
WNSpell: a WordNet-Based Spell Corrector

Bill Huang
Princeton University

yh3@princeton.edu

Abstract
This paper presents a standalone spell cor-
rector, WNSpell, based on and written for
WordNet. It is aimed at generating the
best possible suggestion for a mistyped
query but can also serve as an all-purpose
spell corrector. The spell corrector con-
sists of a standard initial correction sys-
tem, which evaluates word entries using a
multifaceted approach to achieve the best
results, and a semantic recognition sys-
tem, wherein given a related word input,
the system will adjust the spelling sug-
gestions accordingly. Both feature signifi-
cant performance improvements over cur-
rent context-free spell correctors.

1 Introduction

WordNet is a lexical database of English words
and serves as the premier tool for word sense
disambiguation. It stores around 160,000 word
forms, or lemmas, and 120,000 word senses, or
synsets, in a large graph of semantic relations. The
goal of this paper is to introduce a spell correc-
tor for the WordNet interface, directed at correct-
ing queries and aiming to take advantage of Word-
Net’s structure.

1.1 Previous Work
Work on spell checkers, suggesters, and correctors
began in the late 1950s and has developed into a
multifaceted field. First aimed at simply detecting
spelling errors, the task of spelling correction has
grown exponentially in complexity.

The first attempts at spelling correction utilized
edit distance, such as the Levenshtein distance,
where the word with minimal distance would be
chosen as the correct candidate.

Soon, probabilistic techniques using noisy
channel models and Bayesian properties were in-
vented. These models were more sophisticated,

as they also considered the statistical likeliness of
certain errors and the frequency of the candidate
word in literature.

Two other major techniques were also being de-
veloped. One was similarity keys, which used
properties such as the word’s phonetic sound or
first few letters to vastly decrease the size of the
dictionary to be considered. The other was the
rule-based approach, which implements a set of
human-generated common misspelling rules to ef-
ficiently generate a set of plausible corrections and
then matching these candidates with a dictionary.

With the advent of the Internet and the subse-
quent increase in data availability, spell correc-
tion has been further improved. N-grams can be
used to integrate grammatical and contextual va-
lidity into the spell correction process, which stan-
dalone spell correction is not able to achieve. Ma-
chine learning techniques, such as neural nets, us-
ing massive online crowdsourcing or gigantic cor-
pora, are being harnessed to refine spell correction
more than could be done manually.

Nevertheless, spell correction still faces signif-
icant challenges, though most lie in understand-
ing context. Spell correction in other languages is
also incomplete, as despite significant work in En-
glish lexicography, relatively little has been done
in other languages.

1.2 This Project
Spell correctors are used everywhere from simple
spell checking in a word document to query com-
pletion/correction in Google to context-based in-
passage corrections. This spell corrector, as it is
for the WordNet interface, will focus on spell cor-
rection on a single word query with the additional
possibility of a user-inputted semantically-related
word from which to base corrections off of.



2 Correction System

The first part of the spell corrector is a standard
context-free spell corrector. It takes in a query
such as speling and will return an ordered list of
three possible candidates; in this case, it returns
the set {spelling, spoiling, sapling}.

The spell corrector operates similarly to the As-
pell and Hunspell spell correctors (the latter which
serves as the spell checker for many applications
varying from Chrome and Firefox to OpenOffice
and LibreOffice). The spell corrector we introduce
here, though not as versatile in terms of support
for different platforms, achieves far better perfor-
mance.

To tune the spell corrector to WordNet queries,
stress is placed on bad misspellings over small er-
rors. We will mainly use the Aspell data set (547
errors), kindly made public by the GNU Aspell
project, to test the performance of the spell cor-
rector. Though the mechanisms of the spell cor-
rector are inspired by logic and research, they are
included and adjusted mainly based on empirical
tests on the above data set.

2.1 Generating the Search Space
To improve performance, the spell corrector needs
to implement a fine-tuned scoring system for each
candidate word. Clearly, scoring each word in
WordNet’s dictionary of 150,000 words is not
practical in terms of runtime, so the first step to
an accurate spell corrector is always to reduce the
search space of correction candidates.

