texts were taken from the FRA–EHCR–Council of Europe Handbook on European law re-
lating to asylum, borders and immigration (http://fra.europa.eu/sites/default/
files/handbook-law-asylum-migration-borders-2nded\_en.pdf). “INF”
texts were taken from the European Commission publication (http://ec.europa.eu/
economy\_finance/publications/general/pdf/the\_road\_to\_euro\
_poster\_en.pdf). “NO” texts were taken from four editions of the Bible (books of Job and
Esther) in different languages —the Spanish Dios habla hoy (1996), the English Easy-to-Read
Version (1987), the French Bible Segond 21 (2007) and the Italian Bibbia Diodati (1991).

The test was taken by 71 native Spanish undergraduate students from either the first year
of the Degrees in Journalism, Audiovisual Communication, Advertising and Public Relations,
Translation and Intercultural Communication, Infant Education and Primary Education, or final-
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year secondary students. All had only elementary knowledge or, in some cases, no knowledge at
all, of EN, FR and IT (that is, a level equal to or lower than CEFRL B1). Students were asked to
read the hint and, for the whole test, write a single word in each gap in all the texts. Each job
contained 10 gaps; each student completed 22 jobs on average. The fraction of gaps that the
students were able to fill successfully (either with the exact word removed or with a synonym)
were considered as a measure of usefulness of the text used as a hint (in a scale from 0 to 1) and
compared.

4 Results

The results of the test were compared in three blocks: 1) Systran and Google EN–IT and Systran
and Google FR–ES MT output with IT texts written by a native speaker for reference; 2) Systran,
Google and Apertium MT EN–ES output with texts written in ES by a native EN speaker for
reference; 3) Systran, Google and Apertium FR–ES MT output with texts written in ES by a
native FR speaker for reference. In each block, five comparisons were made: overall or general
(that is, without considering the text type or its degree of specialization), NAT, SOC, INF and
NO (see section 3).

In Tables 1 to 5, language combinations for each MT system or the other texts used as a hint
were ordered according to the level of usefulness based on the results of the test undertaken by
the students. Different data are given: (‘m’), the average fraction of gaps correctly filled by the
subjects on a scale of 0 to 1; its variance (‘var’), the number of observations in each case (‘n’),
and the estimated probability that the established order for each group was due to chance and
not to a real superiority. In other words, the arithmetic mean in each case is used to establish a
ranking of hints as regards their usefulness for comprehension; the probability that the hypothesis
behind that order or preference is false is also indicated.15 As usual, when the latter probability
shown on each table between two text squares is lower than 5%, we will interpret that the level of
usefulness of the first text with respect to the second is clearly higher and not the result of luck.

4.1 Comparing MT output to text in a closely related language
The results in Table 1 answer the first two research questions, that is: RQ1) whether, in terms
of usefulness, MT output and a text written by a native speaker in a language L′ in the same
language family as the reader’s first language L1 are similar; and RQ2) whether the MT output
in a language L′ in the same language family as the reader’s first language L1 could be useful for
comprehension when translating texts originally written in a language from a different language
family and much less connected to their first language.

According to these results, in general terms, a human-written IT text is less useful for
comprehension than the MT output resulting from translating a text from a related language (that
is, FR into ES; and it is basically as useful for comprehension as the MT output resulting from
translating a text from a language belonging to a different language family (that is, EN) into IT.

Strangely, however, for NAT texts, a human-written IT text would be marginally more
useful for comprehension to a native ES reader than Google FR–ES MT output; and Google
EN–IT MT output would also seem marginally more useful for comprehension than Systran
FR–ES MT output and clearly more useful than Google FR–ES MT output. Furthermore, for
SOC texts, a human-written IT text is as useful for comprehension as Google FR–ES MT output
but much more useful than Systran FR–ES MT output. AS to INF and NO texts, human-written
IT texts are much less useful than any of the FR-ES MT outputs.

As stated by Jordan-Núñez (2015), the fact that usefulness of NAT IT texts is very similar
to that of MT system output, but considerably higher for SOC texts could be due, perhaps, to the

15The probability of the null hypothesis (both averages being equal) has been computed using Welch’s two-tail t-test,
https://en.wikipedia.org/wiki/Welch’s_t-test.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 245



Table 1 – Gap-filling success rates for MT output compared with those for an Italian text written by a native
Italian speaker (shaded boxes) and with those for MT output resulting from translating from English into
Italian.

deficiencies in the glossaries in the MT systems given the appreciable conceptual and lexical
variety within these fields (especially in law, due to partial or even false equivalence in legal
terms or institution names).

Likewise, in general terms, the FR–ES MT output is more useful for comprehension than
EN–IT MT output (see RQ2). However, depending on the degree and the field of specialization
of the text and the MT system used, EN–IT MT output could be more useful to a native Spanish
reader.

More specifically, for NAT texts, Google EN–IT MT output would appear to be more useful
than the FR–ES MT output, and Systran EN–IT MT output is less useful. For SOC texts, any
of the EN–IT outputs is slightly less or as useful than Google FR–ES MT output but far more
useful than FR–ES Systran output.

For INF texts, Systran EN–IT MT output would be slightly less useful for comprehension
than Systran FR–ES16 but would be slightly more useful for comprehension than the output
resulting from translating a text in the same language combination with Google. The output from
translating a text from English into Italian with Google is less useful for comprehension than the
output from the same MT system when translating from French into Spanish.

Lastly, for NO texts, all of the EN–IT MT outputs are less useful for comprehension than
any of the FR–ES outputs.

16Note, however, that because two MT systems are made by the same company they do not have to be similar at all.
For instance, while Apertium systems are structurally very similar to each other, their performance varies widely with
the language pair or the level of development.
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4.2 Comparing MT output with non-native writing in the target language
The results shown in Tables 2 and 3 aim at answering the third research question (RQ3), that
is, to demonstrate whether MT output and a text written in the reader’s first language L1 by
non-native advanced ‘independent speakers’ —with a CEFRL B2 EN or FR level— are similar
to a native ES reader as regards intelligibility.

Table 2 – Gap-filling success rates for MT output compared with those for a Spanish text written by a
native English speaker (“ES ANGLO”, shaded boxes).

Table 3 – Gap-filling success rates for MT output compared with those for a Spanish text written by a
native French speaker (“ES FRANCO”, shaded boxes)

English into Spanish: According to these results, in general terms, for a native ES reader,
the results show that EN–ES MT output is more useful for comprehension than a text written in
ES by a native EN speaker (“ES ANGLO” in Table 2) with a CEFRL B2 level in ES. However,
the text written by that native EN speaker would seem to be marginally more useful than Systran
MT system output for NAT or NO texts.
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French into Spanish: Overall, texts written in ES by a native FR speaker with a CEFRL
B2 level in ES are more useful than any FR–ES MT output. However, the text written by the
native French speaker (“ES FRANCO” in Table 3) is more useful for comprehension than most
FR–ES MT output for NAT texts, as useful as Google FR–ES output for SOC texts, at least
almost as useful as any FR–ES MT output for NO texts, and less useful than Systran MT FR–ES
output for INF texts, but more useful than Google or Apertium FR–ES output. This may arise
from the smaller differences between languages from the same family allowing a non-native
speaker to write a text with fewer grammar and lexical mistakes, since the two languages involved
share common vocabulary and structures. Alternatively, in any case, non-native mistakes do not
prevent a native Spanish reader from understanding the text.

4.3 Comparing MT systems
When comparing data from the three MT systems, it has been shown, as already stated in Jordan-
Núñez (2015), that, in general terms, the usefulness of any MT EN–ES output resulting from
using the three MT systems is similar. However, the usefulness of the Apertium MT output is
slightly larger. This is not the case for FR–ES: the usefulness of Apertium output is considerably
lower.

More precisely, for highly specialized NAT texts (see table 4), Apertium seems to be the
best EN–ES MT system for NAT texts, on par with Google, while Systran seems to be the best
FR–ES system. Likewise, Google EN–ES and FR–ES are apparently the best MT systems for
SOC texts.

For semi-specialized, INF texts (see Table 5), Apertium seems to be the best EN–ES MT
system, on par with Systran, while Systran is the best FR–ES MT system. Equally, for NO texts
(see Table 5), Apertium is again the best MT EN–ES system, and Google seems to be the best
MT FR–ES system, on par with Systran.

5 Discussion

In view of the cloze-test results reported, one can answer the research questions posed and prove
the hypotheses described:

RQ1) As already indicated in Jordan-Núñez (2015), to a native ES reader, the usefulness of
a text written in a language L′ from the same language family as the reader’s L1 (in this case,
L′ =IT) is higher for highly specialized texts than for general or non-specialized texts, as a
consequence of the higher density of international vocabulary in NAT, and to a lesser extent,
SOC texts. However, although the usefulness of a human-written IT text is very similar to MT
output for highly specialized NAT texts, the IT text would appear to be more useful than any
of the MT outputs studied for SOC texts. This may be the result, as mentioned above, of the
deficiencies of the glossaries in the MT systems given the appreciable conceptual and lexical
variety within these fields.

RQ2) Although, generally speaking, any of the FR–ES MT outputs studied is more useful
for comprehension to a native ES speaker than EN–IT MT output, usefulness depends on the
level and the field of specialty, and on the MT system. In many cases, especially when translating
highly specialized material, EN–IT MT output may be more useful than FR–ES MT output–
for example, when using Google to translate NAT texts. This leads to the conclusion that MT
output in a language L′ in the same family as the reader’s L1 –e.g., IT for a native ES speaker–
could be used to facilitate their comprehension of texts originally written in a language from a
different family and, evidently, far removed from their first language (that is, EN). Some findings,
however, as already stated, do not apply to MT in general, but to limitations in the MT system
that lead to differences in performance across text genres.

RQ3) As stated above, in general terms and to a native Spanish reader, EN–ES MT output is
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Table 4 – Comparing the gap-filling success rate for the output of different MT systems, for highly
specialized texts.

more useful for comprehension than a text written in ES by a native EN speaker. However, texts
written in ES by a native FR speaker are more useful than any of the FR–ES MT outputs. In fact,
the text written in ES by the native FR speaker is much more useful than the text written by the
native EN speaker (considering that both speakers have the same level of ES; that is, CEFRL
B2). This could be due to that there is less interference or carry-over from FR when writing in
ES (especially in syntax) given that both languages belong to the same language family.

RQ4) Although, in general terms, Apertium seems to be better for EN–ES than the other
two MT systems and considerably worse for FR–ES, this also depends, to a greater or lesser
extent, on the degree and field of specialty, and on the MT system used. In these experiments,
Apertium is the best EN–ES MT system for any text type except SOC, which are best translated
by Google and Systran. Google is the best FR–ES MT system for SOC and NO texts, while
Systran is the best FR–ES MT system when dealing for NAT and INF texts.

5.1 Critical appraisal of the methodology

It is important to formulate critical comments regarding the methodology used in this pilot study,
to be taken into account when pursuing further research.

It has been noticed that the fraction of gaps corresponding to function, structure or “stop”
words — that is, articles, pronouns, prepositions or conjunctions— varies from one text type to
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Table 5 – Comparing the gap-filling success rate for the output of different MT systems, for informative or
journalistic texts and non-specialized texts

another. This could have a considerable effect on the results. In order to avoid this, in the test for
the final project, the gaps should be done just on content words, that is, avoiding gaps at “stop”
words (as was done by O’Regan and Forcada (2013)).

The results may also have been affected by the source of texts chosen when designing the
test. It has been noticed that the Spanish version of the NAT text used a Latin-American variety
of Spanish, which may have been less recognizable to a group of students familiar with Castilian
Spanish; this should have been avoided when designing the research plan, as language varieties
introduce an uncontrolled variable within the experimental design. Likewise, the Bible may have
not been a good choice, since the different versions used differ quite noticeably from each other
and, actually, they cannot strictly be considered mutual translations.17 In order to avoid this, in
the final project, all the texts should be taken from publications by institutional organizations
using Castilian Spanish and where writing/editing and/or translation processes are followed by
proofreading or quality assurance processes. In the case of non-specialized texts, they could
also be taken from lesser-known novels that have been translated into all the languages involved
in the study, to avoid the risk that the student recognizes the text and effortlessly fills the gaps
without using information from the hint (as found by O’Regan and Forcada (2013) when no hint

17In fact, some passages have been translated so differently in each language version that the students could have
found it difficult to find the information to help them fill the gaps from the hint given.
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was given).

6 Conclusions and future work

As previously indicated, the broader research within which this study is framed seeks to identify
whether the differences between a professional translation and MT output are similar to the
differences between languages within a language family and, then, explore whether intercompre-
hension strategies (Klein and Stegmann, 2000; Martı́n Peris et al., 2005) are useful to avoid those
non-human traits and understand the main message of the text. However, it is fair to say that
the subjects participating in this study could have made use of spontaneous intercomprehension
abilities not necessarily corresponding to the strategies described by the above authors and that
some of those strategies may not apply to machine-translated texts.

As shown above, it should be admitted that the usefulness of a text written in a language
from the same language family as the reader’s L1 is higher for highly specialized than for
non-specialized texts. However, regarding MT output, this level of usefulness depends quite
often on the level of specialty but also on the field and on the MT system used.

In view of the results, it seems also reasonable to postulate that MT output into a language L′

in the same family as the reader’s first language L1 could be used to facilitate their comprehension
of texts originally written in a language from a different family. Likewise, EN–ES MT output
is more useful for comprehension than a text written in ES by a native EN speaker, while texts
written in ES by a native FR speaker are more useful than FR–ES MT output.

Finally, in the future, it will be interesting to assess to what extent the skills used to
understand MT output and the linguistic intercomprehension skills used by the methods designed
are similar. If EN–ES MT output is, in general terms, as useful for comprehension as an IT
text (depending, however, on the MT system used, the language combination and the level
of specialization) and that MT output has a common vocabulary and some common morpho-
syntactic structures (despite containing some mistakes that distance it from a native human-
written text), one could argue that (generally unconscious) linguistic skills used in linguistic
intercomprehension may be similar to those used to understand MT output. To shed some light
on this, we will classify, label and quantify the types of machine translation errors or disfluencies
and study their effect in the comprehension process, distinguishing errors or disfluencies that
may be taken to be similar to the divergences observed between languages in the same family
from those that are not. For instance, when a source word is out of the vocabulary of the MT
system and left untranslated, but it is however similar to the target word, its negative impact
should be less severe than in the case in which the word is very different.
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Proceedings of the Third International Workshop on Free/Open-Source Rule-Based Machine Translation
(FreeRBMT 2012).

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 252



Weiss, S. and Ahrenberg, L. (2012). Error profiling for evaluation of machine-translated text: a Polish-
English case study. In LREC, pages 1764–1770.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 253



 

Machine Translation as an Academic Writing 
Aid for Medical Practitioners 

Carla	Parra	Escartín	 carla.parra@adaptcentre.ie	
Sharon	O’Brien		 sharon.obrien@dcu.ie	
ADAPT	Centre,	SALIS,	Dublin	City	University,	Dublin,	Ireland	
Marie-Josée	Goulet		 marie-josee.goulet@uqo.ca	
University	of	Quebec	in	Outaouais,	Gatineau,	Canada	
Michel	Simard		 Michel.Simard@cnrc-nrc.gc.ca	
National	Research	Council	of	Canada	
	
	

Abstract 

In this paper we explore the utility of Machine Translation as a writing aid and its impact on 
the quality of the text produced. We focus on medical practitioners who are native speakers 
of Spanish and who need to publish their scientific work in English as a foreign language. 
After carrying out a general survey to determine whether Spanish-speaking medical practi-
tioners already use MT as a writing aid, we engaged five participants in an experiment where 
we asked them to write a paper in Spanish that was subsequently machine translated. They 
were then asked to post-edit the MT output. We analyse their post-edits and further attempt 
to evaluate the overall quality of their texts by engaging a professional proofreader. Our re-
sults suggest that the texts produced with the help of MT+post-editing still require many edits 
in order to be considered of acceptable quality. In the conclusion, we identify several avenues 
worthy of future investigation and that could help achieve better quality. 

1. Introduction 

In recent times two developments have led to a new type of Machine Translation (MT) deploy-
ment, i.e. MT for personal use. Those two developments are: (1) freely available online MT 
systems and (2) increasing quality of MT output, for some language pairs at least. The ‘average’ 
internet user can now take advantage of MT to assist with various tasks such as school home-
work, translating website content for service and product reviews, and so on. Embedding of MT 
widgets in all sorts of websites has also contributed to personal MT usage. 

One user type that might avail of MT for personal, and professional, purposes is the 
academic whose first language is not English, but who, in order to widely disseminate his or 
her work, wishes to publish in English. It is our belief that some who write in English as a 
Foreign Language (henceforth: EFL writers) are using freely available online MT systems as 
an aid to the writing process, first writing passages of text in their L1 (or first language) and 
translating those into English as they produce academic articles. 

Despite increasing quality from MT engines, it is still accepted that MT output generally 
requires post-editing before it is of publishable quality. The focus of our research is on the use 
of MT as an aid by EFL writers in specialised fields. As this topic appears to have not been 
researched in any detail, as outlined below, we aim to explore the utility of MT as a writing aid 
and its impact on the quality of the text produced. 
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English is the undisputed lingua franca of academia (Bennett, 2013, 2014, 2015). This 
forces those who are not native speakers of English to publish in English in order to disseminate 
their research and progress their careers. As we have reported elsewhere (O’Brien et al., forth-
coming; Goulet et al., forthcoming), this leads to a considerable disadvantage, especially for 
those who do not master English as a foreign language. The disadvantage touches on the cog-
nitive level (Breuer, 2015), as well as on the career level, if journal acceptance is taken into 
consideration (Benfield and Feak, 2006), and on the economic level, if cost of additional trans-
lators or proofreaders is factored in (Lillis and Curry, 2010). Using MT as a writing aid might 
ease some of these disadvantages by (1) allowing people first to write in their L1 and then use 
MT as an aid to produce text in English, thereby tackling some of the cognitive demands of 
writing in a foreign language and (2) reducing costs by eliminating the need for translators or 
proofreaders, who often do not possess the specialised domain vocabulary in any case (Willey 
and Tanimoto, 2015).  

Of course, there are several assumptions here that need to be examined. For example, 
does writing in L1, Machine Translating, and post-editing by the author (which we term ‘self-
post-editing’) reduce the cognitive burden on the EFL writer? Can non-translators (authors in 
our context) post-edit their own work to an adequate level of quality? Does this method lead to 
higher quality in the English text, such that journal acceptance is a smoother process? Does it 
eliminate the need for a proofreader? We cannot tackle all of these questions here, but we have 
begun to address the questions regarding the quality of the English text (see below), the need 
for a proofreader, and the feasibility of self-post-editing. 

2. Related Research 

We report more fully in O’Brien et al. (forthcoming) and Goulet et al. (forthcoming) on related 
research and so will just summarise here. To put it succinctly, there is little work that focuses 
on this topic. Some work has been done on MT and second-language writing (for example, 
Niño, 2008, Garcia and Pena, 2011; and O’Neill, 2012) that demonstrates that MT can be useful 
as a second-language writing support. This previous work focuses mostly on university students 
who were learning languages. To the best of our knowledge, no work has been done concerning 
MT as an aid for professional writing. 

In O’Brien et al. (forthcoming), we made a first attempt to explore the utility of MT for the 
EFL academic cohort. This exploration found that the median times for drafting abstracts were 
not substantially different between L1 and EFL, however the revision times and number of 
revisions implemented were greater for the L1 (+MT) sections. The participants were split more 
or less down the middle in terms of their perceptions of ease of task, while six (out of nine) felt 
that the quality produced was equal for both and three thought that writing in EFL produced 
better quality. A professional proofreader was hired to evaluate the quality of the texts, and her 
assessment supported the authors’ perception of quality. In short, we found that there was en-
couraging support for the assumption that MT could be used as a writing aid by EFL writers 
without taking up significantly more time and without impacting on quality. 

In Goulet et al. (forthcoming), we analysed this data set in more detail, comparing the edits 
implemented by the proofreader across both halves of the abstract in order to ascertain whether 
the editing required for text produced in EFL was different from that written in L1 and subse-
quently machine translated and self-post-edited. In summary, we found the number of edits to 
be similar (5% and 6% of the total word count in EFL and MT respectively), but that for the 
authors with Arabic and Chinese as L1, the number of edits to the MT’d parts were higher than 
for languages such as French or Spanish. Overall, there were no very outstanding differences 
in terms of the proofreader’s edits when one part of the abstract was compared to the other, 
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again indicating that MT as an academic writing aid certainly does not have a negative impact 
on the quality of the text produced. 

3. Motivation 

The exploratory study summarised in the previous Section 2 provided impetus for a follow-up 
study, which is the focus of this paper. Having previously recruited participants from a broad 
range of disciplines and languages, it was decided that it would be relevant to focus on one 
language pair and on one domain for a more in-depth analysis. Knowing anecdotally that med-
ical practitioners seek to, and often have to, publish their research findings, we decided to focus 
on them as a new cohort. Moreover, we had anecdotal evidence that medical practitioners with 
Spanish as an L1 sometimes struggle to write in English. Add to this the fact that MT is known 
to perform relatively well between Spanish and English and so users might be encouraged by 
its output, we decided to recruit and analyse self-post-editing within this cohort. Our focus of 
attention this time was to understand more fully the nature of the self-post-editing task as well 
as MT usage among medical practitioners in general. We consequently asked the following 
questions: 
1) Are Spanish-speaking medical practitioners using MT as a personal writing support al-

ready? 
This question sought to explore whether or not our assumption about personal MT usage 

was correct. 
2) Without any training in MT or post-editing, what type of edits do medical practitioners 

make when they write in Spanish and then machine translate into English and self-post-
edit? 
a) Are essential edits implemented or ignored? (See the Methodology discussion in Sec-

tion 4.2.3 below for a definition of ‘Essential Edits’ and ‘Essential Edits not Imple-
mented’) 

b) How much non-essential (or preferential) editing is carried out? 
c) Are errors introduced via self-post-editing? 

Our goal here is to understand the natural competence for self-post-editing without any 
training whatsoever and to move towards developing potential supports for post-editing for 
such cohorts. By analysing essential and preferential edits as well as errors introduced we aim 
at establishing the degree of quality achieved in our experimental setup. 
3) How much editing is required by a professional proofreader on top of the post-edited doc-

uments and what type of edits are implemented? 
With this question we investigate whether L1+MT+self-post-editing actually requires 

another round of proofreading or whether the proofreader could be eliminated from this cycle. 
Again, this taps into a measurement of the quality produced during the self-post-editing setup. 

4. Methodology and Experimental Setup 

In order to address our initial research questions (cf. Section 2), we combined different research 
tools: questionnaires, active writing and post-editing, proofreading, and annotation of the edits 
made under each condition (self-post-editing and professional proofreading). In what follows 
we describe the methodology and experimental setup.1 

                                                        
1 The research reported here was granted ethical approval by the relevant Research Ethics Committees. 
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4.1. General Survey 

To address the question: “Are Spanish-speaking medical practitioners using MT as a personal 
writing support already?”, we surveyed medical practitioners in Spain. The survey was run 
between 19 December 2016 and 27 January 2017 and the link to our questionnaire was sent to 
many organisations, including medical specialised associations, medical unions, universities 
and research institutes in Spain. We had a total of 50 responses. The questionnaire addressed 
several questions, including whether or not the respondents already used MT as a writing aid. 

This general questionnaire also helped us to identify potential participants for the exper-
iment. At the very end of our questionnaire, we asked the respondents whether they would be 
willing to participate in experiments using MT and collected their e-mail addresses. Although 
31 of the respondents provided us with their e-mail addresses, only five were finally available 
for the first experimental cycle, carried out between February and the beginning of April 2017. 

4.2. Experimental Setup 

4.2.1. Participant Profiles 

As stated earlier, only five of our questionnaire respondents (3 men and 2 women) were avail-
able to engage in the experiment reported here. Four of them are in an early stage of their ca-
reers, are between 20 and 30 years old, and are engaged in their residencies. The fifth one is a 
researcher at a university or research centre and is between 30 and 40 years old. One specialises 
in Neurosurgery, another in Internal Medicine, two of them are gynecologists and the fifth one 
works in Immunology. All of them have Spanish as their mother tongue and all of them speak 
other languages besides English (Catalan, French, German, Italian and/or Portuguese). Table 1 
summarises their self-reported level of English using the Common European Framework of 
Reference for Languages (CEFR), as well as the level of English as established by an online 
English test on the Cambridge English website.2 P01 rated his level of English as lower than 
what the placement test revealed, whereas P03 rated his level higher. The remaining participants 
had a fairly accurate self-assessment of their English level. 

Participant Self-Assessment 
(CEFR, writing) 

English Level 
Test 

P01 B2 C1-C2 

P02 B1 B1 

P03 C1 B2 

P04 B2 B2-C1 

P05 B1 B1-B2 

Table 1: Participants’ Level of English  

Except for P01, all of the other participants had published a paper before, their number 
of publications ranged from 1 (P03) to 15 (P05), and only two of them (P02 and P05) had 

                                                        
2 In order to cross-check their self-assessment with their actual English level, participants were asked to 
complete an English level test of 25 questions and let us know their final results. The test can be found 
here: http://www.cambridgeenglish.org/test-your-english/general-english/ 
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published papers in English before. While P02 had only published one paper, P05 had published 
up to 5 papers in English. In both cases, their reported strategy for publishing was the same: 
they wrote directly in English and subsequently carried out a self-revision. P02 acknowledged 
having used Google Translate as a writing aid to confirm the translation of individual words or 
sentences. 

4.2.2. Phase 1 : Publication Drafting in Spanish 

We asked our participants to send us a publication or a section of a publication of approximately 
750 words that they had originally written in Spanish. We additionally asked them to try, when-
ever possible, to avoid writing sentences longer than 20 words as this should help to achieve 
better quality from the MT system. As we could not expect them to count the words in each 
single sentence, we gave them a visual indication of 20 words in Spanish as being more or less 
equal to 1.5 lines in MS Word (Times New Roman, font size 12). We aimed at analysing the 
discussion section, or the section most similar to that, as it is more discursive than other sections 
(Skelton and Edwards, 2000). We deemed that this section may be one of the most challenging 
to write, especially for non-native speakers, and that therefore it is a good section to use in 
testing the use of MT as a writing aid. 

