
The Twelfth Conference of
The Association for Machine Translation

in the Americas

October 28 - November 1, 2016

PROCEEDINGS

http://www.amtaweb.org/amta-2016-in-austin-tx

VOLUME 1:
MT Researchers’ Track

Editors:
Spence Green & Lane Schwartz

October – November , 201 -- , , USA

Proceedings of

,
Vol. 1: MT Researchers’ Track

 & , Eds.

Association for Machine Translation in the Americas
http://www.amtaweb.org

©201 The Authors. These articles are licensed under a Creative Commons 3.0 license, no derivative works, attribution, CC-BY-ND.

Introduction

AMTA occupies a unique place among MT research conferences, with one eye trained on

the continuing development of novel research techniques and another on the practical

application of those techniques in the commercial and government arenas. This year's

research program reflects that diversity. This year we accepted 15 papers for oral

presentation out of a total of 29 submissions. The accepted papers cover a nice variety of

topics including low resource and interactive MT, post-editing, and domain adaptation.

Over the past two years, the machine translation research landscape has undergone a

rapid transition away from the phrase-based techniques that have been dominant for the

past 10+ years, and towards new methods using artificial neural networks. This year's

program reflects that trend, with a number of papers applying neural techniques across a

broad range of MT tasks.

As chairs of the research track, we would like to thanks all of the authors as well as the

many reviewers whose hard work enabled this conference. It has also been a great

pleasure to work with George Foster and the other members of the AMTA 2016 organizing

committee.

Please enjoy this year's AMTA research track.

Lane Schwartz

Spence Green

I

Research Program Committee

Yaser Al-Onaizan

Tim Anderson

Amittai Axelrod

Wilker Aziz

Graeme Blackwood

Marine Carpuat

Daniel Cer

Boxing Chen

Colin Cherry

David Chiang

Steve DeNeefe

Loic Dugast

Nadir Durrani

Marcello Federico

Minwei Feng

Mikel Forcada

George Foster

Kevin Gimpel

Yvette Graham

Spence Green

Eva Hasler

Yifan He

Ulf Hermjakob

Hieu Hoang

Fei Huang

Matthias Huck

Marcin Junczys-Dowmunt

Philipp Koehn

Roland Kuhn

Shankar Kumar

Alon Lavie

Gregor Leusch

Lemao Liu

Qun Liu

Saab Mansour

Daniel Marcu

Arne Mauser

Arul Menezes

Haitao Mi

Michael Pust

Baskaran Sankaran

Rico Sennrich

Michel Simard

Raymond Slyh

Jörg Tiedemann

Christoph Tillmann

Taro Watanabe

Andy Way

Philip Williams

Dekai Wu

François Yvon

Bing Zhao

II

Contents

1

4

5

6

7

Instance Selection for Online Automatic Post-Editing in a ulti-domain cenario

Rajen Chatterjee, Mihael Arcan, Matteo Negri and Marco Turchi

Machine Translation Quality and Post-Editor Productivity

Marina Sanchez-Torron and Philipp Koehn

Fuzzy-match repair using black-box machine translation systems: what can be
expected?

John Ortega, Felipe Sánchez-Martínez and Mikel Forcada

Fast, Scalable Phrase-Based SMT Decoding

Hieu Hoang, Nikolay Bogoychev, Lane Schwartz and Marcin Junczys-Dowmunt

An Effective Diverse Decoding Scheme for Robust Synonymous Sentence Translation

Youngki Park, Hwidong Na, Hodong Lee, Jihyun Lee and Inchul Song

Ranking suggestions for black-box interactive translation prediction systems with
multilayer perceptrons

Daniel Torregrosa, Juan Antonio Pérez-Ortiz and Mikel Forcada

Multi-domain Adaptation for Statistical Machine Translation Based on Feature
Augmentation

Kenji Imamura and Eiichiro Sumita

Bilingual Methods for Adaptive Training Data Selection for Machine Translation

Boxing Chen, Roland Kuhn, George Foster, Colin Cherry and Fei Huang

Neural Interactive Translation Prediction

Rebecca Knowles and Philipp Koehn

1 Guided Alignment Training for Topic-Aware Neural Machine Translation

Wenhu Chen, Evgeny Matusov, Shahram Khadivi and Jan-Thorsten Peter

III

1 Improving Neural Machine Translation on resource-limited pairs using auxiliary data
of a third language

Ander Mart nez and Yuji Matsumoto

1 Which Words Matter in Defining Phrase Reordering in Statistical Machine
Translation?

Hamidreza Ghader and Christof Monz

1 Translation of Unknown Words in Low Resource Languages

Biman Gujral, Huda Khayrallah and Philipp Koehn

1

1

Automatic Construction of Morphologically Motivated Translation Models for Highly
Inflected, Low-Resource Languages

John Hewitt, Matt Post and David Yarowsky

Investigating the Impact of Various Partial Diacritization Schemes on Arabic-English
Statistical Machine Translation

Sawsan Alqahtani, Mahmoud Ghoneim and Mona Diab

IV

Instance Selection
for Online Automatic Post-Editing

in a Multi-domain Scenario

Rajen Chatterjee chatterjee@fbk.eu

University of Trento, Trento, Italy

Fondazione Bruno Kessler, Trento, Italy

Mihael Arcan mihael.arcan@insight-centre.org

Insight Centre for Data Analytics

National University of Ireland, Galway, Ireland

Matteo Negri negri@fbk.eu

Fondazione Bruno Kessler, Trento, Italy

Marco Turchi turchi@fbk.eu

Fondazione Bruno Kessler, Trento, Italy

Abstract
In recent years, several end-to-end online translation systems have been proposed to success-

fully incorporate human post-editing feedback in the translation workflow. The performance

of these systems in a multi-domain translation environment (involving different text genres,

post-editing styles, machine translation systems) within the automatic post-editing (APE) task

has not been thoroughly investigated yet. In this work, we show that when used in the APE

framework the existing online systems are not robust towards domain changes in the incoming

data stream. In particular, these systems lack in the capability to learn and use domain-specific

post-editing rules from a pool of multi-domain data sets. To cope with this problem, we propose

an online learning framework that generates more reliable translations with significantly better

quality as compared with the existing online and batch systems. Our framework includes: i) an

instance selection technique based on information retrieval that helps to build domain-specific

APE systems, and ii) an optimization procedure to tune the feature weights of the log-linear

model that allows the decoder to improve the post-editing quality.

1 Introduction

Nowadays, machine translation (MT) is a core element in the computer-assisted translation

(CAT) framework. The motivation for integrating MT in the CAT framework lies in its capabil-

ity to provide useful suggestions for unseen segments, which helps to increase the translators’

productivity. However, it has been observed that MT is often prone to systematic errors that

human post-editing has to correct before publication. The by-product of this “translation as

post-editing” process is an increasing amount of parallel data consisting of MT output on one

side and its corrected version on the other side. This data can be leveraged to develop automatic

post-editing (APE) systems capable not only to spot recurring MT errors, but also to correct

them. Thus, integrating an APE system inside the CAT framework can further improve the

quality of the suggested segments, reduce the workload of human post-editors and increase the

productivity of the translation industry. As pointed out in (Parton et al., 2012) and (Chatterjee

et al., 2015b), from the application point of view APE components would make it possible to:

• Improve the MT output by exploiting information unavailable to the decoder, or by per-

forming deeper text analysis that is too expensive at decoding stage;

• Cope with systematic errors of an MT system whose decoding process is not accessible;

• Provide professional translators with improved MT output quality to reduce (human) PE

effort;

• Adapt the output of a general-purpose MT system to the lexicon/style requested in a spe-

cific application domain.

In the last decade several works have shown that the quality of the machine translated text can be

improved significantly by post-processing the translations with an APE system (Simard et al.,

2007a; Dugast et al., 2007; Terumasa, 2007; Pilevar, 2011; Béchara et al., 2011; Chatterjee et al.,

2015b, 2016). These systems mainly follow the phrase-based machine translation approach

where the MT outputs (with optionally the source sentence) are used as the source language

corpus and the post-edits are used as the target language corpus. A common trait of all these

APE systems is that they were developed in a batch mode, which consists of training the models

over a batch of parallel sentences, optimizing the parameters over a development set, and then

decoding the test data with the tuned parameters. Although these standard approaches showed

promising results, they lack the ability to incorporate human feedback in a real-time translation

workflow. This led to the development of online learning algorithms that can leverage the

continuous streams of data arriving in the form of human post-editing feedback to dynamically

update the models and tune the parameters on-the-fly within the CAT framework. In recent

years, several online systems have been proposed in MT (see Section 2 for more details) to

address the problem of incremental training of the models or on-the-fly optimization of feature

weights. Few online MT systems have also been applied to the APE scenario (Simard and

Foster, 2013; Lagarda et al., 2015) in a controlled working environment in which the systems

are trained and evaluated on homogeneous/coherent data where the training and test sets share

similar characteristics. Moving from this controlled lab environment to real-world translation

workflow, where training and test data can be produced by different MT systems, post-edited by

various translators and belong to several text genres, makes the task more challenging, because

the APE systems have to adapt to all these diversities in real-time. We define this scenario as a

multi-domain translation environment (MDTE), where a domain is made of segments belonging

to the same text genre and the MT outputs are generated by the same MT system. To reproduce

this scenario, in our experiments we run the online APE systems on the concatenation of two

datasets belonging to different domains.