The search space should contain all possible
reasonable sources of the the spelling error. These
errors in spelling arise from three separate stages
(Deorowicz and Ciura, 2005):

1. Idea→ thought word

i.e. distrucally → destructfully

2. Thought word→ spelled word

i.e. egsistance→ existence

3. Spelled word→ typed word

i.e. autocorrecy → autocorrect

The main challenges regarding search space gen-
eration are:

1. Containment of all, or nearly all, possible
reasonable corrections

2. Reasonable size

3. Reasonable runtime

There have been several approaches to this search
space problem, but all have significant drawbacks
in one of the criteria of search space generation:

• The simplest approach is the lexicographic
approach, which simply generates a search
space of words within a certain edit dis-
tance away from the query. Though simple,
this minimum edit distance technique, intro-
duced by Damerau in 1964 and Levenshtein
in 1966, only accounts for type 3 (and pos-
sibly type 2) misspellings. The approach is
reasonable for misspellings of up to edit dis-
tance 2, as Norvig’s implementation of this
runs in ∼0.1 seconds, but time complexity
increases exponentially and for misspellings
such as funetik → phonetic that are a sig-
nificant edit distance away, this approach will
not be able to contain the correction without
sacrificing both the size of the search space
and the runtime.

• Another approach is using phonetics, as mis-
spelled words will most likely still have sim-
ilar phonetic sounds. This accounts for type
2 misspellings, though not necessarily type
1 or type 3 misspellings. Implementations
of this approach, such as using the SOUND-
EX code (Odell and Russell, 1918), are able
to efficiently capture misspellings such as
funetik → phonetic, but not misspellings
like rypo → typo. Again, this approach is
not sufficient in containing all plausible cor-
rections.

• A similarity key can also be used. The sim-
ilarity key approach stores each word under
a key, along with other similar words. One
implementation of this is the SPEED-COP
spell corrector (Pollock and Zamora, 1984),
which takes advantage of the usual alpha-
betic proximity of misspellings to the correct
word. This approach accounts for many er-
rors, but there are always a large number of
exceptions, as the misspellings do not always
have similar keys (such as the misspelling
zlphabet→ alphabet).

• Finally, the rule-based approach uses a set of
common misspelling patterns, such as im→
in or y → t, to generate possible sources
of the typing error. The most complicated



approach, these spell correctors are able to
contain the plausible corrections for most
spelling errors quite well, but will miss many
of the bad misspellings. The implementation
by Deoroicz and Ciura using this approach is
quite effective, though it can be improved.

Our approach with this spell corrector is to
use a combination of these approaches to achieve
the best results. Each approach has its strengths
and weaknesses, but cannot achieve a good cover-
age of the plausible corrections without sacrificing
size and runtime. Instead, we take the best of each
approach to much better contain the plausible cor-
rections of the query.

To do this, we partition the set of plausible cor-
rections into groups (not necessarily disjoint, but
with a very complete union) and consider each
separately:

• Close mistypings/misspellings:

This group includes typos of edit distance
1 (typo → rypo) and misspellings of edit
distance 1 (consonent → consonant), as
well as repetition of letters (mispel →
misspell). These are easy to generate, run-
ning in O(n log nα) time, where n is the
length of the entry and α is the size of the
alphabet, to generate and check each word
(though increasing the maximum distance to
2 would result an significantly slower time of
O(n2 log nα2).

• Words with similar phonetic key:

We implement a precalculated phonetic key
for each word in WordNet, which uses a nu-
merical representation of the first five conso-
nant sounds of the word:

0: (ignored) a, e, i, o, u, h, w, [gh](t)
1: b, p
2: k, c, g, j, q, x
3: s, z, c(i/e/y), [ps], t(i o), (x)
4: d, t
5: m, n, [pn], [kn]
6: l
7: r
8: f, v, (r/n/t o u)[gh], [ph]

Each word in WordNet is then stored in an
array with indices ranging from [00000] (no
consonants) to [88888] and can be looked up
quickly.

This group includes words with a pho-
netic key that differs by an edit distance at
most 1 from the phonetic key of the entry
(funetik → phonetic), and also does a very
good job of including typos/misspellings of
edit distance greater than 1 (it actually in-
cludes the first group completely, but for
pruning purposes, the first group is consid-
ered separately) in very little time O(Cn)
where C ∼ 52 × 9.