4.2.3. Phase 2 : MT and Self-Post-Editing 

Upon reception of the texts, we used Google Translate to translate them into English and sent 
them back to their respective authors asking them to correct the MT output. If they had sent the 
whole paper, we returned the whole paper translated, and asked them to review the specific 
section we had selected for our study. We asked them to carry out the revision using the “track 
changes” functionality in MS Word with the aim of being able to study the types of edits they 
had made. 

After they had returned their self-post-edited texts, we asked them to fill in a post-task 
questionnaire about their experience. The results of this questionnaire are summarised, together 
with our analysis, in Section 5.2. 

Upon reception of all files, we sought to answer our second research question: “Without 
any training in MT or post-editing, what type of edits do medical practitioners make when they 
write in Spanish and then MT into English and self-post-edit?”. To do so, we annotated all edits 
made by the medical practitioners. One author annotated the files and highlighted any unclear 
cases, and subsequently another author went through all the annotations and we carried out a 
negotiation phase to determine the final annotations in each case. Unclear cases were further 
discussed with a third author. As at this stage we were mainly interested in determining whether 
or not medical practitioners were implementing essential or preferential edits and whether new 
errors were introduced in the self-post-editing process, we chose to adopt the typology proposed 
by de Almeida (2013), who was interested in the nature of post-edits implemented by profes-
sional translators in an attempt to describe what a ‘good’ post-editor did. De Almeida reviewed 
many typologies for the analysis of post-editing activity and concluded that there was no inter-
nationally adopted model for classifying this type of task. She customised the LISA (2004) and 
GALE (NIST, 2007) typologies for her own purposes and then layered a number of ‘master 
categories’ over this typology. The master categories entail: 

• Essential edits: if the edit is not implemented, the sentence (or part of it) is either: 
a) Grammatically incorrect (i.e. it obviously breaches a grammatical rule specified 

in accepted grammar books), or 
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b) Grammatically correct, but not accurate in comparison to the source text (i.e. it 
does not contain all the information that is present in the source text, i.e. an omis-
sion, or it contains extra information that is not present in the source text, i.e. an 
unnecessary addition). 

• Preferential edits: an edit is considered preferential if the sentence from the raw MT 
output would still be grammatically correct, intelligible and accurate in relation to the 
source text, even if the edit in question was not implemented. 

• Essential edits not implemented: This is an essential edit (as defined above) that was 
not implemented by the author. 

• Introduced errors: The error was not present in the raw MT output, and it was intro-
duced by the post-editor while editing a sentence. Because of this edit, the sentence 
(or part of it) is grammatically incorrect and/or inaccurate. 

For this paper, we decided to slightly modify these master categories, and thus instead 
of categorising edits as ‘introduced errors’, we deemed it important to distinguish between ‘in-
troduced errors’ that were attempting to correct something (i.e. an edit was essential, but the 
medical practitioner failed at fixing the problem), or those in which the edit was preferential 
and resulted in an error. That is: we treated the master category “introduced error” as a subcat-
egory of either “essential edits” or “preferential edits”. A more detailed annotation of the types 
of edits is foreseen for the future. 

4.2.4. Phase 3 : Professional Proofreading 

As a last stage of our experiment, we recruited a professional translator and proofreader spe-
cialised in the medical domain to proofread the texts, after the medical practitioners had post-
edited them. We confirmed all the changes made using the “track changes” functionality, and 
subsequently sent the proofreader the post-edited texts for revision (i.e. we did not provide her 
with the original Spanish text, nor did we explain the origin of those English texts). As we 
wanted to avoid over-editing, we also provided her with the following instructions: 

“The texts are written in English and we are looking for a surface revi-
sion, that is, pay attention to grammar, orthography, punctuation, syntax, and 
major stylistic problems. We would like the texts to read well enough to be 
submitted to a scientific conference, for example. 

The texts belong to the medical domain, and are all parts of scientific 
papers written by doctors.” 
In order to be able to analyse the proofreader’s edits, we requested that the “track 

changes” functionality in MS Word be used. We then proceeded to annotate these edits using 
the same typology that we had used to annotate the edits made by the medical practitioners. 
Although it is true that the typology was meant to be used for the annotation of post-edited 
texts, we deemed that a classification of essential and preferential edits was also applicable to 
a proofread text. Thus, we removed the translation dimension from the typology and focused 
only on the correctness of the text, using the same categories. This strategy allowed us to reply 
to our last research question: “How much editing is required by a professional proofreader on 
top of the post-edited documents and what type of edits are implemented?”. 

5. Data Analysis 

5.1. General Questionnaire Response 

As explained in Section 4.1, we conducted a general survey (in Spanish) seeking to 
gather information as to how Spanish medical practitioners currently write their publications. 
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The gender spread was 28 female, 21 male and 1 undeclared. 18 of the respondents were be-
tween 20 and 30, 8 between 30 and 40, 4 between 40 and 50, 14 between 50 and 60, and 6 were 
older than 60. 

Most of the respondents were at the beginning of their careers and work in public hos-
pitals. Although there were replies for most of the medical specialties, 20% of replies were from 
gynaecologists, 16% from cardiologists and another 16% from neurologists. 

94% of the respondents indicated that their mother tongue is Spanish. For those who 
indicated a different mother tongue, all of them stated “Catalan”. 84% indicated that they speak 
English and the remaining 16% indicated that they did not. For self-assessment of English writ-
ing skills using the CEFR, only one indicated a C2 level, 4 a C1, 14 indicated a B2 and another 
14 B1, 8 chose A2 and 1 A1. 

74% of the respondents indicated that they have published scientific papers before and 
26% indicated that they have never published. 

76% (28 respondents) indicated that they had published papers in English and 24% (nine 
respondents) said they had no publications in English. The 28 respondents that indicated they 
had published in English were subsequently asked how those publications were drafted.3 Nine 
respondents (32%) indicated that they write directly in English and subsequently ask a col-
league or friend with a better level of English to do the corrections. 29% (eight people) indicated 
that they directly write in English and self-revise, 25% (seven people) indicated that they write 
in Spanish and hire a professional translator, and another 25% (seven people) indicated that 
they write directly in English and subsequently hire a proofreader. Two people (7%) said that 
they hire a professional proofreader if they could do so, and another two acknowledged asking 
a colleague or friend who is a native speaker of English to do the proofreading. These figures 
support the claim that some EFL writers feel that they need to seek support from others in order 
to publish in English. This support is sought from colleagues and/or paid for through profes-
sional services. 

Of the 28 respondents that had published in English, 19 (68%) indicated they had used 
Machine Translation for writing academic papers and nine (32%) said they had not. Those who 
said that they did not use MT (8 respondents, 89%) indicated as the main reason that they did 
not trust the quality.4 Two (22%) said that they did not know of the existence of MT, another 
two indicated that they have problems with terminology, and one indicated “other” and ex-
plained that for the type of texts they wrote they were confident enough in English and did not 
feel the need to use MT. 

17 people (89%) indicated they use MT services to check how something is expressed 
in English, while five (26%) said they used it after drafting a document in Spanish to obtain a 
preliminary English version they could subsequently post-edit. 

Though our questionnaire had a limited number of responses (50), it allowed us to con-
firm that some Spanish-speaking medical practitioners feel the need to rely on additional sup-
ports to aid them in producing articles in English, that some of them are using MT as a writing 
aid already and that they rarely use it to translate full documents, but rather short passages of 
text or individual words. 

5.2. Post-Task Questionnaire Response 

All five participants in our experiment were also asked to fill in a short post-task questionnaire 
aiming at gathering information about their experience. 

                                                        
3 This question allowed respondents to select all options that applied to them. 
4 This question allowed respondents to select all options that applied to them. 
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We first asked them which method for writing scientific publications in English they 
deemed easiest after their experience participating in our experiment. 60% of them (three par-
ticipants), chose the option they had just experienced, i.e. writing their publication in their 
mother tongue and subsequently post-editing an MT version of it. One participant indicated that 
s/he found it equally easy to write directly in English or to write publications using the proposed 
workflow, and the fifth participant indicated that s/he preferred to write his/her publications 
directly in English. 

When asked to comment on the difficulties experienced when correcting the MT output, 
one participant said that s/he had encountered problems with synonyms, and another that s/he 
had found the translations to be too literal. The third participant said that the MT output was 
good, the fourth stated that the MT output was better than his/her own English level and there-
fore s/he found it difficult to identify errors, and the last one said that s/he had encountered the 
expected issues: grammar problems, terminology and words that change their meaning depend-
ing on their context and that had been translated wrongly. 

Despite their complaints and comments about the MT output, three out of the five par-
ticipants deemed that the overall quality of the MT output was at 3 on a scale from 1 to 4, and 
two gave it the maximum points. 

When asked to rank how likely they were to use the proposed workflow for writing 
scientific papers in the future on a scale from 1 to 4, four of the five participants replied “3”, 
while the fifth replied “2”. Three of them further indicated that they thought a second experience 
like this one would allow them to achieve a better overall quality, whereas two indicated 
“maybe”. Four of them also stated that, with practice, this type of task would become easier, 
while one said “maybe”. 

5.3. Word Count Statistics 

Word Count Statistics 

Participant P01 P02 P03 P04 P05 TOTAL 

Number of words in ES 1413 759 1058 908 686 4824 

Number of words MT (EN) 1340 685 959 865 639 4488 

Number of words MT+Self-PE (EN) 1364 677 945 857 646 4489 

Number of words MT+Self-PE+REV (EN) 1389 685 934 859 611 4478 

Table 2: Word counts per experimental condition 

As stated earlier, we engaged five medical practitioners in our experiments and asked them to 
draft a paper or a section of a paper of around 750 words, or to send us a paper they had already 
written in Spanish and intended to translate into English. Table 2 offers a general overview of 
the number of words they originally wrote in Spanish as well as the breakdown of the word 
counts after each stage in the experiment. 

5.4. Types of Edits 

We aimed at identifying the type of edits that medical practitioners make when they engage in 
the self-post-editing process without any prior training in MT or post-editing using the typology 
outlined in Section 4.2.3. 
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Figure 1 shows the edit rates per participant.5 Edits provoked by other edits were counted 
as a single edit in our analysis, as they would not have happened, if the first edit had not been 
made. 

 
Figure 1: Edit rates per participant 

As indicated in Figure 1, P03 was the author who has the highest edit rate, followed by 
P01 and P04. A potential explanation for this may be related to their English level. Both P02 
and P05 had a B1 level of English according to the test (P05 was actually between B1 and B2), 
and also reported a B1 in their self-assessment. The other participants, on the other hand, had a 
B2 or C1 level (according to the test, P04 was between B2 and C1, and P01 between C1 and 
C2). It could therefore be the case, that a lower level of English hampers the ability to post-edit. 
This was also hinted at by P02 who declared that the MT output outperformed his/her level of 
English. 

 
Figure 2: Types of edit per participant measured in edit rates 

Our second research question was: “Without any training in MT or post-editing, what 
type of edits do medical practitioners make when they write in Spanish and then machine trans-
late into English and self-post-edit?”. If we break down the types of edits made (cf. Figure 2), 
our analysis shows that medical practitioners are able to identify and implement essential edits 
during post-editing without any prior training. P01 and P04, the two participants with the high-
est edit rates as per Figure 1, are precisely the two participants who made the highest rate of 
essential edits (5.87% and 4.67% respectively). However, P01 was also the participant who had 
the highest rate of essential edits not implemented (1.32%), followed by P03 and P04 (1.06% 
and 1.05% respectively). This additionally replies to our related question, “Are essential edits 
implemented or ignored?”. 

An interesting observation during the annotation was that in many cases the essential 
edits in the text were related to spelling and grammar, highlighting the importance of using 
                                                        
5 By “edit rate” here we mean the number of edits implemented per 100 words of raw MT output, ex-
pressed as a percentage 
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spelling and grammar checkers as writing aids for non-native speakers of English. It was also 
surprising to see how Google Translate performed well even with noisy text, as the original 
texts in Spanish contained some grammar and spelling errors. For example, típica (typical) was 
spelt tìpica; nuestro (our), nuesto, and excluida (excluded), excluída, and yet the MT system 
translated them correctly. In any case, it does seem to hold true that those participants with a 
higher level of English identified and implemented more essential edits than those with a lower 
English level. 

With regard to the subquestion, “How much non-essential (or preferential) editing is 
carried out?”, we observed that again there is a tendency to implement preferential edits too. 
In our small cohort, only one participant (P03) implemented more preferential than essential 
edits. The extent of edits implemented varies however per individual, which has also been ob-
served among professional translators who post-edit (e.g. de Almeida, 2013; Bundgaard, 2017). 
We found, for instance, that participants had different preferences regarding the use of technical 
versus colloquial terms, which was reflected in their edits. For example, P02 changed ‘axillae’ 
to ‘armpits’, whereas P05 seemed to prefer a more formal final text and changed expressions 
such as ‘hospital stay’ to ‘hospitalization time’.  

Our last related question addressed whether errors are introduced via self-post-editing. 
As with professional translators, medical practitioners also introduced some errors while edit-
ing, though the rates are relatively low. P01 was the participant who introduced the highest rate 
of errors when making essential edits (1.03%), followed by P03 (0.74%). P03 was also the 
participant that introduced more errors when implementing preferential edits (1.59%), and as a 
result the one who had the highest rate of introduced errors overall (2.33%). Further investiga-
tion is needed to identify the nature of the errors introduced and determine whether they could 
have been avoided (e.g. by means of spell and grammar checkers in the case of introduced 
typos). However, this might also have to do with the need for edits: within the medical domain, 
there exist several sub-domains and genres. This raises a new research question worth investi-
gating in our future work: Did Google Translate perform better in some sub-domains than oth-
ers? 

5.5. Professional Proofreading 

 
Figure 3: Edit rates per participant (proofreader vs. participants) 

We subsequently analysed the edits made by the professional proofreader on the texts already 
self-post-edited by our participants. Figure 3 shows the overall edit rates per participant. The 
edit rates of each medical practitioner are provided to allow for an easier comparison. As may 
be observed, the professional revision of the texts resulted in a higher edit rate in all cases, with 
P04’s text being the one that recorded the highest edit rate, followed by P02’s. This is an inter-
esting finding, as P04 was precisely one of the participants with a higher level of English, which 
suggests that the English level is not necessarily correlated with the post-editing ability. In some 
cases, e.g. P02 and P05, the proofreader introduced a significantly higher number of edits than 
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the participant, leading to edit rates that are more than five times those of the participants. An 
obvious question is whether or not the proofreader edits were indeed necessary or, were rather 
preferential and not strictly required. This is particularly relevant, because, as mentioned earlier, 
we asked the proofreader to focus on a mere surface revision of the text. 

Similar to what we did with the texts undergoing self-PE we also annotated all edits per 
type of edit. Figure 4 summarises the edit rates of the proofreader classified by type. It is striking 
how in some cases the rate of preferential edits made was as high as that for essential edits 
(P04), or even higher (P01, P03 and P05). Only in the case of P01 was the rate of preferential 
edits lower than that of essential edits. Surprisingly, the proofreader also introduced some errors 
in the text while implementing edits. It is interesting to note that the number of introduced errors 
is higher in the case of preferential edits than in the case of essential ones. In some cases, the 
error introduced may have been caused by the use of “track changes” (e.g. when correcting the 
spelling of “pacient”, she accidentally deleted the space between the word being corrected and 
the next: “the pacientpatientwas urgently…”), but the degree to which this influenced the edit-
ing process is difficult to gauge. In the case of P03, some of the errors introduced had to do 
with the bibliographical style, as the medical practitioner had opted for references between pa-
renthesis and our proofreader changed them to superscript. 

 
Figure 4: Types of edits by proofreader for each text 

This analysis of the professional proofreader edits allows us to answer our third research 
question: “How much editing is required by a professional proofreader on top of the post-edited 
documents and what type of edits are implemented?”. Indeed, the proofreader implemented a 
considerable number of edits. However, according to our typology, the proofreader also imple-
mented a surprising number of preferential edits and even introduced some errors during the 
proofing process, though these were low in number. This seems to indicate that the proofreader 
is still required and that the post-editing process by our small cohort of medical practitioners 
did not render the text to a level of quality such that the proofreader thought that it required 
little to no editing. As an aside, this question also arises in professional practice and the general 
practice is still to have a revision after post-editing, which indicates that our findings would not 
be out of line with normal machine translation workflows. 

Although we are not doing a comparison here between the number of required edits after 
post-editing versus the number of required edits to texts directly written in EFL, in a previous 
experiment we observed that the proofreader implemented more or less an equal number of 
edits on text that had been post-edited and text that had been written in EFL (O’Brien et al., 
forthcoming; Goulet et al., forthcoming). In future work it would be interesting to test if the 
same findings can be replicated in the medical domain. 
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6. Conclusion and Future Work 

Here, we have reported on a small experiment seeking to explore the usefulness of MT as a 
writing aid for Spanish medical practitioners that need to publish their work in English. Thanks 
to the general survey we conducted, we found that Spanish-speaking medical practitioners are 
already using MT as a writing aid. However, they also showed mixed feelings about its useful-
ness. Some of the main criticisms had to do with the literalness of the MT output, incorrect use 
of synonyms, grammar and the lack of terminology. This raises a question as to whether do-
main-tuned MT engines might solve some of these issues. 

Our analysis revealed that medical practitioners perform both essential and preferential 
edits (3.90% and 2.52% respectively and on average for all participants), and that the profes-
sional proofreader hired to proof the self-post-edited texts written by our participants also im-
plemented both types of changes (7.75% and 9.02%). Surprisingly, in the case of the proof-
reader the rate of preferential edits was higher than that of the essential ones. This seems to 
agree with what has been observed in professional translation workflows, as demonstrated by 
Bundgaard (2017). In an investigation of professional translators’ edits during the “checking 
phase” of translations (translators checking their own work) Bundgaard (2017: 205) found the 
rate of preferential edits to be 43% on average for one text and 66% on average for a second 
text in her experiment, i.e. of all edits implemented for one text, 43% of them were deemed to 
be 'preferential'. Bundgaard was also using de Almeida’s typology for assessing essential and 
preferential edits. Bundgaard (2017: 225) also measured the number of essential and preferen-
tial edits implemented by a third party during a 'review phase' (an independent translator check-
ing another translator’s work) and these ranged from 37% on average for one text and 60% for 
the second text. 

Our analysis of the edits made by medical practitioners and the subsequent engagement 
of a professional proofreader additionally sought to answer whether medical practitioners 
would be in a position to carry out self-post-editing without any prior training and whether they 
were able to achieve an acceptable quality text with MT. Overall, without training, these experts 
can implement essential edits, but they also implement preferential edits and introduce errors. 
This raises the question as to whether further training and practice would make medical practi-
tioners better post-editors. 

At the same time, the proofreader’s intervention demonstrated that an important number 
of essential edits had not been implemented by the medical practitioners. Yet, the proofreader 
also implemented a high proportion of preferential edits, according to our typology. It is still to 
be determined whether the texts produced by our participants would have actually been consid-
ered acceptable for publications or presentations in medical conferences where non-native 
speakers of English also present their work. In future work we plan to engage native speakers 
to assess this. We may consider, for example, asking them to rank the post-edited version 
against the proofread version to ascertain whether, and to what extent, the proofread version is 
acceptable as well as whether, and to what extent, it is superior to the post-edited version. 

Similarly to what we did in Goulet et al. (forthcoming), we also plan to carry out a se-
cond round of annotation in which we will annotate the type of edit made (insert, delete, move, 
replace), the type of language unit affected in each case (noun, verb, preposition, etc.), and the 
linguistic dimension involved (morphology, syntax, semantics, etc.). This will allow us to ana-
lyse the edits further, make comparisons across the edits made by the experts and the profes-
sional proofreader, and determine whether automatic post-editing could be used to enhance the 
text prior to the self-post-editing process. 

To sum up, our results, while demonstrating that the medical practitioners were capable 
of post-editing their own texts to some degree, do not seem to indicate that they could produce 
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their final drafts of scientific papers under the current experimental setup, i.e. with a generic 
engine, no automated post-editing rules and no intervention by a proofreader. However, the 
small cohort engaged in our experiment (five participants) does not allow us to draw a general 
conclusion. This experiment helped us to identify several avenues to improve our experimental 
setup and we will endeavour to address the issues identified and answer these new questions in 
our future work. 
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Abstract
Current machine translation systems require large bilingual corpora for training data. With
large bilingual corpora, phrase-based and neural-based methods can achieve state-of-the-art
performance. Nevertheless, such large bilingual corpora are unavailable for most language
pairs called low-resource languages, which causes a bottleneck for the development of ma-
chine translation on such languages. For Southeast Asian region, there is a large population
with more than five hundred millions people and several languages that can be used popularly
in the world, but there are few parallel data for such language pairs. In this work, we built a
multilingual parallel corpus for several Southeast Asian languages. Wikipedia articles’ titles
and inter-language link records were used to extract parallel titles. Parallel articles were col-
lected based on the parallel titles. For each article pair, parallel sentences were extracted based
on a length-based and word correspondences sentence alignment method. A multilingual par-
allel corpus were built with more than 1.1 million parallel sentences of ten language pairs of
Indonesian, Malay, Filipino, Vietnamese and the languages paired with English. Experiments
were conducted on the Asian Language Treebank corpus and showed the promising perfor-
mance. Additionally, the corpus was utilized for the IWSLT 2015 machine translation shared
task on English-Vietnamese and achieved a significant improvement with +1.7 BLEU point
on phrase-based systems and +4.5 BLEU point on a state-of-the-art neural-based system. The
corpus can be used to improve machine translation and enhance the development of machine
translation on the low-resource Southeast Asian languages.

1 Introduction

Current machine translation (MT) systems require large bilingual corpora for training data.
With large bilingual corpora up to millions of parallel sentences, MT systems achieve the state-
of-the-art performance on both phrase-based (Bojar et al., 2013) and neural-based (Sennrich
et al., 2016a) methods. Such large bilingual corpora are available on several language pairs
such as English-German, English-French, Czech-English, Chinese-English. For low-resource
language pairs, which are most of languages in the world (Irvine, 2013; Wang et al., 2016), there
are only small bilingual corpora available. This causes a bottleneck for MT on such language
pairs.

In order to overcome the problem, previous works have made efforts in building bilin-
gual corpora from webs such as in (Utiyama and Isahara, 2003; Li and Liu, 2008; Cettolo
et al., 2012). The parallel corpora can be extracted from comparable data such as Wikipedia
((Ştefănescu and Ion, 2013; Chu et al., 2015). The previous work contributed for building
bilingual corpora automatically for several low-resource language pairs. For Southeast Asian
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languages, there are few bilingual corpora on the languages although there are a high popula-
tion with more than five hundred millions of people, and there are several languages that can be
used popularly in the world such as Indonesian (ranked 12), Vietnamese (ranked 17) as the most
popularly used languages (Weber, 2008). This causes an issue for the development of machine
translation on the language pairs.

In this work, we built a multilingual parallel corpus to improve machine translation
for Southeast Asian languages, which there is no large bilingual corpora. Parallel titles of
Wikipedia articles were extracted based on the articles’ titles and inter-language link records
from the Wikipedia database. Parallel articles were collected based on the parallel titles. Then,
parallel sentences were aligned based on a sentence alignment method that is the combina-
tion of length-based and word correspondences. A multilingual parallel corpus was built for
several low-resource Southeast Asian languages that included more than 1.1 million parallel
sentences of ten language pairs between Indonesian, Filipino, Malay, Vietnamese and these
languages paired with English. Experiments of machine translation were conducted on the
Asian Language Treebank corpus (Thu et al., 2016). Experimental results showed that using
the extracted corpus to build machine translation systems can achieve promising results al-
though there is no direct bilingual corpora. Furthermore, experiments were conducted on the
IWSLT 2015 machine translation shared task (Cettolo et al., 2015) using the extracted corpus
for English-Vietnamese trained on phrase-based and neural-based machine translation systems.
Experimental results showed that using the extracted corpus achieved significant improvement
in both phrase-based systems and neural-based systems. The corpus can be used to improve
machine translation performance and enhance the development of machine translation for the
Southeast Asian languages. We released the extracted corpus and the code to build the corpus,
which are available at the repository.1

We briefly discuss related work in Section 2. The procedures to built the corpus are de-
scribed in detail in Section 3. The statistics of the extracted corpus are presented in Section 4.
In order to effectively utilize the corpus, we present several strategies to exploit the corpus for
machine translation in Section 5. Experiments are described in Section 6 to evaluate and utilize
the corpus. Conclusions are drawn in Section 7.

2 Related Work

Building parallel corpora from webs has been exploited in a long period. One of the first work
can be presented in Resnik (1999). In order to extract parallel documents from webs, Li and
Liu (2008) used the similarity of the URL and page content. Utiyama and Isahara (2003) used
matching documents to build parallel data. Meanwhile, Koehn (2005) used manual involvement
for building a multilingual parallel corpus. In the work of Cettolo et al. (2012), a multilingual
corpus was built from subtitles of the TED talks website.

For collecting parallel data from Wikipedia, the task has been investigated in some previous
work. In the work of Kim et al. (2012), parallel sentences are extracted from Wikipedia for the
task of multilingual named entity recognition. In Ştefănescu and Ion (2013), parallel corpora are
extracted from Wikipedia for English, German, and Spanish. A recent work proposed by Chu
et al. (2015) extracts parallel sentences before using an SVM classifier to filter the sentences
using some features.

