
Zero-Shot Translation for Indian Languages
with Sparse Data

Giulia Mattoni giuliam@kantanmt.com
Pat Nagle patn@kantanmt.com
Carlos Collantes carlosc@kantanmt.com
Dimitar Shterionov dimitars@kantanmt.com
KantanMT.com, INVENT Building, Dublin City University Campus, Dublin 9, Dublin,
IRELAND

Abstract
Neural Machine Translation (NMT) is a recently-emerged paradigm for Machine
Translation (MT) that has shown promising results as well as a great potential to
solve challenging MT tasks. One such a task is how to provide good MT for languages
with sparse training data. In this paper we investigate a Zero Shot Translation
(ZST) approach for such language combinations. ZST is a multilingual translation
mechanism which uses a single NMT engine to translate between multiple languages,
even such languages for which no direct parallel data was provided during training.
After assessing ZST feasibility, by training a proof-of-concept engine ZST on
French↔English and Italian↔English data, we focus on languages with sparse train-
ing data. In particular, we address the Tamil↔Hindi language pair. Our analysis
shows the potential and effectiveness of ZST in such scenarios.
To train and translate with ZST engines, we extend the training and translation
pipelines of a commercial MT provider – KantanMT – with ZST capabilities, making
this technology available to all users of the platform.

1 Introduction
Nowadays Machine Translation (MT) is an essential tool for the translation industry.
The most used MT paradigms are Phrase-based Statistical Machine Translation (PB-
SMT) (Koehn et al., 2007) and Neural MT (Bahdanau et al., 2014; Sutskever et al.,
2014; Cho et al., 2014). While PBSMT has been the state-of-the-art both in academia
and industry for the last decade, recently NMT has showed great potential and in many
cases has surpassed PBSMT (Bentivogli et al., 2016; Junczys-Dowmunt et al., 2016;
Chung et al., 2016; Shterionov et al., 2017).

NMT, similar to PBSMT, is a data-driven MT paradigm, making it strongly de-
pendent on the parallel data used for training. That is, the translation quality of an
NMT system correlates with the quality and quantity of the training corpora. Freely
accessible parallel corpora are available from various providers, such as: Opus1, DGT-
EC (European Commission)2 and Linden/Clarin repository.3 Within the industry, MT

1http://opus.lingfil.uu.se/
2https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
3https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-625F-0

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 1



systems are typically built with proprietary data – i.e., data with restricted access, pro-
vided by a translation vendor and tailored towards specific translation task(s) mainly
because of data confidentiality requirements and/or because the data includes termi-
nology and style that are specific for the translation task. Often, to build a custom MT
system (i.e., an MT system that is customised according to a translation vendor’s re-
quirements) that can produce high-quality translations, proprietary and non-proprietary
data are concatenated.

For some language pairs, however, there is not enough available parallel data (pro-
prietary or non-proprietary) to build MT systems of high quality to meet users’ require-
ments. This specifically applies to minority or low-resource languages – languages that
have a low population density, are under-taught or have limited written resources or
are endangered – as well as to language pairs with sparse training data – language
pairs for which there have not been documented (human) translations that can be used
as training data. Sparsity of training data for language pairs such as, e.g. Tamil or
Hindi, which by itself are not low-resource languages, is a phenomenon that hinters the
MT industry.

Aiming to overcome the data sparsity within the spectrum of the Indian languages,
this paper investigates a zero-shot translation (ZST) (Johnson et al., 2016) strategy for
the Hindi and Tamil languages. We built ZST engines on available parallel data to and
from English (we use English as an intermediate or a pivot language).

To determine the viability and potential of ZST we first build a proof-of-concept
(POC) ZST engine for high-resource languages (English, Italian, Spanish and French).
Second, we build a ZST engine for Hindi and Tamil as well as Hindi and Tamil, using
parallel corpora with English, Hindi and Tamil data as well as for English, Hindi and
Tamil data to prove the applicability of ZST for sparse-data language pairs.

To determine the quality of these engines we compare their outputs with the results
of (i) one-to-one NMT engines for the same language combinations and (ii) via a pivoting
language. In particular, case (ii) boils down to using two different NMT engines – one
that translates from the investigated source language into English and another that
translates from English to the investigated target language.