A preliminary evaluation in the MDTE scenario reveals that online systems are not robust

enough to learn and adapt towards the dynamics of the data, mainly because they try to leverage

all the seen data without considering the peculiarities of each domain. In the long-run, these

systems tend to become more and more generic, which may not be useful and even harmful to

automatically post-edit domain-specific segments. To address this problem, for the first time, we

propose an online APE system that is able to efficiently work in a MDTE scenario. Our intuition

is that an online APE model trained with few but relevant data (with respect to the segment to

be post-edited) can be more reliable than using all the available data as-is. To validate this

intuition, we propose an online APE system based on an instance selection (IS) technique that

is able to retrieve the most relevant training instances from a pool of multi-domain data for each

segment to post-edit. The selected data are then used to train and tune the APE system on-the-

fly. The relevance of a training sample is measured by a similarity score that takes into account

the context of the segment to be post-edited. This technique allows our online APE system

to be flexible enough to decide if it has the correct knowledge for post-editing a sentence or

if it is safer to keep the MT output untouched, avoiding possible damages of correction made

with insufficient/unreliable knowledge. The results of our experiments with various data sets

show that our online learning approach based on IS is: i) able to outperform the batch and the

other online APE techniques in the single domain scenario, and ii) robust enough to work in

a MDTE to generate reliable post-edits with significantly better performance than the existing

online APE systems.

2 Online Translation Systems

Online translation systems aim to incorporate human post-editing feedback (or the corrected

version of the MT output) into their models in real-time, as soon as it becomes available.

This feedback helps the system to learn from the mistakes made in the past translations and

to avoid repeating them in future translations. This continuous learning capability will even-

tually improve the quality of the translations and consequently increase the productivity of the

translators/post-editors (Tatsumi, 2009) working with MT suggestions in a CAT environment.

The basic workflow of an online translation system goes through the following steps repeatedly:

i) the system receives an input segment; ii) the input segment is translated and provided to the

post-editor to fix any errors in it; and iii) the human post-edited version of the translation is

incorporated back into the system, by stepwise updating the underlying models and parameters.

In the APE context, the input is a machine-translated segment (optionally with its corresponding

source segment), which is processed by the online APE system to fix errors, and then verified by

the post-editors. Several online translation systems have been proposed over the years (Hardt

and Elming, 2010; Bertoldi et al., 2013; Mathur et al., 2013; Simard and Foster, 2013; Ortiz-

Martınez and Casacuberta, 2014; Denkowski et al., 2014; Wuebker et al., 2015, inter alia). In

this section, we describe two online systems that have been used in the APE task (PEPr, and

Thot), and one in the MT scenario which is similar to our proposed system (Realtime cdec):

PEPr: Post-Edit Propagation: Simard and Foster (2013) proposed a method for post-edit

propagation (PEPr), which learns post-editors’ corrections and applies them on-the-fly to fur-

ther MT output. Their proposal is based on a phrase-based SMT system, used in an APE setting

with online learning mechanism. To perform post-edit propagation, this system was trained

incrementally using pairs of machine-translated (mt) and human post-edited (pe) segments as

they were produced. When receiving a new pair (mt, pe), word alignments are obtained by using

Damerau-Levenshtein distance. In the next step the phrase pairs are extracted and appended to

the existing phrase table. The whole process is assumed to take place within the context of a sin-

gle document. For every new document the APE system begins with an “empty” model. Since

the post-editing rules are learned for a given document they can be more precise and useful for

that document, but the limitation is that knowledge gained after processing one document is not

utilized for other similar documents. This limitation can be addressed by our system (Section

3), in which we maintain one global knowledge base to store all the processed documents, still

being able to retrieve post-editing rules specific to a document to be translated.

Thot: The Thot toolkit (Ortiz-Martınez and Casacuberta, 2014) is developed to support fully

automatic and interactive statistical machine translation.1 It was also used by Lagarda et al.

(2015) in an online setting for the APE task, to perform large-scale experiments with several

1https://github.com/daormar/thot

data sets for multiple language pairs, with base MT systems built using different technologies

(rule-based MT, statistical MT). In the majority of their experiments online APE successfully

improved the quality of the translations obtained from the base MT system by a significant

margin. To update the underlying translation and language models with the user feedback, a

set of sufficient statistics was maintained that can be incrementally updated. In the case of

language model, only the n-gram counts are required to maintain sufficient statistics. To update

the translation model, an incremental version of EM algorithm is used to first obtain word

alignment and then phrase pairs counts were extracted to update the sufficient statistics. Other

features like source/target phrase-length models or distortion model are implemented by means

of geometric distributions with fixed parameters. The sentence length model is implemented

by means of Gaussian distributions. However, the feature weights of the log-linear model are

static throughout the online learning process, as opposed to our method that updates the weights

on-the-fly. Also, this method learns post-editing rules from all the data processed in real-time,

whereas, our approach learns from the most relevant data points.

Realtime cdec: Denkowski et al. (2014) proposed an online model adaptation method to

leverage human post-edited feedback to improve the quality of an MT system in a real-time

translation workflow. To build the translation models they use a static suffix array (Zhang and

Vogel, 2005) to index initial data (or a seed corpus), and a dynamic lookup table to store in-

formation from the post-edited feedback. To decode a sentence, the statistics of the translation

options are computed both from the suffix array and from the lookup table. An incremental

language model is maintained and updated with each incoming human post-edit. To update the

feature weights they used an extended version of the margin-infused relaxed algorithm (MIRA)

(Chiang, 2012). The decoding is treated as simply the next iteration of MIRA, where a segment

is first translated and then its corresponding reference/post-edition is provided to the model,

and MIRA updates the parameters. While this system was earlier used in the context of MT, in

this work we use it to investigate its applicability in online APE. A key difference between this

approach and ours is the sampling technique. The former uses suffix-arrays to always retrieve

the top k source phrases, whereas in our approach the number of samples (or the training in-

stances) is dynamically set to use only the most relevant ones. Another difference is visible in

the parameter optimization step. Realtime cdec optimizes the feature weights of the log-linear

model after decoding each segment, whereas, our method optimizes the weights specifically for

the segment to be post-edited.

3 Instance Selection for Online APE System

The online systems described in Section 2 compute and update the feature scores of the log-

linear models based on all the previously seen data. This indicates that, in the long-run, the

model will tend to become more and more generic, since the data processed in the online sce-

nario may belong to multiple domains as explained in Section 1. Having a generic model might

not be useful to retrieve the domain-specific post-editing rules needed to fix errors in a particular

document. One solution is to build document-specific APE models as proposed by Simard and

Foster (2013). In their approach, however, once the entire document is processed the models are

reset back to their original state, due to which the knowledge gained from the current document

is lost. To preserve all the knowledge gained in the online learning process, at the same time

being able to apply specific post-editing rules when needed, we propose an instance selection

technique for online APE. Our proposed framework, as shown in Figure 1, uses a global knowl-

edge base to preserve all the data points seen in the online process, and has the ability to retrieve

specific data points whose context is similar to the segment to be post-edited. These data points

are used to build reliable APE models. When there are no reliable data points in the knowledge

base, the MT output is kept untouched, as opposed to the existing APE systems, which tend to

Figure 1: Architecture of our online APE system

always “translate” the given input segment independently from the reliability of the applicable

correction rules. This approach of post-editing with reliable information only makes our system

more precise compared with others (see results in Section 5): that is when a post-editing rule is

applied it is more likely to improve the quality of the translation. When no reliable knowledge

is available for the correction, the MT output is left untouched.

We propose online APE but we actually “emulate” it by processing the data points one at

a time. Our proposed algorithm assumes to have the following data to run the online experi-

ments: i) source (src); ii) MT output (mt); and iii) human post-edits (pe) of the MT output. At

the beginning the knowledge base of our online APE system is empty and it will be updated

whenever a new instance (a tuple containing parallel segments from all the above mentioned

documents) is processed. When the system receives an input (src, mt), it proceeds through the

following steps:

Instance Selection. Initially, it selects the most relevant training instances from a pool of

multi-domain data stored in our knowledge base. This will help to build a reliable APE model

for each input segment processed in real-time. The relevance of the training instances with

respect to the input segment is measured in terms of a similarity score based on the term

frequency—inverse document frequency (tf-idf), generally used in information retrieval. The

larger the number of words in common between the training and the input sentences, the higher

is the score. In our system, these scores are computed using the Lucene library.2 Only those

training instances that have a similarity score above a certain threshold (decided over a held-out

development set) are used to build the system. In case there are no training instances available,

we preserve the input segment as it is. Indeed, we assume that APE with unreliable information

can damage the mt segment instead of improving the translation quality. This is one of the main

outcomes of the first APE pilot task organized last year within the WMT initiative (Bojar et al.,

2015) and, as we will see from our results, it represents a major problem for the approaches

that always translate the given input segments. The proposed instance selection technique (or

sampling mechanism) differs from the one proposed in real-time cdec (Denkowski et al., 2014),

which uses suffix-arrays to select the top k instances. In our approach the sample size is in

fact dynamically set in order to select only the most similar ones. This allows us to build more

reliable models (since the underlying data better resembles the test segment), and to gain speed

2https://lucene.apache.org/

when the sample size is small. The use of a tf-idf similarity measure was proposed before in the

context of machine translation by Hildebrand et al. (2005) to create a pseudo in-domain corpus

from a big out-of-domain corpus. Our work is the first to investigate it for the APE task in an

online learning scenario.

Model Creation. From the selected instances we build several local models. The first is the

language model: A tri-gram local language model is built over the target side of the training

corpus with the IRSTLM toolkit (Federico et al., 2008). Since the selected training data closely

resembles the input segment, we believe that the local LM can capture the peculiarities of the

domain to which the input segment belongs. Along with the local LM we always use a tri-

gram global LM, which is updated whenever a human post-edition (pe) is received. The other

local models are the translation and the reordering models: these local models are built over

the training instances retrieved from the knowledge base. Since the training instances are very

similar to the input segment, the post-editing rules learned from these local models are more

reliable for the test segment. These models are build with the Moses toolkit (Koehn et al.,

2007) and the word alignment of each sentence pair is computed using the incremental GIZA++

software.3

Parameter Optimization. The parameters are optimized over a section of the selected in-

stances (development set). The size of this development set is critical: if it is too large, then

the parameter optimization will be expensive. On the other hand, if it is too small the tuned

weights might not be reliable. To achieve fast optimization with reliably-tuned weights, multi-

ple instances of MIRA are run in parallel on several small development sets and all the resulting

weights are then averaged. For this purpose, the data selected by the instance selection module

are randomly split in training and development sets three times. A minimum number of se-

lected sentence pairs is required to trigger the parameter optimisation process. If this minimum

value is not reached, the optimization step is skipped because having few sentences might not

yield to reliable weights. In this case, the weights computed on the previous input segment are

used. In our experiments, we observed that this solution is more reliable and efficient than the

feature weights obtained with a single tuning, as it was previously proposed in (Cettolo et al.,

2011). We believe this procedure to optimize the feature weights over a development set that

closely resembles the test segment can help to obtain weights more suitable to the segment to

be post-edited.