For the Southeast Asian languages, there are few bilingual corpora. A multilingual parallel
corpus was built manually in Thu et al. (2016). The corpus is a valuable resource for the lan-
guages. Nevertheless, because the corpus is still small with only 20,000 multilingual sentences,
and manually building parallel corpora requires many cost of human annotators, automatically
extracting large bilingual corpora becomes an essential task for the development of natural lan-

1https://github.com/nguyenlab/Multi-Wiki
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guage processing for the languages including cross-language tasks like machine translation. In
our work, a multilingual parallel corpus of several Southeast Asian languages was built. The
corpus was built based on Wikipedia’s parallel articles that were collected from the articles’
title and inter-language link records. Parallel sentences were extracted based on the powerful
sentence alignment algorithm (Moore, 2002). The corpus was utilized for improving machine
translation on the Southeast Asian low-resource languages, in which there has been no work
investigated on this task to our best knowledge.

3 Methods

Wikipedia is a large resource that contains a number of articles in many languages in the world.
The freely accessible resource is a kind of comparable data in which many articles are in the
same domain in different languages. We can exploit this resource to build bilingual corpora,
especially for low-resource language pairs.

In order to build a bilingual corpus from Wikipedia, we first extracted parallel titles of
Wikipedia articles. Then, pairs of articles were crawled based on the parallel titles. Finally,
sentences in the article pairs were aligned to extract parallel sentences. We describe these steps
in more detail in this section.

3.1 Extracting Parallel Titles

The content of Wikipedia can be obtained from their database dumps.2 In order to extract
parallel titles of Wikipedia articles, we used two resources for each language from the Wikipedia
database dumps: the articles’ titles and IDs in a particular language (ending with -page.sql.gz)
and the interlanguage link records (file ends with -langlinks.sql.gz).

No. Data page (KB) langlinks (KB)
1 en 1,477,861 280,617
2 vi 92,541 111,420
3 id 57,921 72,117
4 ms 21,791 56,173
5 fil 5,907 23,446

Table 1: Wikipedia database dumps’ resources for extracting parallel titles; page (KB): the size
of the articles’ IDs and their titles in the language; langlinks (KB): the size of the interlanguage
link records; we collected the resources for languages: en (English), id (Indonesian), fil (Fil-
ipino), ms (Malay), and vi (Vietnamese); we used the database that was updated on 2017-01-20.

We aim to build a multilingual parallel corpus for several low-resource Southeast Asian
languages including Indonesian, Malay, Filipino, and Vietnamese, which there are few bilin-
gual corpora. Furthermore, bilingual corpora of the languages paired with English are also
important resources for further research including machine translation. Therefore, we collected
the Wikipedia database dumps of the five languages: English, Indonesian, Malay, Filipino, and
Vietnamese. Table 1 presents the Wikipedia database dumps that we used to extract parallel
titles. The English database contains a much larger information in both the articles’ titles and
the interlanguage link records. Meanwhile, the Filipino database is much smaller, that affects
the number of extracted parallel titles as well as final extracted parallel sentences. The extracted
parallel titles are presented in Table 2.

2https://dumps.wikimedia.org/backup-index.html
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No. Data Title Crawled Crawled Art. Src Trg
pairs Src Art. Trg Art. Pairs Sent. Sent.

1 en-id 198,629 197,220 190,954 150,759 4,646,453 990,661
2 en-fil 52,749 51,698 51,157 50,021 3,428,599 367,276
3 en-ms 204,833 201,688 199,950 160,709 2,158,726 320,624
4 en-vi 452,415 433,124 436,488 420,919 12,130,133 3,831,948
5 id-fil 30,313 29,961 24,946 22,760 502,457 254,216
6 id-ms 98,305 88,028 89,936 68,676 452,604 403,807
7 id-vi 159,247 149,974 128,530 121,673 1,201,848 1,878,855
8 fil-ms 25,231 21,856 25,023 21,135 202,851 243,361
9 fil-vi 36,186 30,540 35,625 28,830 267,453 723,155
10 ms-vi 133,651 118,647 116,620 105,692 560,042 1,256,468

Table 2: Extracted and processed data from parallel titles; Crawled Src Art. (Crawled Trg
Art.): the number of crawled source (target) articles using the title pairs for each language pair;
Art. Pairs: the number of parallel articles processed after crawling; Src Sent. (Trg Sent.):
the number of source (target) sentences in the article pairs after preprocessing (removing noisy
characters, empty lines, sentence splitting, word tokenization).

3.2 Collecting and Preprocessing Parallel Articles

After parallel titles of Wikipedia articles were extracted, we collected the article pairs using the
parallel titles. We implemented a Java crawler for collecting the articles. The collected data
set was then carefully processed in hierarchical steps from articles to sentences, then to word
levels. First, noisy characters were removed from the articles. Then, for each article, sentences
in paragraphs were splitted so that there is one sentence per line. For each sentence, words were
tokenized that separated from punctuations. The sentence and word tokenization steps were
conducted using the Moses scripts.3

As described in Table 2, using the title pairs, we obtained a high ratio of crawled articles.
For instance, using 198k title pairs of English-Indonesian, we crawled 197k English articles and
190k Indonesian articles successfully, which there existed the article based on a title. This issue
is emphasized because sometimes there is no existed article given a title that will show an error
in crawling. For the case of Indonesian-Vietnamese, although there was 159k extracted parallel
titles, we obtained 128k Vietnamese articles, which there were more than 30k error or inexistent
articles given the set of titles.

3.3 Aligning Parallel Sentences

Sentence alignment is an essential task in building parallel corpora. In the three main ap-
proaches in sentence alignment: length-based which is based on the number of words or char-
acters (Brown et al., 1991; Gale and Church, 1993), word-based which is based on word cor-
respondences (Kay and Röscheisen, 1993; Chen, 1993; Wu, 1994; Melamed, 1996; Ma, 2006),
and the combination of length-based and word-based (Moore, 2002; Varga et al., 2007), the
hybrid method of Moore (2002) achieved the best performance compared with other sentence
alignment approaches as the evaluation of Singh and Husain (2005). In our work, for each par-
allel article pair, we aligned sentences using the Microsoft bilingual sentence aligner (Moore,
2002). There are several reasons to adapt the hybrid method for aligning parallel sentences in
this task. First, the length-based method has been applied successfully in close languages such
as English-French; however, the languages in the Southeast Asian including Indonesian, Malay,

3https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer
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Vietnamese, Filipino, and the languages paired with English are not closed languages exception
for the Indonesian-Malay. Second, since the Wikipedia bilingual articles are the kind of com-
parable data, it varies greatly in terms of the number of sentences in bilingual articles and the
number of words in sentence pairs. Therefore, we adapted the hybrid method that combines the
length-based and word correspondences to extract the parallel corpus.

Let ls and lt be the lengths of source and target sentences, respectively. Then, ls and lt
varies according to Poisson distribution as follows:

P (lt|ls) = exp−ltr
(lsr)

lt

lt!
(1)

Where r is the ratio of the mean length of target sentences to the mean length of source
sentences. As shown in the method of Moore (2002), the length-based phase based on the
Poisson distribution

Sentence pairs extracted from the length-based phase are then used to train IBM Model 1
(Brown et al., 1993) to build a bilingual dictionary. The dictionary was then combined with the
length-based phase to produce final alignments, which are described as follows:

P (s, t) =
P1−1(ls, lt)

(ls + 1)lt
(

lt∏
j=1

ls∑
i=0

tr(tj |si))(
le∑
i=1

fu(ei)) (2)

Where: tr(tj |si) is the probability of the word pair (tj |si) trained by IBM Model 1; fu is
the observed relative unigram frequency of the word in the text in the corresponding language.

Challenges in aligning Wikipedia articles As we discussed above, the Wikipedia article
pairs greatly vary in terms of sentence length in the article pairs because of this kind of compa-
rable data. Furthermore, in some article pairs, the articles in two languages even contain many
differences in content, priorities, interests, and bias of the authors, groups or countries involved,
etc. Such differences cause many challenges for aligning Wikipedia articles to create a paral-
lel corpus. For our first effort in building this corpus, we used the hybrid sentence alignment
method to extract sentence pairs for the first version of this corpus without any strategy to filter
or extract parallel sentences in dealing with these challenges. We plan to conduct further anal-
ysis as well as strategies to deal with the challenges and improve the quality of this corpus in
future work. A method proposed in Munteanu and Marcu (2006) can be utilized for this task,
in which parallel sub-sentential fragments are extracted from comparable data.

4 Extracted Corpus

We obtained a multilingual parallel corpus of ten language pairs, which are among Southeast
Asian languages and the languages paired with English as described in Table 3. In totally, the
corpus contains a huge number of parallel sentences up to more than 1.1 million sentence pairs
which can be valuable when there is no available bilingual corpora for almost such language
pairs. Large bilingual corpora can be extracted such as: English-Vietnamese (408k parallel
sentences), Indonesian-English (234k parallel sentences). However, because of the smaller
number of the input parallel articles for several language pairs, a much smaller number of
parallel sentences were extracted like Indonesian-Filipino (9k) and Filipino-English (22k).

Furthermore, we extracted monolingual data sets for the languages: Indonesian, Malay,
Filipino, and Vietnamese, which are almost publicly unavailable. The data sets are described in
Table 4. Large monolingual data sets were obtained such as Indonesian (3.1 million sentences),
Malay (1.5 million sentences), and Vietnamese (up to 7.6 million sentences). The data sets are
useful for such low-resource languages such as training language models and other tasks.
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No. Data Sent. Pairs Src Words Trg Words Src Vocab. Trg Vocab.
1 en-id 234,380 4,648,359 4,359,976 208,920 209,859
2 en-fil 22,758 447,719 399,058 42,670 44,809
3 en-ms 198,087 3,273,943 3,221,738 156,806 148,133
4 en-vi 408,552 7,229,963 8,373,549 274,178 222,068
5 id-fil 9,952 132,097 172,363 18,531 19,737
6 id-ms 83,557 1,464,506 1,447,247 87,240 92,126
7 id-vi 76,863 1,014,351 1,136,710 67,211 57,788
8 fil-ms 4,919 78,729 66,324 10,184 10,671
9 fil-vi 10,418 141,135 151,086 15,641 13,071
10 ms-vi 65,177 928,205 896,784 60,574 52,673

Total 1,114,663 – – – –

Table 3: Extracted Southeast Asian multilingual parallel corpus

Data set Sentences Vocab. Size (KB)
id 3,147,570 917,861 369
fil 1,034,215 252,565 113
ms 1,527,834 599,396 172
vi 7,690,426 936,137 1,033

Table 4: Monolingual data sets

5 Domain Adaptation

The question now is that how can we utilize the corpus effectively. If there are existing bilingual
corpora for the language pairs, which strategies we can use to combine and take advantage the
full potential of the corpus. We discuss the issue of domain adaptation about the strategies to
combine bilingual corpora in this section.

We assume that given a language pair, there exist a bilingual corpus called the direct cor-
pus. The corpus extracted from Wikipedia can be used as an additional resource, called the
alignment corpus. For phrase-based machine translation (Koehn et al., 2003), a bilingual corpus
is used to train a phrase table. We used the direct corpus and the alignment corpus to generate
two phrase tables called the direct and the alignment components. The two components were
combined using the linear interpolation as described in Equation 3.

p(t|s) = λdpd(t|s) + λapa(t|s) (3)

where pd(t|s) and pa(t|s) stand for the translation probabilities of the direct and the align-
ment models, respectively; interpolation parameters: λd and λa (where λd + λa=1).

We adapted the linear interpolation (Sennrich, 2012), which is a robust method for a
weighted combination of translation models. Specifically, we used two strategies called tune
and weights.

• tune: a tuning set was used; λd and λa were calculated as the weights that minimize cross-
entropy on the tuning set using the setting combine given tuning set (Sennrich, 2012). 4

• weights: The two translation models were first used for decoding the tuning set separately
to generate two BLEU scores. Then, the interpolation weights were set using the ratios of
the two BLEU scores using the setting combine given weights Sennrich (2012).

4https://github.com/moses-smt/mosesdecoder/tree/master/contrib/tmcombine
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6 Experiments on Machine Translation

The parallel corpus extracted from Wikipedia was then used for training SMT models. We aim
to exploit the data to improve SMT on low-resource languages.

6.1 SMT on the Asian Language Treebank Parallel Corpus
6.1.1 Training Data
We evaluate the corpus on SMT experiments. For development and testing data, we used the
ALT corpus (Asian Language Treebank Parallel Corpus) Thu et al. (2016), this is a corpus
including 20K multilingual sentences of English, Japanese, Indonesian, Filipino, Malay, Viet-
namese, and some other Southeast Asia languages. We extracted the development and test sets
from the ALT corpus: 2k sentence pairs for development sets, and 2k sentence pairs for test
sets.

6.1.2 Training Details
We trained SMT models on the parallel corpus using the Moses toolkit (Koehn et al., 2007). The
word alignment was trained using GIZA++ (Och and Ney, 2003) with the configuration grow-
diag-final-and. A 5-gram language model of the target language was trained using KenLM
(Heafield, 2011). For tuning, we used batch MIRA (Cherry and Foster, 2012). For evalua-
tion, we used the BLEU scores (Papineni et al., 2002) based on the multi-bleu.perl script; the
development sets, test sets, and scripts to calculate the BLEU scores are also available in the
repository of this paper.

6.1.3 Results
Table 5 describes the experimental results on the development and test sets. It is noticeable
that the SMT models trained on the bilingual data aligned from Wikipedia produced promising
results.

No. Language Pairs Dev (L1-L2) Test (L1-L2) Dev (L2-L1) Test (L2-L1)
1 en-id 30.56 28.87 30.14 29.01
2 en-fil 18.54 19.08 18.98 19.89
3 en-ms 29.85 33.23 28.87 23.82
4 en-vi 30.58 34.42 23.01 22.56
5 id-fil 11.36 11.04 9.58 9.77
6 id-ms 31.64 30.21 31.56 30.11
7 id-vi 21.85 22.42 17.41 17.45
8 fil-ms 7.43 8.02 8.70 9.27
9 fil-vi 5.97 6.69 6.45 7.15

10 ms-vi 15.51 18.12 11.96 13.88

Table 5: Experimental results on the development and test sets (BLEU); Dev (L1-L2), Test
(L1-L2), fil-ms: the translation scores on the development (test) set of the translation from the
first language (L1(fil)) to the second language (L2 (ms)) in the language pair fil-ms; Dev (L2-
L1), Test (L2-L1), fil-ms: the translation on the development (test) set of the inverse translation
(from ms to fil)

For the results on the development sets, we achieved promising results with high BLEU
points such as: the Indonesian-Malay pairs (Indonesian-Malay 31.64 BLEU points, Malay-
Indonesian 31.56 BLEU points). Similarly, several language pairs also showed high BLEU
points such as: English-Vietnamese (30.58 and 23.01 BLEU points), English-Malay (29.85
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and 28.87 BLEU points), English-Indonesian (30.56 and 30.14 BLEU points), and Indonesian-
Vietnamese (21.85 and 17.41 BLEU points). The language pairs which showed high scores
contain a large number of sentences, for instance English-Vietnamese (408k sentence pairs),
English-Indonesian (234k sentence pairs), and English-Malay (198k sentence pairs). Never-
theless, since the small number of the extracted corpus on several languages paired with Fil-
ipino such as Indonesian-Filipino (9.9k sentence pairs), Malay-Filipino (21.1k sentence pairs),
and Vietnamese-Filipino (10.4k sentence pairs), the experimental results showed much lower
performance than other language pairs: Indonesian-Filipino (11.36 and 9.58 BLEU points),
Malay-Filipino (8.70 and 7.43 BLEU points), and Vietnamese-Filipino (6.45 and 5.97 BLEU
points).

Similarly, for the experimental results on the test sets, the language pairs with large
bilingual corpora achieved high performance: English-Indonesian (28.87 and 29.01 BLEU
points), English-Malay (33.23 and 23.82 BLEU points), English-Vietnamese (34.42 and 22.56
BLEU points). The situation of languages paired Filipino showed the much lower perfor-
mance: Indonesian-Filipino (11.04 and 9.77 BLEU points), Malay-Filipino (9.27 and 8.02
BLEU points), and Vietnamese-Filipino (7.15 and 6.69 BLEU points).

Figure 1: Experimental results on the development and test sets; the corpus’s size is presented
for each language pair (fil-ms 4919: the Filipino-Malay corpus with 4,919 parallel sentences)

Figure 1 presents experimental results on the development sets (test sets) that vary in
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several aspects: the translation directions (L1-L2, L2-L1), the corpus’s size, and the lan-
guage pairs. There are several interesting findings from the charts. First, the bigger the
corpus’s size, the higher the BLEU scores. We sorted the corpus’s size increasingly from
the left to right. For instance, since the corpora’ sizes of language pairs such as Filipino-
Malay (4.9k), Indonesian-Filipino (9.9k), and Filipino-Vietnamese (10.4k) are much smaller
than that of the language pairs such as Indonesian-Malay (83.5k), English-Indonesian (234k),
English-Vietnamese (408k), the BLEU scores also show the correlation of the two language-pair
groups: Filipino-Malay, Indonesian-Filipino, Filipino-Vietnamese (<10 or≈ 10 BLEU points);
Indonesian-Malay, English-Indonesian, English-Vietnamese (≈ 25-30 BLEU points). Second,
in the aspect of the translation directions (L1-L2, L2-L1), the scores of the two translations
in each language pair are mostly similar to each other in most cases, for instance: English-
Indonesian (30.56 and 30.14 BLEU points in the two translation directions on the development
set, 28.87 and 29.01 on the test set), Indonesian-Malay (31.64 and 31.56 BLEU points on the
development set, 30.21 and 30.11 on the test set). Nevertheless, for Vietnamese, the transla-
tion scores from a language to Vietnamese are much higher than the translation scores from
Vietnamese to that language in most cases, for instance: Malay-Vietnamese (15.51 BLEU point
(ms-vi) vs. 11.96 (vi-ms) on the development set, 18.12 (ms-vi) vs. 13.88 (vi-ms) on the test
set), Indonesian-Vietnamese (21.85 vs. 17.41 BLEU points on the development set, 22.42 vs.
17.45 BLEU points on the test set), and English-Vietnamese (30.58 vs. 23.01 BLEU points
on the development set, 34.42 vs. 22.56 BLEU points on the test set). This problem of the
unbalance scores between the two translation directions of a language paired with Vietnamese
as well as other language pairs should be further investigated.

6.2 Evaluation on the IWSLT 2015 Machine Translation Shared Task
In this section, we evaluated the extracted corpus on the IWSLT 2015 machine translation shared
task on English-Vietnamese. We aim to evaluate whether the Wikipedia corpus can improve
some baseline systems on the shared task. In addition, we conducted various experiments of
the domain adaptation strategies, statistical machine translation, and neural machine translation
using the Wikipedia corpus to explore optimal strategies in exploiting the corpus.

6.2.1 Training Data

Data Sentences Src Words Trg Words Src Vocab. Trg Vocab.
constrained 131,019 2,534,498 2,373,965 50,118 54,565
unconstrained 456,350 8,485,112 8,132,913 114,161 124,846
constrained+Wikipedia 538,981 9,710,389 9,017,601 288,785 345,839
unconstrained+Wikipedia 864,312 15,661,003 14,776,549 338,424 403,581
tst2012 1,581 28,773 27,101 3,713 3,958
tst2013 1,304 28,036 27,264 3,918 4,316
tst2015 1,080 20,844 19,951 3,175 3,528

Table 6: Data sets on the IWSLT 2015 experiments; Src Words (Trg Words): the number of
words in the source (target) side of the corpus; Src Vocab. (Trg Vocab.): the vocabulary size
in the source (target) side of the corpus

We used the data sets provided by the International Workshop on Spoken Language Trans-
lation (IWSLT 2015) machine translation shared task (Cettolo et al., 2015), which include three
data sets of the training, development, and test sets extracted from subtitles of TED talks.5 For

5https://www.ted.com/talks
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the training data, the data set called the constrained data of 131k parallel sentences. The work-
shop provided data sets for development and test sets: tst2012, tst2013, and tst2015. In all
experiments, we used the tst2012 for the development set, the tst2013 and tst2015 for the test
sets.

In addition, we used two other data sets for training data: the corpus of National project
VLSP (Vietnamese Language and Speech Processing)6 and the EVBCorpus (Ngo et al., 2013).
The two data sets were merged with the constrained data to obtain a large training data set
called the unconstrained data. The training, development, and test sets are described in Table 6.

6.2.2 Training Details
We trained translation systems using two methods: SMT and NMT.

Statistical Machine Translation In order to train SMT models, we used the well-known
Moses toolkit (Koehn et al., 2007). The GIZA++ (Och and Ney, 2003) was used to train word
alignment. For language model, we used KenLM (Heafield, 2011) to train 5-gram language
models on the target side (Vietnamese) of the training data sets. The parameters were tuned
using batch MIRA (Cherry and Foster, 2012). BLEU (Papineni et al., 2002) was used as the
metric for evaluation.

Neural Machine Translation In our work, we based on the model of Sennrich et al. (2016a),
which are encoder-decoder networks with an attention mechanism (Bahdanau et al., 2015).
For NMT model, we adopted the attentional encoder-decoder networks combined with byte-
pair encoding (Sennrich et al., 2016a). In our experiments, we set the word embedding size
500, and hidden layers size of 1024. Sentences are filtered with the maximum length of 50
words. The minibatches size is set to 60. The models were trained with the optimizer Adadelta
(Zeiler, 2012). The models were validated each 3000 minibatches based on the BLEU scores
on development sets. We saved the models for each 6000 minibatches. For decoding, we used
beam search with the beam size of 12. We trained NMT models on an Nvidia GRID K520 GPU.

6.2.3 Results

Model tst2012 tst2013 tst2015
Wikipedia 18.40 22.06 20.34
constrained 24.72 27.31 25.47
constrained+Wikipedia 24.78 27.89 26.69
constrained*Wikipedia (tune) 24.65 28.05 27.00
constrained*Wikipedia (weights) 24.95 (+0.23) 28.51 (+1.20) 27.21 (+1.74)
unconstrained 34.42 27.19 25.41
unconstrained+Wikipedia 33.88 27.28 26.36
unconstrained*Wikipedia (tune) 34.44 27.55 26.68
unconstrained*Wikipedia (weights) 34.73 (+0.31) 28.04 (+0.85) 26.78 (+1.37)

Table 7: Experimental results using phrase-based statistical machine translation; con-
strained+Wikipedia: the constrained data was merged with the Wikipedia corpus; uncon-
strained*Wikipedia: interpolation of the two models; tune, weights: the two interpolation set-
tings; the bold indicates the best results for each setup

SMT results Table 7 presents experimental results using SMT models. Using the Wikipedia
corpus, we achieved promising results: 18.40 BLEU point (tst2012), 22.06 (tst2013), and 20.34
(tst2015). When the Wikipedia corpus was merged with the constrained data for training data,

6http://vlsp.vietlp.org:8080/demo/?page=home
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a significant improvement was achieved especially on the tst2015 (26.69 BLEU point, which
improved 1.22 BLEU point from the model using the constrained data). Nevertheless, the
domain adaptation strategies show even better performance than the merging setting, in which
the weights setting model obtained the best performance with +1.74 BLEU point improvement
on the tst2015.

NMT results The NMT results are described in Table 8. From the experimental results, we
can observe that the systems obtain the higher scores when the size of training data sets increase
(from the Wikipedia, constrained, unconstrained to the merging in which the unconstrained
data was merged with the Wikipedia corpus). It is interesting to note that using the Wikipedia
corpus to enhance the translation systems trained on existed data sets based on NMT achieved
the significant improvement up to +4.51 BLEU points on the tst2015.

Model tst2012 tst2013 tst2015
constrained 20.21 23.59 17.27
Wikipedia 15.29 18.43 17.58
unconstrained 24.05 26.71 22.30
unconstrained+Wikipedia 25.29 (+1.24) 28.93 (+2.21) 26.81 (+4.51)

Table 8: Experimental results on neural machine translation (NMT) ; the bold indicates the best
results for each setup

A work that enhanced neural machine translation using additional data is presented in
Sennrich et al. (2016b) called back-translation. In the back-translation method, a synthetic
corpus is generated by translating a large monolingual data in a target language into source
sentences. For further evaluation and utilization of the extracted Wikipedia corpus, a comparison
and adaptation the back-translation method is needed in future work.

SMT vs. NMT We compared the improvement of the Wikipedia corpus using the SMT versus
NMT systems. Experimental results showed that the SMT systems obtained better performance
on the unconstrained data (456k): 25.41 vs. 22.30 on the tst2015. Nevertheless, when the
Wikipedia corpus was utilized, which was merged with the unconstrained data to enlarge the
training data (864k), the NMT systems outperformed the SMT systems, which indicates the
benefit when utilizing the Wikipedia corpus on NMT compared with SMT systems. Table 9
presents the comparison in more detail.

