
Divide and Conquer Strategy for Large Data MT

Dimitar Shterionov dimitars@kantanmt.com

KantanLabs, KantanMT, Dublin, Ireland

Abstract
In recent years Statistical Machine Translation (SMT) has established a dominant position

among the variety of machine translation paradigms. Industrial Machine Translation computer

systems, such as KantanMT, deliver fast and of high performance SMT solutions to the end

user. KantanMT is a cloud-based platform that allows its users to build custom SMT engines

and use them for translation via a batch or an online mode. In order to employ the full potential

of the cloud we have developed an efficient method for asynchronous online translation. This

method implements a producer-consumer technique that uses multiple queues as intermedi-

ate data storage units. Furthermore, each queue is associated with a priority that defines how

quickly the queue can be consumed. That gives our users the control on the flow of translation

requests, especially when it comes to large amounts of data.

In this paper we describe the design and the implementation of the new method and compare it

to others. We then assess the improvement in the quality of service of our platform by empirical

evaluation.

1 Introduction

In recent years Statistical Machine Translation (SMT) (Koehn (2010); Brown et al. (1993)) has

established a dominant position among the variety of available machine translation paradigms.

In 2007 Moses (Koehn et al. (2007)) was released – an open-source toolkit for SMT. While

research efforts have been mainly focused on improving the core SMT technology, i.e., Moses

and related pre- and post- processing techniques, we focused on bringing this technology to the

end user in a highly scalable manner. Our MT platform, KantanMT1 is fully distributed on the

cloud. In order to employ the full potential of the cloud and provide to our users high quality

translations for large amount of data with low response time, we have developed an efficient

request handling system.

The system aims to optimize resource allocation and to improve the robustness and re-

silience of our platform as well as the quality of service (QoS). We analyse two approaches for

processing translation requests in a distributed MT environment that are already employed in

our online translation pipeline and compare them to our new method.

The first approach processes each request at the moment it has been received using a cen-

tralized https endpoint. According to this method the segment, sent via the request, is translated

by a predefined SMT model and returned back to the user. Underlying is a load balancing

mechanism to distribute the segments on a fleet of servers that are dedicated for translation.

This method is synchronous (we refer to it as SYNC) and thus can introduce high delays be-

tween sending a request and receiving a translation.

Our second method implements an efficient producer-consumer technique based on a sin-

gle intermediate data storage unit (IDSU). While it allows users to translate large amounts of

1https://kantanmt.com/

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 114

segments asynchronously (thus we refer to it as ASYNC), it is still bound by the limits of the

used IDSU. According to the ASYNC method, old requests need to be processed before new

ones. Thus, it may cause delays for new requests.

The new method we have developed improves upon these restrictions by distributing re-

quests in as many IDSUs as the user requests. It allows requests that arrive at different time

points to be processed in parallel and independently from each other. Furthermore, this method

adds an extra control layer that allows our users to assign priority to their requests – the higher

the priority, the faster the requests are processed. That is, we take under consideration that some

requests may be more important to our users than others, and as such would need to be handled

faster. We refer to this method as the PP-ASYNC.

In this paper we describe the design and the implementation of the PP-ASYNC method and

compare it to the other two. We then assess the improvement in the QoS of our platform by

empirical evaluation.

2 Online translation with KantanMT

KantanMT (https://kantanmt.com) is a cloud-based SMT platform that provides ma-

chine translation services to its clients for more than 760 language pairs. It is based on the

state-of-the-art Moses toolkit to train SMT models; these models are then used for decoding.

In the remaining of this paper we use the term KantanMT or SMT “engine” to refer to the col-

lection of SMT models and configuration files. The use of the Moses toolkit together with the

distributed architecture of the system allows KantanMT engines to be built at very high speed

and with low computational cost.

KantanMT platform is equipped with two translation modes – batch mode and API or

online mode. In the batch mode clients provide a set of documents2. The system then translates

each of these files (one after the other) and returns their translated versions to the client.

The focus of this work is on the methods used in online translation mode. The online

translation mode allows clients to send translation requests via the KantanMT API using an

HTTP GET or an HTTP POST method. Each request specifies user identification (under the

form of a KantanAPI token), the engine to be used for translation and the segment to be trans-

lated. In response to a given translation request, the user will receive a translation of the input

segment. In the rest of this section we describe the three online translation methods. We focus

on the PP-ASYNC method which is the most recent and innovative online translation method of

KantanMT.