We use the KantanMT4 platform to train and translate ZST engines. KantanMT
is a custom Machine Translation (MT) platform that allows its users to build custom
MT systems covering more than 75 languages. The analysis of the resulting quality
is performed through comparison of quality evaluation metrics and the A/B testing
interface of the KantanMT platform (KantanLQRTM). As a provider of commercial MT
solutions, the KantanMT platform is designed and tailored to train and deploy one-to-
one translation engines (Phrase-based Statistical Machine Translation and NMT). The
research and development of ZST engines imposes certain architectural requirements to
the KantanMT platform. In this work, we also discuss the changes that such a platform
requires in order to accommodate ZST technology.

The main contribution of this paper is two-fold: on the one hand it is the insights
that we draw from our analysis of ZST as a means to tackle the problem of sparse data;
on the other hand, we extend the pipeline of a commercial MT – KantanMT.com –
making ZST available to KantanMT users.

This paper is organised as follows. In Section 2 we present relevant background and
motivate our work; in Section 3 we discuss our MT training and translation pipeline,
the changes we have done in order to accommodate ZST technology and we outline
the data used to build our ZST engines; Section 4 is devoted to the analysis of the

4www.kantanmt.com

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 2



translation capabilities of these engines; we conclude our work and present our future
plans in Section 5.

2 Background and Motivation
2.1 Zero-shot Translation
Zero-shot translation (ZST) (Johnson et al., 2016) is an approach to train a single NMT
engine to translate between multiple languages. Such a multilingual engine can translate
from a source to a target language without having seen explicit parallel corpora for that
specific language pair during training. ZST exploits transfer learning to overcome the
need of building one-to-one translation engines. According to (Johnson et al., 2016),
an NMT engine can be trained as a multilingual ZST engine5 by simply augmenting
the training data with a token before each segment stating the target language. In
particular, a sentence SL1 in language L1 aligned to a sentence SL2 in language L2 will
be augmented with a token <2L2>. Following their findings we exploit a similar approach
to augment each segment of the parallel training corpora with a token to indicate the
target language. Moreover, we extend this data processing step to handle different
tokenisation rules for each language correctly. We add one more token to indicate the
language of origin6 of the specific sentence that will be used during tokenisation.

In the work of (Johnson et al., 2016; Ha et al., 2016) a single shared attention mech-
anism and a single ‘universal’ encoder-decoder across all languages is used. Firat et al.
(2016) also present a multilingual approach that uses a shared attention mechanism.
However, they use multiple encoders/decoders for each source and target language. Aim-
ing at smallest possible alterations of our training and translation pipelines we focus
on the single encoder/decoder model with shared attention. Such an architecture does
not impose any changes to our platform (i.e. KantanMT), except in the preprocessing
(both before training and before translation) step.

In (Johnson et al., 2016), the authors prove that mixing language pairs with little
and large available data into a single multilingual NMT model produces a considerable
translation quality improvement of the low resource language. This translation capabil-
ities are due to the fact that all the parameters of the multilingual model are implicitly
shared by all the language pairs. The analysis on multilingual NMT and zero-shot (or
zero-resource) translation, given by (Firat et al., 2016), investigates multiple strategies
for multi-way, multilingual translation engines. They show that an NMT engine trained
on parallel data without data between two languages translates very poorly for these
two languages. In contrast, adding pseudo-parallel data for these two languages to fine-
tune the engine improves significantly the quality. They, also, investigate a more basic
multilingual NMT engine – trained on two parallel corpora (with or without a finetun-
ing corpus) and is focused to translate between two of these language pairs, in contrast
to (Johnson et al., 2016) where the focus is on translating a plethora of languages with
one engine.

Motivated by the promising results documented in the aforementioned publications,
our main objective is to demonstrate that ZST is particularly beneficial when it comes
to MT for language combinations with sparse parallel corpora. We aim to translate
one particular language pair (Tamil→Hindi) with a single encoder-decoder with shared
attention mechanism NMT engine while using English↔Tamil and English↔Hindi as

5In the remaining of this paper we refer to multilingual NMT engines that are trained according to
the Zero Shot Approach as ZST engines.

6We refer to the language of a specific sentence as its language of origin to differentiate between
source and target languages.

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 3



well as a small set of Tamil↔Hindi data.

