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Abstract
Neural Machine Translation (NMT) with an attention mechanism has shown promising results
by utilizing word alignments between the source and target sentences. Typically, training of
NMT proceeds token-by-token on the target side, where each token is predicted using only a
vector representing the current hidden-state, and the previous token. However, this strategy has
serious shortcomings originating the lack of information about the partial target sequence hy-
pothesis; specifically, this can lead to source tokens being translated multiple times or remain-
ing untranslated. To alleviate this problem, we introduce a target-side attention mechanism to
exploit the generated target sequence of tokens more effectively. We calculate a target-side con-
text vector using a recurrent neural network and feed it to an attention mechanism so that the
decoder can pay more or less attention to each token in the partially generated target sequence
when predicting the next target token. Experiments on three different English-to-Japanese
translation tasks show improvements of 0.6-1.5 BLEU points.

1 Introduction

Recently, Neural Machine Translation (NMT) (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014) has been growing in popularity due to its capacity to model the translation process
end-to-end within a single probabilistic model, and its potential for higher performance com-
pared to existing phrase-based statistical machine translation (SMT) (Koehn, 2004). There are
some unique features of NMT models which pose significant challenges for machine transla-
tion. One is that NMT systems exploit Long Short-Term Memory (LSTM) units (Hochreiter
and Schmidhuber, 1997) (or the similar Gated Recurrent Units (GRUs) (Cho et al., 2014)) which
allow the systems to capture long-distance dependencies better than vanilla RNNs. Another is
the attention mechanism, whereby the decoder can attend directly to localized information from
the source sequence of tokens for generating the target sequence (Bahdanau et al., 2015; Luong
et al., 2015). NMT systems are generally trained to maximize the likelihood of generating the
target sequence of tokens given the source sequence. In practice, each target token is generated
conditioned on the vector representing the current hidden-state of the model, and the previously
generated target token.

NMT, however, has a serious drawback in that some input tokens are unnecessarily trans-
lated or mistakenly left untranslated (Tu et al., 2016). Our hypothesis is that this is mainly
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because the hidden state of the LSTM decoder is not sufficiently representing all the infor-
mation concerning the generated target sequence of tokens. Our work therefore endeavors to
alleviate this drawback by explicitly handing a summary of the target sequence generated so
far, at each step in the decoding process. Although an LSTM is able to provide the function
of a long-term memory, the prediction of target tokens in a state-of-the-art NMT model (Bah-
danau et al., 2015) heavily depends on two factors: the source-side context vectors with focus
provided by an attention model, and a target language model implicitly learned by the LSTM
decoder. This NMT model fails to exploit the generated target-side information, which is useful
to avoid over- and under-translation problems. If target words translated in the past is accumu-
lated appropriately to the LSTM decoder, they are less likely to be translated again, and new
target word which is not translated yet should be generated. Because of ignoring the informa-
tion of the sequence of previously generated target tokens, unnecessarily translated words and
mistakenly untranslated words are generated. To alleviate the lack of target-side information in
the LSTM decoder, we propose to add a target-side context vector directly into the NMT model.
The target-side context vector is generated with the attention mechanism, which selects the rel-
evant target tokens for predicting the next target token. We show empirically that the addition
of this target-side context vector significantly improves the performance of an NMT system on
three different English-to-Japanese translation tasks.

2 Related Work

There is much recent work on augmenting attention-based NMT systems with additional fea-
tures. One focus is the use of the monolingual data (Sennrich et al., 2016; Gülçehre et al., 2015).
Gülçehre et al. (2015) incorporated a large language model into an attention-based NMT system
to allow the effective use of target-side monolingual data. Another focus is in designing better
decoding strategies (Luong et al., 2015; Tu et al., 2016; Mi et al., 2016; Liu et al., 2016; Mi et al.,
2016; Tu et al., 2017). Tu et al. (2017) proposed to augment a direct model’s decoding objective
with a reverse translation model. Liu et al. (2016) proposed translating in both a left-to-right
and a right-to-left direction and seeking a consensus. Tu et al. (2016) introduced a coverage
vector to keep track of the attention history, which encourages the attention-based NMT system
not to translate source words for multiple times (i.e., avoiding over-translation) and to translate
more untranslated source words (i.e., avoiding under-translation). Mi et al. (2016) also dealt
with the coverage problem.

We also tackle on the over- and under-translation problems. Our approach differs from
those of Tu et al. (2016) and Mi et al. (2016) in that they utilize only source-side attention
history, whereas our approach also exploits the sequence of target tokens generated.