• Exceptions:

This group includes words that are not
covered by either of the first two groups
but are still plausible corrections, such as
lignuitic → linguistic. We observe that
most of these exceptions either still have
similar beginning and endings to the orig-
inal word and are close edit distance-wise
or are simply too far-removed from the en-
try to be plausible. Searching through words
with similar beginnings that also have simi-
lar endings (through an alphabetically-sorted
list) proves to be very effective in including
the exception, while taking very little time.

As many generated words, especially from the
later groups, are clearly not plausible corrections,
candidate words of each type are then pruned with
different constraints depending on which group
they are from. Words in later groups are subject to
tougher pruning, and the finding of a close match
results in overall tougher pruning.

For instance, many words in the second group
are quite far removed from the entry and com-
pletely implausible as corrections (e.g. zjpn →
[00325] → [03235] → suggestion), while those
that are simply caused by repetition of letters (e.g.
lllooolllll → loll) are almost always plausible, so
the former group should be more strictly pruned.

Finally, since the generated search space after
group pruning can be quite large (up to 200), de-
pending on the size of the search space, the search
space may be pruned, repetitively, until the size of
the search space is of an acceptable size.

Some factors considered during pruning in-
clude:

• Length of word

• Letters contained in word

• Phonetic key of word



• First and last letter agreement

• Number of syllables

• Frequency of word in text (COCA corpus)

• Edit distance

This process successfully generates a search space
that rarely misses the desired correction, while
keeping both a small size in number of words and
a fast runtime.

2.2 Evaluating Possibilities

The next step is to assign a similarity score to all of
the candidates in the search space. It must be ac-
curate enough to discern that disurn −→ discern
but disurn 6−→ disown and versatile enough to
figure out that funetik −→ phonetic.

Our approach is a modified version of Church
and Gale’s probabilistic scoring of spelling errors.
In this approach, each candidate correction c is
scored following the Bayesian combination rule:

P (c) = p(c)max
(∏

i

p(ti | ci)
)

C(c) = c(c) + min
(∑

i

c(ti | ci)
)

Where P (c) is the frequency of the candidate
correction, P (ti | ci) the cost of each edit distance
operation in a sequence of edit operations that
generate the correction. The cost is then scored
logarithmically based on the probability, where
c(ti | ci) ∝ − log

(
p(ti | ci)

)
. The correction

candidates are then sorted, with lower cost mean-
ing higher likelihood.

We use bigram error counts generated from a
corpora (Jones and Mewhort, 2004) to determine
the values of c(t | p). Two sets of counts were
used:

• Error counts:

– Deletion of letter β after letter α
– Addition of letter β after letter α
– Substitution of letter β for letter α
– Adjacent transposition of the bigram αβ

• Bigram/monogram counts (log scale):

– Monograms α
– Bigrams αβ

First, we smooth all the counts using add-k
smoothing (where we set k = 1

2 ), as there are nu-
merous counts of 0. Since the bigram/monogram
counts were retrieved in log format, for sake of
simplicity of data manipulation, we only smooth
the counts of 0, changing their values to −0.69
(originally undefined). We then calculate c(ti | ci)
as:

c(ti | ci) = k1 log

(
1

p(α→ β)

)
+ k2

Where p(α→ β) is the probability of the edit op-
eration and k1, k2 factors that adjust the cost de-
pending on the uncertainty of small counts and the
increased likelihood of errors if errors are already
present.

For the different edit operations, p(x→ y) is:

p(x→ y) =



deletion : del′(xy)
N ′(xy)

addition : add′(xy)·N
N ′(x)·N ′(y)

substitution : sub′(xy)·N
N ′(x)·N ′(y)

reversal : rev′(xy)
N ′(xy)

And for deletion and addition of letters at the be-
ginning of a word:

p(x→ y) =

 deletion : del′(.y)
N ′(.y)

addition : (add′(.y))·N ·w
N ′(y)

To evaluate the minimum cost min
(∑

i c(ti |
ci)
)

of a correction, we use a modified Wagner-
Fischer algorithm, finds the minimum in O(mn)
time, where m,n are the lengths of the entry and
correction candidate, respectively. This is done
over for candidate corrections in the search space
generated in (3.1).

Now, the probabilistic scoring by itself is
not always accurate, especially in cases such as
funetik −→ phonetic. Thus, we modify the
scoring of each candidate correction to signifi-
cantly improve the accuracy of the suggestions:

• Instead of setting c(c) = − log(p(c), we
find that using c(c) as multiplicative constant
as a function f(c)γ , where f(c) is the fre-
quency of the word in the corpus and γ an
empirically-determined constant, yields sig-
nificantly more accurate predictions.