2.2 Indian languages
Research, conducted on MT for Indian languages, mainly focuses on to- and from-
English translation (Sindhu and Sagar, 2016; Antony, 2013). In the survey of Antony
(2013) of MT systems for Indian languages there is only one Tamil-Hindi system.7 Even
exploiting data-driven MT paradigms (such as PBSMT or NMT) that ease the creation
and exploitation of MT systems even by non-linguistically informed users, the lack of
parallel data is what restricts high-quality MT systems to be built. Ramasamy et al.
(2012) present an English-Tamil PBSMT engine as well as a corpus of circa 200000
parallel sentences. Post et al. (2012) present parallel corpora for six Indian languages
and English. Bojar et al. (2014) discuss the HindEnCorp dataset which constitutes of
approximately 300000 parallel sentences. Another source for data are platforms like
Opus and EMILLE. These resources, however are not sufficient (both quantity-wise
as well as quality-wise) to build an efficient, domain oriented one-to-one MT engine
between two Indian languages.

The aforementioned issues impose a translation gap between Indian languages. We
exploiting ZST methodology in order to reduce this gap. We use various available
parallel corpora, which we cleansed and organised, to training our ZST engines.

3 Zero Shot Translation Engines
3.1 Pipeline
The KantanMT platform has two main pipelines: one to train an MT engine and a
second one to translate text with a selected MT engine. Figure 1 illustrates these
pipelines.

Validate
Training Data

Tokenise Cleanse
Training:

Partition Build
Dictionaries

Segment
Words

Build
NMT

Score
Engine

Validate
Transl. Data

Tokenise Segment
Words

Translate Post-
process

Translation:

Figure 1: Abstract representation of the training and translation pipelines. Blue boxes
indicate processing steps that are common for both pipelines. The input of the train-
ing pipeline is source and target data; the input of the translation pipeline is text to
translate.

While their core processing mechanisms are different, as shown in Figure 1 they
both use the same tokenisation step, as well as word segmentation. In practice, in the
latter step a dictionary is used that is created in the Build dictionaries step in the
training pipeline; this dictionary is then stored and reused during translation again in
the word segmentation step.8

7We refer the interested reader to the (Antony, 2013) for more information on the system.
8We present more details about word segmentation and dictionaries in Section 4.

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 4



In order to support both training and translating with a ZST engine, it is necessary
to adapt these common steps (i.e., the tokenisation and the word segmentation) such
that they meet the following requirements:

1. Training and test data are augmented with ZST tokens as defined in Section 2.

2. Different languages require different tokenisation rules which needs to be accommo-
dated in the tokenisation step. That is, the training and test data sets would con-
tain sentences in different languages (see Section 2). The tokeniser would required
to know their language of origin and tokenise them according to language-specific
rules.

3. Any ZST token is not affected by any consecutive preprocessing step.

4. During both training and translation the output of the neural network does not
contain any ZST token.

To meet the first requirement the user needs to introduce ZST tokens for the source
and the target data. The target data needs to be augmented with one ZST token,
which indicates the language of origin of the data. E.g., if the target data is in English,
each sentence needs the prefix ∗zst_en∗ (if a locale is specified, e.g., British English,
the prefix is ∗zst_en_gb∗). The source data, however, needs two ZST tokens: one to
indicate the language of origin and another to indicate the target language. These have
the same form as mentioned above with the first ZST token referring to the language
of origin and the second one indicates the target language. Example 3.1 illustrates the
source and target data, augmented with ZST tokens.
Example 3.1
Source (English, original): It helps for detachment of umbilical cord.
Souce (English, with ZST tokens): ∗zst_en ∗ ∗zst_hi∗ It helps for detachment of
umbilical cord.
Target (Hindi, original): आपको ईमेल एलटर् के Ùलए सबस्कर्इब िकया गया ह।ै
Target (Hindi, with a ZST token): ∗zst_hi∗ आपको ईमेल एलटर् के Ùलए सबस्कर्इब िकया गया ह।ै

In order to meet requirements 2, 3 and 4, we modified the Tokenisation step as well
as the Word segmentation step in our pipelines. The Tokenisation step is adapted to
read the first from the two ZST tokens from each sentence of the source data and the
only one ZST token from each sentence of the target data and extract the language and
locale codes. Then it removes these ZST tokens. Next, each sentence will be tokenised
according to tokenisation rules specific for the language and locale codes extracted from
the ZST token.

The Word segmentation step, which is prior to the Build NMT step (in the training
pipeline) or to the Translation step (in the translation pipeline) will split each word into
subword units (Sennrich et al., 2016). During this step the ZST tokens may become
segmented which would negatively impact the training of the network. We augment the
Word segmentation with an extra step to recover any segmented ZST token.