Model tst2012 tst2013 tst2015
SMT systems
unconstrained 34.42 27.19 25.41
unconstrained+Wikipedia 33.88 27.28 (+0.09) 26.36 (+0.95)
unconstrained*Wikipedia (tune) 34.44 (+0.02) 27.55 (+0.36) 26.68 (+1.27)
unconstrained*Wikipedia (weights) 34.73 (+0.31) 28.04 (+0.85) 26.78 (+1.37)
NMT systems
unconstrained 24.05 26.71 22.30
unconstrained+Wikipedia 25.29 (+1.24) 28.93 (+2.21) 26.81 (+4.51)

Table 9: SMT versus NMT in using the Wikipedia corpus

From this comparison, we investigated the strategies to utilize the Wikipedia corpus most
effectively for improving machine translation on low-resource languages, in which the corpus
was utilized more effectively when using the NMT models.
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7 Conclusion

Current machine translation systems in both phrase-based and neural-based methods require
large bilingual corpora for training data. Nevertheless, such large bilingual corpora are unavail-
able for most language pairs called low-resource languages. This causes a bottleneck for the
languages. In Southeast Asian languages, although there are a high population with more than
five hundred millions of people, and there are several languages that can be used popularly in
the world like Indonesian, Malay, and Vietnamese, there are few bilingual corpora on these
language pairs, which causes a bottleneck for machine translation. In this paper, we introduce
building a multilingual parallel corpus for several Southeast Asian languages of Indonesian,
Malay, Filipino, Vietnamese, and the languages paired with English to improve machine trans-
lation. The corpus was built based on the Wikipedia’s parallel titles of articles extracted by the
articles’ titles and inter-language link records. The parallel titles were used to collect parallel
articles. For each article pair, parallel sentences were extracted based on a length-based and
word correspondence sentence alignment method. A huge multilingual parallel corpus were
obtained with more than 1.1 million parallel sentences of ten language pairs of the Southeast
Asian languages. Experiments were conducted on the Asian Language Treebank and showed
the promising results. Additionally, the corpus was utilized for the IWSLT 2015 machine trans-
lation shared task. A significant improvement was achieved on both phrase-based and neural-
based systems with +1.7 and 4.5 BLEU points. The corpus can improve machine translation
for the low-resource Southeast Asian languages and contribute to the development of machine
translation on the low-resource languages.
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Abstract
Both statistical (SMT) and neural (NMT) approaches to machine translation (MT) explore large
search spaces to produce and score translations. It is however well known that often the top
hypothesis as scored by such approaches may not be the best overall translation among those
that can be produced. Previous work on SMT has extensively explored re-ranking strategies
in attempts to find the best possible translation. In this paper, we focus on NMT and provide
an in-depth investigation to explore the influence of beam sizes on information content and
translation quality. We gather new insights using oracle experiments on the efficacy of exploit-
ing larger beams and propose a simple, yet novel consensus-based, n-best re-ranking approach
that makes use of different automatic evaluation metrics to measure consensus in n-best lists.
Our results reveal that NMT is able to cover more of the information content of the references
compared to SMT and that this leads to better re-ranked translations (according to human evalu-
ation). We further show that the MT evaluation metric used for the consensus-based re-ranking
plays a major role, with character-based metrics performing better than BLEU.

1 Introduction

There has a been a recent surge of interest and work in the field of end-to-end, encoder-decoder
neural machine translation (NMT). In the last two years, such approaches surpassed the state-
of-the-art results by the then de facto statistical machine translation approaches (SMT) (Bojar
et al., 2016a). While NMT systems are trained end-to-end using as a single model, SMT systems
use a pipeline-based approach that make use of several components. This means that NMT
systems are jointly optimised for both better encoding and better decoding. SMT systems,
on the other hand, decompose the problem by first finding plausible sub-sentence translation
candidates given some training data, such as phrases in phrase-based SMT (Koehn et al., 2003),
and then scoring such candidates utilising components such as the translation and language
models. Both types of systems are markedly different in their approaches to transform source
into target language and in the information they explore.

Given a source sentence, at decoding time both types of approaches can explore hypotheses
spaces to pick the best possible translation. Most of current implementations of both statistical
and neural MT approaches use beam search for that. It has been observed that NMT systems,
when compared to their statistical counterparts, use smaller beam sizes, and yet are able to
obtain better translations for the same source sentences (Bahdanau et al., 2014; Stahlberg et al.,
2017). Smaller beam sizes boost the speed of decoders (Luong et al., 2015; Bahdanau et al.,
2014). In addition, it has been reported (Stahlberg et al., 2016) that neural approaches do not
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significantly benefit from large beam sizes. In fact, beam sizes of 8–12 are the most common in
NMT. Statistical approaches, on the other hand, usually search over larger beam sizes (of orders
of 100s) (Lopez, 2008).

There have been multiple approaches proposed in the context of SMT that explore the n-
best generated translation hypotheses using beam search (Och et al., 2004; Shen et al., 2004;
Lambert and Banchs, 2006; Hasan et al., 2007; Duh and Kirchhoff, 2008). Since models used
for scoring translation hypotheses and metrics used to evaluate the final translation quality are
different, one of the strategies is to learn a re-ranking model for n-best hypotheses based on the
evaluation metric of interest. We further detail this and other strategies in Section 2. However,
to the best of our knowledge, there is little research that systematically looks at the effect of
beam sizes or explores n-best hypotheses in the context of NMT.

We summarise our contributions in this paper as follows: (a) We investigate the influence
of beam size on the search space, as well as on the information content of translations (Section
4); and (b) We present a new re-scoring approach for n-best re-ranking based on information
overlap amongst MT candidates within the n-best list according to different automatic MT
evaluation metrics. We report results that include human evaluation to assess the quality of
alternative translations produced by this approach versus baseline systems (Section 5). We
observe that our approach leads to better translation choices. We also observe that in most cases
the best translation hypothesis is chosen among those generated from using larger beam sizes.
These results are based on four language pairs and different datasets and evaluation metrics
(Section 3).

2 Background

In what follows, we briefly describe background on the decoding process in SMT and NMT
approaches, as well as related work on exploring n-best lists for improved translation quality.

Beam search decoding in SMT In SMT decoding, the standard procedure is to perform the
search for the best translation given the (often pruned) space of possible translations based on
a combination of the scores estimated for its model components, each component capturing a
different aspect of translation (word order, translation probability, etc.). This is done through
a heuristic method using stack-based beam search. In phrase-based SMT (Koehn et al., 2003),
given a source sentence, the decoder fetches phrase translations available in the phrase table and
builds a graph starting with an initial state where no source words have been translated and no
target words have been generated. New states are created in the graph by extending the target
output with a phrase translation that covers some of the source words not yet translated. At
every expansion, the current cost of the new state is the cost of the original state multiplied with
the model components under consideration. Final states in the search graph are hypotheses that
cover all source words. Among these, the hypothesis with the lowest cost (highest model score)
is selected as the best translation. Often a threshold is used to define a beam of good hypotheses
and prune the hypotheses that fall out of this beam. The beam follows the (presumably) best
hypothesis path, but with a certain width to allow the retention of comparable hypotheses, i.e.
neighbouring hypotheses that are close in score from the best one (Koehn, 2010).

If an exhaustive search was to be performed, then all translation options, in different or-
ders, could be used to build alternative hypotheses. However, in practice the search space is
pruned in different ways and only the most promising hypotheses are kept, with early prun-
ing potentially eliminating good hypotheses from the search space. In principle, larger beams
would thus allow for more variation in the n-best lists, while potentially introducing lower qual-
ity candidates, but also giving seemingly bad candidates a chance to obtain higher scores in later
stages of decoding. There is therefore a direct relationship between the size of the beam and the
maximum number of candidates that can be generated in the n-best list. However, the actual
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candidates in the n-best list are also affected by other design choices, such as the pruning and
hypotheses combination strategies used (Lambert and Banchs, 2006; Duh and Kirchhoff, 2008;
Hasan et al., 2007).

In addition, different approaches have been proposed to specifically promote diverse trans-
lations in SMT systems’ n-best lists. These include using compact representations like lattices
and hypergraphs (Tromble et al., 2008; Kumar and Byrne, 2004) and establishing explicit con-
ditions during decoding. Gimpel et al. (2013), for example, add a dissimilarity function based
on n-gram overlaps, choosing translations that have high model scores but are distinct from
already-generated ones.

Beam search decoding in NMT NMT decoding also relies on beam search, but the process is
much more expensive than in SMT and thus a limited beam size is often used, leading to narrow
hypotheses spaces (Li and Jurafsky, 2016; Vijayakumar et al., 2016). Given a certain pre-
specified beam size k, k-best lists are generated in a greedy left-right fashion retaining only the
top-k candidates as follows: at the first time step in decoding, a fixed-number k hypotheses are
retained based on the highest log-probability (model score) of each generated word. Each of the
k hypotheses is expanded at each time-step by selecting top k word translations. This continues
until the end-of-sequence symbol is obtained. The highest scoring candidate is retained and
stored into the final candidate list followed by a decrease of beam by one. The whole process
continues until the beam is reduced to zero. Finally, the best translation hypothesis amongst the
list is the one with highest log-probability. We note here that in most NMT approaches both the
set of hypotheses and the beam size are equivalent. Essentially, the NMT decoder obtains the
top translation hypotheses that maximise the conditional probability given by the model.

Li and Jurafsky (2016) increase diversity in the n-best list by adding an additional compo-
nent to the score used by the decoder to rank k hypotheses at each time step. This component
rewards top-ranked hypotheses generated from each ancestor, instead of ranking all candidates
from all ancestors together. Similarly, Vijayakumar et al. (2016) propose Diverse Beam Search,
where they optimise an objective with two terms: the standard cross entropy loss and a dissim-
ilarity term that encourages beams across groups to differ.

N-best re-ranking in SMT In addition to having access to only a subset of the search space,
the model components used in SMT only provide an estimate of translation quality. As a con-
sequence, using only the hypothesis ranked as the best by the decoder often leads to suboptimal
results (Wisniewski et al., 2010; Sokolov et al., 2012a). Therefore, it is common practice in
SMT to explore other hypotheses in the search space, the so called n-best list. Re-ranking an
n-best list of candidates produced by an SMT system has been a long standing practice. The
general motivation for doing so is the ability to use additional information in the process, which
is unavailable or too costly to compute at decoding time, e.g. syntactic features of the entire
sentence (Och et al., 2004), estimates on overall sentence translation quality (Blatz et al., 2003),
word sense disambiguation scores (Specia et al., 2008), large language model scores (Zhang
et al., 2006), and translation probability from a neural MT model (Neubig et al., 2015), among
others.

This additional information is usually treated as new model components and combined
with the existing ones. Various techniques have been proposed to perform n-best list re-ranking.
They generally learn weights to combine the new and existing model components using algo-
rithms such as MIRA (Crammer and Singer, 2003) with linear1 or non-linear functions (Sokolov
et al., 2012b), as well as more advanced methods, such as multi-task learning (Duh et al., 2010).
Hasan et al. (2007) provides a study on the potential improvements on final translation quality
by exploring n-best lists of different sizes. They show that even though oracle-based re-ranking

1https://github.com/moses-smt/mosesdecoder/tree/master/scripts/nbest-rescore
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on very large (100,000 hypotheses) n-best lists yields the best translation quality, automatic
re-ranking methods reach a plateau on the improvement after 1,000 hypotheses. Very large n-
best lists will contain very many noisy translations, so they suggest that only with extremely
accurate re-ranking methods one should explore such large spaces.

In an attempt to have a more reliable way to score translation candidates, Kumar and Byrne
(2004) introduced the Minimum Bayes Risk (MBR) decoding approach and used it to re-rank
n-best hypotheses such that the best hypothesis is the one that minimises the Bayes-risk defined
in terms of the model score (translation probability) and a loss function computed between the
translation hypothesis and a gold translation (e.g. a translation quality metric such as BLEU
(Papineni et al., 2002)). This method has been shown to be beneficial for many translation tasks
(Ehling et al., 2007; Tromble et al., 2008; Blackwood et al., 2010). They have however only
experimented a fixed n (1,000).

N-best re-ranking in NMT While there is a large body of literature that investigates different
strategies for exploring n-best hypotheses spaces in SMT, there have been very few attempts at
exploring such spaces in NMT. Stahlberg et al. (2017) adapt MBR decoding to the context of
NMT and to be used for partial hypotheses rather than entire translations. The NMT score is
combined with the Bayes-risk of the translation according to the SMT lattice. This approach
goes beyond re-scoring of n-best lists or lattices as the neural decoder is not restricted to the
SMT search space. The resulting MBR decoder produces new hypotheses that are different
from those in the SMT search space.

Li and Jurafsky (2016) propose an alternative objective function for NMT that maximises
the mutual information between the source and target sentences. They implement the model
with a simple re-ranking method. This is equivalent to linearly combining the probability of the
target given the source, and vice-versa. An NMT model is trained for each translation direction,
and the source→target model is used to generate n-best lists. These are then re-ranked using the
score from the target→source model. Shu and Nakayama (2017) studies the effect of beam size
in NMT MBR decoding. They considered beams of size 5, 20 and 100 and found that while in
standard decoding increasing the beam size is not beneficial, MBR re-ranking is more effective
with a large beam size.

Comparison between NMT and SMT There has been increasing interest in systematically
studying differences between NMT and SMT approaches. Bentivogli et al. (2016) conducted an
analysis for English→German translations by both NMT and SMT systems. They conclude that
the outputs of the NMT system are better suited in terms of syntax and semantics, with better
word order and less human post-editing effort required to fix the translations. They observe that
the average sentence length in an SMT system is always longer than in an NMT system. This
could be attributed to the optimisation of the cross-entropy loss and the fact that the outputs are
chosen on the basis of the log-probability scores in NMT systems.

Toral and Sánchez-Cartagena (2017) conducted an in-depth analysis on a set of nine lan-
guage pairs to contrast the differences between SMT and NMT systems. They observe that the
outputs of NMT systems are more fluent and have better word order when compared to SMT
systems. They note that despite the smaller beam sizes in NMT in general the top outputs of
the NMT system for a given source sentence are more distinct than the top outputs from SMT
systems. However, it is not clear whether or not they explore distinct n-best options from the
SMT or a mixture of distinct and non-distinct options. Both previous studies conclude that the
NMT systems perform poorly when translating very long sentences.
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3 Experimental Settings

In this section we describe the data, tools, metrics and settings used in our experiments to
investigate the influence of beam size in the generated translations.

Language Pairs We report results with NMT systems – the focus of this paper – for four
language pairs: English↔German and English↔Czech. For English↔Czech we also report
results with SMT systems for comparison.

NMT Systems We use the freely available Nematus (Sennrich et al., 2016) toolkit and its pre-
trained models2 for English↔German and English↔Czech. The Nematus systems are based
on attentional encoder-decoder neural machine translation approach (Bahdanau et al., 2014)
and were built after Byte-Pair Encoding (Sennrich et al., 2015b).3 The models were trained as
described in (Sennrich et al., 2016) using both parallel and synthetic (Sennrich et al., 2015a)
data under the constrained variant of the WMT16 MT shared task, mini batches of size 80, a
maximum sentence length of 50, word-embeddings of size 500, a hidden layers of size 1024,
and Adadelta as optimiser (Zeiler, 2012), reshuffling the training corpus between epochs.These
models were chosen as they have been highly ranked in the evaluation campaign of the WMT16
Conference (Bojar et al., 2016c).

SMT Systems We use pre-trained models from the Tuning shared task of WMT16 for
English↔Czech to build SMT systems for comparison. These models were built using the
Moses toolkit (Koehn et al., 2007) trained on the CzEng1.6pre4, (Bojar et al., 2016b) a 51M par-
allel sentences corpus built from eight different sources. The data was tokenised using Moses
tokeniser (Koehn et al., 2007) and lowercased; sentences longer than 60 words and shorter
than 4 words were removed before training. The weights were determined as the average over
three optimisation runs using MIRA (Crammer and Singer, 2003) towards BLEU. Word align-
ment was done using fast-align (Dyer et al., 2013) and for all other steps the standard Moses
pipeline was used for model building and decoding. This was reported as the best system for
English↔Czech (Jawaid et al., 2016).

By using pre-trained and freely available models for our NMT and SMT systems, we
have consistent models amongst the different language pairs and results can be more easily
reproducible.

Beam Settings SMT systems usually employ a large beam. In the training pipeline of the
Moses decoder, the beam size is set by default to 200. NMT systems, on the other hand,
normally use a much smaller beam size of 8 to 12. This is assumed to offer a good trade
off between quality and computational complexity. We note that the implementations of n-
best decoding is different in both NMT and SMT. In most NMT systems, there is a 1-to-1
correspondence between the beam size and the n-best list size. Therefore, we will use the term
n-best to refer to the output of an NMT system with a beam of size n, and to the n best outputs
of an SMT system, where the beam size has been set, by default, to 200.

We also note that the translations in the n-best list produced by NMT are always different
from each other, even though only marginally in many cases (e.g. a single token). In SMT, one
can choose whether or not only distinct candidates should be considered. We report on distinct
options only to gather insights on the diversity in n-best lists in SMT versus NMT.

Metrics For our experiments we consider three automatic evaluation metrics amongst the
most widely used and which have been shown to correlate well with human judgements (Bojar

2http://data.statmt.org/rsennrich/wmt16_systems/
3The models were obtained from http://statmt.org/rsennrich/wmt16_systems/
4http://ufal.mff.cuni.cz/czeng/czeng16pre
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et al., 2016c): BLEU, an n-gram-based precision metric which works similarly to position-
independent word error rate, but considers matches of larger n-grams with the reference trans-
lation; BEER (Stanojevic and Sima’an, 2014), a trained evaluation metric with a linear model
that combines features capturing character n-grams and permutation trees; and ChrF (Popovic,
2015), which computes the F-score of character n-grams. These metrics are used both for evalu-
ating final translation quality and for measuring similarity among translations in our consensus-
based re-ranking approach.

4 Effect of Beam Size

Current work in NMT takes a beam size of around 10 to be the optimal setting (Sennrich et al.,
2016). We empirically evaluate the effect of increasing the beam size in NMT to explore n-best
of sizes 10, 100 and 500. The goals are to understand (a) the informativeness of the transla-
tions produced; (b) the scope for obtaining better translations by simply exploiting the n-best
candidates, similarly to previous work in SMT.

4.1 Effect of Beam Size on Information Content of Translations
We define information content as the word overlap rate between the system generated translation
and the reference translation. We further break this into two categories:

1. % covered: This indicates the average proportion of words that are shared between the (a)
1-best output of the MT system and the reference translation, or (b) all the n-best outputs
and the reference translation. It is computed by looking at the intersection between the
vocabulary of the MT candidate(s) and the one of the reference, averaged at corpus-level.

2. % exact match: This indicates the proportion of sentences that are exact matches between
(a) the 1-best of the MT system and the reference translation, and (b) all the n-best outputs
and the reference translation.

This is similar to the approach in (Lala et al., 2017) where the authors measure word over-
lap with respect to system outputs, but their focus is on multimodal NMT. % covered approxi-
mates indicates the word-level precision of the MT system, given the n or 1-best candidates and
the reference translation, and % exact match approximately indicates the sentence-level recall
given the n or 1-best candidates and the reference translation.

Our intuition here is that if the systems are adequately trained, increasing the beam size
– and thereby the n-best list length – should result in obtaining a larger word overlap with
reference translation, and potentially a larger number of exact matches at the sentence level,
although the latter is a much taller order. We note that since only one reference translation is
available, mismatches between words in the MT output and reference translations could reflect
acceptable variances in translation.

Observations and Discussion In Table 1 we report the scores of each MT system using
BLEU, BEER and ChrF3 on the WMT16 test sets with different sizes of n-best lists: for NMT
we report sizes 10, 100 and 500, while for SMT we report a 500-best list with a beam size set to
the default size of 200. Since there is no 1-to-1 relationship between beam sizes and n-best list
sizes in SMT, reporting on different beam sizes would require arbitrarily choosing a specific n
for each beam size. We instead chose the largest n also used for the NMT experiments (500),
and a large enough beam size (200). The metric scores are computed on the 1-best translation,
which may vary if different beam sizes are used. We observe that for NMT increasing the n-
best size from 10 to 100 helps improve the performances for English↔German translations. For
English↔Czech, we do not observe any gain, but rather a significant drop. Also, if the beam
size is too large (500 in our case), the performance drops for all language pairs. This indicates
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that larger beam sizes do not necessarily lead to better 1-best translations, and that the choice
can be a function of the language pair and the dataset. This seems to suggest that with such large
beam sizes many translation candidates, including spurious ones, end up being ranked as the
1-best, most likely because of limitations in the functions used to score translation candidates.

NEURAL MT English→German German→English
n-best BLEU BEER ChrF3 BLEU BEER ChrF3
n=10 26.73 60.20 59.20 32.58 61.84 60.61
n=100 26.82 60.25 59.33 32.68 61.91 60.74
n=500 26.18 60.12 59.12 32.70 61.91 60.75

English→Czech Czech→English
n-best BLEU BEER ChrF3 BLEU BEER ChrF3
n=10 18.50 53.90 51.45 26.26 58.03 56.00
n=100 18.31 53.83 51.37 26.17 58.00 56.00
n=500 17.81 53.67 51.25 24.19 57.57 55.62

STATISTICAL MT English→Czech Czech→English
n-best BLEU BEER ChrF3 BLEU BEER ChrF3

n=10/100/500 10.64 48.88 46.51 18.19 52.59 51.32

Table 1: Translation quality results on the WMT16 test sets for both NMT and SMT systems
using n-best lists of sizes 10, 100 and 500. The scores are computed on the 1-best translation
towards the reference translation.

In Table 2 we report our empirical observations on word coverage. Here, we observe that
the larger the n-best list the higher proportion of words covered (% covered). Interestingly, we
also observe similar trends for % exact match, but only if all n-best candidates are considered.
It also interesting to note the difference in the impressive increase in % exact match from 1-
best to all-best for NMT, which does not happen for SMT. These results show that for NMT
larger beam sizes lead to more information content in translation candidates. Therefore, clever
techniques to explore the space of hypotheses should lead to better translations.

Even though the NMT vs SMT figures are not directly comparable since the NMT and
SMT systems are trained on different data, we note that despite the SMT system using a beam
size of 200 and producing 500-best translation hypotheses, its translations have much lower
word overlap than those from the NMT system with a beam size of 10 for English↔Czech.
These results further corroborate the reasons for the insignificant gains obtained in the WMT16
SMT system Tuning shared task (Jawaid et al., 2016). In fact, if larger hypotheses spaces do not
lead to more words that can potentially lead to translations that match the reference, the tuning
algorithms do not have much to learn from.

4.2 Oracle Exploration
Based on the encouraging observations in the previous experiment with word overlap between
candidates in the n-best list and the reference translation, here we attempt to quantify the poten-
tial gain from optimally exploring the space of hypotheses. We perform experiments assuming
that we have an ‘oracle’ which helps us choose the best possible translation, under an evalua-
tion metric against the reference, given an n-best list of translation hypotheses. This provides
an upper-bound on the performance of the MT system. Positive results in this experiment will
indicate that the MT system is capable of producing better translation candidates, but fails at
scoring them as the best ones.

In this oracle experiment, the translation of a source sentence is chosen based on com-
parisons among the translation hypotheses and the reference translation – the oracle – under a
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NEURAL MT 10-best 100-best 500-best
1-best all 1-best all 1-best all

English→German
%covered 53.99 62.75 53.99 71.93 53.83 77.69

% exact match 2.20 6.47 2.20 12.07 2.20 18.24
German→English

%covered 57.32 65.98 57.43 74.42 57.43 79.55
% exact match 2.70 7.70 2.70 15.40 2.70 22.94

English→Czech
%covered 45.97 55.27 45.85 65.61 45.72 72.55

% exact match 1.63 4.90 1.63 9.40 1.63 14.77
Czech→English

%covered 52.30 61.26 52.33 70.24 51.92 75.61
% exact match 1.67 14.44 1.67 11.47 1.60 16.97

STATISTICAL MT 10-best 100-best 500-best
(beam=200, distinct) 1-best all 1-best all 1-best all
English→Czech

% covered 39.20 46.58 39.20 54.05 39.20 57.86
% exact match 0.07 0.07 0.07 0.37 0.07 0.37

Czech→English
% covered 48.35 54.79 48.35 60.30 48.35 62.89

% exact match 0.16 0.50 0.16 0.83 0.16 0.83

Table 2: Proportion of words overlapping between candidates and reference translations for
different values of the n-best, as well as proportion of MT output sentences that exactly match
the reference, considering either the 1-best or all the MT candidates in the n-best list.

certain MT evaluation metric. We consider the outputs of NMT systems for beam sizes of 10,
100 and 500 and with the following metrics: BLEU with n-gram max length = 4 and default
brevity penalty settings, BEER2.0 with default settings, and ChrF with n-gram max length = 6
and β = 3. By exploring multiple metrics we will gain insights on how well different metrics
do at spotting the best candidates: ideally, better metrics should lead to larger improvements
from the original top translation.

Observations and Discussion We report the results of the oracle experiment in Figure 1.
For each system, we report the relative improvement (delta) between the oracle translation
chosen by the three metrics – BLEU, BEER and ChrF3 – compared to the 1-best of the system
for a given n-best list size. Using any of the metrics we are able to find an alternative MT
candidate which is better than the original 1-best translation, resulting in an overall increase in
translation quality in all datasets. Larger improvements are obtained with larger beam sizes.
However, while a large gain (almost double) is obtained from beam size 10 to 100, the rate
of increase in improvement seems to drop from beam size 100 to 500, indicating that more
additional translations are probably mostly spurious. This is consistent with the information
content experiment in Section 4.1.

Kumar and Byrne (2004) reports that their MBR decoder leads to improvements only ac-
cording to an evaluation metric that is also used as basis for their loss function. In our ex-
periments, to better understand the relationship between the re-ranking metric and the final
evaluation results, we further explore the oracle experiment by reporting results on the 500-
best output for NMT, which brings the best gains in Figure 1, but focus on the proportion of
improvement of the oracle translation over 1-best across metrics. In other words, we oracle re-
rank using each given metric and evaluate the final 1-best translation set performance using all
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Figure 1: Proportion of improvement in NMT results according to MT evaluation metrics based
on the oracle results over the original 1-best when the size of the beam is increased for decoding.

Figure 2: Focusing on the 500-best output for NMT, which brings the best gains in Figure 1,
proportion of improvement of the oracle translation over the original 1-best when using different
metrics for the oracle computation: ChrF3, BEER and BLEU. Re-ranking is done with one
metric at a time, and the final performance is also measured with each of three metrics.

three metrics. This helps us assess the potential of each metric in selecting the best candidate.
Figure 2 shows the results. Contrary to what was suggested in Kumar and Byrne (2004) for
SMT, in chart (a) we see that the relative improvement is bigger in terms of the BLEU metric
when using either BEER or ChrF3 to obtain the 1-best translation than using BLEU itself. We
also observe in charts (b) and (c) that the character-based metrics always outperform BLEU and
extract better 1-best translations. BLEU also seems to fail at identifying better MT candidates
when translating into Czech, which is a morphologically rich language, while BEER and ChrF3
perform better. We note however that Kumar and Byrne (2004) also tune the log-linear loss
function, while in our case we are just selecting the candidates directly based on a metric.