Decode Test Segment. To decode the input segments, all the local models (language, trans-

lation, reordering) are built with all the selected instances. The log-linear feature weights are

computed by taking the arithmetic mean of the tuned weights for the three data splits. The

decoding process is performed with the Moses toolkit recalling that the input segment is kept

untouched when no reliable information is available in the knowledge base.

Update Global Repository. In a real translation workflow, the automatically post-edited ver-

sion (or the MT output, if there were no training data available) is provided to a post-editor

for correction, and the corrected version is incorporated back into the system. To avoid the un-

necessary costs of involving human post-editors in-the-loop when running these experiments,

we simulate this condition by using the human post-edits of the MT output (which are already

available in the data set). Each newly processed instance is added to our knowledge base, and

the global language model is updated with the post-edited segment.

3https://code.google.com/archive/p/inc-giza-pp/

4 Experimental Setup

4.1 Data

To examine the performance of the online APE systems in a multi-domain translation environ-

ment, we select two data sets for the English-German language pair belonging to the informa-

tion technology (IT) domain. Although they come from the same domain (IT), they feature

variability in terms of vocabulary coverage, MT errors, and post-editing style. The two data

sets are respectively a subset of the Autodesk Post-Editing Data corpus 4 and the resources

used at the second round of the APE shared task at the First Conference on Machine Trans-

lation (WMT2016) (Bojar et al., 2016).5 The data sets are pre-processed to obtain a joint-

representation that links each source word with a MT word (mt#src). This representation has

been proposed in the context-aware APE approach by Béchara et al. (2011) and leverages the

source information to disambiguate post-editing rules. Recently, Chatterjee et al. (2015b) also

confirmed this approach to work better than translating from raw MT segments over multiple

language pairs. The joint-representation is used as a source corpus to train all the APE systems

reported in this paper and it is obtained by first aligning the words of source (src) and MT (mt)
segments using MGIZA++ (Gao and Vogel, 2008), and then each mt word is concatenated with

its corresponding src words.

The Autodesk training, development, and test sets consist of 12,238, 1,948, and 1,956

segments respectively, while the WMT2016 data contains 12,000, 1,000, and 2,000 segments.

Table 1 provides some additional statistics of the source (mt#src) and target (pe) training cor-

pus, the repetition rate (RR) to measure the repetitiveness inside a text (Bertoldi et al., 2013),

and the average TER score for both the data sets (computed between MT and PE). It is inter-

esting to note that the Autodesk data set has on average shorter segments compared with the

WMT2016 corpus. This suggests that learning and applying post-editing rules in the Autodesk

corpus can be easier than using the WMT2016 segments, because dealing with long segments

generally increases the complexity of the rules extraction and decoding processes. Moreover,

the WMT2016 data set has a repetition rate similar to the Autodesk even though it has more

tokens. This indicates that the data is more sparse raising the difficulty of extracting reliable

post-editing rules. Looking at the TER score, the smaller value of the WMT2016 data set com-

pared with the Autodesk one suggests that the room for improvement is lower, because there

are less corrections to perform and the chance to deteriorate the original MT output is larger.

Tokens Types Avg. segment length RR

(mt#src)
TER

mt#src pe mt#src pe mt#src pe
Autodesk 153,943 160,801 31,939 15,023 12.57 13.13 4.938 45.35

WMT2016 210,573 214,720 32211 16,388 17.54 17.89 4.907 26.22

Table 1: Data statistics

The diversity of the two data sets is further measured by computing the vocabulary overlap

between the two joint-representations. This is performed internally to each data set (splitting

the training data in two halves) and across them. As expected, in the first case the vocabulary

overlap is much larger (> 40%) than in the second one (∼15%), and this indicates that the two

data sets are quite different and few information can be shared. All the aforementioned aspects

show the large variability in the corpora making them suitable to emulate the multi-domain

translation environment.

4https://autodesk.app.box.com/v/autodesk-postediting
5http://www.statmt.org/wmt16/ape-task.html

4.2 Evaluation metrics

The performance of the different APE systems is evaluated using three different metrics: Trans-

lation Error rate (TER) (Snover et al., 2006), BLEU (Papineni et al., 2002) and Precision (Chat-

terjee et al., 2015a). TER and BLEU measure the similarity between the MT outputs and their

references by looking at n-grams overlap (TER at word level, BLEU from 1 to 4 words). To

give a better insight on the APE performance, we also report Precision, computed as the ratio of

the number of sentences an APE system improves (with respect to the MT output) over all the

sentences it modifies.6 Values larger than 50% indicate that the APE system is able to improve

the quality of most of the sentences it changes.

Statistical significance tests are computed using the paired bootstrap resampling technique

(Koehn, 2004) for the BLEU metric and the stratified approximate randomization test (Clark

et al., 2011) for TER.

4.3 Terms of comparison

We evaluate our online learning approach against four different terms of comparison.

MT. Our baseline is the “do-nothing” system that simply returns the MT outputs without

changing them. As discussed in (Bojar et al., 2015), this baseline can be particularly hard to

beat when the repetition rate of the data is low and due to the tendency of the APE systems to

over-correct the MT output.

Batch APE. This APE system is developed in a batch mode following the approach proposed

in Chatterjee et al. (2015b). It is similar to the context-aware method (Béchara et al., 2011),

but it uses word alignments produced by the monolingual machine translation APE technique

proposed in Simard et al. (2007b). Being a batch method, it cannot learn from the test set, but

it leverages all the training points at the same time.

Online APE. We compare our approach against two online systems: i) the Thot toolkit that

had been previously used in the online APE task, and ii) Realtime cdec that, among the other

online MT systems, is the closest to our approach (i.e. it uses a data selection mechanism),

but has never been tested in the APE scenario. Another online APE approach is PEPr that was

meant for document level APE, but since we are working with data sets that do not have any

intrinsic document structure, we do not find it to be a suitable term of comparison.

5 Experiments and Results

Our preliminary objective is to examine if the online learning methods are able to achieve

results that are competitive with those of batch methods, which are potentially favored by the

possibility to leverage all the training data at the same time. For this test, all the algorithms

are evaluated in the classic in-domain setting, where training, development, and test sets are

sampled from the same data set or domain. All the online APE methods are run in two modes;

i) batch: the test set is not used in the learning process (to have a fair comparison with the batch

APE), ii) online: the test set is leveraged in the online learning process. The experiments are

performed for both the data sets (Autodesk and WMT2016), and their corresponding results are

reported in Table 2 and Table 3 respectively. The parameters of our approach (i.e. similarity

score threshold and minimum number of selected sentence) are optimised on the development

set following a grid search strategy. We set the threshold values to 0.8 and 1 respectively for the

Autodesk and WMT2016 datasets and the minimum number of selected sentences to 20.

6For each sentence in the test set, if the TER score of the APE output is different than the TER score of the MT

then the sentence is considered as a modified sentence

Batch mode Online mode

BLEU TER Precision (%) BLEU TER Precision (%)

MT 39.28 46.48 N/A N/A N/A N/A

Batch APE 44.14 43.24 61.34 N/A N/A N/A

cdec 43.13† 43.86† 54.22 43.19† 43.69† 54.75

Thot 43.21† 44.70† 55.69 43.34† 44.62† 56.27

Our approach 44.68† 41.98† 79.26 44.76† 41.95† 79.20

Table 2: Autodesk in-domain (†: statistically significant wrt. Batch APE with p<0.05)

Batch mode Online mode

BLEU TER Precision (%) BLEU TER Precision (%)

MT 62.11 24.76 N/A N/A N/A N/A

Batch APE 63.06 25.07 48.55 N/A N/A N/A

cdec 61.99† 25.26 45.17 61.80† 25.35† 42.83

Thot 62.06† 25.26 42.92 62.22† 25.22 43.69

Our approach 62.97 24.53† 61.46 63.19 24.39† 62.62

Table 3: WMT2016 in-domain (†: statistically significant wrt. Batch APE with p<0.05)

From the results of the in-domain experiments with the Autodesk data set it is evident that

our proposed online APE method performs not only better than cdec and Thot (both in batch

and online mode) but also better than the strong batch APE method. It achieves significant im-

provements of 0.54 BLEU, 1.26 TER, and 17.9% precision over the batch APE, which already

beats the other online methods. The improvement of our system can be attributed to its ability

to learn from the most relevant data and to avoid over-correction by leaving the test segment un-

touched when no reliable information is found in the knowledge base. As discussed in Section

4.1, several factors like sentence length, sparsity, and translation quality make the WMT2016

data set more challenging to improve for all the online APE methods. In particular, due to the

higher translation quality of the mt segments, the room for improvement gets lower and the

chances of damaging the correct parts are higher. This is visible from the low precision scores

reported in Table 3. All the APE methods (batch and online) damage the MT segments in the

majority of the cases (precision is lower than 50%). The only exception is our approach that

performs significantly better than the batch APE (in terms of TER) and is the only successful

method to significantly improve the MT segments in the majority of the cases (61.46%). These

experimental results confirm that our proposed online learning APE method based on instance

selection to learn only from the most relevant data is sound and reliable.