• We add empirically-determined multiplica-
tive factors λi pertaining to the following fac-
tors regarding the entry and the candidate cor-
rection:



– Same phonetic key (not restricted to first
5 consonant sounds)

– Same aside from repetition of letters
– Same consonants (ordered)
– Same vowels (ordered)
– Same set of letters
– Similar set of letters
– Same number of syllables
– Same after removal of es

(Note that other factors were considered but
the factors pertaining to them were insignifi-
cant)

The candidate corrections are then ordered by their
modified costs C ′(c) = C(c)

∏
i λi and the top

three results, in order, are returned to the user.

3 Semantic Input:

The second part of the spell corrector adds a se-
mantic aspect into the correction of the search
query. When users have trouble entering the query
and cannot immediately choose a suggested cor-
rection, they are given the option to enter a se-
mantically related word. WNSpell then takes this
word into account when generating suggestions,
harnessing WordNet’s vast semantic network to
further optimize results.

This added dimension in spell correction is very
helpful for the more severe errors, which usually
arise from the “idea → thought word” process in
spelling. These are much harder to deal with than
conventional mistypings or misspellings, and are
exactly the type of error WNSpell needs to be able
to handle (as mistyped or even misspelled queries
can be fixed without too much trouble by the user).
The semantic anchor the related word provides
helps WNSpell establish the idea” behind the de-
sired word and thus refine the suggestions for the
desired word.

To incorporate the related word into the sugges-
tion generation, we add some modifications to the
original context-free spell corrector.

3.1 Adjusting the Search Space:
One of the issues in search space generation in the
original is that a small fraction of plausible correc-
tions are still missed, especially in more severe er-
rors. To improve the coverage of the search space,
we modify the search space to also include a nu-
cleus of plausible corrections generated semanti-
cally, not just lexicographically. Since the missed

corrections are lexicographically difficult to gen-
erate, using a semantic approach would be more
effective in increasing coverage.

The additional group of word forms is generated
as follows:

1. For each synset of the related word, we con-
sider all synsets related to it by some seman-
tic pointer in WordNet.

2. All lemmas (word forms) of these synsets are
evaluated.

3. Lemmas that share the same first letter or the
same last letter and are not too far away in
length are added to the group.

The inclusion of the additional group is indeed
very effective in capturing the missed corrections
and remains relatively small in size.

Some examples of missed words captured in
this group from the training set are (entry, correct,
related):

• autoamlly, automatically, mechanically

• conibation, contribution, donation

3.2 Adjusting the Evaluation:
We also modify the scoring process of each candi-
date correction to take into account semantic dis-
tance. First, each candidate correction is assigned
a semantic distance d (higher means more similar)
based on Lesk distance:

d = max
i

max
j
s(ri, cj)

Which takes the maximum similarity over all pairs
of definitions of the related word r and candidate
c where similarity s is measured by:

s(ri, cj) =
∑

w∈Ri∩Cj ,w/∈S

k − ln(nw + 1)

Which considers words w in the intersection of
the definitions that are not stopwords and weights
them by the smoothed frequency nw of w in the
COCA corpus (as rarity is related to information
content) and some appropriate constant k.

Additionally, if r or c is found in the other defi-
nition, we also add to the similarity s of two defi-
nitions a

(
k − ln(nr/c + 1)

)
for some appropriate

constant a > 1. This resolves many issues that
come up with hypernyms/hyponyms (among oth-
ers) where two similar words are assigned a low



score since the only words in common in their def-
initions may be the words themselves.

We also consider the number n of shared sub-
sequences of length 3 between r and c, which is
very helpful in ruling out semantically similar but
lexicographically unlikely words.

We then adjust the cost function C ′ by:

C ′′ =
C ′

(d+ 1)α(n+ 1)β

For some empirically-determined constants α and
β. The new costs are then sorted and the top three
results returned to the user.

4 Results

We used the Aspell data set to train the system.
The test set consists of 547 hard-to-correct words.
This is ideal for our purposes, as we are focusing
on correcting bad misspellings as well as the easy
ones. Most of the empirically-derived constants
from (3.2) were determined based off of results
from this data set.