Example 3.2 shows the form of the source and the target data prior to training.
The @@ symbols are used as a delimiter for the word segmentation.
Example 3.2
Source (English, original): You have been subscribed to email alerts .
Source (English, tokenized, word-segmented): ∗zst_hi∗ You have been sub@@ scribed
to email al@@ er@@ ts .

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 5



Target (Hindi, original): आपको ईमेल एलटर् के Ùलए सबस्कर्ाइब िकया गया ह।ै
Target (Hindi, tokenized, word-segmented): आपको ईमेल एल@@ टर् के Ùलए सब@@ स्कर्@@
◌ाइ@@ ब िकया गया है ।

Figure 2 shows the changes that were introduced to our pipelines.

Validate
Training Data

Tokenise Cleanse
Training:

Partition Build
Dictionaries

Segment
Words

Build
NMT

Score
Engine

Validate
Transl. Data

Tokenise

Use ZST token

Segment
Words

Recover ZST token

Translate Post-
process

Translation:

Figure 2: Abstract representation of the training and translation pipelines augmented
with additional functionalities required to accommodate ZST. Blue boxes indicate pro-
cessing steps that are common for both pipelines. The red boxes indicate the additional
steps that are required for ZST. The input of the training pipeline is source and target
data with ZST tokens; the input of the translation pipeline is text to translate with
ZST tokens.

3.2 Engines
With the adapted pipelines we can now easily build ZST engines and use them to
translate between language pairs for which parallel data was not provided. In particular,
given parallel data set between languages L1 and L2 as well as between L2 and L3 we
can build a ZST engine that translates a text in L1 into L3.

Example 3.3 Consider we have available parallel data between English (EN) and Tamil
(TA) and between English and Hindi (HI). We use TA and HI data both as source and
as target (aligned correctly with their EN counterpart), and the same for the EN data
(aligned correctly with the TA and HI) and train a ZST engine:

Source Target
English Tamil
Tamil English
English Hindi
Hindi English

This engine would allow us to translate from TA to HI, but also the other way round
– from HI to TA. Moreover, it would translate from EN to HI or TA (and vice-versa)
as well as from EN to EN.

Example 3.3 shows how we use the available parallel data both as source and as
target, aligned correctly, in order to train a basic ZST engine. In general, given data
for N languages all aligned with 1 other language (in Example 3.3 that is English) we
can build a ZST engine to translate between all of the N ∗ (2 + N) source and target
options, including (as in Example 3.3) translating between the same language.

The reason that a ZST engine requires the data to be used both as source and as
target is that the neural network will learn to map unseen language pairs through their

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 6



Engine Languages: Number of Source Target Used to Domain
Name: Sentences: Words: Words: translate:

ZST1 EN↔FR, EN↔IT 798 99615 075 69115 075 789 FR→IT Legal
Pivot1 EN→FR 198 999 3 844 982 3 475 693 EN→FR Legal
Pivot2 IT→EN 198 999 3 399 530 3 502 284 IT→EN Legal
ZST2 EN↔TA, EN↔HI 1 009 89215 284 06915 284 069 TA→HI General
ZST3 EN↔TA, EN↔HI, TA→HI 1 051 63115 691 38015 691 380 TA→HI General, Technical
Pivot3 TA→EN 168 871 2 759 734 3 960 123 TA→EN General
Pivot4 EN→HI 268 317 3 338 686 3 620 445 EN→TA General
one-to-one1 TA→HI 41 739 365 571 546 584 TA→HI Technical

Table 1: Summary of the data used to build ZST and one-to-one engines.

common language.9
In the scope of this work we build ZST engines with English, French, Italian data,

as well as with English, Tamil and Hindi data. First, we build a proof-of-concept ZST
engine on English-French, English-Italian data; we use this engine to translate between
French and Italian. To test the performance of this engine we also build two One-to-one
engines: one from French to English and another from English to Italian. We refer
the latter engines as Pivot engines and use them in a sequence to derive an Italian
translation, starting from a French text.

Next, we focus on the Indian languages and build two ZST engines - one on English-
Tamil and English-Hindi data and a second one on the same English-Tamil and English-
Hindi data as well as Tamil-Hindi data. Then we build three one-to-one engines: one
Tamil-Hindi, one Tamil-English and a third one English-Hindi all using the same data
as for the ZST engines.

Table 3.2 enumerates the available data and the engines we trained.
In Section 4 we present and discuss our findings from comparing the translation

quality of these engines.