2.1 Synchronous online translation

SYNC is the most basic online translation method of KantanMT. According to this method the

user sends a request for translation of one (or more) segments via the API call translate and

receives either the translation of the segment or a failure notification. In the request (both HTTP

GET and HTTP POST requests are supported) the user provides its unique API token, the ma-

chine translation (MT) profile to be used for translation and, finally, the segment. Example 2.1

shows an HTTP GET request for the SYNC method.

Example 2.1 An HTTP GET request from a user with token 12345678901234563 for transla-
tion of the segment “Welcome to our blog ’100% Machine Translation’.” with the MT profile
MT-en-bg.
https://kantanmt.com/api/translate/1234567890123456/MT-en-bg/Welcome to our blog ’100%25 Machine Translation’. �

2KantanMT supports 26 file formats.
3This is an example token.

2

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 115

After using the token to verify the user, KantanMT translates the segment(s) using the

specified MT profile (if such exists and is running). The response of the translate call to

each translation request is either a successful translation or an error notification (in case a failure

due to failed authentication, incorrect encoding, etc. has occurred).

In Figure 1 we show the architecture of the system for handling SYNC requests with

respect to message-passing, i.e., the flow of information from the user to the platform and back.

Although we refer to this method as synchronous, it has an underlying distributed architecture

that allows several requests to be processed in parallel (i.e., several segments to be translated in

parallel). This we achieve by using two load balancers (LB) – one to receive and distribute the

requests and a second one that distributes the segment for translation among different machines.

User Receiver LB Translator LB

x 1 x n x m

message segment

successful/failed translation successful/failed translation

Figure 1: Message passing in SYNC.

2.2 Asynchronous online translation
Despite the capabilities of the LBs in the SYNC method to parallelise requests, thus letting

multiple segments to be translated simultaneously, users still need to wait until one batch of

segments is translated before they can submit new ones. This has three main drawbacks: (i)

lower effectiveness of our platform – i.e., lower quality of service – enforcing users to manually

operate the submission process; (ii) a large amount of requests submitted at the same time may

overload the LBs and cause huge latencies and (iii) concurrent users may not be able to process

their requests in parallel.

In order to tackle the aforementioned problems we introduce an additional layer of paral-

lelism that allows users to submit huge batches of messages4. This method uses a queue as an

intermediate data storage unit and processes translation requests asynchronously; we refer to

this method as the ASYNC method.

The architecture of the ASYNC system implements a producer/consumer-based (Arpaci-

Dusseau and Arpaci-Dusseau (2015)) approach where incoming requests are stored in a queue.

A consumer then depopulates the queue sending each read segment for translation. To translate

a segment, we use the SYNC method. If the translation succeeds it is forwarded to the user in

the form of a notification sent to a user-defined endpoint. If the translation fails, the segment

is redriven for a new translation attempt; if the number of failed attempts exceeds a predefined

threshold a failure notification is sent to the user on a user-defined endpoint. We present the

architecture of the ASYNC system in Figure 2.

3 Parallel priority-based online translation

The ASYNC method allows users to deal with large amount of requests asynchronously and

receive response from our system when a translation is generated, or when a failure occurs.

However, often a user may decide to, e.g., delay some translations in order to have other seg-

ments processed sooner, e.g., messages for a job that is close to a deadline need to be processed

faster than others that are not urgent. When it comes to large volumes of data prioritization can

be crucial for the on-time service delivery.

4In practice, we do not set any restriction on the number of requests that can be submitted at once.

3

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 116

User Queue Consumer SYNC

Failed Consumer

Failed Queue

x 1 x 1 x m x k

message message segment

successful translation

failed translation

Figure 2: Message passing in ASYNC.

The ASYNC method is bound by the limits of the used data structure, i.e. the queue – each

message is processed in the order that it is pushed into the queue: old messages already in the

queue need to be processed before new ones. Such a scenario is given in Example 3.1.