3 Neural Machine Translation with a Source Attention Model

Our method is based on NMT with attention (Bahdanau et al., 2015), which generates the target
sentence y = (y1, ..., yM ) from the source sentence x = (x1, ..., xN ) of length N , as illustrated
in Figure 1 (note: we use bold script to denote sequences hereafter). The attention-based model
consists of two components, an encoder and a decoder. The encoder reads the source sentence
x and encodes it into hidden states h = (h1, ..., hN ). The hidden states are produced using a
bidirectional RNN, which concatenates a forward and a backward sequences, as

hj =

[ −→
h j←−
h j

]
(1)

where
−→
h j = e1(xj ,

−→
h j−1),

←−
h j = e2(xj ,

←−
h j+1). (2)
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Figure 1: Encoder-decoder NMT architecture with source attention

e1 and e2 are nonlinear functions. Bahdanau et al. (2015) used a GRU (Cho et al., 2014) for
e1 and e2. Each hidden state, represented as a single vector, includes not only the lexical infor-
mation at its source position, but also information about the unbounded length of the left and
right context. Then, the decoder predicts the target sentence y using a conditional probability
calculated as

p(yi|y1,i−1,x) = f1(yi−1, si, ci) (3)

where y1,i−1 is a partial translation (y1, ..., yi−1), f1 is implemented as a feedforward neural
network with a softmax output layer, si is a hidden state of the RNN, and ci is a context vector
derived from the source sentence. The hidden state si of the target RNN is computed by

si = g1(si−1, yi−1, ci) (4)

where g1 is a nonlinear function analogous to e1 or e2. The context vector ci is computed as a
convex sum of the hidden states hj of Equation (1):

ci =
N∑
j=1

αi,jhj (5)

where αi,j is a scalar weight of each hidden state hj computed by

αi,j =
exp{a(si−1, hj)}∑N
k=1 exp{a(si−1, hk)}

(6)

where a is a feedforward neural network with a single hidden layer. The attention mechanism
is driven by this αi,j , which shows how well the input context at the j-th word and the output
word at the i-th position match. The objective is to jointly maximize the conditional probability
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Figure 2: The proposed encoder-decoder NMT architecture with both source and target attention

for each generated target word as

θ∗ = arg max
θ

K∑
k=1

Mk∑
i=1

log p(yki |yk
1,i−1,x

k, θ) (7)

where (xk,yk) is the k-th training pair of sentences, and Mk is the length of the k-th target
sentence yk.

4 Adding a Target Attention Model

Attention-based NMT usually uses an LSTM for decoding from an encoded source sentence as
a whole, and a single previous target token as in Equation (4). Intuitively, the encoded source
sentence and the generated sequence of target tokens are both indispensable for predicting the
next target token. Although LSTMs have been shown to be capable of predicting the next
token in a sequence given a compressed representation of the preceding sequence, this process
becomes considerably more difficult when compressing long sequences (Liu et al., 2016). To
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strengthen the information provided by the generated target sequence of tokens, our model adds
a target-side context vector to the input of the LSTM decoder at each decoding step, as shown
in Figure 2. In this model, a representation of the generated target sequence is explicitly made
available to the decoder at each step instead of implicitly relying on the LSTM to maintain it.

In addition, the semantics each token of the generated target sequence depends on its con-
text. The LSTM model produces a vector that contains compressed information representing
an unfocused summary of the whole generated target sequence. In order to allow the model to
focus on salient contexts, we use a mechanism for focusing on the relevant parts of the already-
generated target sequence for generating the current target token, along with a bidirectional
layer to provide the model with the a good representation of the target.

The proposed method is implemented as a target-side attention model constructed analo-
gously to the source-side attention model, where the attention ranges over the partially generated
target token sequence. More formally, the partial translation y1,i−1 is encoded into a sequence
of hidden states t1,i−1, which are produced using a bidirectional RNN, as

tk =

[ −→
t k←−
t k

]
(1 ≤ k ≤ i− 1) (8)

where

−→
t i = e3(yi,

−→
t i−1),

←−
t i = e4(yi,

←−
t i+1). (9)

e3 and e4 are nonlinear functions as in Equation (2). Then, the decoder predicts the target
sentence with a conditional probability as

p(yi|y1,i−1,x) = f2(yi−1, si, ci, di) (10)

where f2 is a probability estimator as in Equation (3) and newly introduced di is a predicted
target-side context vector. The computation of the hidden state si is also modified as

si = g2(si−1, yi−1, ci, di) (11)

where g2 is a nonlinear function as in Equation (4). The context vector di is computed as a
convex sum of the hidden states t1,i−1:

di =
i−1∑
k=1

βi,ktk (12)

where βi,k is also a scalar weight of each hidden state tk as below:

βi,k =
exp{b(si−1, tk)}∑i−1
k=1 exp{b(si−1, tk)}

(13)

where b is a feedforward neural network analogous to a in Equation (6). βi,k gives a normalized
score for each previous target token, which measures how the k-th target word is relevant to the
prediction of the i-th target token. The objective is again to jointly maximize the likelihood
as in Equation (7). Typically, the previous target token yi−1 used by the LSTM decoder is
the true previous token when training, and a predicted previous token during decoding. In our
experiments, we follow this practice, although there is evidence that using predictions during
training would be beneficial (Bengio et al., 2015). Since our approach is orthogonal to that of
Bengio et al. (2015), it would be possible to use both techniques in tandem.
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Training Development Test
Corpus Sents. Word types Avg. length Sents. Word types Sents. Word types

en ja en ja en ja en ja
IWSLT’07 40k 9.4k 10k 9.3 12.7 0.5k 1.2k 1.3k 0.5k 0.8k 0.9k
NTCIR-10 717k 105k 79k 23.3 27.7 2.0k 5.0k 4.4k 0.5k 2.4k 2.1k
ASPEC 843k 288k 143k 22.1 23.9 1.8k 7.1k 6.3k 1.8k 7.0k 6.4k

Table 1: Data sets

5 Experiments

We evaluated the proposed method on three different English-to-Japanese translation tasks. As a
baseline, we trained the attention-based NMT and the coverage-vector method (Tu et al., 2016).
To confirm the effectiveness of the target-side bidirectional RNN in the proposed method, we
also trained the proposed method with one direction RNN, from left to right.

5.1 Data and model parameters
The corpora we used were IWSLT’07 (Fordyce, 2007), NTCIR-10 (Goto et al., 2013), and
ASPEC (Nakazawa et al., 2016). IWSLT’07 consists of spoken travel conversations, NTCIR-
10 consists of patents, and ASPEC is in the domain of scientific publications. We constrained
training sentences to have a maximum length of 40 to speed up the training.1 As shown in
Table 1, the data size of IWSLT’07 is smaller than the other corpora, and ASPEC has a greater
lexical variety compared to the others. Each test sentence had a single reference translation.
The English data was tokenized using the tokenization script included in the Moses decoder.2

The Japanese data was tokenized with KyTea (Neubig et al., 2011).

5.2 Settings
The input and output of our model are sequences of one-hot vectors with dimensionality cor-
responding to the sizes of the source and target vocabularies. For NTCIR-10 and ASPEC, we
replaced words of frequency less than 3 with the [UNK] symbol and excluded them from the vo-
cabularies. As a result, the number of word types in NTCIR-10 turned out 60k for English and
50k for Japanese, and ASPEC contained 124k types for English and 79k for Japanese. Due to
the limited memory of GPU, each source and target word was projected into a 200-dimensional
continuous Euclidean space to reduce the dimensionality, the depth of the stacking LSTMs was
1 and hidden layer size was set to 300. Each model was optimized using Adam (Kingma and
Ba, 2014) with the following parameters: α = 1e− 3, β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8.
To prevent overfitting we used dropout (Srivastava et al., 2014) with a drop rate of r = 0.5
to the last layer of each stacking LSTM. All weight metrics of each model were initialized by
sampling from a normal distribution of zero mean and 0.05 standard deviation. The gradient
at each update is calculated using a minibatch of at most 100 sentence pairs and we ran for a
maximum of 30 iterations for the entire training data. Training was early-stopped to maximize
the performance on the development set measured by BLEU. We used a single Tesla K80 GPU
with 12 GB of memory for the training. For decoding, we used beam search with a beam size
of 10. The beam search was terminated when an end-of-sentence [EOS] symbol was generated.

The evaluation metric is case-insensitive BLEU (Papineni et al., 2002) calculated by the

1The proposed method takes approximately five times the training time, and three times the decoding time, relative
to the baseline attention-based NMT. The proposed method with one direction RNN, instead of bidirectional RNN,
takes approximately three times the training time, and three times the decoding time.