4.1 Without Semantic Input
We compare the results of WNSpell to a few pop-
ular spellcheckers: Aspell, Hunspell, Ispell, and
Word; as well as with the proposition of Deorow-
icz and Ciura, which seems to have the best results
on the Aspell test set so far (other approaches are
based off of unavailable/uncompatible data sets).

Ideally, for comparison, it would be ideal to run
each spell checker on the same lexicon and on the
same computer for consistent results. However,
due to technical constraints, it is rather infeasible
to do so. Instead, we will use the results posted
by the authors of the spell checkers, which, de-
spite some uncertainty, will still yield consistent
and comparable results.

First, we compare our generated search space
with the lists returned by Aspell, Hunspell, Ispell,
and Word (Atkinson). We use a subset of the As-
pell test set containing all entries whose correc-
tions are in all five dictionaries. The results are
shown in Table 1.

Search Space Results
Method % Size

found (0/50/100%)

WNSpell 97.4 1 10 66
Aspell (0.60.6n) 90.1 2 12 100
Hunspell (1.1.12) 83.2 1 4 15

Ispell (3.1.20) 54.8 0 1 29
Word 97 75.4 0 2 20

Table 1

Compared to these three spell correctors, WN-
Spell clearly does a significantly better job con-
taining the desired correction than Aspell, Hun-
spell, Ispell, or Word within a set of words of ac-
ceptable size.

We now compare the results of the top three
words returned on the list with those returned by
Aspell, Hunspell, Ispell, Word. We also include
data from Deorowicz and Ciura, which also uses
the Aspell test set. Since the dictionaries used
were different, we also include Aspell results us-
ing their subset of the Aspell test set. The results
are shown in Table 2, and a graphical comparison
is shown in Figure 1.

Once again, WNSpell significantly outperforms
the other five spell correctors.

Aspell Test Set Results (% Identified)
Method Top 1 Top 2 Top 3 Top 10

WNSpell 77.5 88.5 91.2 96.1
Aspell (0.60.6n) 54.3 63.0 72.9 87.1

Hunspell (1.1.12) 58.2 71.5 76.6 82.3
Ispell (3.1.20) 40.1 47.9 50.4 54.1

Word 97 62.6 69.4 72.7 75.4
Aspell (n) 56.9 66.9 74.7 87.9

DC 66.3 75.5 79.6 85.5

Table 2

2 4 6 8 10

60

70

80

90

100

Top n

Aspell Test Set Results (% Identified)

WNSpell
Aspell(0.60.6n)
Hunspell(1.1.12)

Word97
Aspell(n)

DC

Figure 1

We also test WNSpell on the Aspell common
misspellings test set, a list of 4206 common mis-
spellings and their corrections. Since the word
corrector was not trained on this set, it is a blind
comparison. Once again, we use a subset of the
Aspell test set containing all entries whose correc-
tions are in all five dictionaries. The results are



shown in tables 3 and 4, and a graphical compari-
son is shown in Figure 2.

Blind Search Space Results
Method % Size

found (0/50/100%)

WNSpell 98.4 1 4 50
Aspell (0.60.6n) 97.7 1 9 100

Hunspell (1.1.12) 97.3 1 5 15
Ispell (3.1.20) 85.2 0 1 26

Table 3

Blind Test Set Results
Method Top 1 Top 2 Top 3 Top 10

WNSpell 91.4 96.3 97.6 98.3
Aspell (0.60.6n) 73.6 81.2 92.0 97.0

Hunspell (1.1.12) 80.8 92.0 95.0 97.3
Ispell (3.1.20) 77.4 82.7 84.3 85.2

Table 4

2 4 6 8 10

75

80

85

90

95

100

Top n

Blind Test Set Results (% Identified)

WNSpell
Aspell(0.60.6n)

Hunspell(1.1.12)
Ispell(3.1.20)

Figure 2

Additionally, WNSpell runs in decently fast
time. WNSpell takes ∼13ms per word, while
Aspell takes ∼3ms, Hunspell ∼50ms, and Ispell
∼0.3ms. Thus, WNSpell is a very efficient stan-
dalone spell corrector, achieving superior perfor-
mance within acceptable runtime.

4.2 With Semantic Input
We test WNSpell with the semantic component on
the original training set, this time with added syn-
onyms. For each word in the training set, a human-
generated related word is inputted.