Example 3.1 Consider that User A sends 2000000 requests at time T0. Next, consider that at
time T1 = T0 + 10 minutes 10000 requests have been processed. That is, the consumption

ratio is 1000 requests/minute. At time T1 User B sends 10000 requests (stored at the end of
the queue). While the 10000 requests of User B would require 10 minutes for processing –
i.e., to translate the segments they carry – this user will need to wait for 1990 minutes =
33 hoursand10minutes before they can be processed. �
3.1 Method description
In order to provide to our users a mechanism to control the priority of their requests as well

as to enforce parallelism we devised the Parallel priority-based ASYNC, (PP-ASYNC). The

PP-ASYNC method uses multiple queues, each associated with a priority and a name. Each

incoming translation request contains the priority with which it should be processed and the

name of the queue in which it should be stored.

Each queue has a priority and is consumed at a predefined ratio associated with that prior-

ity. The consumption ratio defines how quickly a queue is read. The higher the queue priority,

the greater the consumption ratio. Once a requests is read from a queue the segment that it

carries is sent for translation with the SYNC method.

Successful translations are then sent back to the user (via a success notification endpoint

provided by the user). Failed translations are redriven into the correct priority queue for new

translation attempt; if the number of translation attempts exceeds a predefined threshold then

the segment is failed and the user is notified of the failure (via a failed notification endpoint).

The implementation of the PP-ASYNC method extends the implementation of the ASYNC
method with: (i) a distributing mechanism that processes incoming requests and redirects them

to the queue that matches the specified priority and queue name; if such a queue does not exist

it is created before the request is pushed; and (ii) support for reading messages from multiple.

Figure 3 shows the architecture of the system and the information flow.

3.2 Consumption ratio
The distributor (see Figure 3) receives a request from the user and distributes it to the correct

queue according to the specified priority and queue name. The consumer (independently from

the distributor) iterates over all queues, identifies the consumption ratio of each queue, based

4

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 117

User Distributor Queue Consumer SYNC

Failed Consumer

Failed Queue

x 1 x n x m x l x k

message message segment segment

successful translation

failed translation

Figure 3: Message passing in PP-ASYNC.

on its priority, reads a number of requests from the queue, sends the segments they carry for

translation and proceeds to the next queue. In our definition of the PP-ASYNC method, the con-

sumption ratio of a queue defines how many requests are read from that queue at one iteration

of the queue consumer. That is, for a queue Qi ∈ {Q1..QN} with priority qi there will be ci
requests read. For another queue Qj , j > i there will be cj > ci

5 requests that need to be read.

Our implementation allows multiple distributors and consumers to run simultaneously as

neither of them has side effects. That is why the actual consumption ratio depends on the

consumption ratio ci of a queue Qi and the number of consumers (M). For example, if there

are two consumers that read simultaneously from a queue with consumption ratio 5 (messages

per iteration), then ten requests will be read from that queue. A more detailed example is given

in Example 3.2.

Example 3.2 Consider that User A sends 2000000 requests to a queue with priority 1 (Q1)
at time T0 and that there are no other queues at that time6. Assume that the consumption
ratio for priority 1 is 100 requests per iteration and the consumption ratio for priority 2 is
500. Also, consider that in 1 minute one consumer can read 100 requests and there are 10
consumers running simultaneously. Then, in 10 minutes, that is, at time T1 = T0+10minutes
10000 requests will have been processed from Q1. At time T1 User B has just send 10000
requests all of which with priority 2, i.e., they are stored in a queue with priority 2 – Q2. The
consumers become aware of the new queue and proceed to processing it. According to its
priority each consumer will process 500 requests (in one iteration). Given that each consumer
reads from a queue at the speed of 100 requests per minutes, at time T2 = T0 + 5 minutes
the consumers will stop reading from Q2 and start a new iteration. They will consume 1000
requests from Q1 and at time T3 = T2 + 1 minute the consumers will move to Q2. At time
T4 = T3+5minutes all requests from Q2 will be read, that is, approximately 11 minutes after
they have been submitted. �

To determine the optimal consumption ratio we empirically evaluated different values and

compared the system’s performance. Our tests showed that the most efficient consumption

ratio is the one linear to the priority of the queue. In our implementation we have selected the

simplest linear dependency: the consumption ratio equals the priority of the queue. That is, for

5If the number of requests that needs to be read from a queue is larger than the number of requests available in the

queue, then all of them are read, the segments they carry are sent for translation, and the consumer proceeds to the next

queue.
6Or all other queues are empty.

5

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 118

a queue Qi with priority qi in one iteration of a handler there will be qi requests read from that

queue. We aimed at a balanced consumption ratio where, on the one hand, queues with higher

priority are consumed faster than queues of lower priority but on the other hand, lower-priority

queues are still processed within reasonable time.