4 Experiments
We perform our analysis on the MT engines – ZST or one-to-one – enumerated in
Table 3.2.

NMT setup. Our training and translation pipelines are based on the OpenNMT
toolkit10 (Klein et al., 2017) version 0.7. As learning optimizer we use ADAM (Kingma
and Ba, 2014) with learning rate 0.0005. We train our networks for at least 511 epochs
on NVIDIA G520 GPUs with 4GB RAM (each model is trained on a single GPU). The
maximum batch size if 50. The maximum input length used for training is 150.

Dictionaries. Each NMT engine is trained on two dictionaries – one for the source
and one for the target data. For ZST engines, we use the concatenated source or target
training data to build a source or target dictionary. The dictionaries are composed of
word segments in order to increase the vocabulary capabilities of the network and avoid
out-of-vocabulary (OOV) problems. We use byte pair encoding (BPE) Sennrich et al.
(2016) of 40 000 operations to build the word segments.12 We prepare the dictionaries
from normal-cased (i.e., lower- and upper-cased) tokenised data.

9For more details we refer the interested reader to (Johnson et al., 2016).
10http://opennmt.net/
11We present and analyse results of engines with the same number of epochs as to make the comparison

fair.
12For data in Chinese, Japanese, Korean or Thai, our pipelines use dictionaries based on character-

by-character segmentation (Chung et al., 2016). That is, each word segment in the dictionary is a single
character. BPE is used for all other languages, including Tamil and Hindi.

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 7



Engine: BLEU∗ F-Measure∗ Perplexity∗∗

ZST2 0.21 3.26 17.12
ZST3 9.78 26.40 21.91
one-to-one1 8.20 22.16 78.96
Pivot3 + Pivot4 0.16 16.94 24.85

Table 2: Evaluation of our Indian engines. ∗ - the higher the better; ∗∗ - the lower the
better.

Result analysis. We began our experiments using a ZST engine consisting of Legal
domain data acquired from the European Commission – DGT, which is freely available
for use. We decided on a POC engine consisting of English↔French and English↔Italian
parallel data sets. We also constructed two one-to-one engines for the same language
pairs as the ZST (i.e., Pivot1 and Pivot2, see Table 3.2). We started by running 50
sentences of legal domain content that the engines had not seen during training. The
translation test set content was in French and needed to be translated into Italian. First,
the ZST engine translated the content from French to Italian. Next the same French
legal content was translated through the French↔English engine (Pivot1); then we used
the output from this engine as input for the English↔Italian engine (Pivot2).

We then evaluated both Italian outputs produced by the ZST1 and Pivot2 engines
running an A/B testing with KantanLQR, KantanMT’s quality evaluation platform. A
native Italian speaker with French fluency ranked the translations. The result of the
A/B test was conclusively in favour of ZST, with our reviewer choosing 58 percent of
the test segments from this engine as better quality than that of the pivot engines. With
this result from our POC engine with high resource languages we began experimenting
with low resource languages, in particular English↔Tamil and English↔Hindi.

The initial translation tests for our ZST Indian language engine were not as promis-
ing as we had hoped from the results of our POC engines. The output was not a complete
translation to Hindi but a combination of all 3 input languages of English, Tamil and
Hindi. From this result we concluded that we would need more parallel data in both
language pairs and possibly aligned data for Tamil↔Hindi to help bridge the sparse
data gap. We augmented our test data (the statistics of our data to built the ZST3

engine, shown in Table 3.2).
We use BLEU (Papineni et al., 2002) and F-Measure (Melamed et al., 2003) to

assess the quality of the Indian engines. We also report the perplexity of the engine
scored after training is finished. To test whether indeed ZST can improve on one-to-one
or pivot engines, we use the same test data set. It contains 500 sentences that are from
the same domain of the one-to-one engine (one-to-one1 in Table 3.2). Our results are
summarised in Table 4.

While the enlisted scores for the given test set are in general very low, we observe
that the best scores are achieved by the ZST3 engine – the ZST engine which combines
parallel data in different languages and a small set of Tamil↔Hindi data – the BLEU
and F-Measure scores for the ZST3 engine are the highest.

Furthermore, these results confirm that a ZST engine with parallel data for the
languages of interest can significantly boost the translation capabilities (compare the
scores of ZST2 and ZST3).

We ought to note that while these engines may not produce high-quality
Tamil→Hindi translations (according to the evaluation metrics reported in Table 4)
they show that ZST has a potential and deserves further investigation. Our direct ef-

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 8



forts are in bringing a Tamil→Hindi engine together with other Indian languages to
industry standards.