Since sentence length is a often problem in NMT, we measure the impact of using different
evaluation metrics for oracle re-ranking on the sentence length of the 1-best translations chosen.
In Figure 3 we report variation in terms of sentence length average for all NMT systems after
the oracle translation selection with all three metrics, compared to the original 1-best translation
for each setting. We notice that the average length of oracle BLEU translations does not seem to
vary, however, an opposite trend is seen with BEER and ChrF3, which seem to make sentences
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shorter except for German→English. This is particularly interesting since i) we observe in
Table 2 a better coverage with bigger beam size, and ii) we observe an overall large BLEU
improvement our oracle experiments (Figure 2 (a)). This suggests that we are able to select
translation candidates that might be shorter than the original 1-best, but most similar to the
reference translation.

Figure 3: Delta in average sentence length for all NMT systems after 1-best oracle translation
selection by each metric, compared to the average sentence length of the original 1-best.

5 Consensus-based n-best re-ranking

As was shown in the previous section, increasing the size of the beam generally leads to better
word coverage and, more important, to higher chances of generating better translations among
the resulting n-best lists. In what follows we propose an approach to automatically re-rank
n-best lists to obtain better translations (without oracle translations).

Our approach is motivated by the work of DeNero et al. (2009) for SMT, where consensus-
based MBR decoding is used to guide the choices of the decoder towards hypotheses that share
partial translations. DeNero et al. (2009) experiment with different evaluation metrics (includ-
ing BLEU) to measure similarity among hypotheses within a n-best list. We propose to em-
pirically evaluate the contribution of consensus information in hypotheses in n-best lists from
NMT systems. This is simpler than using consensual information at decoding time, but we
believe that positive results at re-ranking stage will provide insights on whether or not this is a
promising path to follow in NMT decoding.

Given an n-best list and a certain similarity metric, we compute the metric scores for each
translation hypothesis against each of all n − 1 other hypotheses in the n-best list. We then
average the similarity scores of all n−1 translation hypotheses to obtain a single score for each
translation hypothesis. We repeat this for all translation hypotheses and then sort the n-best list
based on these scores, such that the top (best) translation will be one that is similar to more of
the alternative candidates. Given that NMT systems produce translations are are “more likely”
given the model, this essentially corresponds to selecting as best translation the one that is the
most similar to all of n−1 the most likely translations. The size of the n-best list here is critical:
the more hypotheses in the list, the less confident the NMT system will be on the bottom part
of the list (less likely translations). However, longer n-best lists may provide stronger evidence
for consensual analysis. This is a classical exploration-exploitation issue.

Another remark is that larger search spaces require much more time to compute the
consensus-based re-ranking. We experiment with BLEU, BEER and ChrF3 as similarity met-
rics, since these are easily available and are either extremely popular (BLEU) or have proved
to correlate well with human judgements on translation quality (in terms of similarity with a
reference translation) in recent evaluation campaigns (BEER and ChrF3) (Bojar et al., 2016c).
While each pair of translation hypotheses can be scored independently, which allows parallel
processing, the running time for each metric to re-rank a complete n-best list isO(n2 ·k), where
k is the size of the corpus and n the size of the n-best list. This may be very time consuming:
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from hours up to a day5 for easy-to-compute metrics such as BLEU or ChrF, to many days for
more complex metrics such as BEER.

Automatic evaluation We start by evaluating our consensus-based re-ranking approach using
BLEU as automatic evaluation metric. The results are shown in Table 3. A similar trend was
observed using BEER and ChrF3 as similarity metrics, however we omit these results due to
space constraints. Comparing the figures in this table against those in Table 1, we see that –
under the same beam size – re-ranking seems to degrade the results in all cases with BLEU
and ChrF, but not with BEER. An increase in BLEU scores can be observed for BEER-based
re-ranking as longer beam sizes superior to 10 are used for the two language pairs where re-
ranking under this metric was computed. It is not surprising to see that this improvement is
only observed for BEER as similarity metric, even though the final evaluation is in terms of
BLEU. This suggests that exploring other similarity metrics for the consensus analysis could be
beneficial. Overall, re-ranking using BEER as similarity metric leads to the best results.

English→German German→English
re-ranked with re-ranked with

n-best baseline BLEU BEER ChrF3 baseline BLEU BEER ChrF3
n=10 26.93 26.51 26.77 26.38 32.58 32.10 32.29 31.79
n=100 26.82 26.02 26.87 26.18 32.68 31.90 32.78 31.67
n=500 26.18 24.80 - 25.93 32.70 31.41 32.85 32.25

English→Czech Czech→English
re-ranked with re-ranked with

n-best baseline BLEU BEER ChrF3 baseline BLEU BEER ChrF3
n=10 18.50 17.98 18.24 17.60 26.26 25.81 26.10 25.52
n=100 18.31 17.58 18.61 17.57 26.17 25.47 26.42 25.16
n=500 17.81 16.39 - 17.38 24.19 24.44 26.57 24.80

Table 3: BLEU scores of our consensus-based re-ranking strategy on the WMT16 test sets
with NMT using n-best lists of sizes 10, 100 and 500. The scores are computed on the newly
ranked 1-best NMT candidate against the reference translation. The baseline scores correspond
to the original 1-best assessed towards the reference translation (see Table 1). The current
implementation of BEER makes our consensus-based re-ranking extremely time consuming
and virtually unfeasible, therefore we only show results for a subset of language pairs.

In Table 4 we illustrate some examples from the re-ranking approach. We observed that the
consensus-based re-ranking produced interesting sentences that included syntactic re-orderings,
new words, morphological variations and other nuances which were not captured by BLEU.
This motivated us to perform human evaluation of the translations to more quantitatively com-
pare the original 1-best versus the re-ranked 1-best.

Human evaluation We conducted a human evaluation using Appraise (Federmann, 2012),
an open-source web application for manual evaluation of MT output. Appraise collects human
judgements on translation output, implementing annotation tasks such as quality checking, error
classification, manual post-editing and, in our case, translation ranking. For a list of up to four
systems’ outputs for each source sentence, we requested human annotators to rank the set of
MT candidates from the best to the worst, allowing for ties, based on both the source sentence
and reference translation. If two system outputs are the same, the MT candidate was displayed
once and the same rank was assigned to both systems.

For this evaluation, we selected a subset of our systems based on our automatic evaluation
results: for each metric used for re-ranking in each language pair, we chose the systems that

5Indicative time it took to re-rank a corpus of 3,000 sentences, with n = 500 on a 40-cores CPU server.
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German→English
SRC: Das rund zehn bis zwölf Millionen Euro teure Vorhaben steht seit Monaten in der Diskus-

sion.

REF: The e
�� ��10 - 12 million project has been under discussion for months.

Baseline: the EUR
�� ��10 million project has been under discussion for months.

BEER: the
�� ��approximately EUR

�� ��10 to 12 million projects has been under discussion for
months

ChrF3: the EUR
�� ��10 million euro project has been under discussion for several months.

BLEU: the projects
�� ��around ten to twelve million euros have been discussed for months.

Czech→English
SRC: Navı́c jsem si ze života odnesl zkušenost, že zasahovánı́ do ekosystému nevede k úspěchu

a jednoho škůdce může nahradit druhý.

REF: Furthermore,
�� ��in my experience , interfering with the ecosystem does not lead to suc-

cess and one pest can replace another.

Baseline: moreover, I have learned
�� ��from life that interfering with an ecosystem

does not lead to success , and one pest can replace another.

BEER: moreover, I have learned
�� ��from my life that it is not possible to succeed in an

ecosystem, and one can replace one of the pests .

ChrF3: moreover, I have learned
�� ��from life that interfering with an ecosystem

does not lead to success , and one pest can replace one another.

BLEU: moreover, I have learned
�� ��from life that interfering with an ecosystem

does not lead to success , and one pest can replace one.

Table 4: Examples of alternative MT candidates chosen by consensus from n-best lists (with
n = 500). Boxes highlight the main differences between the reference translation, the base-
line (i.e. the original 1-best) and an alternative translation chose by our consensus re-ranking
approach using BLEU, BEER or ChrF.

performed the best according to the three metrics (averaged ranking among the three), along
with the original 1-best.

Each human translator was asked to complete at least one hit of twenty annotation tasks.
Incomplete hits were discarded from the evaluation. We collected 3,016 complete ranking re-
sults over the four NMT systems (159 for English→Czech, 1,365 for Czech→English, 911 for
English→German, 581 for German→English), from 208 annotators.

We borrowed a method from the WMT translation shared task to generate a global ranking
of systems from these judgements. Table 5 reports the ranking results according to the Expected
Wins method6 for the four language pairs. The first column (#m) indicates the ranking of the
systems amongst themselves according to the three automatic metrics, while the third column
(range) indicates the ranking from the human evaluation. For example, for English→German,
the BLEU-100best system was ranked first amongst the four by all three metrics, but it was
ranked last by human annotators.

6https://github.com/keisks/wmt-trueskill/blob/master/src/infer_EW.py
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English→German
#m score range system
4 0.578 1-2 BEER-100best
2 0.529 1-3 Baseline (10best)
3 0.505 2-3 ChrF3-10best
1 0.388 4 BLEU-100best

German→English
#m score range system
4 0.559 1-3 BEER-500best
2 0.546 1-3 Baseline (10best)
3 0.525 1-3 ChrF3-10best
1 0.393 4 BLEU-500best

English→Czech
#m score range system
2 0.583 1-3 BEER-100best
4 0.532 1-3 ChrF3-100best
1 0.493 1-4 BLEU-100best
3 0.372 3-4 Baseline (100best)

Czech→English
#m score range system
4 0.526 1-3 BEER-10best
3 0.522 1-2 ChrF3-500best
2 0.508 1-3 Baseline (500best)
1 0.453 3-4 BLEU-500best

Table 5: Results of the human evaluation for NMT. Systems are sorted according to human
assessments while #m indicates the overall ranking of a system according to all three automatic
metrics. Scores and ranges are obtained with the Expected Wins method (Sakaguchi et al.,
2014). Lines between systems indicate clusters. Systems within a cluster are considered tied.
In gray are systems which have not significantly outperformed the baseline.

Our first observation is that the consensus-based re-ranking with BEER outperforms the
other two metrics for all the language pairs, confirming the results of the automatic evaluation.
Except for Czech→English, systems always benefit from a beam size larger than 10, which
suggests that we should consider exploiting a larger search spaces in NMT. Another interesting
outcome of the human evaluation is the ranking of our systems, which for most of the lan-
guage pairs refutes the ranking according to the automatic evaluation. Although those metrics
are known to be well correlated with human judgements, it seems that humans have different
perceptions on the quality of the translations.

6 Conclusions

In this paper we reported our experiments and results on the influence of the beam size in NMT.
While traditional approaches in NMT rely on smaller beam sizes or use greedy implementations,
our paper strongly motivates using a larger beam size. We investigate the informativeness of
larger beam size and highlighted the potential to improve translation quality by exploring larger
hypotheses spaces using an oracle experiment. Motivated by substantial potential gains in both
informativeness and oracle-based hypotheses re-ranking, we proposed a consensus-based NMT
n-best re-ranking approach, with insights into the use of different metrics to capture consensus-
based information. Our contribution strongly suggests further work in NMT to explore larger
beams and n-best lists.
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Abstract
Attention distributions of the generated translations are a useful bi-product of attention-based
recurrent neural network translation models and can be treated as soft alignments between the
input and output tokens. In this work, we use attention distributions as a confidence metric
for output translations. We present two strategies of using the attention distributions: filtering
out bad translations from a large back-translated corpus, and selecting the best translation in
a hybrid setup of two different translation systems. While manual evaluation indicated only a
weak correlation between our confidence score and human judgments, the use-cases showed
improvements of up to 2.22 BLEU points for filtering and 0.99 points for hybrid translation,
tested on English↔German and English↔Latvian translation.

1 Introduction

Neural machine translation (NMT) has recently redefined the state-of-the-art in machine trans-
lation (Sennrich et al., 2016a; Wu et al., 2016a), with one of the ground-breaking innovations
that enabled this being the introduction of the attention mechanism (Bahdanau et al., 2014). It
enables the model to find parts of a source sentence that are relevant to predicting a target word
(pay attention), without the need to form these parts as a hard segment explicitly. Decoding sen-
tences with the attention-based model resulted in a useful by-product – soft alignments between
tokens of source and target sentences. These can be used for many purposes, such as replacing
unknown words with back-off translations from a dictionary (Jean et al., 2015) and visualizing
the soft alignments (Rikters et al., 2017).

In this paper, we propose using the attention alignments as an indicator of the translation
output quality and the confidence of the decoder. We define metrics of confidence that detect
and penalize under-translation and over-translation (Tu et al., 2016) as well as input and output
tokens with no clear alignment, assuming that all these cases most likely mean that the quality
of the translation output is bad.

We apply these attention-based metrics to two use-cases: scoring translations of an NMT
system and filtering out the seemingly unsuccessful ones, and comparing translations from two
different NMT systems, in order to select the best one.

The structure of this paper is as follows: Section 2 summarizes related work in back-
translating with NMT, machine translation combination approaches and confidence estimation.
Section 3 introduces the problem of faulty attention distributions and a way to quantify it as a
confidence score. Sections 4 and 5 outline the two use-cases for this score – translation filtering
and hybrid selections. Finally, we conclude in Section 6 and mention directions for future work
in Section 7.
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2 Related Work

Back-translation of Monolingual Data
One of the first uses of back-translation of monolingual data as an additional source of train-
ing data was reported by (Sennrich et al., 2016a) in their submission for the WMT16 news
translation shared task. They translated target-language monolingual corpora into the source
language of the respective language pair, and then used the resulting synthetic parallel corpus
as additional training data. They performed experiments in ranges from 2 million to 10 million
back-translated sentences and reported an increase of 2.2 - 7.7 BLEU (Papineni et al., 2002)
for translating between English and Czech, German, Romanian and Russian. The authors also
experimented with different amounts of back-translated data and found that adding more data
gradually improves performance.

In a later paper Sennrich et al. (2016b) explored other methods of using monolingual data.
They experimented with adding an enormous amount of monolingual sentences as targets with-
out any sources to the parallel corpus and compared that to performing back-translation on
a part of the monolingual data. While both methods outperform using just parallel data, the
back-translated synthetic parallel corpus is a much more powerful addition than the mono data
alone.

Pinnis et al. (2017) experimented with using large and even larger amounts of back-
translated data and came to a conclusion that any amount is an improvement, but using double
the amount gives lower results, while still better than not using any at all. These results hint that
it may be possible to get even better results when using only the part of the data selected with
some criterion. One of the aims of our work is to provide one such criterion.

Machine Translation System Combination
Zhou et al. (2017) used attention to combine outputs from NMT and SMT systems. The au-
thors first trained intermediate NMT, SMT and hierarchical SMT systems with one-half of the
training data. Afterwards, they used each system to translate the target side of the other half
of the training data. Finally, the three translated parts as source sentence variants along side
the clean target sentence were used for training the combination neural network. This approach
gave the network more choices of where to pay attention and which parts should be ignored in
the training process. They perform experiments on Chinese→English and report BLEU score
improvement by 5.3 points over the best single system and 3.4 points over traditional MT com-
bination methods.

Peter et al. (2016) perform MT system combination in a more traditional manner - using
confusion networks. They use 12 different SMT and NMT systems to generate hypothesis
translations, align and reorder each hypothesis to match one skeleton hypothesis, creating a
confusion network. For the final output is generated by finding the best path in the network.
The authors report an improvement of 1.0 BLEU compared to the best single system, translating
from English into Romanian.

Translation Confidence Metrics
Lately the idea of modeling coverage in NMT was introduced, for example, Tu et al. (2016)
integrate it directly into the attention mechanism and report improved translation quality as a
result. On the simpler side of things, Wu et al. (2016b) perform tests with a baseline attention
that uses an additional coverage penalty at decoding time; they report no improvement com-
pared to the common length normalization. Our metrics are partially motivated by the coverage
penalty, though we apply them at the post-translation stage to determine the confidence of the
decoder and the quality of the already made translation, which makes it applicable regardless of
which software or approach were used.
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Another closely related task is quality estimation. The dominating approach there is col-
lecting post-edits and training a machine learning model to predict the quality score or classify
translations into usable/not, near-perfect/not, etc (Bach et al., 2011; Felice and Specia, 2012).
The main similarity between our work and quality estimation is their usage of glass-box fea-
tures (i.e. information about the MT system or the decoder’s internal parameters). While our
approach does not cover all aspects of quality estimation, it requires no data or training and can
be applied to any language and neural machine translation system.

3 Penalizing Attention Disorders

Before describing the confidence metrics based on attention weights, here is a brief overview of
the NMT architecture where the attention weights come from.

3.1 Source of Attention
Our work is built around the encoder-decoder machine translation approach (Sutskever et al.,
2014; Cho et al., 2014) with an attention mechanism (Bahdanau et al., 2014). In this approach
the source tokens are learned to be represented by an encoder, which consists of an embedding
layer and a bi-directional LSTM or GRU layer (or 8, Wu et al., 2016b), the outputs of which
serve as the learned representation.

There is also a decoder that consists of another layer (or 8, ibid.) of LSTM/GRU cells, with
an output layer for predicting the softmax-encoded raw probability distribution of each output
word, one at a time. The state of the decoder layer(s) and thus the output distribution depends
on the previous recurrent states, the previously produced output word and a weighted sum of
the representations of the source sentence tokens. The weights in this sum are generated for
every output word by the attention mechanism, which is a feed-forward neural network with the
previous state of the decoder and each input word representation as input and the raw weight of
that word for the next state as output. Finally, the attention weights are normalized as follows:

αij =
exp(eij)∑
k exp(eik)

where eij is the raw predicted weight and αij – the final attention weight between the input
token j and output token i.

Once the encoder-decoder network has been trained, it can be used to produce translations
by predicting the probability for each next word, which can serve as the basis for sampling,
greedy search or beam search (Sennrich et al., 2017). We refer the reader for a complete de-
scription to (Bahdanau et al., 2014) and ourselves turn on to the main topic of the paper that
uses the weights αij to estimate the confidence of the translations.

Together with the translation, it is also possible to save the attention values between the
input tokens and each produced output token. These values can be interpreted as the influence
of the input token on the output token, or the strength of the connection between them. Thus,
weak or dispersed connections should intuitively indicate a translation with low confidence,
while high values and strong connections between one or two tokens on both sides should
indicate higher confidence. Next, we present our take at formalizing this intuition.

3.2 Measuring Attention
Figure 1 shows an example of a translation that has little or nothing to do with the input, a
frequent occurrence in NMT. Besides the text of the translation, it is clear already by looking at
the attention weights of this pair that the translation is weak:

• some input tokens (like the sentence-final full-stop) are most strongly connected to several
unrelated output tokens, in other words, their coverage is too high,
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Figure 1: Attention alignment visualization of a bad translation. Reference translation: 71
traffic accidents in which 16 persons were injured have happened in Latvia during the last 24
hours., hypothesis translation: the latest , in the last few days , the EU has been in the final day
of the EU ’s ” European Year of Intercultural Dialogue ”. CDP = −0.900, APout = −2.809,
APin = −2.137, Total = −5.846.

• most of the input token attentions, as well as some output token attentions, are highly
dispersed, without one or two clear associations on the counterpart.

On the other hand, a picture like Figure 2 intuitively corresponds to a good translation, with
strongly focused alignments. It is this intuition that our metrics formalize: penalizing transla-
tions with tokens with a total coverage of not just below but much higher than 1.0, as well as
tokens with a dispersed attention distribution.

Coverage Deviation Penalty
Previous work (Wu et al., 2016b) defines a coverage penalty, which is meant to punish transla-
tions for not paying enough attention to input tokens:

CP = β
∑
j

log(min(
∑
i

αji, 1.0)),

where i is the output token index, j – the input token index, β is used to control the influence of
the metric and CP – the coverage penalty.

The first part of our metric draws inspiration from the coverage penalty; however, it penal-
izes not just lacking attention but also too much attention per input token. The aim is to penalize
the sum of attentions per input token for going too far from 1.01, so tokens with total attention
of 1.0 should get a score of 0.0 on the logarithmic scale, while tokens with less attention (like
0.2) or more attention (like 2.5) should get lower values. We thus define the coverage deviation
penalty:

CDP = − 1

J

∑
j

log

(
1 + (1−

∑
i

αji)
2

)
,

where J is the length of the input sentence. The metric is on a logarithmic scale, and it is
normalized by the length of the input sentence in order to avoid assigning higher scores to
shorter sentences2. See examples of the CDP metric’s values on Figures 1 and 2.

1This could be replaced with the token’s expected fertility, which we leave for future work
2This is not required for choosing translations of the same sentence by the same system, but is required in our
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Figure 2: Attention alignment visualization of a good translation. Reference translation: He
was a kind spirit with a big heart., hypothesis translation: he was a good man with a broad
heart. CDP = −0.099, APout = −1.077, APin = −0.847, Total = −2.024.

Absentmindedness Penalty
However, it is not enough to simply cover the input, we conjecture that more confident output
tokens will allocate most of their attention probability mass to one or a small number of input
tokens. Thus the second part of our metric is called the absentmindedness penalty and targets
scattered attention per output token, where the dispersion is evaluated via the entropy of the
predicted attention distribution. Again, we want the penalty value to be 1.0 for the lowest
entropy and head towards 0.0 for higher entropies.

APout = −
1

I

∑
i

∑
j

αji · logαji

The values are again on the log-scale and normalized by the source sentence length I .
The absentmindedness penalty can also be applied to the input tokens after normalizing

the distribution of attention per input token, resulting in the counter-part metric APin. This is
based on the assumption that it is not enough to cover the input token, but rather the input token
should be used to produce a small number of outputs. See examples of both metric’s values on
Figures 1 and 2.

Finally, we combine the coverage deviation penalty with both the input and output absent-
mindedness penalties into a joint metric via summation:

confidence = CDP +APout +APin

Next, we evaluate the metrics directly against human judgments and indirectly by applying
them to filtering translations and plugging them into a sentence-level hybrid translation scheme.

3.3 Human Evaluation
It is clear that the defined metrics only paint a partial picture, since they rely on the attention
weights only. For instance, they do not evaluate the lexical correspondence between the source
and hypothesis, and more generally, being confident does not mean being right. We wanted to
find out how much confidence in our case correlates with translation quality.

experiments described in the next sections.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 303



To do so we asked human volunteers to perform pairwise ranking of translations from two
baseline NMT systems: one done with Nematus (Sennrich et al., 2017) and the other – with
Neural Monkey (Helcl and Libovickỳ, 2017). The translations and measurements were done
for English-Latvian and Latvian-English, using corpora from the news translation shared task
of WMT’2017; further details can be found in Section 4. We selected 200 random sentences
for both translation directions and these were given to native Latvian speakers for evaluation.
The MT-EQuAl (Girardi et al., 2014) tool was used for the evaluation task. The evaluators
were shown one source sentence at a time along with the two different translations. They
were instructed to assign one of five categories for each translation: ”worst”, ”bad”, ”ok”,
”good” or ”best”, noting that both may be categorized as equally ”good” or ”bad”, etc. Differing
judgments for the same sentence were averaged. All 200 sentences were annotated by at least
one human annotator.

It makes more sense to treat the results as relative comparisons, not absolute scores, as the
annotators only see two translations at a time. We use these comparisons to compute the Kendall
rank correlation coefficient (Kendall, 1938) by only looking at the pairs where human scores
differ. Since we only have comparisons for each pair and not between different sentences, the
coefficient is computed as

τ =
pos− neg
pos+ neg

,

where pos is the number of pairs where the metric agrees with the human judgment and neg is
the number of pairs where they disagree.

The results are presented in Table 1, and as we can see they indicate weak correlation, with
the absolute values of τ between 0.012 and 0.200.

Language pair CDP APin APout Overall
En→Lv 0.099 0.074 0.123 0.086
Lv→En -0.012 -0.153 -0.200 -0.153

Table 1: The Kendall’s Tau correlation between human judgments and the confidence scores.

Let us look closer at where the metrics disagree with human judgments. Figure 3 shows
an example of a translation which was rated highly by human annotators but poorly with our
metrics. While the sentence is a good translation, it does not follow the source word-by-word.
Some subword units and functional words do not have a clear alignment, even though they are
understood/generated correctly. This means that one problem with our metrics is that they might
be over-penalizing translations that deviate from a direct literal translation.

Next, we continue with the experiments of using our metrics to filter synthetic data and to
select translations in a hybrid MT scenario.
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Figure 3: Attention alignment visualization of a bad translation. Reference translation: a 28-
year-old chef who had recently moved to San Francisco was found dead in the stairwell of a
local mall this week ., hypothesis translation: a 28-year-old old man who has recently moved
to San Francisco has died this week ., CDP = −0.250, APout = −1.740, APin = −1.46,
Total = −3.45.

4 Filtering Back-translated Data

4.1 Baseline Systems and Data
Our baseline systems were trained with two NMT frameworks - Nematus (NT) (Sennrich et al.,
2017) and Neural Monkey (NM) (Helcl and Libovickỳ, 2017). For all NMT models we used a
shared subword unit vocabulary (Sennrich et al., 2016c) of 35000 tokens, clip the gradient norm
to 1.0 (Pascanu et al., 2013), dropout of 0.2, trained the models with Adadelta (Zeiler, 2012)
and performed early stopping after 7 days of training. For models with each NMT framework
we used the default settings as mentioned in the frameworks documentation:

• For NT models we used a maximum sentence length of 50, word embeddings of size 512,
and hidden layers of size 1000. For decoding with NT we used beam search with a beam
size of 12.

• For NM models we used a maximum sentence length of 70, word embeddings and hidden
layers of size 600. For decoding with NM a greedy decoder was used.

Training, development and test data for all systems in both language pairs and translation
directions was used from the WMT17 news translation task 3. For the baseline systems, we used
all available parallel data, which is 5.8 million sentences for En↔De and 4.5 million sentences
for En↔Lv.