Building on these results, the main goal of this research is to examine the performance of

the online APE methods in a MDTE. This represents a more challenging condition since the

system has to adapt to the dynamics of the data processed in a real-time scenario. To emulate

this environment, all the online learning methods are trained and tuned on one data set (or

domain) and evaluated on the other data set with the possibility to learn from it. In order to

capture the peculiarities of the online learning methods over a long run with many data points,

we use the training section of the second data set as a test set. The left side of Table 4 reports

the performance of all the APE systems when they are trained and tuned on the WMT2016 data

set and evaluated on the Autodesk data set. The experimental results reported in the right side

of Table 4 are obtained by using the Autodesk data set to train and tune, and the WMT2016 to

evaluate. The parameters of our approach (i.e. similarity score threshold and minimum number

of selected sentence) are the same as computed in the in-domain setting.

WMT2016 - Autodesk Autodesk - WMT2016

BLEU TER Precision (%) BLEU TER Precision (%)

MT 39.91 45.35 N/A 60.90 26.22 N/A

Batch APE 38.09† 46.91† 3.95 55.56† 30.03† 4.03

cdec 38.63† 46.26† 8.36 56.30† 28.98† 7.37

Thot 42.40† 43.45† 58.46 58.11† 28.67† 14.20

Our approach 43.59† 42.44† 76.38 60.49† 26.44† 41.37

Table 4: Performance of the APE systems in a multi-domain translation environment. (†: sta-

tistically significant wrt. MT, p<0.05; the best scores among the online systems are bold)

In Table 4, the poor performance of the batch APE, which can only leverage the knowledge

from the training domain, indicates that the post-editing rules extracted from the training domain

are not portable to the test one (even though both datasets belong to IT). This suggests the

need of APE approaches that are able to adapt themselves to the incoming data in real-time.

Comparing the performance of all the online approaches for both test sets, we notice that our

system performs the best with significant gains in all the evaluation metrics. This confirms

that our APE system, based on instance selection, is robust enough to work in a MDTE due

to its capability to leverage only the most relevant information from a pool of multi-domain

segments. Similar to the results on in-domain experiments, significant gains in performance

are observed for the Autodesk test set. This does not happen for the WMT2016 test data, for

which none of the online APE approaches is able to improve over the MT baseline. For this

challenging data set, our approach has the minimal performance degradation (over MT), while

the other online systems severely damage the MT segments as confirmed by their low precision

(7.37% and 14.20% respectively). One of the common observations, both over the Autodesk and

the WMT2016 test sets, is the large difference in precision (17.92% and 27.17% respectively)

between the best (our approach) and the second best (Thot) online APE system. This indicates

that our approach is more conservative and more suitable to extract and apply domain-specific

post-editing rules from a pool of multi-domain data sets, which makes it a more viable and

appropriate solution to be deployed in a real-world CAT framework. In the next section, we

present some findings on the performance trends of different systems across the entire test set

for the multi-domain scenario.

6 Performance Analysis

To understand and compare the behavior of different online learning approaches in the long-

run, the plot in Figure 2 shows the moving average TER (window of 750 data points) at each

segment of the Autodesk test set for the multi-domain experiment (Table 4). As it can be seen,

our approach successfully maintains the best performance across the entire test set. As expected,

at the beginning of the test set the performance of the online systems is close to the MT system,

since there is not much relevant data available to learn from. As time progresses and more

segments are processed, a clear trend of performance improvement (with respect to MT) is

visible for our method and for the Thot system. This does not hold in the case of cdec, maybe

due to the sampling techniques used in the suffix array, which is unable to retrieve relevant

samples from the pool of multi-domain data to decode the test segments.

For the WMT2016 test set the moving average TER is shown in Figure 3. As said before,

improving translation quality on this test set is more challenging, which is reflected in the graph.

Although none of the systems is able to improve over the MT baseline, our system manages to

consistently stay close to the MT performance throughout the test set, whereas, all other systems

show significant drops. This ensures that our approach is more robust against the domain-shift

Figure 2: Moving average TER for the Autodesk test set in a multi-domain scenario

Figure 3: Moving average TER for the WMT2016 test set in a multi-domain scenario

and even in this difficult scenario it is able to maintain stable performance close to the MT

without a large deterioration.

To gain further insights about the performance at the segment level, the plot in Figure 4

compares our approach against Thot for the first 300 segments of the Autodesk test set used in

the multi-domain experiment. It shows the differences between the segment-level TER of the

MT (TERMT) and our approach (TEROur approach), and MT and Thot (TERThot) automati-

cally post-edited segments. We notice that our approach modifies less segments compared with

Thot, because it builds a model only if it finds relevant data in the knowledge base, otherwise

it leaves the MT segment untouched. These untouched MT segments, when modified by Thot,

often lead to deterioration rather than to improvements (as seen by many negative peaks for

Thot in the Figure 4). This suggests that, compared with the other online approaches, the output

obtained with our solution has a higher potential for being useful to human translators. Such

usefulness comes not only in terms of a more pleasant post-editing activity, but also in terms of

time savings yield by overall better suggestions.

Figure 4: Our approach (top) vs Thot (bottom) performance comparison for the initial test

segments (> 0 means improvements over the MT, < 0 means deterioration of the MT)

7 Conclusion

We addressed the problem of building robust online APE systems in a multi-domain translation

environment in which the system has to continuously adapt to the dynamics of diverse data pro-

cessed in real-time. Our evaluation revealed that the online systems that leverage all the avail-

able data without considering the peculiarities of each domain are not robust enough to work in

a multi-domain translation environment, because they are unable to learn domain-specific post-

editing rules. To overcome this limitation, we proposed an online learning framework based

on instance selection that has the capability to filter out the most relevant information from a

pool of multi-domain data for learning domain-specific post-editing rules. When no reliable

information is available our system leaves the MT segments untouched, these segments when

automatically post-edited by other systems are often found to get deteriorated. Therefore, the

APE suggestions provided by our system to the translators/post-editors are more reliable with

better translation quality.

From our experiments in a simulated multi-domain environment, we learn that the post-

editing rules are not portable across domains which is revealed by the poor performance of

the batch APE system that can leverage only the training data. In the case of online systems

that leverage also the test set, it was still a challenging scenario (specially for the Autodesk-

WMT2016 data set). Among all the online systems, our proposed approach has the highest

improvement on the WMT2016-Autodesk data set, and the least degradation on the Autodesk-

WMT2016 data set with respect to the MT quality. Experiments in the in-domain setting con-

firmed that our approach for instance selection is also useful in a single domain scenario. It

performed significantly better than the batch APE that already beats cdec and Thot. One com-

mon observation from all the experiments in different working scenarios and with different data

sets is that our system has the highest precision among all its competitors (MT, batch APE,

cdec, and Thot). This indicate that when our system automatically post-edits MT segments, it

is more likely to improve the quality of the MT output, which makes it a viable solution to be

deployed in a real-word CAT framework.

Acknowledgement

This work has been partially supported by the EC-funded H2020 project QT21 (grant agreement

no. 645452), and by the Science Foundation Ireland research grant (no. SFI/12/RC/2289).

References

Béchara, H., Ma, Y., and van Genabith, J. (2011). Statistical post-editing for a statistical mt

system. In Proceedings of the XIII MT Summit, pages 308–315.

Bertoldi, N., Cettolo, M., and Federico, M. (2013). Cache-based online adaptation for machine

translation enhanced computer assisted translation. Proceedings of the XIV MT Summit, pages

35–42.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Jimeno Yepes, A.,

Koehn, P., Logacheva, V., Monz, C., Negri, M., Neveol, A., Neves, M., Popel, M., Post, M.,

Rubino, R., Scarton, C., Specia, L., Turchi, M., Verspoor, K., and Zampieri, M. (2016). Find-

ings of the 2016 conference on machine translation. In Proceedings of the First Conference
on Machine Translation, pages 131–198, Berlin, Germany. Association for Computational

Linguistics.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, C., Koehn, P.,

Logacheva, V., Monz, C., Negri, M., Post, M., Scarton, C., Specia, L., and Turchi, M. (2015).

Findings of the 2015 workshop on statistical machine translation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pages 1–46, Lisbon, Portugal.

Cettolo, M., Bertoldi, N., and Federico, M. (2011). Methods for smoothing the optimizer

instability in smt. In Proceedings of the XII MT Summit, pages 32–39.

Chatterjee, R., C. de Souza, J. G., Negri, M., and Turchi, M. (2016). The fbk participation in

the wmt 2016 automatic post-editing shared task. In Proceedings of the First Conference
on Machine Translation, pages 745–750, Berlin, Germany. Association for Computational

Linguistics.

Chatterjee, R., Turchi, M., and Negri, M. (2015a). The fbk participation in the wmt15 auto-

matic post-editing shared task. In Proceedings of the Tenth Workshop on Statistical Machine
Translation, pages 210–215.

Chatterjee, R., Weller, M., Negri, M., and Turchi, M. (2015b). Exploring the planet of the apes:

a comparative study of state-of-the-art methods for mt automatic post-editing. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics, pages 156–161.

Chiang, D. (2012). Hope and fear for discriminative training of statistical translation models.

Journal of Machine Learning Research, 13(Apr):1159–1187.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. (2011). Better hypothesis testing for statistical

machine translation: Controlling for optimizer instability. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics, pages 176–181.

Denkowski, M., Dyer, C., and Lavie, A. (2014). Learning from post-editing: Online model

adaptation for statistical machine translation. In Proceedings of the 14th Conference of the
European Chapter of the Association for Computational Linguistics, pages 395–404.

Dugast, L., Senellart, J., and Koehn, P. (2007). Statistical post-editing on systran’s rule-based

translation system. In Proceedings of the Second Workshop on Statistical Machine Transla-
tion, pages 220–223.

Federico, M., Bertoldi, N., and Cettolo, M. (2008). Irstlm: an open source toolkit for handling

large scale language models. In Proceedings of Interspeech, pages 1618–1621.