With the addition of the semantic adjustments,
WNSpell performs considerably better than with-
out them. The results are shown in Table 5 and a
graphical comparison in Figure 3:

Semantic Results (% Identified)
Method Top 1 Top 2 Top 3 Top 10

with 87.4 93.0 96.5 99.1
without 77.5 88.5 91.2 96.1

Table 5

2 4 6 8 10

80

85

90

95

100

Top n

Semantic Results (% Identified)

with
without

Figure 3

The runtime for WNSpell with semantic input,
however, is rather slow at an average of ∼200ms.

5 Conclusions:

The WNSpell algorithm introduced in this paper
presents a significant improvement in accuracy
in correcting standalong spelling corrections over
other systems, including the most recent version of
Aspell and other commercially used spell correc-
tors such as Huspell and Word, by approximately
20%. WNSpell is able to take into a variety of fac-
tors regarding different types of spelling errors and
using a carefully tuned algorithm to account for
much of the diversity in spelling errors presented
in the test data sets. There is a efficient sample
space pruning system that restricts the number of
words to be considered, strongly improved by a
phonetic key, and an accurate scoring system that
then compares the words. The accuracy of WN-
Spell in correcting hard-to-correct words is quite
close that of most peoples’ abilities and signifi-
cantly stronger than other methods.

WNSpell also provides an alternative using a
related word to help the system find the desired
correction even if the user is far off the mark in
terms of spelling or phonetics. This added feature
once again significantly increases the accuracy of



WNSpell by approximately 10% by directly con-
necting the idea word the user has in mind to the
word itself. This link allows for the possibility of
users who only know what rough meaning their
desired word has or context it is in to actually find
the word.

5.1 Limitations:
The standalone algorithm currently does not take
into consideration vowel phonetics, which are
rather complex in the English language. For in-
stance, the query spoak would be corrected into
speak rather than spoke. While a person easily
corrects spoak, WNSpell would not be able to use
the fact that spoke sounds the same while speak
does not. Rather, all three have consonant sounds
s, p, k and have one different letter from spoak.
But an evaluation of edit distance finds that speak
is clearly closer, so the algorithm chooses speak
instead.

WNSpell, a spell corrector targeting at single-
word queries, also does not have the benefit of
contextual clues most modern spell correctors use.

5.2 Future Improvements:
As mentioned earlier, introducing a vowel pho-
netic system into WNSpell would increase its
accuracy. The semantic feature of WNSpell
can be improved by either pruning down the
algorithm to improve performance or possibly
using/incorporating other closeness measures of
words into the algorithm. One possible addition is
the use of some distributional semantics, such as
using pre-trained word vectors to search for simi-
lar words (such as Word2Vec).

Additionally, WNSpell-like spell correctors can
be implemented in many languages rather easily,
as WNSpell does not rely very heavily on the mor-
phology of the language (though it requires some
statistics of letter frequencies as well as simpli-
fied phonetics). The portability is quite useful as
WordNet is implemented in over a hundred lan-
guages, so WNSpell can be ported to other non-
English WordNets.

References
D. Jurafsky and J.H. Martin. 1999. Speech and Lan-

guage Processing, Prentice Hall.

R. Mishra and N. Kaur. 2013. “A survey of Spelling
Error Detection and Correction Techniques,” Inter-
national Journal on Computer Trends and Technol-
ogy, Vol. 4, No. 3, 372-374.

K. Atkinson. “Spell Checker Test Kernel Results,”
http://aspell.net/test/.

S. Deorowicz and M.G. Ciura. 2005. “Correcting
Spelling Errors by Modeling their Causes,” Int. J.
Appl. Math. Comp. Sci., Vol. 15, No. 2, 275-285.

P. Norvig. “How to Write a Spell Corrector,”
http://norvig.com/spell-correct.html.

K.W. Church and W.A. Gale. 1991. “Probability Scor-
ing for Spelling Correction,” AT&T Bell Laborato-
ries

M.N. Jones and J.K. Mewhort. 2004. “Case-Sensitive
Letter and Bigram Frequency Counts from Large-
Scale English Corpora,” Behavior Research Meth-
ods, Instruments, & Computers, 36(3), 388-396.

Corpus of Contemporary American English. (n.d.).
http://corpus.byu.edu/coca/.