4.2 Back-translating and Filtering
We used our baseline En→Lv and Lv→En NM and NT systems to translate all available Latvian
monolingual news domain data - 6.3 million sentences in total from News Crawl: articles
from 2014, 2015, 2016, and the first 6 million sentences from the English News Crawl 2016.
Much more monolingual data was available from other domains aside from news. Since the
development and test data was of the news domain, we only used that, considering it as in-
domain data for our systems.

3EMNLP 2017 Second Conference on Machine Translation - http://www.statmt.org/wmt17/

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 305



For each translation, we used the attention provided from the NMT system to calculate
our confidence score, sorted all translations according to the score and selected the top half of
the translations along with the corresponding source sentences as the synthetic parallel corpus.
We used only the full confidence score (combination of CDP, APout and APin) for filtering
instead of each individual score due to its smoother overall correlation with human judgments.
In between, we also removed any translation that contained any <unk> tokens.

To compare attention-based filtering with a different method, we trained a CharRNN4 lan-
guage model (LM) with 4 million news sentences from each of the target languages. We used
these LMs to get perplexity scores for all translations, order them and get the better half. Table
2 summarizes how much human evaluation overlaps with each of the filtering methods. The
final row indicates how much both filtering methods overlap with each other. While results
from either approach don’t look overly convincing, the LM-based approach has been proven
to correlate with human judgments close to the BLEU score and is a good evaluation method
for MT without reference translations (Gamon et al., 2005). Therefore the attention-based ap-
proach that does not require training of an additional model and overlaps with human judgments
to approximately the same level should be more desirable.

Filtering Method En→Lv Lv→En
LM-based overlap with human 58% 56%
Attention-based overlap with human 52% 60%
LM-based overlap with Attention-based 34% 22%

Table 2: Human judgment overlap results on 200 random sentences from the newsdev2017
dataset compared to filtering methods.

4.3 NMT with Filtered Synthetic Data

Figure 4: Automatic evaluation progression of Lv→En experiments on validation data. Orange
– baseline; dark blue — with full back-translated data; green – with LM-filtered back-translated
data; light blue – with attention-filtered back-translated data.

We shuffled each synthetic parallel corpus with the baseline parallel corpora and used
them to train NMT systems. In addition to the baseline and two types of filtered BT synthetic
data, we also trained a system with the full BT data for each translation direction. Figure 4

4Multi-layer Recurrent Neural Networks (LSTM, GRU, RNN) for character - level language models in Torch
https://github.com/karpathy/char-rnn
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shows a combined training progress chart for Lv→En on the full newsdev2017 dataset that was
used as the development set for training. Here the differences between all four approaches are
clearly visible. Further results on a subset of newsdev2017 and the full newstest2017 dataset
are summarized in Table 3. While for Lv→En and En↔De the attention-based approach is the
clear leader, for En→Lv it falls behind the LM filtered version. We were not able to identify a
clear reason for this and leave it for the future work. As expected, adding BT synthetic training
data allows to get higher BLEU scores in all cases. It can be observed that filtering out half of
the badly translated data and keeping only the best translations either does not decrease the final
output quality in some cases or even further increase the quality in others, when using the LM.
With filtering by attention, the results are more inconsistent - even higher in one direction while
deterioration in the other. A reason for this could be that for Lv→En attention-based filtering
the similarity with human judgments was higher than for En→Lv (Table 2), and it was also
more different from the LM-based one. While for the other direction it is the other way around.

BLEU
Dataset Dev Test Dev Test Dev Test Dev Test
System En→Lv Lv→En En→De De→En
Baseline 8.36 11.90 8.64 12.40 25.84 20.11 30.18 26.26
+ Full Synthetic 9.42 13.50 9.01 13.81 28.97 22.68 34.82 29.35
+ LM-Filtered Synthetic 9.75 13.52 9.45 14.30 29.59 23.48 34.47 29.42
+ Attn.-Filtered Synth. 8.99 12.76 11.23 14.83 30.19 23.16 35.19 29.47

Table 3: Experiment results in BLEU for translating between English↔Latvian with different
types of back-translated data using development (200 random sentences from newsdev2017)
and test (newstest2017) datasets.

5 Attention-based Hybrid Decisions

We translated the development set with both baseline systems for each language pair in each
direction. The hybrid selection of the best translation was performed similarly to filtering,
where we discarded the worst-scoring half of the translations. In the hybrid selection, we used
the same score to compare both translations of a source sentence and choose the better one.
Results of the hybrid selection experiments are summarized in Table 4. For translating between
En↔Lv, where the difference between the baseline systems is not that high (0.06 and 1.55
BLEU), the hybrid method achieves some meaningful improvements. However, for En↔De,
where differences between the baseline systems are bigger (3.46 and 4.46 BLEU), the hybrid
drags both scores down.

BLEU
System En→De De→En En→Lv Lv→En
Neural Monkey 18.89 26.07 13.74 11.09
Nematus 22.35 30.53 13.80 12.64
Hybrid 20.19 27.06 14.79 12.65
Human 23.86 34.26 15.12 13.24

Table 4: Hybrid selection experiment results in BLEU on the development dataset (200 random
sentences from newsdev2017).

The last row of the results Table 4 shows BLEU scores for the scenario when human an-
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notator preferences were used to select each output sentence. An overview of human evaluator
preferred translation selections is visible in Table 5. The results show that out of all translations
the human evaluators deliberately prefer one or the other system. Aside from En→Lv, where
a slight tendency towards Neural Monkey translations can be observed, all others look more or
less equal. This highly contrasts with the BLEU scores from Table 4, where in both transla-
tion directions from English human evaluators prefer the lower-scoring system more often than
the higher-scoring one. The final row of Table 5 shows how much our attention-based score
matches the human judgments in selecting the best translation.

System En→De De→En En→Lv Lv→En
Neural Monkey 54% 42% 61.5% 47%
Nematus 46% 58% 38.5% 53%
Overlaps with hybrid selection 57% 47% 62.5% 51%

Table 5: Human evaluation results on 200 random sentences from the newsdev2017 dataset
compared to attention-hybrid selection.

6 Conclusions

In this paper, we described how attentional data from neural machine translation systems can be
useful for more than just visualizations or replacing specific tokens in the output. We introduced
an attention-based confidence score that can be used for judging NMT output. Two applications
of using attentional data were investigated and compared to similar approaches. We used a
smaller dataset to perform manual evaluation and compared that to all automatically obtained
results. Our experiments showed interesting results and some increases in automated evaluation,
as well as a good correlation with human judgments.

In addition to the methods described in this paper, we release open-source scripts5 for (1)
scoring, ordering and filtering NMT translations, (2) performing hybrid selections between two
different NMT outputs of the same source, and (3) software for inspecting attention alignments
that the NMT systems produce in the translation process (used for Figures 1 and 2). We also
provide all development subsets that we used for manual evaluation with anonymized human
annotations.

7 Future Work

This paper introduced the first steps in using NMT attention for less obvious intentions. It
seemed that the attention score can complement the LM perplexity score in distinguishing
good from bad translations. An idea for future experiments could be combining these scores to
achieve a higher correlation with human judgments.

Additional improvements can be made to the hybrid decisions as well. Since the score
represents the systems confidence, a badly trained NMT system can be more confident about
a bad translation than a good system about a decent translation. While a hybrid combination
of two similar quality NMT systems did put the attention score to good use, in the case with
different quality systems the confidence of the weaker one was a pitfall. This indicates that the
confidence score could be used in ensemble with a quality estimation score or used as a feature
in training an MT quality estimation system.

For filtering synthetic back-translated data we dropped the worst-scoring 50% of the data,
but this threshold may not be optimal for all scenarios. Several paths worth more exploration

5Confidence Through Attention - https://github.com/M4t1ss/ConfidenceThroughAttention
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include exploring the effects of different static thresholds (e.g. 30% or 70%) or clustering
the data by confidence score and dropping the lowest-scoring one or two clusters. Another path
worth exploring for filtering would be to see how filtering by each individual score (CDP,APin,
APout) compares to filtering by confidence.

In the near future, we also plan to supplement an attention inspection tool so that it displays
confidence metrics and additional visualizations based on these scores.
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Abstract

The main aim of this paper is to investigate automatic quality assessment for spoken language
translation (SLT). More precisely, we investigate SLT errors that can be due to transcription
(ASR) or to translation (MT) modules. This paper investigates automatic detection of SLT er-
rors using a single classifier based on joint ASR and MT features. We evaluate both 2-class
(good/bad) and 3-class (good/badASR/badMT ) labeling tasks. The 3-class problem necessi-
tates to disentangle ASR and MT errors in the speech translation output and we propose two
label extraction methods for this non trivial step. This enables - as a by-product - qualitative
analysis on the SLT errors and their origin (are they due to transcription or to translation step?)
on our large in-house corpus for French-to-English speech translation.

Index Terms: Spoken Language Translation, Automatic Speech Recognition, Confidence Esti-
mation, Quality Estimation, ASR and MT errors detection.

1 Introduction

This paper addresses a relatively new quality assessment task: error detection in spoken
language translation (SLT) using both automatic speech recognition (ASR) features and ma-
chine translation (MT) features. To our knowledge, the first attempts to design error detection
for speech translation, using both ASR and MT features, are our own work (Besacier et al.,
2014, 2015) which is further extended in this paper submission.

Contributions (1) This paper extends previous work (Besacier et al., 2014, 2015) in 2-
class (good/bad) error detection in SLT using a single classifier based on joint ASR and MT
features (2) in order to disentangle ASR and MT errors in SLT, we extend error detection to a
3-class problem (good/badASR/badMT ) where we try to find the source of the SLT errors (3)
two methods are compared for setting such 3-class labels on our corpus and a first attempt to
automatically detect errors and their origin in a SLT output is presented at the end of this paper.

Outline The outline of this paper goes simply as follows: Section 2 formalizes error detec-
tion in SLT and presents our experimental setup. Section 3 proposes two methods to disentangle
ASR and MT errors in SLT output and presents statistics on a large French-English corpus. Sec-
tion 4 presents our 2-class and 3-class error detection results while section 5 concludes this work
and gives some perspectives.
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2 Automatic Error Detection in Speech Translation

2.1 Formalization
A quality estimation (or error detection) component in speech translation solves the equa-

tion:

q̂ = argmax
q
{pSLT (q|xf , f, ê)} (1)

where xf is the given signal in the source language; ê 1 = (e1, e2, ..., eN ) is the most
probable target language sequence from the spoken language translation (SLT) process; f =
(f1, f2, ..., fM ) is the transcription of xf ; q = (q1, q2, ..., qN ) is a sequence of error labels on
the target language and qi ∈ {good, bad} 2. This is a sequence labeling task that can be solved
with several machine learning techniques such as Conditional Random Fields (CRF) (Lafferty
et al., 2001). However, for that, we need a large amount of training data for which a quadruplet
(xf , f, e, q) is available.

As it is much easier to obtain data containing either the triplet (xf , f, q) (ASR output
+ manual references and error labels inferred from WER) or the triplet (f, e, q) (MT output +
manual post-editions and error labels inferred using tools such as TERp-A (Snover et al., 2008))
we can also recast error detection with the following equation:

q̂ = argmax
q
{pASR(q|xf , f)α ∗ pMT (q|e, f)1−α} (2)

where α is a weight giving more or less importance to error detector on transcription compared
to error detector on translation.

2.2 Dataset, ASR and MT Modules
2.2.1 Dataset

In this paper, we use our in-house corpus made available on a github repository 3 for repro-
ductibility. The dev set and tst set of this corpus were recorded by french native speakers. Each
sentence was uttered by 3 speakers, leading to 2643 and 4050 speech recordings for dev set
and tst set, respectively. For each speech utterance, a quintuplet containing: ASR output (fhyp),
verbatim transcript (fref ), text translation output (ehypmt

), speech translation output (ehypslt )
and post-edition of translation (eref ) is available. The total length of the union of dev and tst is
16h52 (42 speakers - 5h51 for dev and 11h01 for tst).

2.2.2 ASR Systems
To obtain the speech transcripts (fhyp), we built a French ASR system based on KALDI

toolkit (Povey et al., 2011). Acoustic models are trained using several corpora (ESTER, RE-
PERE, ETAPE and BREF120) representing more than 600 hours of french transcribed speech.
We use two 3-gram language models trained on French ESTER corpus (Galliano et al., 2006) as
well as on French Gigaword (vocabulary size are respectively 62k and 95k). ASR systems LM
weight parameters are tuned through WER on dev corpus. Table 1 presents the performances
obtained by both ASR systems.

2.2.3 SMT System
We used moses phrase-based translation toolkit (Koehn et al., 2007) to translate French

ASR into English (ehyp). This medium-size system was trained using a subset of data provi-

1. written simply e for convenience in any other equations
2. at this point qi takes two values (G/B) but will evolve to 3 labels later on in section 3
3. https://github.com/besacier/WCE-SLT-LIG/
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ded for IWSLT 2012 evaluation (Federico et al., 2012): Europarl, Ted and News-Commentary
corpora. The total amount is about 60M words. We used an adapted target language model trai-
ned on specific data (News Crawled corpora) similar to our evaluation corpus (see (Potet et al.,
2010)).

2.3 Obtaining Error Labels for SLT
After building an ASR system, we have a new element of our desired quintuplet: the ASR

output fhyp. It is the noisy version of our already available verbatim transcripts called fref . This
ASR output (fhyp) is then translated by the SMT system (Potet et al., 2010) already mentioned
in subsection 2.2.3. This new output translation is called ehypslt and it is a degraded version of
ehypmt

(translation of fref ). To infer the quality (G, B) labels of our speech translation output
ehypslt , we use TERp-A toolkit (Snover et al., 2008) between ehypslt and eref (more details can
be found in our former paper (Besacier et al., 2015)). Table 1 summarizes baseline ASR, MT
and SLT performances obtained on our corpora, as well as the distribution of good (G) and bad
(B) labels inferred for both tasks. Logically, the percentage of (B) labels increases from MT to
SLT task in the same conditions and it decreases when ASR system improves.

Task ASR (WER) MT (BLEU) % G (good)) % B (bad)
dev set tst set dev set tst set dev set tst set dev set tst set

MT 49.13% 57.87% 76.93% 81.58% 23.07% 18.42%

SLT (ASR1) 21.86% 17.37% 26.73% 36.21% 62.03% 70.59% 37.97% 29.41%

SLT (ASR2) 16.90% 12.50% 28.89% 38.97% 63.87% 72.61% 36.13% 27.39%

Table 1. ASR, MT and SLT performances on our dev set and tst set.

3 Disentangling ASR and MT Errors

In previous section, we only extract good/bad labels from the SLT output while it might
be interesting to move from a 2-class problem to a 3-class problem in order to label our SLT hy-
potheses with one of the 3 following labels: good (G), asr-error (B_ASR) and mt-error (B_MT).
Before training automatic systems for error detection, we need to set such 3-class labels on our
dev and test corpora. For that, we propose, in the next sub-sections, two slightly different me-
thods to extract them. The first one is based on word alignments between SLT and MT and the
second one is based on a simpler SLT-MT error subtraction.

3.1 Method 1 - Word Alignments between MT and SLT
In machine translation, fertility of a source word designs to how many output words it

translates. If we transpose this definition to our disentangling problem, then fertility of an MT
error designs how many erroneous words - in the SLT output - it is aligned to. From this simple
definition, we derive our first way (Method 1) to generate 3-class annotations.

Let êslt = (e1, e2, . . . , en): the set of SLT hypotheses (ehypslt ); ekj denotes the jth word
in the sentence ek, where 1 ≤ k ≤ n

Let êmt = (e′1, e
′
2, . . . , e

′
n): the set of MT hypotheses (ehypmt

); e′ki denotes the ith word
in the sentence e′k, where 1 ≤ k ≤ n

Let L = (l1, l2, . . . , ln): the set of the word alignments from sentences in ehypslt to related
sentences in ehypmt , where lk contains the word alignments from sentence ek to relevant sen-
tence e′k, 1 ≤ k ≤ n; (ekj , e

′
ki
) = True, if there is one word alignment between ekj and e′ki ;

(ekj , e
′
ki
) = False, otherwise.
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Our algorithm for Method 1 is defined as Algorithm 1. This method relies on word align-
ments and uses MT labels. We also propose a simpler method in the next section.

Algorithm 1 Method 1 - Using word alignments between MT and SLT

list_labels_result← empty_list
for each sentence ek ∈ êslt do

list_labels_sent← empty_list
for j ← 1 to NumberOfWords(ek) do

if label(ekj ) = ‘G’ then
add ‘G’ to list_labels_sent

else if Existed Word Alignment (ekj , e
′
ki
) and label(e′ki)=‘B’ then

add ‘B_MT ’ to list_labels_sent
else

add ‘B_ASR’ to list_labels_sent
end if

end for
add list_labels_sent to list_labels_result

end for

3.2 Method 2 - Subtraction between SLT and MT Errors
Our second way to extract 3-class labels (Method 2) focuses on the differences between

SLT hypothesis (ehypslt ) and MT hypothesis (ehypmt ). We call it subtraction between SLT and
MT errors because we simply consider that errors present in SLT and not present in MT are
due to ASR. This method has a main difference with the previous one: it does not rely on the
extracted labels for MT.

Our intuition is that the number of mt-errors estimated will be slightly lower than for
Method 1 since we first estimate the number of asr-errors and the rest is considered - by default
- as mt-errors.

With the same notations of Method 1, but highlighting that L = (l1, l2, . . . , ln) is the
set of alignments through edit distance between ehypslt and ehypmt

, where lki corresponds to
“Insertion”, “Substitution”, “Deletion” or “Exact”. Our algorithm for Method 2 is defined as
follows.

3.3 Example with 3-label Setting
Table 2 gives the edit distance between a SLT and MT hypothesis while table 3 shows how

Method 1 and Method 2 set 3-class labels to the SLT hypothesis. One transcript (fhyp) has 1
error. This drives 3 B labels on SLT output (ehypslt ), while ehypmt

has only 2 B labels. As can
be seen in the cases of Method 1 and Method 2, we respectively have (1 B_ASR, 2 B_MT) and
(2 B_ASR, 1 B_MT).

ehypslt surgeons in los angeles it is said

ehypmt
surgeons in los angeles ** have said

edit op. Exact Exact Exact Exact Insertion Substitution Exact

Table 2. Example of edit distance between SLT and MT.
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Algorithm 2 Method 2 - Subtraction between SLT and MT errors

list_labels_result← empty_list
for each sentence ek ∈ êslt do

list_labels_sent← empty_list
for j ← 1 to NumberOfWords(ek) do

if label(ekj ) = ‘G’ then
add ‘G’ to list_labels_sent

else if NameOfWordAlignment(lki) is ‘Insertion’ OR ‘Substitution’ then
add ‘B_ASR’ to list_labels_sent

else
add ‘B_MT ’ to list_labels_sent

end if
end for
add list_labels_sent to list_labels_result

end for

fref les chirurgiens de los angeles ont dit

fhyp les chirurgiens de los angeles on dit
labels ASR G G G G G B G

ehypmt
surgeons in los angeles have said

labels MT G B G G B G

ehypslt surgeons in los angeles it is said
labels SLT (2-label) G B G G B B G
labels SLT (Method 1) G B_MT G G B_ASR B_MT G
labels SLT (Method 2) G B_MT G G B_ASR B_ASR G

eref the surgeons of los angeles said

Table 3. Example of quintuplet with 2-label and 3-label.

These differences are due to slightly different algorithms for label extraction. As Table
3 presents, “is” (SLT hypothesis) is aligned to “have” (MT hypothesis) and “have” (MT hy-
pothesis) is labeled by “B”. It can therefore be assumed that “is” (SLT hypothesis) should be
annotated with word-level labels by B_MT according to Method 1. However, using Method 2,
“is” (SLT hypothesis) could be labeled by B_ASR because the type of word alignment between
“is” (SLT hypothesis) and “have” (MT hypothesis) is substitution (S), as shown in Table 2.

3.4 Statistics with 3-label Setting on the Whole Corpus

Table 4 presents the summary statistics for the distribution of good (G), asr-error (B_ASR)
and mt-error (B_MT) labels obtained with both label extraction methods. We see that both
methods give similar statistics but slightly different rates of B_ASR and B_MT.

As can be seen from Table 4, it is interesting to note that while ASR system improves from
ASR1 to ASR2, the rate of B_ASR labels logically decreases by more than 2 points, while the
rate of B_MT remains almost stable (less than 1 point difference) which makes sense since the
MT system is the same in both ASR1 and ASR2. These statistics show that intersection between
both methods is probably a good estimation of disentangled ASR and MT errors in SLT.
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Task - ASR1 dev set tst set
%G %B_ASR %B_MT %G %B_ASR %B_MT

label/m1:Method 1 62.03 19.09 18.89 70.59 14.50 14.91
label/m2:Method 2 62.03 22.49 15.49 70.59 16.62 12.79
label/same(m1, m2) 62.03 18.09 14.49 70.59 13.58 11.88
label/diff(m1, m2) 0 1.00 4.40 0 0.92 3.03

Task - ASR2 dev set tst set
%G %B_ASR %B_MT %G %B_ASR %B_MT

label/m1:Method 1 63.87 16.89 19.23 72.61 11.92 15.47
label/m2:Method 2 63.87 19.78 16.34 72.61 13.58 13.81
label/same(m1, m2) 63.87 16.05 15.50 72.61 11.12 13.01
label/diff(m1, m2) 0 0.84 3.73 0 0.80 2.46

Table 4. Statistics with 3-label setting for ASR1 and ASR2.

3.5 Qualitative Analysis of SLT Errors
Our new 3-label setting procedure allows us to analyze the behavior of our SLT system.

fref peter frey est né le quatre août mille neuf cent cinquante sept à bingen
fhyp1 pierre ferait aimé le quatre août mille neuf cent cinquante sept à big m
fhyp2 pierre frey est né le quatre août mille neuf cent cinquante sept à big m
ehypmt peter frey was born on 4 august 1957 to bingen .
ehypslt1 pierre would liked the four august thousand nine hundred and fifty seven

to big m
ehypslt2 pierre frey is born the four august thousand nine hundred and fifty seven to

big m
eref peter frey was born on august 4th 1957 in bingen .

Table 5. Example 1 - SLT hypothesis annotated with two methods - having a few asr-errors,
a few mt-errors and many slt-errors such as 5 B_ASR1, 3 B_ASR2, 2 B_MT, 14 B_SLT1, 12
B_SLT2.

We can observe sentences with Table 5 presents, as an example, few ASR and MT errors
leading to many SLT errors. Indeed, this is a good way of detecting flaws in the SLT pipeline
such as bad post-processing of the SLT output (numerical or text dates, for instance).

As shown in Table 6, on the contrary, there are many ASR errors leading to few SLT
errors (ASR errors with few consequences such as morphological substitutions - for instance in
French: de/des, déficit/déficits, budgétaire/budgétaires).

Finally, ASR errors as presented in Table 7 have different consequences on SLT quality (on
a sample sentence, 2 ASR errors of system 1 and 2 lead to 14 and 9 SLT errors, respectively).

Figure 1 shows how our speech utterances are distributed in the two-dimensional (BASR,
BMT ) error space.

4 Automatic Error Detection for SLT

In this paper, we use Conditional Random Fields (Lafferty et al., 2001) (CRFs) as our ma-
chine learning method, with WAPITI toolkit (Lavergne et al., 2010), to train our error detector
based on MT and ASR engineered features. For ASR, we extract 9 features, which come from
the ASR graph, from language model scores and from a morphosyntactic analysis. These detai-
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Figure 1. Example of the rate (%) of ASR errors (x-axis) versus (%) MT errors (y-axis) - for
dev/ASR1 and tst/ASR2.

fref malheureusement le système européen de financement gouvernemental direct
est

fhyp1 malheureusement le système européen financement gouvernementale directe
et

fhyp2 malheureusement le système européen de financement gouvernemental direct
est

ehypmt
unfortunately , the european system of direct government funding is

ehypslt1 unfortunately the european system direct government funding
ehypslt2 unfortunately the european system of direct government funding is
eref unfortunately , the european system of direct government funding is

fref victime de la croissance économique européenne lente et des déficits budgé-
taires

fhyp1 victimes de la croissance économique européenne venant de déficit budgé-
taire

fhyp2 victime de la croissance économique européenne venant des déficits budgé-
taires

ehypmt
a victim of european economic growth slow and budget deficits .

ehypslt1 and victims of european economic growth from budget deficit
ehypslt2 a victim of european economic growth from the budget deficits
eref a victim of slow european economic growth and budget deficits .

Table 6. Example 2 - SLT hypothesis annotated with two methods - having many asr-errors,
a few mt-errors and a few slt-errors such as 8 B_ASR1, 1 B_ASR2, 1 B_MT, 2 B_SLT1, 2
B_SLT2.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 318



fref nous ne comprenons pas ce qui se passe chez les jeunes pour qu’ ils trouvent
fhyp1 nous ne comprenons pas ceux qui se passe chez les jeunes pour qu’ ils trouvent
fhyp2 nous ne comprenons pas ce qui se passe chez les jeunes pour qu’ il trouve
ehypmt

we do not understand what is happening among young people for that
ehypslt1 we do not understand those who happens among young people for that
ehypslt2 we do not understand what is happening among young people
eref we do not understand what is happening in young people ’s mind for them

fref amusant de maltraiter gratuitement un animal sans défense qui nous donne
fhyp1 amusant de maltraité gratuitement un animal sans défense qui nous
fhyp2 amusant de maltraiter gratuitement un animal sans défense qui nous donne
ehypmt

they are fun to mistreat free a defenceless animal
ehypslt1 they find fun free mistreated a defenceless animal
ehypslt2 to find it amusing to mistreat free a defenceless animal
eref to find amusing to mistreat defenceless animals without reason ,

fref de l’ affection de l’ amitié et nous tient compagnie
fhyp1 de l’ affection de l’ amitié nous tient compagnie
fhyp2 de l’ affection de l’ amitié nous tient compagnie
ehypmt

which gives us the affection , friendship and keeps us airline .
ehypslt1 which we affection of friendship we takes company
ehypslt2 which gives us the affection of friendship we takes company
eref which gives us love , friendship and companionship .