2http://statmt.org/moses/
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System IWSLT’07 NTCIR-10 ASPEC
source-attn 47.4 31.0 26.2
coverage-vector 47.7 31.4 25.8
source-and-target-attn (left-to-right) 48.0 31.5 26.4
source-and-target-attn (bidirectional) 48.3 32.3 †‡ 27.7 †‡

Table 2: BLEU scores for the attention-based NMT (source-attn), the coverage vector method
(Tu et al., 2016) (coverage-vector) and the proposed method (source-and-target-attn) with
target-side bidirectional RNN (bidirectional) and target-side one directional RNN from left to
right (left-to-right) (†: significantly better than source-attn (p < 0.05); ‡: significantly better
than coverage-vector (p < 0.05).

System IWSLT’07 NTCIR-10 ASPEC
source-attn 39 / 0.91 412 / 0.94 1178 / 0.91
coverage-vector 91 / 0.91 347 / 0.92 884 / 0.89
source-and-target-attn (left-to-right) 58 / 0.91 286 / 0.93 870 / 0.90
source-and-target-attn (bidirectional) 38 / 0.90 335 / 0.94 659 / 0.91

Table 3: Numbers of overtranslated words (left-side) and averages of the brevity penalty per
sentence (right-side)

multi-bleu.perl script in the Moses toolkit. Statistical significance testing of the BLEU
differences was performed using paired bootstrap resampling (Koehn, 2004) with 10,000 it-
erations. We also assessed the decrease in the over- and under-translation with two kinds of
criteria. For the over-translation, we used a number of overtranslated words, which are un-
necessarily translated though these are already translated in outputs. We simply counted the
number of repeated phrases (length longer or equal than 2 words) for each sentence as in Mi
et al. (2016). For the under-translation, we used an average of brevity penalty per sentence. The
brevity penalty, which is part of BLEU, is to penalize predicted sentence that are shorter than
the reference.

5.3 Results
Table 2 summarizes the results for all the three tasks. For the IWSLT’07 task, our model
achieved 0.9, 0.6, and 0.3 BLEU point improvements compared with source-attn, coverage-
vector, and source-and-target-attn (left-to-right), respectively. For the NTCIR-10 task, our
model achieved gains of 1.3, 0.9, and 0.8 BLEU points. For the ASPEC task, our model
achieved gains of 1.5, 1.9, and 1.3 BLEU points. These results show that our proposed method
is more effective than other baseline methods. The results for IWSLT’07 show less improve-
ment than those for NTCIR-10 and ASPEC. The reason for this may be the length of the target.
As shown in Table 1, the average length of sentence of IWSLT’07 is much shorter than NTCIR-
10 and ASPEC. These results show that the proposed method seems to be more effective for the
tasks with long sentences. The explanation is most likely analogous to the motivation for using
a source-side attention model: an LSTM model without attention struggles to propagate nec-
essary information over longer distances. Our target-side attention model explicitly facilitates
this.

Table 3 shows the numbers of overtranslated words and the averages of the brevity penalty.
The brevity penalty is 1.0 when the output length is longer than the reference translation’s
length. For IWSLT’07, there were no improvements. As mentioned earlier, we believe the
cause is related to the fact that the sentences in this corpus are short; our method is most ef-
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fective for longer sequences. For the other two tasks, our model seemed to be able to reduce
the number of overtranslated words, also maintaining the target sequence length closer to that
of the references. For NTCIR-10, though source-and-target-attn (left-to-right) greatly reduces
the number of overtranslated words, the BLEU score is almost same as coverage-vector. It
shows that source-and-target-attn (left-to-right) increases the number of mistranslated words
and source-and-target-attn (bidirectional) is effective to decrease not only the number of over-
translated words but also the number of mistranslated words. Examples of outputs generated by
each model are shown in Appendix A.

These analyses validate our contribution to the original motivation for this work, i.e., the
proposed model is capable of effectively decreasing the number of mistakenly untranslated
words and unnecessarily translations of the same word.

6 Conclusion

We introduced a focused summary of the target sequence generated so far into the decoding
process in order to alleviate the problems of the over- and under-translation problems. Our
empirical evaluation shows that the proposed method is effective in achieving substantial im-
provements in terms of translation quality consistently across three different tasks.
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Appendix A. Examples of outputs

We show examples of Japanese translation generated with each of the four models in Tables 2 and 3 with a
source sentence and a reference. The words shown in bold letters are examples of over- or under-translation
problems.
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Examples of NTCIR-10
[Example 1]

Source sentence:

This fluctuation in the power supply voltage and reference voltage causes power source noise .