5 Conclusions and Future Work
In this paper, we present our first Zero Shot Translation engines for languages with
sparse training data. We observed that while ZST produces good quality output for
high resource languages (with good training data), it is not performing as good for the
Tamil↔Hindi language pair that we used as out main use case. However, our ZST
engine that combines multiple-source data and Tamil↔Hindi performs better than the
rest of the Indian engines.

Our results showed that further experiments on zero shot translation are needed.
First, we will focus on data analysis in order to understand which data combinations
are useful for ZST and which are not. Next, we intend to test ZST for other language
combinations in order to evaluate which language families or specific languages could
benefit the most from such a translation approach.

In addition, with this work we adapted the training and translation pipelines of
a commercial MT provider to support ZST engines. In the future we aim to further
improve these pipelines and provide more and better ZST services to the users.

References
Antony, P. J. (2013). Machine translation approaches and survey for indian languages. IJ-

CLCLP, 18(1).

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. CoRR, Accepted for oral presentation at the International Conference
on Learning Representations (ICLR) 2015, abs/1409.0473.

Bentivogli, L., Bisazza, A., Cettolo, M., and Federico, M. (2016). Neural versus phrase-based
machine translation quality: a case study. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4,
2016.

Bojar, O., Diatka, V., Rychlý, P., Stranak, P., Suchomel, V., Tamchyna, A., and Zeman, D.
(2014). Hindencorp – hindi-english and hindi-only corpus for machine translation. In Chair),
N. C. C., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A.,
Odijk, J., and Piperidis, S., editors, Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14), Reykjavik, Iceland. European Language
Resources Association (ELRA).

Cho, K., van Merriënboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using rnn encoder–decoder for statis-
tical machine translation. In Proceedings of EMNLP 2014, Doha, Qatar. Association for
Computational Linguistics.

Chung, J., Cho, K., and Bengio, Y. (2016). A character-level decoder without explicit segmen-
tation for neural machine translation. In Proceedings of the ACL, Berlin, Germany.

Firat, O., Sankaran, B., Al-Onaizan, Y., Yarman-Vural, F. T., and Cho, K. (2016). Zero-
resource translation with multi-lingual neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages 268–277.

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 9



Ha, T., Niehues, J., and Waibel, A. H. (2016). Toward multilingual neural machine translation
with universal encoder and decoder. In Proceedings of the Thirteenth International Workshop
on Spoken Language Translation (IWSLT ’16), Seattle, WA, USA.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Yonghui Chen, Z., and Thorat, N.
(2016). Google’s multilingual neural machine translation system: Enabling zero-shot trans-
lation.

Junczys-Dowmunt, M., Dwojak, T., and Hoang, H. (2016). Is neural machine translation ready
for deployment? A case study on 30 translation directions. CoRR, abs/1610.01108.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). OpenNMT: Open-Source
Toolkit for Neural Machine Translation. ArXiv e-prints.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,
Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007).
Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings of ACL
2007, demonstration session, Prague, Czech Republic.

Melamed, I. D., Green, R., and Turian, J. P. (2003). Precision and Recall of Machine Trans-
lation. In NAACL-HLT.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, Stroudsburg, PA, USA.

Post, M., Callison-Burch, C., and Osborne, M. (2012). Constructing parallel corpora for six
indian languages via crowdsourcing. In Proceedings of the Seventh Workshop on Statisti-
cal Machine Translation, pages 401–409, Montréal, Canada. Association for Computational
Linguistics.

Ramasamy, L., Bojar, O., and Žabokrtský, Z. (2012). Morphological processing for english-
tamil statistical machine translation. In Proceedings of the Workshop on Machine Translation
and Parsing in Indian Languages (MTPIL-2012), pages 113–122.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1:
Long Papers.

Shterionov, D., Nagle, P., Casanellas, L., Superbo, R., and O’Dowd, T. (2017). Empirical
Evaluation of NMT and PBSMT Quality for Large-scale Translation Production. In EAMT.

Sindhu, D. and Sagar, B. (2016). Study on machine translation approaches for indian languages
and their challenges. In Electrical, Electronics, Communication, Computer and Optimization
Techniques (ICEECCOT), 016 International Conference on, pages 262–267. IEEE.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada.

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track Nagoya, Sep. 18-22, 2017 | p. 10