Table 7. Example 3 - SLT hypothesis annotated with two methods - having the same number
of asr-errors, but the different number of slt-errors extracted from ASR1 and ASR2 such as 2
B_ASR1, 2 B_ASR2, 12 B_MT, 14 B_SLT1, 9 B_SLT2.

led features could be found in (Besacier et al., 2014). For MT, we use a total of 24 major feature
types which can be extracted with our word confidence estimation toolkit for MT (more details
are given in (Servan et al., 2015)).

4.1 Experiments on 2-class Error Detection

Exp MT+ASR feat. Joint feat.
pASR(q|xf , f)α p(q|xf , f, e)
∗pMT (q|e, f)1−α

F-avg1 (ASR1) 58.07% 64.90%
F-avg2 (ASR2) 53.66% 64.17%

Table 8. Error Detection Performance (2-label) on SLT ouptut for tst set (training is made on
dev set).

In this experiment, we evaluate the performance of our classifiers by using the average
between the F-measure for good labels and the F-measure for bad labels that are calculated
by the common evaluation metrics: Precision, Recall and F-measure for good/bad labels. Since
two ASR systems are available, F-avg1 is obtained for SLT based on ASR1 whereas F-avg2 is
obtained for SLT based on ASR2. The classifier is evaluated on the tst part of our corpus and
trained on the dev part.
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We report in Table 8 the baseline error detection results obtained using both MT and ASR
features for a 2-class problem (error detection). More precisely we evaluate two different ap-
proaches (combination and joint):

• First system (MT+ASR feat.) combines the output of two separate classifiers based on ASR
and MT features. In this approach, ASR-based confidence score of the source is projected
to the target SLT output and combined with the MT-based confidence score as shown in
Equation 2 (we did not tune the α coefficient and set it a priori to 0.5).

• Second system (joint feat.) trains a single error detection system for SLT (evaluating
p(q|xf , f, e) as in Equation 1 using joint ASR and MT features. ASR features are pro-
jected to the target words using automatic word alignments.

Table 8 shows that joint ASR and MT features improve error detection performance over
the use of simple combination (MT+ASR). Based on this result, only the joint approach is used
in our 3-class experiments of next section. We also observe that F-measure decreases when ASR
WER is lower (F-avg2<F-avg1 while WERASR2 < WERASR1). So error detection for SLT
might be more complicated as ASR system improves.

These observations lead us to investigate the behaviour of our WCE approaches for a large
range of good/bad decision threshold.

While the previous tables provided WCE performance for a single point of interest
(good/bad decision threshold set to 0.5), the curves of Figure 2 show the full picture of our
WCE systems (for SLT) using speech transcriptions systems ASR1 and ASR2, respectively.
We observe that the classifier based on ASR features has a very different behaviour than the
classifier based on MT features which explains why their simple combination (MT+ASR) does
not work very well for the default decision threshold (0.5). However, for threshold above 0.75,
the use of both ASR and MT features is slightly beneficial. This is interesting because higher
thresholds improves the F-measure on bad labels (so improves error detection). Both curves are
similar whatever the ASR system used. These results suggest that with enough development
data for appropriate threshold tuning (which we do not have for this very new task), the use of
both ASR and MT features should improve error detection in speech translation (blue and red
curves are above the green curve for higher decision threshold 4).

4.2 Experiments on 3-class Error Detection
We report in Table 9 our first attempt to build an error detection system in SLT as a 3-class

problem (joint approach only). We made our experiment by training and evaluating the model
on Intersection(m1, m2) which corresponds to high confidence in the labels 5. We compared two
different approaches: One-Step is a single classifier for the 3-class problem while Two-Step first
applies the 2 class (G/B) system and a second classifier distinguishes BASR and BMT errors.
Not much difference in F-measure is observed between both approaches. Table 10 also presents
the confusion matrix between BASR and BMT for the correctly detected (true) errors. Despite
the relatively low F-scores of table 9, we see that our 3-labels classifier obtains encouraging
confusion matrices in order to automatically disentangle BASR and BMT on true errors.

5 Conclusions

This paper proposed to disentangle ASR and MT errors in speech translation. The binary
error detection problem was recast as a 3-class labeling problem (good, asr-error, mt-error).
First, two methods were proposed for the non trivial label setting and it was shown that both give

4. Corresponding to optimization of the F-measure on bad labels (errors).
5. However, we observed (results not reported here) that the use of different label sets (Method 1, Method 2,

Intersection(Method 1, Method 2) does not have a strong influence on the results.
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Figure 2. Evolution of system performance (y-axis - F-mes1 - ASR1 and F-mes2 - ASR2) for
tst corpus (4050 utt) along decision threshold variation (x-axis) - training is made on dev corpus
(2643 utt).
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2-class 3-class
Full Corpus Intersection Corpus (m1, m2)

One-Step Two-Step
ASR1 ASR2 ASR1 ASR2 ASR1 ASR2

FG 81.79 83.17 FG 85.00 85.00 84.00 85.00
FB 48.00 45.17 FB_ASR 44.00 42.00 44.00 42.00

FB_MT 14.00 15.00 16.00 17.00
Favg 64.90 64.17 Favg 47.67 47.33 48.00 48.00

Table 9. Error Detection Performance (2-label vs 3-label) on SLT output for tst set (training is
made on dev set).

(1) Ref \ Hyp ASR1 ASR2
B_ASR B_MT B_ASR B_MT

B_ASR 85.75% 14.25% 81.57% 18.43%
B_MT 44.46% 55.54% 34.53% 65.47%

(2) Ref \ Hyp ASR1 ASR2
B_ASR B_MT B_ASR B_MT

B_ASR 83.14% 16.86% 80.02% 19.98%
B_MT 49.41% 50.59% 41.49% 58.51%

Table 10. Confusion Matrix on Correctly Detected Errors Subset for 3-class (1) One-Step; (2)
Two-Step.

consistent results. Then, automatic detection of error types, using joint ASR and MT features,
was evaluated and encouraging results were displayed on a French-English speech translation
task. We believe that such a new task (not only detecting errors but also their cause) is interesting
to build better informed speech translation systems, especially in interactive speech translation
use cases.
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Abstract
Temporality has significantly contributed to various aspects of Natural Language
Processing applications. In this paper, we determine the extent to which temporal
orientation is preserved when a sentence is translated manually and automatically
from the Hindi language to the English language. We show that the manually and
automatically identified temporal orientation in English translated (both manual
and automatic) sentences provides a good match with the temporal orientation of
the Hindi texts. We also find that the task of manual temporal annotation becomes
difficult in the translated texts while the automatic temporal processing system man-
ages to correctly capture temporal information from the translations.

1 Introduction
There is a considerable academic and commercial interest in processing time infor-
mation in text, where that information is expressed either explicitly, implicitly, or
connotatively. Recognizing such information and exploiting it for Natural Language
Processing (NLP) and Information Retrieval (IR) tasks are important features that
can significantly improve the functionality of NLP/IR applications such as event time-
line generation, question answering, and automatic summarization (Mani et al., 2005;
Campos et al., 2014).

Earlier studies on temporal information processing have mainly focused on iden-
tifying temporal expressions fostered by TempEval challenges (Verhagen et al., 2010;
UzZaman et al., 2013). More recently, new trends have emerged in the context of human
temporal orientation, which refers to individual differences in the relative emphasis one
places on the past, present, or future (Zimbardo and Boyd, 2015). Past studies have es-
tablished consistent links between temporal orientation and demographic factors such as
age, sex, gender, education, and psychological traits (Webley and Nyhus, 2006; Adams
and Nettle, 2009; Schwartz et al., 2013; Zimbardo and Boyd, 2015). In order to create a
measure of user-level human temporal orientation measure, a message-level1 temporal

1Only the English message is considered from microblogs.
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classifier of past, present, and future is used. For instance, the following microblog post
“can’t wait to get a pint tonight” is automatically tagged as future by the temporal
classifier. Successful features include timexes, specific temporal (past, present, future)
words from a commercial dictionary, but also n-grams.

Many tasks in NLP are language-dependent, i.e. the same approach cannot be ap-
plied across different languages. In this case, one naive way of temporality detection is
to translate the text automatically into the desired language and then apply any tempo-
rality detector system. However, Machine Translation (MT) itself is a challenging task
and often the meaning, sentiment (Salameh et al., 2015; Lohar et al., 2017), temporarily
of a text may not be preserved in the target language.

In this paper, we discuss the degree of preservation of underlying temporal orien-
tation of a sentence when it is translated from Hindi to English. We use Hindi and
English temporality analysis systems (described in Section 6.2) as well as a state-of-the-
art Hindi-to-English translation system (Koehn et al., 2003). From our experiments, we
attempt to analyze all the possible cases and answer the following questions:

1. What is the accuracy of temporality prediction by an English temporality analysis
system when Hindi texts are translated into English?

2. How good are these predictions when compared to the Hindi temporality system?

3. What is the loss in the temporality predictability when translating the Hindi text
into English automatically vs. manually?

4. What is the difficulty level to determine temporality by humans in automatically
translated texts from Hindi to English?

5. Which is better in detecting temporality of the Hindi text in the translated En-
glish text: (a) human temporal annotation of the translated text or (b) automatic
temporality analysis of the translated text?

We know that linguistic divergences between a pair of languages play significant
role while translating from one language to the other language, and hence it has a
significant impact on the accuracy of an automatic computational model. Our specific
goal here is to analyse the temporality predictability of the Hindi text after translation.
However, we confer that similar experiments can be validated for other language pairs
to determine the impact of translation on temporality.

We show the percentage of temporality preservation in the translated English sen-
tences, with respect to the temporality of Hindi sentences. We also show that both
manual and automatic translations produce a change of temporality from that of the
Hindi texts; past and present sentences tends to be translated into sentences of future
time. Our further analysis shows that some characteristics in the automatically trans-
lated text mislead humans to correctly detect the temporality of the source text, and
some of those were correctly classified by the automatic temporal analysis system.

Our contributions can be summarized as follows: i). to the best of our knowl-
edge this is the first systematic attempt which presents a study whether temporality
is preserved after translation; ii). we prepare a benchmark setup by creating three an-
notated datasets- Hindi texts, manual and automatic translated English texts labeled
with three temporal classes, namely past, present and future; and iii). detecting the
change of temporality in both manually a automatically translated sentences.
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2 Related Works
Temporality has recently received increased attention in NLP and IR. The introduction
of the TempEval task (Verhagen et al., 2009) and subsequent challenges (TempEval-2
and -3) in the Semantic Evaluation workshop series have clearly established the impor-
tance of time in dealing with different NLP tasks.

According to Metzger (2007), time is one of the key five aspects that determines a
document credibility besides relevance, accuracy, objectivity and coverage. Given this,
the value of information or its quality is intrinsically time-dependent. As a consequence,
a new research field called Temporal Information Retrieval (T-IR) has emerged and deals
with all classical IR tasks such as crawling (Kulkarni et al., 2011), indexing (Anand
et al., 2012) or ranking (Kanhabua et al., 2011) from the viewpoint of time. From an
application perspective of T-IR, Campos et al. (2014) proposed a solution for temporal
classification of queries by identifying the top relevant dates in web snippets with respect
to a given implicit temporal query, with temporal disambiguation performed through
a distributional metric called GTE. Competitions like the NTCIR-11 Temporalia task
(Joho et al., 2014) further pushed this idea and proposed to distinguish whether a
given query is related to past, recency, future or atemporal. In order to push forward
further research in temporal NLP and IR, Dias et al. (2014) developed TempoWordNet
(TWn), an extension of WordNet (Miller, 1995), where each synset is augmented with
its temporal connotation (past, present, future, or atemporal). Same kind of approach
was followed for Hindi to create a lexical resource, namely TempoHindiWordNet (Pawar
et al., 2016).

At the same time, there has been quite a few works on MT involving the Hindi-
English language pair. Most of these systems aim to translate from English to Hindi
or Indian languages (Dave et al., 2001; Sinha and Jain, 2003; Sinha and Thakur, 2005;
Ananthakrishnan et al., 2006; Dungarwal et al., 2014; Sachdeva et al., 2014; Sen et al.,
2016). One of the major challenges in MT between Hindi to English is the syntac-
tic divergence. English follows the word order of Subject-Verb-Object (SVO) whereas
Hindi follows Subject-Object-Verb (SOV). Ramanathan et al. (2008) have shown that
simple syntactic transformation of the English language to meet the syntax of Hindi
can improve translation quality. For our Hindi-English translation system, we follow
the standard phrase based statistical MT (Koehn et al., 2003) approach.

3 Methodology Overview
We present our experimental setup to study the impact of translation on temporality,
as follows:

1. Collect a Hindi dataset (Hi) described in Section 4.2.

2. Manually translate Hi into English (En). We refer to these English translations as
En(Manl.Trans.).

3. Automatically translate Hi into En. We refer to these English translations as
En(Auto.Trans.).

4. Manually annotate Hi for temporality. We call these Hi(Manl.Tempo.).

5. Manually annotate all English datasets (En(Manl.Trans.) and En(Auto.Trans.))
for temporality. We call those En(Manl.Trans., Manl.Tempo.) and
En(Auto.Trans., Manl.Tempo), respectively.
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Figure 1: Proposed Architecture.

6. Run a Hindi temporality detector on Hi, creating Hi(Auto.Tempo.)

7. Run an English temporality detector on all the English datasets (En(Manl.Trans.)
and En(Auto.Trans.)) creating En(Manl.Trans., Auto.Tempo.) and
En(Auto.Trans., Auto.Tempo.), respectively.

8. The procedural steps are depicted in Figure 1.

After creating various temporality-labeled datasets, we can compare the pairs of
datasets to draw inferences. For example, comparison of the labels for En(Manl.Trans.,
Manl.Tempo.) and En(Auto.Trans., Manl.Tempo.) will show how the automatic trans-
lation affects the manual temporal levels with respect to the manual translation. The
comparison will also show, for example, the extent to which a past sentence tends to be
translated as a present sentence. The comparison of the dataset pairs (Hi(Manl.Tempo.)
vs. En(Auto.Trans., Auto.Tempo.)) will show whether the idea of first translating
a Hindi sentence into English and then using the automatic temporality detection is
feasible or not. Section 5 demonstrates the procedure of Hindi to English transla-
tion. Section 6 describes the ways of finding temporality for different datasets i.e. Hi,
En(Manl.Trans.) and En(Auto.Trans.), both manually and automatically. Finally,
Section 7 discusses the temporal error rate and analysis of different test cases.

4 Dataset
For our experiments, we use a parallel corpus of Hindi-English created in Bojar et al.
(2014). This corpus contains 274k Hindi-English parallel sentences. The training and
test sets for temporal tagging are described in Section 4.1 and 4.2. For MT, the details
of training, test and development sets are mentioned in Section 5.

4.1 Training Set
We select past-, present-, and future-oriented texts using a manually selected high pre-
cision list of 50 seed terms.These are terms that capture temporal dimensions of texts
with very few false positives, though the recall of these terms is low. In order to increase
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the recall, and to capture new terms that are good examples of past, present, and future,
we expand our initial seed terms using a query expansion technique. For English, we
use the publicly available word2vec2 vectors that are trained on Google News corpus.
For Hindi, we employ a continuously distributed vector representation of words using
the continuous Skip-gram model (also known as Word2Vec) proposed by Mikolov et al.
(2013) and trained on a corpus of around 44 million Hindi sentences developed by Bojar
et al. (2014) with dimension set to 300 and window size set to 7.

Given the vector representations for the terms, we calculate the similarity scores
between the pairs of terms in our vocabulary using cosine similarity. The top-10 similar
terms for each seed term are selected for the expansion of the initial seed list. We again
filter the whole collection of texts using the newly added seed terms. Table 1 shows
few examples of expanded terms for some of the initial seed terms. There are some
unrelated keywords in the expanded seed list due to the automatic process of keyword
selection.

Temporality Initial Seeds Expanded Seed Terms

Hindi
Past गत (gata-past)3

џवगत (vigata-last/past), џपछले (piChale-last/previous),
बीते (bIte-past/bygone), џपछթे (piChalle-last/previous),
џवगत (vigata-last/past), गतवष˨ (gatavarSha-last year)

Present
ўफ़लहाल
(pha�ilahAla-
at the moment)

ўफ़लहाल (pha़ilahAla-at the moment), अभी (abhI-now),
अब (aba-now), ўफलवЭ (philavakta-philanthropy),
बहरहाल (baharahAla-nevertheless), ख़रै (kha़aira-well),
हाल-ўफलहाल (hAla-philahAla-most recently)

Future वादा
(vAdA-promise)

वादे (vAde-promises), वायदा (vAyadA-futures),
ऐलान (ailAna-announce), एलान ( elAna-announce),
दावा (dAvA-claim), आमह (Agraha-request)

English
Past yesterday yesterday, Earlier, Last, Shortly_afterwards,

Meanwhile

Present currently presently, Currently, now, currenty, still, already,
iscurrently, actively

Future promise promises, pledge, vow, commitment, hope, expect,
vowing

Table 1: Examples of initial seed terms and their expanded terms.

Following this procedure, we create datasets for both Hindi and English containing
40K sentences each. Finally, we create our training set of 15k for both Hindi and English
separately,4 which consists of equally distributed past, present and future sentences. For
the similar reason justified in Schwartz et al. (2015), we only considered past, present
and future categories. Some example sentences are:

• नासा ने कͰपना के नाम से एक सपुर कंͩयटूर समџपत˨ ўकया है (nAsA ne kalpanA ke
nAma se eka supara kaMpyUTara samarpita kiyA hai-NASA has dedicated a super
computer in the name of Kalpana), past.

• अब ये अपने दोःतӖ को बलुाने लगा है (aba ye apane dostoM ko bulAne lagA hai-Now
he is calling his friends), present.

2https://code.google.com/p/word2vec/
3Henceforth, all the Hindi examples are represented by Hindi texts, ITRANS representations and

using equivalent English translations.
4As our aim is to check whether temporality changes after translation or not, we are not using the

translated version of the Hindi to create the training set for English.
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• मरेे फूल को ̯ण-भर मӒ नс हो जाने का जोिखम है (mere phUla ko kShaNa-bhara
meM naShTa ho jAne kA jokhima hai-My flower is at risk of being destroyed
momentarily), future.

4.2 Test Set
At first, we manually annotate the Hindi sentences with appropriate temporal cate-
gories from the same Hindi-English Bojar corpus. We made it sure that no training
instances are being included. Finally, we select 996 sentences of past, present and fu-
ture temporal classes. We call these 996 Hindi sentences Hi and the manually tagged
Hi as Hi(Manl. Tempo.). We then consider the manually translated English sen-
tences(En(Manl. Trans.)) from Hi and then manually annotate them for temporality.
We call these En(Manl. Trans., Manl. Tempo.). We then manually annotate the au-
tomatically translated English sentences (En(Auto. Trans.)) from Hi for temporality.
We call them as En(Auto. Trans., Manl. Tempo.). Finally, we obtain three temporality
tagged test sets, namely Hi(Manl. Tempo.), En(Manl. Trans., Manl. Tempo.) and
En(Auto. Trans., Manl. Tempo.). We use Hi as the test set in Section 5 for MT.

5 Translation of Hindi to English
Our Hindi-English translation system, a phrase-based statistical MT system (Koehn
et al., 2003), was built using Hindi-English parallel Bojar corpus (Bojar et al., 2014).
We first remove the set (Hi) described in Section 4.2 from the corpus which is used as
the test set for our MT system. We thereafter randomly select training and development
sets from the rest of the corpus.

Set #Sentences
#Tokens

En Hi
Train 260,711 2,993,765 3,281,273
Test 996 23,806 27,012

Development 1000 12,480 14,153

Table 2: Statistics of data sets used in Hindi-English MT system

We tokenize, true-case and remove longer sentences as part of the preprocessing
of the data. English sentences are tokenized using the tokenizer.perl5 script, and we
used the Indic_NLP_Library6 for tokenizing Hindi sentences. After preprocessing, the
training and development sets contain 260,711 and 1,000 parallel sentences, respectively.
Details of the data sets are shown in Table 2.

For training, we use the Moses (Koehn et al., 2007) SMT system. We use KenLM
(Heafield, 2011) for building a 4-gram language model and GIZA++ (Och and Ney,
2003) with the grow-diag-final-and heuristic for extracting phrases from the parallel
corpus. The trained system is tuned using Minimum Error Rate Training (Och, 2003).
For other parameters of Moses, default values are used. Automatic evaluation of our
translation system achieves a BLEU (Papineni et al., 2002) score of 16.66.

6 Temporal Tagging of Sentences
We detect temporality in one Hindi dataset (Hi) and two English datasets En(Manl.
Trans.), En(Auto. Trans.) which denote manual and automatic translations from Hindi

5https://github.com/moses-smt/mosesdecoder/blob/RELEASE-3.0/scripts/tokenizer/
tokenizer.perl

6https://bitbucket.org/anoopk/indic\_nlp\_library
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to English language, respectively, as described in Section 4. We deploy both manual as
well as automatic methods for temporal tagging.

6.1 Manual Temporal Tagging of Sentences
We create the datasets following manual annotation process as described in Section 4.2.
Three annotators were asked to annotate based on the time sense in the sentences using
past, present and future temporal categories. For the Hindi dataset(Hi), we considered
only the temporal sentences, namely past, present and future. While annotating the
two English datasets (En(Manl. Trans.), En(Auto. Trans.)), we consider another
category, namely atemporal apart from the three temporal categories. The reason for
this consideration was to verify our hypothesis as to whether temporality is lost after
translation. Finally, we consider sentences based on majority voting. We did not stick
to the tense-based tagging as it sometimes misled the annotators to detect the actual
temporality of the sentence. For example, consider the following sentence:

• आगामी छुўԬयӖ के Ѡलए मरेे पास एक अ͚छұ योजना है (AgAmI ChuTTiyoM ke lie mere
pAsa eka achChI yojanA hai-I have a nice plan for the upcoming holidays).

Here the tense of the verb “have” is present while the time sense of the sentence refers
to “future”. Annotations also vary from person to person as any concrete definition of
words does not exist; rather it is defined by the context appearing in the sentence. Fi-
nally, we obtain three sets of manually annotated datasets, namely Hi(Manl. Tempo.),
En(Manl. Trans., Manl. Tempo.) and En(Auto. Trans., Manl. Tempo.). The tempo-
rality statistics are depicted in Table 3.

Datasets Temporality(%)
Past Present Future

Hi(Manl. Tempo.) 32.83 24.80 42.37
En(Manl. Trans., Manl. Tempo.) 38.95 19.58 32.93
En(Auto. Trans., Manl. Tempo.) 41.15 11.75 34.74

Table 3: Class distribution of the manually annotated temporal datasets

From the statistics in Table 3, we can see that even after manual translation, loss
of temporality is possible. The amount of loss in temporality in the dataset En(Manl.
Trans., Manl. Tempo.) is 8.54%. In the automatically translated dataset En(Auto.
Trans., Manl. Tempo.) the amount of loss in temporality is 13.35%, which is more than
that of the manually translated set. Examples of these two cases are as follows:

1. Manual Translation: The temporality of the Hindi sentence “मानिसक रोग सबंѠंधत
लՀ (mAnasika roga saMbaMdhita lakShya)” is future, but in the manually trans-
lated sentence “Mental illness targets”, the annotators tag it as atemporal. We
observe that in the manually translated set, the temporality loss is mainly due to
the incorrect temporal annotation rather than the incorrect manual translation.
One of the possible reasons may be that the annotators were instructed not to see
the temporal class of the Hindi sentence while labeling the English side. This was
done to reduce bias.

2. MT: The Hindi sentence “मामीण चीन मӒ आिथक˨ नवीनीकरण हुये हӔ (grAmINa chIna
meM Arthika navInIkaraNa huye haiM- Economic Renewal happened in Rural
China)”, which has temporality past. This sentence is automatically translated
as “in rural areas are bound to China” which becomes a factual text with no tem-
poral sense. From our observation, we can say that the loss of temporality, in this
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case, is mostly because of the wrong automatic translation rather than the the
wrong manual annotation.

6.2 Automatic Temporal Classifier
We use a supervised machine learning-based approach for automatic sentence-level tem-
poral tagging. For this experiment, we use the training set and test set as described in
Section 4. We automatically classify three datasets, namely Hi, En(Manl. Trans.), and
En(Auto. Trans.), for temporality in one of the three temporal categories, namely past,
present or future. We employ one-vs.-rest approach for both our generation models as
well as for evaluation. Our test set construction follows the same approach. For classi-
fication, we use Support Vector Machine (Joachims, 2002) classifier with word-unigram
as a feature. Classification yields three sets of temporal datasets, named as Hi(Auto.
Tempo.), En(Manl. Trans., Auto. Tempo.) and En(Auto. Trans., Auto. Tempo.). The
class distribution of these temporal datasets is shown in Table 4.

Datasets Temporality(%)
Past Present Future

Hi(Auto. Tempo.) 32.96 30.53 36.51
En(Manl. Trans., Auto. Tempo.) 16.12 20.97 62.91
En(Auto. Trans., Auto. Tempo.) 19.56 13.15 67.28

Table 4: Class distribution of the automatically tagged temporal datasets

7 Temporality after Translation
We generate all the manually and automatically labeled datasets mentioned in the
experimental setup in Section 3 using the methods and systems described in Sections 3,
5 and 6. Results of class distribution in Table 3 can be compared with that in Table 4.
The comparison of temporality labels between different data pairs is depicted in Table
5.