Reference:

このようにして電源電圧 (the power supply voltage)や基準電圧 (the reference voltage)
が変動して電源ノイズを生じさせる。

Output with source-attn:

電源電圧 (the power supply voltage)と電源電圧 (the power supply voltage)との変動
により、電源ノイズが発生する。

Output with coverage-vector:

電源 電圧 (the power supply voltage) の 変動 に よ り 、 電源 電圧 (the power supply
voltage)が変動し、電源電圧 (the power supply voltage)が発生する。

Output with source-and-target-attn (left-to-right):

電源電圧 (the power supply voltage)および基準電圧 (the reference voltage)の変動は
、電源ノイズを発生する。

Output with source-and-target-attn (bidirectional):

電源電圧 (the power supply voltage)と基準電圧 (the reference voltage)との変動は、
電源ノイズを発生する。

[Example 2]
Source sentence:

As shown in FIG . 5 , the drain current is also affected by the stress .

Reference:

図 5に示したようにドレイン電流 (the drain current)も応力の影響を受ける。

Output with source-attn:

５．５に示すように、ドレイン電流 (the drain current)の影響を受けることに
より、ドレイン電流 (the drain current)が影響を受ける。

Output with coverage-vector:

５ ｖ に 示 す よう に 、 ドレイン 電流 (the drain current) に よ り ドレイン 電流 (the
drain current)も影響を受ける。

Output with source-and-target-attn (left-to-right):

図５に示すように、ドレイン電流 (the drain current)は、応力によって影響を
与える (is affecting)。

Output with source-and-target-attn (bidirectional):

図５に示すように、ドレイン電流 (the drain current)は、応力によって影響を
受ける (is affected by)。
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Examples of ASPEC
[Example 1]

Source sentence:

compatible solutes include polyols such as glycine betaine ( betaine ) , zwitterionic proline ,
pinitol , sorbitol , and mannitol .

Reference:

適合溶質としては，グリシンベタイン（ベタイン），プロリンなどの両性イオ
ン (zwitterionic)，ピニトール (pinitol)，ソルビトール (sorbitol)，マンニトールなど
のポリオール類などが知られている。

Output with source-attn:

適合 溶質 は グリシンベタイン （ グリシンベタイン ） ， ピニトール (pinitol) ， ピニ
トール (pinitol)，ピニトール (pinitol)，ピニトール (pinitol)，ピニトール (pinitol)で
ある。

Output with coverage-vector:

適合溶質としては，グリシンベタイン（ベタイン），ピニトール (pinitol)，ピニ
トール (pinitol)，ピニトール (pinitol)，ピニトール (pinitol)，ピニトール (pinitol)で
ある。

Output with source-and-target-attn (left-to-right):

適合溶質としてはグリシンベタイン（ベタイン），両性イオン (zwitterionic)，ピ
ニトール (pinitol)，ピニトール (pinitol)，マンニトールなどのポリオール類が含ま
れる。

Output with source-and-target-attn (bidirectional):

適合溶質としては，グリシンベタイン（ベタイン），ピニトール (pinitol)，ソル
ビトール (solbitol)，マンニトールなどのポリオールを含む。

[Example 2]
Source sentence:

the liquid-crystal film in the title was prepared on a glass substrate by uniaxial orientation and
the amount of the transmitted light through a polarizing plate was measured .

Reference:

標題液晶薄膜をガラス基板上に (on a glass substrate)一軸配向させて形成し，偏
光板を経た透過光量を測定した。

Output with source-attn:

標記薄膜をガラス基板上に (on a glass substrate)ガラス基板上に (on a glass substrate)
調製し，偏光板を通過する透過光の量を測定した。

Output with coverage-vector:

標記薄膜をガラス基板上に (on a glass substrate)ガラス基板上に (on a glass substrate)
作製し，偏光板を通過する透過光の量を測定した。
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Output with source-and-target-attn (left-to-right):

標記液晶膜を一軸配向によりガラス基板上に (on a glass substrate)作製し，偏
光板を介した透過光の量を測定した。

Output with source-and-target-attn (bidirectional):

標記液晶をガラス基板上に (on a glass substrate)一軸配向により作製し，偏光
顕微鏡により透過光の量を測定した。
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