Gao, Q. and Vogel, S. (2008). Parallel implementations of word alignment tool. In Proceedings
of Software Engineering, Testing, and Quality Assurance for Natural Language Processing,

pages 49–57.

Hardt, D. and Elming, J. (2010). Incremental re-training for post-editing smt. In Proceedings
of AMTA.

Hildebrand, A. S., Eck, M., Vogel, S., and Waibel, A. (2005). Adaptation of the translation

model for statistical machine translation based on information retrieval. In Proceedings of
EAMT, pages 133–142.

Koehn, P. (2004). Statistical significance tests for machine translation evaluation. In Proceed-
ings of EMNLP, pages 388–395.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,

Shen, W., Moran, C., Zens, R., et al. (2007). Moses: Open source toolkit for statistical

machine translation. In Proceedings of the 45th Annual Meeting of the Association for Com-
putational Linguistics. System Demonstrations, pages 177–180.

Lagarda, A. L., Ortiz-Martı́nez, D., Alabau, V., and Casacuberta, F. (2015). Translating without

in-domain corpus: Machine translation post-editing with online learning techniques. Com-
puter Speech & Language, 32(1):109–134.

Mathur, P., Cettolo, M., Federico, M., and Kessler, F.-F. B. (2013). Online learning approaches

in computer assisted translation. In Proceedings of the Eighth Workshop on Statistical Ma-
chine Translation, ACL, pages 301–308.

Ortiz-Martınez, D. and Casacuberta, F. (2014). The new thot toolkit for fully-automatic and in-

teractive statistical machine translation. In 14th Annual Meeting of the European Association
for Computational Linguistics: System Demonstrations, pages 45–48.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic eval-

uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 311–318.

Parton, K., Habash, N., McKeown, K., Iglesias, G., and de Gispert, A. (2012). Can Automatic

Post-Editing Make MT More Meaningful? In Proceedings of EAMT, pages 111–118.

Pilevar, A. H. (2011). Using statistical post-editing to improve the output of rule-based machine

translation system. IJCSC.

Simard, M. and Foster, G. (2013). Pepr: Post-edit propagation using phrase-based statistical

machine translation. In Proceedings of the XIV MT Summit, pages 191–198.

Simard, M., Goutte, C., and Isabelle, P. (2007a). Statistical Phrase-Based Post-Editing. In

Proceedings of the Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 508–515.

Simard, M., Ueffing, N., Isabelle, P., and Kuhn, R. (2007b). Rule-based translation with statisti-

cal phrase-based post-editing. In Proceedings of the Second Workshop on Statistical Machine
Translation, pages 203–206.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation

edit rate with targeted human annotation. In Proceedings of AMTA, pages 223–231.

Tatsumi, M. (2009). Correlation between automatic evaluation metric scores, post-editing

speed, and some other factors. In Proceedings of the XII MT Summit, pages 332–339.

Terumasa, E. (2007). Rule based machine translation combined with statistical post editor for

japanese to english patent translation. In Proceedings of the XI MT Summit, pages 13–18.

Wuebker, J., Green, S., and DeNero, J. (2015). Hierarchical incremental adaptation for statisti-

cal machine translation. In Proceedings of EMNLP, pages 1059–1065.

Zhang, Y. and Vogel, S. (2005). An efficient phrase-to-phrase alignment model for arbitrarily

long phrase and large corpora. In Proceedings of EAMT, pages 294–301.

Machine Translation Quality
and Post-Editor Productivity

Marina Sanchez-Torron msnc017@aucklanduni.ac.nz

School of Cultures, Languages and Linguistics

University of Auckland

Auckland 1010, New Zealand

Philipp Koehn phi@jhu.edu

Department of Computer Science

Johns Hopkins University

Baltimore, MD 21218-2608, USA

Abstract
We assessed how different machine translation (MT) systems affect the post-editing (PE) pro-

cess and product of professional English–Spanish translators. Our model found that for each

1-point increase in BLEU, there is a PE time decrease of 0.16 seconds per word, about 3-4%.

The MT system with the lowest BLEU score produced the output that was post-edited to the

lowest quality and with the highest PE effort, measured both in HTER and actual PE operations.

1 Introduction and Related Work

There is a relatively fair amount of empirical research on post-editing machine translation output

(PE) focusing on assessing potential time and quality improvements over human translation with

or without translation memories (TM). A common finding is that, despite differences among

participants, PE is on average faster than unassisted or TM-assisted translation. Some exam-

ples of studies finding such speed benefits are those by Guerberof (2009), Flournoy and Duran

(2009), Groves and Schmidtke (2009), Plitt and Masselot (2010) and Skadiņš et al. (2011).

In terms of PE quality, studies have shown, through the use of human judgments, that PE

leads to quality comparable to (Garcı́a, 2010) or better than other types of translation (Guer-

berof, 2009; Fiederer and O’Brien, 2009; Carl et al., 2011; Green et al., 2013; Läubli et al.,

2013). There is therefore strong empirical evidence pointing at the speed and quality benefits

of PE.

While many factors may affect productivity in a PE workflow, MT quality is one that

is relatively easy to measure. Previous studies to have investigated how MT quality affects

PE speed are those by Tatsumi (2009) and O’Brien (2011). They found different levels of

correlations between MT quality, measured on a sentence level with automatic metrics, and PE

speed. Krings (2001) and De Sutter (2012) too found that human judgments of MT quality

correlated to PE speed. Koehn and Germann (2014) found their worst MT system entailed 20%

more editing activity than their best one.

To the best of our knowledge, this is the first study to attempt to assess how different MT

systems, of the same type but with different quality levels, affect the PE productivity of pro-

fessional translators. By investigating how MT quality affects both PE time and PE quality, we

aim at providing MT users and researchers with another approach to examining the usefulness

of MT for PE purposes.

2 Study Setup

Nine translators were hired through ProZ1, self-described as the biggest online translation work-

place. Selected participants were offered a fixed compensation based on the standard, general,

English–Spanish translation rates displayed on the website. Each translator post-edited four

news texts of about 650 words each. Texts had similar complexity levels and were presented

to translators in randomized order to dilute possible familiarization or fatigue effects. All four

texts were translated into Spanish with nine MT systems (cf. Section 4.1). The output of all

nine systems was assigned randomly to participants. As in Cettolo et al. (2013) and Koehn and

Germann (2014), to deal with between-participant variability, the following restrictions were

implemented:

• All translators post-edited all source sentences.

• No translator post-edited the same source sentence twice.

• All translators were exposed to roughly the same amount of output of all MT systems.

Translators were asked to post-edit to full, human-like quality. They worked remotely on

the open-source, web-based, computer aided translation (CAT) tool CASMACAT (Cognitive

Analysis and Statistical Methods for Advanced Computer Aided Translation)2 (Alabau et al.,

2013).

3 Translator Profile

All participants were native Spanish, professional translators, with at least 2 years’ experience

using CAT tools. All were educated to college level. Except for TR4 and TR5, all participants

had degrees in Translation. Table 1 summarizes their main characteristics.

Translator Translation experience (years) PE certification PE experience (years)

TR1 2 to 5 No <2

TR2 2 to 5 No 2 to 5

TR3 5 to 10 Yes 5 to 10

TR4 >10 No 2 to 5

TR5 5 to 10 No None

TR6 >10 Yes <2

TR7 5 to 10 No 5 to 10

TR8 2 to 5 No 2 to 5

TR9 >10 No 2 to 5

Table 1: Translators’ background

Translators’ perceptions of PE and MT were elicited through eight questions answered with

a Likert scale. Because of the small sample size, we grouped the answers from the five initial

levels into three: Strongly disagree and Disagree were grouped into a new level No; and Agree
and Strongly agree into a new level Yes. Neutral was left as such. Table 2 displays a summary

of participants’ PE and MT perceptions.

1http://www.proz.com
2http://www.casmacat.eu/

No Neutral Yes

I am comfortable post-editing to human-like (perfect) quality 3 1 5

I am comfortable post-editing to less-than-perfect quality 4 1 4

I prefer PE to translating from scratch (without a TM) 3 2 4

MT helps me maintain translation consistency 4 1 4

MT helps me translate faster 2 4 3

PE is more laborious than translating from scratch or with a TM 3 4 2

I prefer PE to processing 85-94% TM matches 1 5 3

I prefer PE to editing a human translation 5 3 1

Table 2: Translators’ perceptions of PE and MT

Answers show therefore a mix of opinions towards PE. Overall, translators are comfortable

post-editing but do not prefer it to editing a human translation.

4 Variables of interest

4.1 Machine Translation Quality
Initiatives providing free resources for MT development and evaluation help boost MT research

collaboration and efforts. One of these efforts is the WMT evaluation campaign of the Asso-

ciation for Computational Linguistics (ACL). Among the data they freely provide are training

and test data sets. As part of their 8th Workshop on Statistical Machine Translation (WMT

2013)3, the organizers released a test set comprised of 3,000 source English sentences and their

corresponding Spanish human reference translations.

We trained nine MT systems with training data from the European Parliament proceedings,

News Commentary, Common Crawl, and United Nations. The systems are phrase-based Moses

systems (Koehn et al., 2007) with hierarchical lexicalized reordering (Galley and Manning,

2008), operation sequence model (Durrani et al., 2013), and sparse lexical features, using all

available language model data (target side of the full parallel corpus, plus the provided mono-

lingual news corpus and LDC Gigaword). The best system reaches comparable quality to the

best system participating in the WMT 2013 evaluation campaign.

We iteratively halved the parallel training corpus to obtain systems of inferior quality. The

quality of the MT systems was measured with case-sensitive BLEU (Papineni et al., 2002) on

the official WMT 2013 test set. Table 3 summarizes MT systems’ quality and training corpus

size.