Data Pair Match(%)
a. Hi(Manl. Tempo.) - Hi(Auto. Tempo.) 72.39
b. Hi(Manl. Tempo.) -En(Manl. Trans., Manl. Tempo.) 67.47
c. Hi(Manl. Tempo.) - En(Manl. Trans., Auto. Tempo.) 66.42
d. Hi(Manl. Tempo.) - En(Auto. Trans., Manl. Tempo.) 59.33
e. Hi(Manl. Tempo.) - En(Auto. Trans., Auto. Tempo.) 62.49
f. En(Manl. Trans., Manl. Tempo.) - En(Auto. Trans., Manl. Tempo.) 62.35
g. En(Manl. Trans., Manl. Tempo.) - En(Manl. Trans., Auto. Tempo.) 69.59
h. En(Auto. Trans., Manl. Tempo.) - En(Auto. Trans., Auto. Tempo.) 69.17

Table 5: Percentage of matching between pairs of temporality labeled datasets.

Row a., in Table 5 shows that the match percentage between the manual tempo-
rality and automatic temporality of Hindi texts is 72.39% which is the accuracy of the
automatic temporality analysis system for Hindi.

Row b. shows the percentage match between the two manually temporal tagged
datasets (Hi(Manl.Tempo.) and En(Manl. Trans., Manl.Tempo.)). We observe that
two labels match only 67.47% of the time. It shows that the English translation does
affect temporality.

Row c. shows the temporality match between the automatic temporality on man-
ually translated texts and Hi(Manl.Tempo.). Observe that the match for this pair is

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 331



66.42%, which is not too much lower than 67.47% obtained in the case of manual tem-
poral tagging. This shows that English temporal system performs rather well. More
importantly, the English automatic temporality analysis on the automatically trans-
lated texts shows a match of 62.49% (row e.), which makes this choice feasible for the
temporality analysis of non-English texts.

Rows d. and e. show the temporality match of Hindi manual temporality with
manual and automatic temporal labeling of the automatically translated texts, respec-
tively. As the translation is automatic here, we expect these match percentages to be
lower than those in rows b. and c. where the translation is manual, and the results
show the same. However, we unexpectedly find the number for row e. to be higher than
that of row d. This shows that some characteristics of the automatically translated text
mislead humans with regards to the true temporality of the source text. However, this
claim needs further insight in future.

Row f. shows the match between the manual temporal labels of manual and au-
tomatic translated English texts which is only 62.35%. Row g. shows the accuracy of
the English automatic temporal analysis system when the translation is manual. The
result of 69.59% shows that the quality of the English temporal analysis system is good,
irrespective of human errors.

Row h. shows the accuracy of the English automatic temporal analysis system
when the translation is automatic. In this case, the system’s accuracy of 69.17% again
shows that MT greatly impacts temporality.

We manually examine several Machine translated texts to understand the reason
for incorrect annotations by humans with respect to Hindi annotation (row d. of Table
5). Most cases were due to translation errors where the temporal words were either lost
or replaced by the other temporal words. Table 6 shows some examples of possible error
cases. We observe that often the linking verb changes to a linking verb of a different
temporality. In some cases, due to the change in the structure of the sentence, the
temporality changes. Temporality loss happens mainly for the loss of action words and
it occurs for all types of temporal sentences (past, present and future).

MT Error Temporality
Change of linking verb after translation:
Hindi text: तब लोगӖ को और अѠधक बदला लेने कҴ सभंावना थी
(taba logoM ko aura adhika badalA lene kI saMbhAvanA thI
- Then people were more likely to take revenge.)
MT output: when people are more likely to take revenge.

past

future
Change of linking verb after translation:
Hindi text: मӔ अपनी Ѡनयित का पीछा कर रहा हूं
(maiM apanI niyati kA pIChA kara rahA hUM
- I’m following my destiny.)
MT output: I was in pursuit of his destiny.

present

past

Structural Change after translation:
Hindi text: हमӒ उनकҴ ूगित ўदखाईये
(hameM unakI pragati dikhAIye - Show us their progress.)
MT output: their progress shows us.

future

present
Loss of action word:
Hindi text: लेўकन सचाई शायद कुछ और Ѡनकले
(lekina sachAI shAyada kuCha aura nikale
- But maybe a different truth can come out)
MT output: but the truth and perhaps some.

future

atemporal

Table 6: Examples of temporality change or loss due to different types of MT errors.
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We analyze two cases to understand whether automatic temporality detection can
be effective over the manual temporality in the translated instances. Our first case is
comprised of the results in row b. and row c. of Table 5, where the translation is manual.
There are some instances where the automatic temporality on the manually translated
text correctly tags texts, while the manual temporality fails. The reason behind this is
that the system can learn an appropriate model even from the mistranslated text. For
example, consider the following case:

• Hindi text: “ўक अगर ўकसी ने माना ўक यह एक खतरा नहҰं है (ki agara kisI ne mAnA
ki yaha eka khatarA nahIM hai)”.

• Correct English translation: “That if somebody believes that this is not a threat”.

• Manual English translation: “That if anybody believes that it wasn’t such a
threat”.

In the example, the temporal tag for the Hindi sentence is future, but when it is manually
translated, the tag becomes past. In this case, the automatic English temporal tagger
correctly predicts it as future. We observe that there are 6.7% instances in the manually
translated English texts which are manually tagged incorrectly with respect to the Hindi
text’s temporality but correctly tagged by the automatic English temporal tagger.

Our second case is based on the results in row d. and row e. in Table 5, where the
translation is automatic. The automatic temporal analysis system correctly tags several
automatically translated instances (where manual labeling fails) for the same reason as
for the first case. Consider the following examples:

• Hindi text: “तीसरҰ योजना मӒ लगभग सभी अितѝरईत ̯मता सावज˨Ѡनक ̯ेऽ को देते हुए
इःपात џपडंӖ का लՀ 102 लाख टन पर Ѡनिоत ўकया गया (tIsarI yojanA meM lagabhaga
sabhI atirika�ta kShamatA sArvajanika kShetra ko dete hue ispAta piMDoM kA
lakShya 102 lAkha Tana para nishchita kiyA gayA)”.

• Correct English translation: “Giving almost all the additional capacities to the
public sector in the third plan, the goal of steel bodies was fixed at 102 lakh tonnes”.

• MT output: “in the Third Plan the public sector almost all the additional capacity
to steel ingots target of 102 million tonnes”.

In this case, the original temporal class in Hindi is past. In the machine translated En-
glish text, human experts annotate it as future, but the automatic temporal tagger tags
it correctly as past. This case is quite interesting as despite obtaining some ungram-
matical and unstructured sentences using machine translation, the automatic temporal
tagger still correctly predicts temporality for some sentences. Our analysis shows that
8.14% temporal instances appear in the automatically translated English texts which
are manually tagged incorrectly with respect to Hindi texts but correctly tagged by the
automatic English temporal tagger.

8 Conclusion
In this paper, we present a case study on how machine translation affects temporality
when the text is translated from Hindi to English. To the best of our knowledge this is
the first study that systematically analyses various aspects of temporality preservation
after translation. We create benchmark setups by creating manually labeled datasets
for various test case scenarios. Our thorough investigation shows that temporality can
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be both lost and altered while text is translated from one source to the other target
language. We also observe that the accuracy of the automatic temporal tagger in the
automatically translated texts produces competitive results with respect to the accuracy
of the automatic temporal tagger in the manually translated texts.

In future, we will explore these possible cases and further determine whether tem-
porality preservation can improve the translation quality or not. We also propose to
extend our study to more language pairs and use neural MT system for translation.
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Abstract
Transliteration is the process of converting a text in one script to another, guided by phonetic
clues. This conversion requires an important set of rules defined by expert linguists to deter-
mine how the phonemes are aligned and to take into account the phonology system of the target
language. The problem with under-resourced language pairs remains the lack of linguistic re-
sources. In this research, we present a recurrent neural network based approach to overcome
the transliteration problem for a low-resource language pair, with an application on the French-
Vietnamese language pair. Our system requires a small bilingual learning dataset. We obtained
promising results with a large gain of BLEU-score and a reduction in translation errors rate
(TER) and phonemes errors rate (PER), compared to other systems.

1 Introduction

Transliteration consists of a process of transforming a word from a writing system (called source
word) to a phonetically equivalent word of another writing system (called target word) (Knight
and Graehl, 1998). Many of the named entities (i.e. person names, location, organization,
technical terms, etc.) are often transliterated from a source language to a target language when
translation is difficult or impossible. Transliteration can be considered as a sub-task of machine
translation (MT).

Named entities constitute an open morphological class. Person names and organizations
names, which are never seen before in the learning phase, often appear in the new documents.
It is critical that MT systems address this issue. Integrating a transliteration module within a
MT system remains a solution for solving out-of-vocabulary words (OOV) having the type of
named entities.

Moreover, with the evolution of high technologies and the globalization of commerce,
people tend to invent new words. It is very difficult to define all the possible rules of phonetic
transformation between the source language and the target language.

In this research, we propose a method of low resource machine transliteration using recur-
rent neural network (RNN) based model. This task automatically predicts the phonemic repre-
sentation of a word in the target language given a new word in the source language that does
not exist in the dictionary of bilingual phonetics. We are interested in solving out-of-vocabulary
words considered as proper names or technical terms from a machine translation system for a
under-resourced language pair, with application for French-Vietnamese.

Our contribution is to show how, with a small bilingual learning dataset, we can train a
RNN-based model for low resource machine transliteration. To the problem of sparse data due
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to the low resource languages, we apply an algorithm to re-rank the list of k-best results from
the baseline transliteration model.

The structure of the article is as follows: Section 2 presents the state of the art on translit-
eration. Section 3 describes our proposed approach. Section 4, we present our experiments and
compare the performance of our system with other systems as well as errors analysis. Finally,
in section 5, we conclude with some perspectives.

2 Related work

Since 2009, various transliteration systems have been proposed during the Named Entities
Workshop evaluation campaigns 1 (Duan et al., 2016). These campaigns consist of transliterat-
ing from English into languages with a wide variety of writing systems, including Hindi, Tamil,
Russian, Kannada, Chinese, Korean, Thai and Japanese. We can see that the romanization of
non-Latin writing systems remains a complex computational task that is highly dependent on a
language.

Through this workshop, much progress has been made in the methodologies with an emer-
gence of different approaches, such as grapheme in the phoneme (Finch and Sumita, 2010; Ngo
et al., 2015), based on statistics like automatic translation (Laurent et al., 2009; Nicolai et al.,
2015) as well as neural networks (Finch et al., 2015, 2016; Shao and Nivre, 2016; Thu et al.,
2016).

The variety of writing systems adds another important challenge in the extraction of named
entities and automatic transliteration. All these difficulties are aggravated by the lack of bilin-
gual dictionaries of proper names, ambiguities of transcription as well as orthographic variation
in a language.

(Lo et al., 2016) used a semi-supervised transliteration model built on a seed corpus mined
from the standard parallel training data, in order to improve the Russian-English machine trans-
lation system for WMT 2016.

(Ngo et al., 2015) proposed a statistical model for a language pair with English-Vietnamese
language, with a phonological constraint on the syllables. Their system has achieved better
performance than the base system, based on rules, with a 70% reduction in error rates.

(Cao et al., 2010) also applied the statistical-based approach as automatic translation in
the transliteration task for a language pair with little English-Vietnamese language, with a per-
formance of 63% of BLEU (Papineni et al., 2002). Our proposed approach is totally different,
except for the same preparation of the bilingual phonetic dictionary learning. We propose a
step of rescoring k-best results from the baseline transliteration system to solve the problem of
scattered data due to the low resource language.

3 Proposed Approach

3.1 Phonology of Vietnamese
The structure of syllables in French is very rich, with a variety of structures such as CV , CV C,
CCV CC, etc. Where C is a consonant and V is a vowel. On the other hand, the structure
of syllables in Vietnamese is very simple. One of the linguistic peculiarities of Vietnamese is
that a word consists of a syllable or several syllables (Phe, 1997). A syllable in Vietnamese is
constituted with the following structure:

Syllable = Onset+ V owel + Coda

The boundary of a syllable depends on consonant groups (onset and coda) and vowels. The
Vietnamese has a Latin alphabet with 29 letters. There are 12 vowels and 17 consonants uni-
grams, 9 consonants bi-grams and 1 tri-gram. The vowels are V = {“a”, “ă”, “â”, “e”, “ê”,

1http://workshop.colips.org/news2016/
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“i”, “o”, “ô”, “ơ”, “u”, “ư”, “y” }. The consonants areOnset = {“b”, “ch”, “c”, “d”, “đ”,
“gi”, “gh”, “g”, “h”, “kh”, “k”, “l”, “m”, “ngh”, “ng”, “nh”, “n”, “ph”, “q”, “r”, “s”,
“th”, “tr”, “t”, “v”, “x”, “p”}. Among these consonants, there are 8 in tail Coda = {“c”,
“ch”, “n”, “nh”, “ng”, “m”, “p”, “t”}. The Vietnamese has 6 lexical tones such as up (i.e.
có = own), broken (i.e. mỹ = american), flat (i.e. ba = father), interrogative (i.e. thuỷ = water),
down (i.e. trà = tea) and low (i.e. lại = coming). (Phe, 1997) found about 10,000 syllables
for Vietnamese. In this research work, we focus only on the grapheme and the phoneme of all
words in the bilingual dictionary.

3.2 Multi-joint sequence model
The approach of graphemes-to-phonemes with a multi-joint sequence model has been proposed
by (Deligne et al., 1995). This is one of the most popular approaches in the task of converting
graphemes into phonemes by machine learning. The main idea consists in generating both the
sequences at the level of graphemes and at the level of phonemes by means of a single joined
sequence of the linguistic units which represent all the symbols of graphemes and phonemes.
In fact, the aim of this approach is to find a sequence of phonemes Y defined by Y = Pm

1 =
{p1, p2, ..., pm}, Given a sequence of graphemesX defined byX = Gn

1 = {g1, g2, ..., gn}. The
problem can become the estimation of the most optimal Y phoneme sequence, which maximizes
their conditional probability as in the following equation 1:

ê = argmaxi∈Y p(Y |X) (1)

According to the Bayes’ Theorem:

ê = argmaxi∈Y
p(X|Y ) p(Y )

p(X)
(2)

Because p(X) is independent of all the phoneme sequences Y , the equation 2 can be simplified
as follows:

ê = argmaxi∈Y p(X|Y ) p(Y ) (3)

3.3 Recurrent neural network based sequence model for small data
Figure 1 shows the architecture of a RNN model adapted from (Yao and Zweig, 2015). A
RNN model takes an input of a sequence of vectors (x1, x2, ..., xn) and produces an output of
a sequence of vectors (h1, h2, ..., hn) to represent the information at each input step. LSTMs
(Long-Short Term Memory), which are a type of RNNs, have been designed to incorporate a
memory cell which can protect and control the cell state. They use several gates to control the
amount of information from the previous states which should be forgotten and the information
from the inputs which should be updated to the memory cell (Hochreiter and Schmidhuber,
1997). The formulas that govern the computation happening in a RNN are as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (4)

ct = (1− it)� ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (5)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (6)

ht = ot � tanh(ct) (7)
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Figure 1: Our recurrent neural network based model architecture

where σ is the element-wise sigmoid function, and � is the element-wise product. ct and ot are
the cell state and the output at the step t, respectively.

There are many variants of LSTM implementations. LSTM sequence-to-sequence models
were successfully applied in various tasks, including machine translation (Sutskever et al., 2014)
and grapheme-to-phoneme (Yao and Zweig, 2015).

Our approach consists of three main steps: (1) pre-processing, (2) creating a RNN-based
model, and (3) re-ranking the k-best. The whole process is illustrated in Figure 1.

(1) First, we collect bilingual phonetic linguistic resources for a low resource language pair,
here French-Vietnamese. Then, this learning data is pre-processed with normalization in
miniscule as well as a segmentation of syllables in Vietnamese, which is explained in
section 3.1 - phonology of Vietnamese.

(2) Then we train a RNN-based model.

(3) Finally, we implement an additional module to re-rank the list of k-best results from the
transliteration model of bilingual proper names. Inspired from (Bhargava et al., 2011),
we use the algorithm of Support Vector Machines (SVM) for this module, with different
characteristics such as phonemic alignment scores, orthographic and phonetic similarities
and length difference between each pair of graphemes-phonemes.

4 Experimentation

4.1 Data preparation
We use a bilingual phonetic dictionary that has been collected from the news websites as pre-
sented in (Cao et al., 2010). The data learning has 4,259 pairs of bilingual French-Vietnamese
proper names, with a set of vocabularies that contains 31 graphemes in the French source side,
and 71 phonemes in the Vietnamese target side. We find that most of the bilingual proper
names are person names, location names and organization names. To overcome the problem of
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the scattering of learning data, we perform the pre-processing with normalization for the entire
data (Figure 2).

Figure 2: Illustration of the bilingual phonetic dictionary and the pre-processing results

Inspired by the phrases-based statistical approach (pbSMT), we consider a baseline system
by applying this approach, but based on characters. We implement a pbSMT system with the
Moses2 (Koehn et al., 2007). We use mGIZA (Gao and Vogel, 2008) to align the corpus to
the character level, and SRILM (Stolcke et al., 2002) to create a 5-gram language model for
Vietnamese. While the pbSMT systems implemented by (Finch and Sumita, 2010)(Nicolai
et al., 2015) have not taken into account word reordering, we will test various word reordering
models offered by Moses.

We apply Sequitur-G2P 3 tool to train our transliteration model of bilingual proper names
for the French-Vietnamese language pair.

We used 2-layer bi-directional Long Short-Term Memory (LSTM) cells (Hochreiter and
Schmidhuber, 1997) for the RNN-based model, with a 64-dimensional projection layer to en-
code the input sequences and 64 nodes in each hidden layer. We used the ’sgd’ (Stochastic
Gradient Descent) optimizer to learn the weights of the network with a learning rate of 0.5. We
used g2p-sep2seq4 toolkit. This implementation is based on python TensorFlow, which allows
an efficient training on both CPU and GPU.

We implement a SVM re-classification module using the LinearSVC library of scikit-learn5

for the purpose of rescoring the best hypotheses from a list of k-best (with k = 100) results
obtained by the baseline transliteration system.

4.2 Evaluation

The bilingual phonetic dictionary of learning is split into one training set, one development set
and one test set with a ratio of 80 %, 10% and 10 % respectively.

We apply different evaluation metrics such as BiLingual Evaluation Understudy (Papineni
et al., 2002), Translation Error Rate (TER) (Snover et al., 2009) with a tool of multeval version
0.5.1 6 (Clark et al., 2011).

For the phonemic error rate, we use a Phoneme Error Rate (PER) metric with SCLITE
(a tool for calculating scores and evaluating the results of speech recognition systems) NIST

2http://www.statmt.org/moses/
3https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
4https://github.com/cmusphinx/g2p-seq2seq
5http://scikit-learn.org/stable/modules/Generated/sklearn.svm.LinearSVC.html
6http://www.cs.cmu.edu/~jhclark/downloads/multeval-0.5.1.tgz
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SCTK version 2.4.107. The method of calculating the error rate of phonemes with SCLITE is
similar to that for words (Word Error Rate). We use the Levenshtein distance measure in this
work. This distance measure is shown in the equation 8, where N is the number of phonemes,
as follows:

PER =

∑n
i=1 dedit(hypothesei, referencei)

|N |
(8)

In order to evaluate our proposed approach, we implement three systems, including the
baseline system (pbSMT), system 1 (Sequitur-g2p) and system 2 (our proposed approach )
(Table 1).

If we compare the baseline system with system 1, the difference in their performance is
minor. System 1 seems slightly more efficient than the baseline system, with a gain of +4.40%
of BLEU, as well as reductions of -4.30% and -6.20% of translation errors (TER) and phonemes
(PER) respectively.

On the other hand, by comparing the baseline system and the system 2 (our proposed ap-
proach), we note significant results with a gain of +26.95% of BLEU, reductions in translation
errors (TER) and phonemes (PER) with -9.30% and -31.30% respectively.

In addition, the performance of system 2 is higher than that of system 1, with a gain of
+22.55% of BLEU, reductions of -5.0% and -25.10% of translation error (TER) and phonemic
(PER) rates respectively (Table 1).

In general, the proposed approach has achieved very well the transliteration task with the
significant gains and can reduce the phoneme error rate. We can observe the output quality of
the proposed approach, which is based on the recurrent neural network, is more fluid, coherent
and with fewer errors than the baseline and the system 1, which are both based on the statistical
approach. We carry out an error analysis on the next section to more details.

Metric System Average ssel sTest p-value
BLEU ↑ Baseline (pbSMT) 61.30 1.70 - -

System 1 (Sequitur-g2p) 65.70 1.70 - 0.79
System 2 (our approach) 88.25 1.50 - 0.01

TER ↓ Baseline (pbSMT) 24.80 1.20 - -
System 1 (Sequitur-g2p) 20.50 1.20 - 0.13
System 2 (our approach) 15.50 1.00 - 0.00

PER ↓ Baseline (pbSMT) 44.20 - - -
System 1 (Sequitur-g2p) 38.00 - - -
System 2 (our approach) 12.90 - - -

Table 1: Evaluation about scoring for all systems : BLEU, TER and PER.
p -values are relative to the base system and indicate whether a difference of this magnitude
between the baseline system and other systems. ssel indicates the variance due to the selection
of the test.

4.3 Error analysis
We perform an error analysis in the three evaluation systems to better understand the errors
likely to predicted phonemes from French to Vietnamese.

First, we check the top-5 best results, for example, from our transliteration model before re-
ranking the list of k-best results (Tables 2 and 3). We find that the first result of transliteration in
Vietnamese, having the best probability given a grapheme in French, is not always the correct

7http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
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PARIS MANHATTAN
No TOP-5 Probability No TOP-5 Probability
1 p a r i 0.633242 1 m a n h á t t â n 0.321082
2 p a r í t 0.153536 2 m a n h á t t a n 0.288677
3 b a r i 0,065151 3 m â n h á t t â n 0.080221
4 b a r í t 0.037314 4 m â n h á t t a n 0.072125
5 p a r í t x ơ 0.028526 5 m a h á t t â n 0.058193

Table 2: Illustration of the transliteration predictions of the named entities obtained by our
proposed approach before the re-ranking of the list of k-best results, with the top-5 (k = 5) first
best results for the named entities : PARIS and MANHATTAN

GAULOISE
No TOP-5 Probability
1 g ô l o a x ơ 0.102710
2 g ô n l o a x ơ 0.096937
3 g ô l o a d ờ 0.092091
4 g ô n l o i d ờ 0.086915
5 g ô l o a ờ 0.072750

Table 3: Illustration of the transliteration predictions of the named entities obtained by our
proposed approach before the re-ranking of the list of k-best results, with the top-5 (k = 5) first
best results for the named entities : GAULOISE

transliteration. Therefore, it is essential to re-classify the best hypotheses among a list of k-
best (with k = 100) results of the transliteration system. For example: PARIS -> p a r i (p =
0.633242), MANHATTAN -> m a n h á t t a n (p = 0.288677) and GAULOISE -> g ô l o a d ờ
(p = 0.092091).

Evaluation Proper Names IPA format Hypothesis Reference

Baseline

paris
tigrane

toulouse
tours

truffaut
zurich

p a r i
t i g r a n e
t u l u s e

t u r
t r y f o
z y r i k

p a r í t
t i g ờ r a n nơ

t u l u x ơ
t u ố c t x ơ
tr uy ph ố t

gi uy r i

p a r i
t i g ờ r a n nơ

t u l u gi ơ
t u a

tr uy ph ô
gi uy r í ch

System 1

paris
tigrane

toulouse
tours

truffaut
zurich

p a r i
t i g r a n e
t u l u s e

t u r
t r y f o
z y r i k

p a r í t
t i g ờ r a n nơ

t u l u x ơ
t u ố c t x ơ
tr uy ph ố t

gi uy r i

p a r i
t i g ờ r a n nơ

t u l u gi ơ
t u a

tr uy ph ô
gi uy r í ch

System 2

paris
tigrane

toulouse
tours

truffaut
zurich

p a r i
t i g r a n e
t u l u s e

t u r
t r y f o
z y r i k

p a r i
t i g ờ r a n nơ

t u l u x ơ
t u a

tr uy ph ô
gi uy r í ch

p a r i
t i g ờ r a n nơ

t u l u gi ơ
t u a

tr uy ph ô
gi uy r í ch

Table 4: Examples of transliteration prediction results by all systems, with IPA (International
Phonetic Alphabet) format as ground truth, hypothesis and reference for six proper names such
as PARIS, TIGRANE, TOULOUSE, TOURS, TRUFFAUT and ZURICH
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We then perform a comparison of the transliteration prediction results of the named entities
between the three evaluation systems with some named entities that are not yet seen during the
learning phase (Table 4). We find that the baseline system (pbSMT) and system 1 (Sequitur-
G2P) have incorrectly transliterated the proper names such as PARIS, TOURS, TRUFFAUT
and ZURICH, while system 2 (our proposed approach) provided good results. We note that the
three systems encounter difficulties in predicting optimally all the possibilities of transliteration
of bilingual proper names due to the original variety of named entities (i.e. French, English,
Italian, Russian, etc.) As well as the pronunciation of different tail syllables such as "-er" (/e/ =
ê or /ε/ = e), "-s" (xơ or φ) , "-te" (tơ or φ) or "-x" (ích or φ).

5 Conclusion

In this paper, we presented a recurrent neural network based approach to overcome the translit-
eration problem for a low resource language pair, with an application on the French-Vietnamese
language pair. Results show that the RNN-based model outperforms both the phrasal MT and
the Sequitur-G2P baselines. The RNN-based model yields significant improvements in error
rates over state-of-the-art systems.

To our knowledge, we are not aware of any research nor study that analyzes Vietnamese
in the transliteration task. Our research focusing on machine transliteration is the first work
for the French-Vietnamese bilingual low resource language pair. This system requires only a
bilingual phonetic dictionary. This system has the capacity to learn, automatically, the linguistic
regularities from this bilingual phonetic dataset.

In future work, we intend to develop our approach with a larger bilingual phonetic dataset
as well as to study other approaches such as attentional mechanism, in order to improve the
performance of neural network models when low amounts of training data are available.
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