In order to avoid concurrences between different users we allow two queues with the same

priority to have different names. In this way, each user can benefit equally from the PP-ASYNC.

In addition, we have implemented a queue with infinity priority – consumers process messages

from this queue until it is empty. Using this queue leads to a exactly the same behaviour as the

ASYNC method.

4 Empirical evaluation

We performed a series of tests that aimed to empirically evaluate the new online translation

method, i.e., the PP-ASYNC method. There are two objectives that we targeted with our test:

(i) compare the performance (i.e., translation speed) of the ASYNC and the PP-ASYNC methods

and (ii) show that the new method eliminates/reduces delays for newly incoming messages.

We ran our experiments on a Windows Server 2012 machine with 8-core Intel CPU, 15GB

or RAM and 160GB of SSD. For all our tests we used 2 engines – E1 and E2 – of different

size7. Engine E1 is considered large as it is trained on approximately 108000000 words; engine

E2 is trained on approximately 500000 words and we refer to it as small.

4.1 Delays for new messages in the PP-ASYNC method
This experiment aims to reveal whether the PP-ASYNC method reduces the delay for processing

new requests. We performed 5 tests. For each of them we used 10000 requests randomly

selected from an English text. We also used 100 consumers. Specific details about the tests are

shown in Table 1.

Test Queues Details

PP-ASYNC sequential – 5 priority queues Q1..Q5. – 1000 translation requests for engine E1

Queue Qi ∈ {Q1, .., Q5} are first stored in each queue.

has consumption ratio i. – 1000 translation requests for engine E2

are stored in each queue afterwards.

PP-ASYNC parallel – 5 priority queues Q1..Q5. – 1000 translation requests for engine E1

Queue Qi ∈ {Q1, .., Q5} and 1000 translation requests for

has consumption ratio i. engine E2 are in a random order.

PP-ASYNC distributed – 5 priority queues Q
E1
1 ..Q

E1
5 . – 1000 translation requests for engine E1

Queue Q
E1
i

∈ {QE11, .., QE15} in each queu Q
E1
i

.

has consumption ratio i. – 1000 translation requests for engine E2

– 5 priority queues Q
E2
1 ..Q

E2
5 . in each queu Q

E2
i

.

Queue Q
E2
i

∈ {QE21, .., QE25}
has consumption ratio i. Total: 10 queues.

ASYNC sequential – 1 queue – 5000 translation requests for engine E1

are first stored in the queue

and 5000 translation requests for engine E2

are stored in the queue afterwards.

ASYNC parallel – 1 queue – 5000 translation requests for engine E1

and 5000 translation requests for E2

are stored in a random order.

Table 1: Tests for determining the effect of the PP-ASYNC method on request delays.

We ran each experiment and measured the time when a request is consumed from a queue.

We then measure the time difference between the first processed request (at overall) and the

7We use the term “engine size” to refer to the number of words which were used to train the engine.

6

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 119

Delay time (in minute)

Test name E1 E2 Total

First Last First Last

PP-ASYNC sequential 0.00 30.29 7.61 38.17 38.17
ASYNC sequential 0.00 22.65 20.98 44.90 44.90

PP-ASYNC parallel 0.00 34.14 0.02 34.13 34.14
ASYNC parallel 0.00 28.93 0.02 25.58 28.93

PP-ASYNC distributed 0.00 33.34 0.46 31.85 33.34

Table 2: Time until the first message for a given engine is read from a queue.

first processed request for a specific engine. That is, we compute the delay before the requests

to a specific engine are accessed for the first time. For example, a given queue has requests for

engine E1 and engine E2. The first request to be read will have no delay (0.00 minutes). Let us

say that it is from engine E1. 10 minutes after that a consumer reads the first request for engine

E2 resulting in a delay of 10 minutes for engine.

Our results for each of the five tests are summarized in Table 2.

From Table 2 we notice, first that for the parallel tests there is no difference between the

ASYNC and PP-SYNC methods. That is because the requests are randomly distributed and, in

practice, they are not prioritized.