System BLEU Training sentences Training words (English)

MT1 30.37 14,700k 385M

MT2 30.08 7,350k 192M

MT3 29.60 3,675k 96M

MT4 29.16 1,837k 48M

MT5 28.61 918k 24M

MT6 27.89 459k 12M

MT7 26.93 230k 6.0M

MT8 26.14 115k 3.0M

MT9 24.85 57k 1.5M

Table 3: MT Systems’ quality and training corpus size

3http://www.statmt.org/wmt13/

4.2 Human-mediated Translation Edit Rate

Human-mediated Translation Edit Rate (HTER; Snover et al., 2006) measures the minimum

number of operations (insertions, deletions, substitutions and shifts) needed to convert a ma-

chine translation into its post-edited version. It is computed by dividing the number of opera-

tions by the number of words in the post-edited version. HTER can be used as a measure of

MT quality: the fewer the changes that need to be applied to the machine translation, the more

similar it is to the post-edited, reference translation and therefore the higher the MT quality.

Likewise, HTER can also be used as a measure of technical PE effort: the fewer changes nec-

essary to convert the machine translation into its post-edited version, the less the effort exerted

by the translator.

In this study, HTER scores were computed for all nine systems, based on the machine

translated texts and their non-minimally post-edited versions, with the freely available tercom

software4.

4.3 Actual Edit Rate

HTER is concerned about the PE product, not the process. It therefore does not measure trans-

lators’ actual edit operations, which may involve going back and applying corrections to pre-

viously post-edited parts of the text. We are interested in examining how actual edit opera-

tions vary across systems. Edit operations (i.e., insertions and deletions) are measured as the

keystroke and/or mouse combinations leading to the insertion or deletion event, which do not

necessarily correspond to the number of characters inserted or deleted. For instance, if a trans-

lator deletes a word by selecting it with the mouse and pressing backspace, it counts as one

deletion event. If they move a word by cutting it and pasting it somewhere else, it constitutes

one deletion and one insertion event. Insertion and deletion events were normalized by the

number of words in the machine translated text to obtain a what we call here the Actual Edit
Rate, henceforth AER.

4.4 Post-editing Time

Mean PE time per word per system was calculated by dividing the time spent post-editing each

MT system’s output by the number of source words translated by each system. Table 4 shows

time measurements as PE time in seconds per word (spw) and as PE speed in words per hour

(wph).

System Mean PE time (spw) Mean PE speed (wph)

MT1 4.06 887

MT2 4.38 822

MT3 4.23 851

MT4 4.54 793

MT5 4.35 828

MT6 4.36 826

MT7 4.66 773

MT8 4.94 729

MT9 5.03 716

Table 4: Systems’ mean PE time (seconds per word) and PE speed (words per hour)

4https://github.com/jhclark/tercom

4.5 Post-editing Quality
Error-based quality assessment frameworks allow for the quantification of translation quality

according to the type and severity of errors present in the translation. Previous PE studies

(Guerberof, 2009; Temizöz, 2013) have used LISA’s Quality Model 3.1, one such framework

traditionally used in localization settings, to evaluate the quality of the post-edited texts. This

model, however, is not officially available anymore. We therefore assessed PE quality with

another error-based model, a quality metric compliant with QTLaunchPad’s Multidimensional

Quality Metric (MQM) framework.

We used the decision trees and guidelines provided in Burchardt and Lommel (2014) as

a reference during the issue annotation process. Quality was assessed along the dimensions

of Accuracy (Mistranslations, Omissions, Untranslated and Additions) and Fluency (Grammar,

Style and Typography). We excluded Spelling from our quality metric as some translators

pointed out that the spell checker did not work. Following LISA’s standard weight scale, minor

errors were given a weight of 1 and major errors were given a weight of 5.

5 Analysis and Results

Sentences with a logged period of inactivity of 2 minutes or more were excluded from analysis

as such long pauses are likely not indicative of difficulties posed by the underlying MT system.

Also excluded were sentences inadvertently skipped by translators and sentences with unreliable

measurements5. In total, out of 1233 observations, 1202 were considered valid and submitted

for analysis.

5.1 Post-Editing Time by Machine Translation System
For each MT system, we plotted mean PE time against BLEU score:

Figure 1: Scatter plot of systems’ mean PE time against systems’ BLEU and regression line with 95%

confidence bounds

5CASMACAT logs editing time on a segment basis as the interval between the opening and closing of each segment.

When translators access the PE interface, the first segment in the document is opened automatically. Translators do not

usually start post-editing right away, instead they scroll through the document. Once acquainted with its contents, they

go up the first segment, post-edit it and, when finished, close it. Most editing times logged for first segments in our

study are in fact spent browsing through the whole document and are therefore unreliable.

A linear regression was applied to predict PE time based on MT quality. Our model was

significant (F(1,7) = 33.62), with an R2 of .828. It describes the effect of system’s BLEU on

mean PE time as following a decreasing linear relationship. Specifically, for every 1-point

increase in BLEU, there is a decrease in PE time of approximately 0.16 seconds per word.

Estimate Std. error t value p value 95% confidence interval

intercept 8.88 0.76 11.74 <.001 [7.37, 10.39]

slope -0.16 0.03 -5.80 <.001 [-0.21, -0.10]

Table 5: Linear regression results

Assumption checks confirm the validity of the results: the plot of residual versus fitted values

shows some noise but no distinctive pattern, and although residuals show a slight departure from

normality, this is expected in small samples.

5.2 HTER and AER by Machine Translation System
We investigate how both HTER and AER vary between MT systems. Table 6 displays HTER

scores and mean AER by MT system:

System HTER AER

MT1 40.75 3.36

MT2 40.85 3.05

MT3 42.41 3.03

MT4 41.57 3.58

MT5 42.29 3.61

MT6 43.57 3.66

MT7 44.79 3.33

MT8 46.15 3.57

MT9 50.30 4.20

Table 6: Systems’ HTER (%) and AER (events per word)

As expected, we see an almost continuous gradual increase in HTER as the quality of the MT

system decreases. In contrast, our data does not allow us to establish any significant association

between AER and MT quality. Keyboard activity may just not be as sensitive to MT quality

as PE time. Nevertheless, MT9, the system with the lowest BLEU score has both the highest

HTER and AER of all systems, representing an increase of 23.43% and 22% respectively over

MT1, the best system.

5.3 Post-Editing Quality by Machine Translation System
Using an error-based framework to assess text quality usually involves determining an arbitrary

pass/fail threshold for textual units. There is not a theoretical body of literature concerning these

frameworks so we set the minimum sentence quality acceptance level at a percentage commonly

referred to in industry documents, i.e., 95%6.

PE quality is measured for the whole post-edited output, via both the MQM score and the

count of sentences falling in the Fail and Pass categories, and reported by MT system. Also

reported are normalized issue counts classified according to their severity (note that no critical

errors were found in any of the texts).

6An error-free translation scores 100%. To calculate a sentence’s MQM score with standard LISA severity weights

the following formula applies: MQM Score (%) = 100 - ((IssuesMinor + 5 * IssuesMajor + 10 * IssuesCritical)/Sentence

length)*100. A 28-word sentence with 2 minor issues and 1 major issue would have therefore a score of 100-

(2+5)/28*100= 75%.

System MQM Score Fail Pass Minor issues/k Major issues/k

MT1 97.86 15 117 12.39 1.72

MT2 97.19 20 113 12.83 3.12

MT3 98.01 16 117 12.59 1.75

MT4 96.76 26 109 15.32 3.40

MT5 97.84 18 116 11.93 2.04

MT6 98.63 10 124 9.88 1.02

MT7 97.31 17 115 11.39 3.45

MT8 97.47 22 112 10.48 3.38

MT9 95.81 32 103 14.28 4.76

Table 7: Indicators of translation quality of post-edited translations by MT system

As expected, given that participants are professional translators post-editing to high quality,

sentence-level MQM scores follow a left-skewed distribution (867 of the 1202 sentences score

100%). A Pearson’s chi-square test found differences in the Fail/Pass proportions between MT

systems (x2(8)= 19.40, p <.05), with a post-hoc pairwise comparison with Holm’s adjustment

finding significant the differences between the MT6-MT9 pair. While the Fail/Pass ratio or the

MQM scores are not significantly different for all the other pairs, MT9, the system with the

lowest BLEU score, produced the output that ended up with the lowest MQM score and the

highest Fail/Pass ratio: 1 in 4 sentences were post-edited to below the acceptable 95% MQM

score.

In terms of error categories, minor issues are more or less equally divided into Fluency and

Adequacy issues across systems, while major issues are practically all Adequacy issues, mostly

Mistranslations.

5.4 Post-Editing Quality vs. Post-Editing Time by Machine Translation System

We plotted the Fail/Pass ratio of the post-edited output against the mean PE time for each MT

system:

Figure 2: Scatter plot of systems Fail/Pass ratios against mean PE times with regression line

Our model describes a positive linear relationship between PE time and Fail/Pass ratio: the

more time is spent post-editing, the higher the Fail/Pass ratio of the post-edited output. The

model is significant (F(1,7) = 8.06), with an R2 of .535. Such a low R2 points at additional

factors affecting the quality of the post-edited texts. This will be investigated in further studies.

5.5 Post-Editing Time and Quality by Translators

Table 8 shows that differences in HTER, AER and PE time between translators are more pro-

nounced than between MT systems.

HTER AER Mean PE time (spw) MQM Score Fail Pass

TR1 44.79 2.29 4.57 98.65 10 124

TR2 42.76 3.33 4.14 97.13 23 102

TR3 34.18 2.05 3.25 96.50 26 106

TR4 49.90 3.52 2.98 98.10 17 120

TR5 54.28 4.72 4.68 97.45 17 119

TR6 37.14 2.78 2.86 97.43 24 113

TR7 39.18 2.23 6.36 97.92 18 112

TR8 50.77 7.63 6.29 97.20 19 117

TR9 39.21 2.81 5.45 96.48 22 113

Table 8: Indicators of translation quality of post-edited translations by translator

The inter-subject variability reported in Table 8 mirrors the findings of previous empirical PE

studies such as those mentioned in Section 1.