The results for the PP-ASYNC sequential, ASYNC sequential and PP-ASYNC distributed

are of greater interest as they show the benefits of using the PP-ASYNC method. Namely, from

the comparison of the PP-ASYNC sequential and the ASYNC sequential we notice that using

multiple queues decreases the delay significantly. As for the PP-ASYNC distributed test the

delay is reduced even more, shown that using separate queues to store the requests for different

engines is a prefered option when it comes to quick system response. In Figure 4 we compare

the delays represented as a percentage of the total processing time.

Figure 4 again shows that the PP-ASYNC method with multiple queues designated to one

engine has the best performance, i.e., almost no delay8. On large scale, i.e., when users send

huge volumes of translation requests, such delay reductions may be crucial for their operation.

4.2 Comparison between ASYNC and PP-ASYNC

As shown in Section 4.1 the worst case scenario for the PP-ASYNC method is when messages

are randomly distributed among different queues (see Table 2). Then there is no practical differ-

ence between the PP-ASYNC and the ASYNC method. We therefore compare the two methods

in such a scenario in order to test whether there is a degradation in performance due to the ad-

ditional distribution mechanism of the PP-ASYNC method. For this experiment we used 50000
requests for 2 engines and invoked 100 consumers. The two tests we executed are described in

Table 3.

We ran three iterations for each test and we measured the time consumed from the moment

the first request is read from a queue until it is emptied. We show the results from these tests in

Table 4 in minutes.

The results summarised in Table 4 confirm that in the worst case scenario for the PP-
ASYNC method the performance of the online translation of KantanMT does not degrade.

8In practice the delay is approximately one second.

7

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 120

a. The ASYNC sequential test.

b. The PP-ASYNC sequential test.

c. The PP-ASYNC distributed test.

Figure 4: Comparison of delays and processing times, relative to the total time.

Test Queues Details

PP-ASYNC comparison – 6 priority queues Q−1, Q1..Q5. – 25000 translation requests for engine E1

Queue Qi ∈ {Q1, .., Q5} and 25000 translation requests for

has consumption ratio i. engine E2 are in a random order.

Q−1 has infinite consumption ratio.

ASYNC comparison – 1 queue – 25000 translation requests for engine E1

and 25000 translation requests for E2

are stored in a random order.

Table 3: Tests for comparing the PP-ASYNC and ASYNC in the worst case scenario.

5 Conclusions

In this paper we presented the online translation methods of KantanMT. We focused on our

most innovative method – the PP-ASYNC. It uses multiple intermediate data storage units to

store users requests; efficient producer-consumer technique is used to distribute the requests

efficiently for translation. Each intermediate data storage unit is implemented as a queue and is

assigned a prioirity. The priority defines at what rate the queue is consumed.

The new method extends the ASYNC method by introducing multiple queues and priorities

for each queue. By using priorities this method allows our users to move forward the translation

of important segments. Such a mechanism is crucial to our users, especially when it comes to

8

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 121

Test name Consumption Iteration 1 Iteration 2 Iteration 3 Average

ratio

PP-ASYNC infinite 17.09 27.91 67.58 37.53
comparison 1 57.84 55.38 85.75 66.32

2 49.31 46.62 75.68 57.20
3 44.91 42.71 73.22 53.61
4 39.56 37.20 65.49 47.42
5 36.07 30.09 60.88 42.35

Total 72.93 75.66 114.73 87.78

ASYNC - 83.24 72.80 110.29 88.78
comparison

Table 4: Consumption time (in minutes).

processing large volumes of data.

Our empirical evaluation showed that while in the worse case scenario the PP-ASYNC is as

efficient as the ASYNC method, in general it reduces delays drastically. As such, our method is

suitable for processing concurrently/in parallel requests from different users. Furthermore, the

distributed architecture of our platform allows the PP-ASYNC method to handle large amounts

of data efficiently and respond on time.

In the future we aim at optimizing this method by building an intelligent system to enforce

extra control on the sysetm with less human interventions.

References

Arpaci-Dusseau, R. H. and Arpaci-Dusseau, A. C. (2015). Operating systems: Three easy pieces. Arpaci-

Dusseau.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics of statistical

machine translation: Parameter estimation. Computational Linguistics, 19(2):263–311.

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press, New York, NY, USA, 1st

edition.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi Itc-Irst, N., Cowan, B., Shen,

W., Moran Mit, C., Zens, R., Aachen, R., Dyer, C., Constantin, A., College, W., and Cornell, E. H.

(2007). Moses: Open source toolkit for statistical machine translation. pages 177–180.

9

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 122