The slowest translator, TR7 has nevertheless both low HTER and AER. TR7’s log shows

they left the CASMACAT interface (by accessing another tab in the browser) and re-accessed

CASMACAT an average of over 100 times per text. Without a screen recorder, we do not know

what the translator was doing outside CASMACAT, but it is likely that they were engaged in

translation-related web searches, possibly because the texts posed comparatively more difficul-

ties for them.

TR8, the second slowest post-editor, has the second highest HTER and the highest AER.

Comparing both variables among translators, we see that TR8 has a HTER comparable to that

of TR4, yet TR8’s AER is more than double that of TR4. This indicates that TR8 did, on

average, considerable overwriting before settling on a final post-edited version, likely slowing

them down in the process.

In our set, the two fastest translators, TR6 and TR4, left the CASMACAT interface the

fewer number of times of all (5 and 3 times per text, respectively, on average), an indication

that they did not need to consult many online translation resources. TR6 and TR4 are not only

the fastest but also the most experienced translators of all participants, considering experience

both in terms of length (>10 years for both) and translation volume in the preceding 12 months

(40,000-55,000 and 25,000-39,900 words, respectively).

The two translators with industry PE certifications, TR6 and TR3, were the first and third

fastest post-editors. They produced the texts with the two lowest HTER scores. While differ-

ences in the quality of the post-edited output are not statistically significant for translators, TR6

and TR3 produced two of the three translations with the highest Fail/Pass ratios. The second

highest Fail/Pass ratio was produced by TR2, the less experienced translator, both in length of

experience (2 to 5 years) and translation volume in the 12 preceding months (<10,000 words).

Lastly, we investigated the relationship between translators’ PE time and PE quality by

plotting Fail/Pass ratio against mean PE times. We did not find any association between trans-

lators’ PE time and PE quality, as evidenced by the lack of pattern in the scatter plot in Figure

3:

Figure 3: Scatter plot of translators Fail/Pass ratios against mean PE times with regression line

6 Conclusions

We presented a study that measured the impact of machine translation quality on post-editor

speed and final translation quality. We found a linear relationship between machine translation

quality, as measured by the BLEU score of the system, and post-editing speed of about 0.16

seconds/word post-editing time decrease per BLEU point increase. This is about a 3–4% speed

increase for each BLEU point. We also found that worse machine translation output ultimately

led to worse translation quality after post-editing. As future lines of research, we suggest inves-

tigating whether these findings extend to other language pairs.

Acknowledgements

This research was supported by a grant from The University of Auckland’s Faculty of Arts

Doctoral Research Fund.

References

Alabau, V., Bonk, R., Buck, C., Carl, M., Casacuberta, F., Garcı́a-Martı́nez, M., González, J., Koehn,

P., Leiva, L., Mesa-Lao, B., et al. (2013). CASMACAT: An open source workbench for advanced

computer aided translation. The Prague Bulletin of Mathematical Linguistics, 100:101–112.

Burchardt, A. and Lommel, A. (2014). Practical guidelines for the use of MQM in scientific research

on translation quality. http://www.qt21.eu/downloads/MQM-usage-guidelines.pdf.

Accessed 07/12/2016.

Carl, M., Dragsted, B., Elming, J., Hardt, D., and Jakkobsen, A. L. (2011). The process of post-editing:

a pilot study. In 8th International Conference NLPSC workshop. Special issue: Human-machine inter-
action in translation. Special theme: Human-machine interaction in translation, pages 131–142.

Cettolo, M., Niehus, J., Stlker, S., Bentivogli, L., and Federico, M. (2013). Report on the 10th IWSLT

evaluation campaign. In 10th Workshop on Spoken Language Translation (IWSLT).

De Sutter, N. (2012). MT evaluation based on post-editing: a proposal. In Depraetere, I., editor, Text,
Translation, Computational Processing [TTCP] : Perspectives on Translation Quality, pages 125–144.

De Gruyter Mouton, Berlin and Boston.

Durrani, N., Fraser, A., Schmid, H., Hoang, H., and Koehn, P. (2013). Can Markov models over minimal

translation units help phrase-based SMT? In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, Sofia, Bulgaria. Association for Computational Linguistics.

Fiederer, R. and O’Brien, S. (2009). Quality and machine translation: A realistic objective? The journal
of Specialised translation, 11:52–72.

Flournoy, R. and Duran, C. (2009). Machine translation and document localization at Adobe: From pilot

to production. In Machine Translation Summit XII.

Galley, M. and Manning, C. D. (2008). A simple and effective hierarchical phrase reordering model. In

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages

848–856, Honolulu, Hawaii.

Garcı́a, I. (2010). Is machine translation ready yet? Target, 22(2):7–21.

Green, S., Heer, J., and Manning, C. D. (2013). The efficacy of human post-editing for language transla-

tion. In 2013 IGCHI Conference on Human Factors in Computing Systems, pages 439–448.

Groves, D. and Schmidtke, D. (2009). Identification and analysis of post-editing patterns for MT. In

Machine Translation Summit XII, pages 429–436.

Guerberof, A. (2009). Productivity and quality in the post-editing of outputs from translation memories

and machine translation. Localisation Focus. The International Journal of Localisation, 7(1):11–21.

Koehn, P. and Germann, U. (2014). The impact of machine translation quality on human post-editing. In

EACL 2014 Workshop on Humans and Computer assisted Translation.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,

Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: open source

toolkit for statistical machine translation. In ACL. Association for Computational Linguistics.

Krings, H. P. (2001). Repairing Texts: Empirical Investigations of Machine Translation Post-Editing
Processes. Kent, Ohio, Kent State University Press.

Läubli, S., Fishel, M., Massey, G., Ehrensberger-Dow, M., and Volk, M. (2013). Assessing post-editing

efficiency in a realistic translation environment. In Workshop on Post-editing Technology and Practice,

pages 83–91.

O’Brien, S. (2011). Towards predicting post-editing productivity. Machine Translation, 25(3):197–215.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic evaluation

of machine translation. In Proceedings of 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. ACL.

Plitt, M. and Masselot, F. (2010). A productivity test of statistical machine translation post-editing in a

typical localisation context. The Prague Bulletin of Mathematical Linguistics, 93:7–16.

Skadiņš, R., Puriņš, M., Skadiņa, I., and Vasiļjevs, A. (2011). Evaluation of SMT in localization to

under-resourced inflected language. In 15th International Conference of the European Association for
Machine Translation (EAMT), pages 35–40.

Snover, M., Dorr, B., Schwartz, R., Makhoul, J., Micciulla, L., and Weischedel, R. (2006). A study of

translation error rate with targeted human annotation. In 7th Biennial Conference of the Association for
Machine Translation in the Americas (AMTA 2006), pages 223–231.

Tatsumi, M. (2009). Correlation between automatic evaluation metric scores, post-editing speed, and some

other factors. In Machine Translation Summit XII.

Temizöz, Ö. (2013). Postediting Machine Translation Output and its Revision: Subject-matter experts
versus Professional Translators. PhD thesis, Universitat Rovira i Virgili.

Fuzzy-match repair using black-box machine
translation systems: what can be expected?

John E. Ortega jeo10@dlsi.ua.es

Felipe Sánchez-Martı́nez fsanchez@dlsi.ua.es

Mikel L. Forcada mlf@dlsi.ua.es

Dept. de Llenguatges i Sistemes Informatics, Universitat d’Alacant, E-03071, Alacant, Spain

Abstract

Computer-aided translation (CAT) tools often use a translation memory (TM) as the key re-

source to assist translators. A TM contains translation units (TU) which are made up of source

and target language segments; translators use the target segments in the TU suggested by the

CAT tool by converting them into the desired translation. Proposals from TMs could be made

more useful by using techniques such as fuzzy-match repair (FMR) which modify words in the

target segment corresponding to mismatches identified in the source segment. Modifications in

the target segment are done by translating the mismatched source sub-segments using an ex-

ternal source of bilingual information (SBI) and applying the translations to the corresponding

positions in the target segment. Several combinations of translated sub-segments can be ap-

plied to the target segment which can produce multiple repair candidates. We provide a formal

algorithmic description of a method that is capable of using any SBI to generate all possible

fuzzy-match repairs and perform an oracle evaluation on three different language pairs to ascer-

tain the potential of the method to improve translation productivity. Using DGT-TM translation

memories and the machine system Apertium as the single source to build repair operators in

three different language pairs, we show that the best repaired fuzzy matches are consistently

closer to reference translations than either machine-translated segments or unrepaired fuzzy

matches.

1 Introduction

Computer-aided translation (CAT) tools often use a translation memory (TM), containing trans-

lation units (TU), as the key resource to assist translators. TU are made up of source and target

language segments and translators use the target segments in the TU suggested by the CAT tool

by converting them into the desired translation. When an exact match (100%, s = s′) is not

available one can use a fuzzy-match repair method to repair a translation proposal t. The aim of

these methods is to replace the sub-segments in t that are the translation of the sub-segments in s
that do not appear in s′ by the translation of the corresponding sub-segment in s′. Fuzzy-match

repair is gaining more traction in modern tools such as DejaVu1 and MemoQ2 as a reliable

method of replacing words in a proposed target-language (TL) segment t by using a source of

bilingual information (SBI) such as the very same TM being used, a dictionary, or an on-line

translation tool.

1http://www.atril.com/content/10-deepminer-fuzzy-matches-repair-458
2https://www.memoq.com/whats-new-in-memoq-2015

Ortega et al. (2014) describe a method that is capable of using any SBI for fuzzy-match

repair. This method first aligns the words in the SL segment s of the TU being repaired (s, t)
with the words in the segment to be translated s′ and identifies the mismatched words in s and

s′, i.e. the sub-segments they do not have in common. It then uses the SBIs available to identify

the sub-segments in t that are the translations of the mismatched sub-segments in s in a way

similar to that used by Esplà-Gomis et al. (2011), and then to build a set of patching operators
by translating the mismatched sub-segments in s′. Each patching operator specifies the TL sub-

segment τ in t that needs to be repaired and the TL sub-segment τ ′ to be used for repairing.

Combinations of patching operators can then be applied to obtain a set of candidate repaired TL

segments from which the one to be finally used can be selected.

In this paper, we revisit Ortega et al. (2014)’s approach to fuzzy-match repair and go one

step further; in particular in this paper we:

• provide an algorithmic description of the method;

• introduce a set of principled restrictions by establishing a set of compatibility rules be-

tween patching operators so that two patching operators are not applied on the same mis-

match;

• extensively evaluate the method at the document level on DGT-TM3 texts in three different

language pairs, namely English–Spanish, Spanish–French and Spanish–Portuguese;

• provide some insight on the results by studying how often patching operators can actually

be built using the SBI available.

The rest of the paper is organised as follows. The next section discusses related work on

fuzzy-match repair and stresses the main differences with respect to the approach described

in this paper. Section 3 then provides an algorithmic description of our fuzzy-match repair

method, whereas Section 4 describes the rationale behind the principled restrictions that prevent

two patching operators from working on the same mismatch. Sections 5 and 6 discuss the

experimental settings and the results of an oracle evaluation we have conducted to determine

the potential of the method. The paper ends with some remarks and a description of future

research lines.

2 Related Work

In the literature, one can find many papers addressing the combination of machine translation

and translation memories, most of which explore different ways of integrating sub-segments

from the translation memory into the decoding process of a phrase-based statistical machine

translation system (Biçici and Dymetman, 2008; Simard and Isabelle, 2009; Zhechev and Gen-

abith, 2010; Koehn and Senellart, 2010; Li et al., 2016). Alternative approaches, such as those

by Dandapat et al. (2011), Hewavitharana et al. (2005) and Kranias and Samiotou (2004), use

instead the target segment t in a translation unit (s, t) as the backbone or the basis of the transla-

tion to be produced and describe ways to repair it by modifying those sub-segments in t that are

the translation of the mismatched sub-segments in s. The method proposed here, which extends

that of Ortega et al. (2014), belongs to this second group.

Dandapat et al. (2011)’s method first aligns, in a way similar to ours, the words in s and

s′ using the (word-based) edit distance (Levenshtein, 1966) and marks the mismatched sub-

segments in s and s′ for translation. It then aligns the mismatch sub-segments in s with their

3The translation memory of the Directorate General for Translation of the European Comission, https://ec.

europa.eu/jrc/en/language-technologies/dgt-translation-memory

counterparts in t by using a sub-segmental translation memory built on the user’s translation

memory following the standard method to obtain phrase tables in statistical MT (Koehn, 2010).

Finally the sub-segments in t aligned to mismatched sub-segments in s are replaced by the

translations of the corresponding sub-segments in s′ as they are found in the sub-segmental

translation memory. The main differences with the approach described here are (a) that Danda-

pat et al. (2011) do not take into account the context words around the mismatches —which may

lead to incorrect translations due to boundary friction problems such as incorrect agreement or

incomplete word reorderings— and (b) that they rely on the user’s translation memory (which

may be small) rather than on an external SBI.

Hewavitharana et al. (2005) first use a modified IBM model 1 to align the mismatched

words in s to sequences of one or more words (“phrases”) in t and then directly map the se-

quence of source-side one-word edit operations (substitutions, deletions and insertions) needed

to convert s into s′, the segment to be translated, into an identical sequence of edit operations

on the corresponding word sequences in t to generate the fuzzy-match repaired translation. An

important strength of their method is that multiple alternative target-side edits are possible for

each source-side insertion or substitution, and that they score them using a probabilistic model.

An important limitation of their method (as compared with ours) is the lack of context around

source-side one-word edits.

Kranias and Samiotou (2004) use several linguistic resources —such as bilingual dictio-

naries and lists of suffixes and closed-class words— to align the words in s to those in t and then

uses these alignments to identify the words in t to be repaired. Finally, the words to be repaired

are replaced (edited, inserted or deleted) by the translation of the corresponding mismatch in s′

obtained using machine translation. This method is similar to the one we describe in this paper

but differs in that it only uses context around the mismatches when the new segment s′ contains

words not found in s. In contrast, we always use context when available around all mismatches,

which allows us to treat insertions, deletions and substitutions in the same way, and to mitigate

the incomplete reordering and agreement errors that may occur because of not using context.

Finally, it is worth noting that commercial computer-aided translation software have re-

cently begun to implement fuzzy-match repair. For example, MemoQ4 implements a feature

called MatchPatch that uses term bases and other resources for fuzzy-match repair, while Déjà

Vu implements a feature called DeepMiner5 that extracts sub-segments from the very same

translation memory being used for their use for fuzzy-match repair. Unfortunately, details about

how these methods work are not available.

3 Algorithm for Fuzzy-Match Repair

We describe a fuzzy-match repair algorithm that generates a set of candidate fuzzy-match- re-

paired segments from a translation unit (s, t) and the SL segment to be translated s′ by using

any SBI. First, we describe the algorithm used to build the list of patching operators to be used

for fuzzy-match repair; then, we describe the algorithm that explores all possible combinations

of patching operators to generate the set of candidate fuzzy-match repaired segments.

In order to build the list of patching operators (see Algorithm 1), first the alignment be-

tween the words in the SL segment to be translated s′ and those in the SL segment s in the

TU being repaired is obtained by a method based on the (word-level) edit-distance algorithm.6

The string-positioned sub-segment pairs (σ, σ′), containing unaligned (unmatched) words and

their corresponding positions in s and s′, are then obtained by using the phrase-pair extraction

algorithm used in phrase-based statistical machine translation (Koehn, 2010, section 5.2.3) to

4https://www.memoq.com/whats-new-in-memoq-2015
5http://www.atril.com/software/dj-vu-x3-professional
6If more than one optimal path is available to align s′ and s, on of them is chosen arbitrarily.

Algorithm 1 BuildPatchOp(s′, (s, t)) generates the set of patching operators to use.

Input: SL segment to be translated s′; TU (s, t) to be repaired

Output: A list of patching operators P
1: P ← () � Initially P is an empty list

2: A ← EditDistanceAligner(s′, s) � Get the word alignment between s and s′

3: for (σ, σ′) ∈ ExtractPhrasePairs(s′, s, A) do
4: M ← Translate(σ) � M is a set with translations of σ
5: M ′ ← Translate(σ′) � M ′ is a set with translations of σ′

6: for μ ∈ M do
7: for μ′ ∈ M ′ do
8: for τ ∈ FindInSegment(μ, t) do
9: τ ′ ← AttachTranslationToString(τ, μ′)

10: append (σ, σ′, τ, τ ′) to P
11: end for
12: end for
13: end for
14: end for
15: return P

obtain bilingual phrase pairs. After this, for each sub-segment pair (σ, σ′) the pair of sets of

translations into the TL (M,M ′) is obtained by using the SBI available. Finally, the translations

in those sets are used to build patching operators by looking for all the occurrences in t of the

target sub-segments μ ∈ M to get the corresponding string-positioned target sub-segments τ ,

and then attaching to each τ the target sub-segment μ′ to get τ ′.
The following example illustrates how the set of patching operators is built. Suppose the

segment s′ = Bill found out about the fraud to be translated into Spanish with the help of the

TU (s, t) = (Gina found out about the news,Gina se enteró de las noticias). The unmatched

(unaligned) words in s′ are Bill and fraud, whereas the unmatched (unaligned) words in s are

Gina, and news. After word alignment these are the sub-segments pairs (σ, σ′) (up to length 3)

which contain at least an unmatched word together with their translations (μ, μ′) into Spanish:7

σ σ′ μ μ′ μ in t?
Gina found found Gina encontró encontró no

Gina found Bill found Gina encontró Bill encontró no

Gina found out found out Gina se enteró se enteró yes

Gina found out Bill found out Gina se enteró Bill se enteró yes

found Bill found encontró Bill encontró no

found out Bill found out se enteró Bill se enteró yes

about the about the fraud sobre el de la estafa no

about the news about the de noticias sobre el yes

about the news about the fraud de las noticias de la estafa yes

the the fraud el la estafa no

the news the las noticias el yes

the news the fraud las noticias la estafa yes

Only in those cases in which μ, the translation of σ, is found in the target segment t of the TU

being repaired a patching operator can be built; this is indicated by the fifth column in the table

7Note that the string-positioned sub-segment pairs (σ, σ′) extracted from s and s′ always contain an aligned word

in s or s′. In this example we are assuming that the sets of translations M and M ′ of σ and σ′ are singletons.

Algorithm 2 Patching(P,O, n, (s, t), t�, D, T) generates all possible fuzzy-match repaired

segments by backtracking.

Input: List of patching operators P ; set of patching operators O applied so far; position in P
of the patching operator being considered, n; TU to be repaired (s, t); fuzzy-match repaired

segment being built t�; boolean D indicating whether the n-th patching operator in P will

be attempted to apply (true) or not (false), list T containing fuzzy-match-repaired segments

1: if D then
2: if Compatible(Pn, O, (s, t)) then
3: ApplyPatchOp(Pn, t

�)
4: O ← O ∪ {Pn} � Add compatible patching operator

5: else
6: return � Prune this branch of the recursion tree

7: end if
8: end if
9: if n = length(P) then

10: append t� to T � Add candidate fuzzy-match repaired segment to list T
11: return � All the patching operators have been considered

12: else
13: Patching(P,O, n+ 1, (s, t), t�, true, T) � Continue by applying operator n+ 1
14: Patching(P,O, n+ 1, (s, t), t�, false, T) � Continue by not applying operator n+ 1
15: end if

above.

Algorithm 2 generates the set of all possible fuzzy-match repaired segments by using

those sets in P(P) (the power set of P) containing compatible patching operators. This is

achieved through a backtracking algorithm that performs a recursive depth-first search and in-

crementally builds fuzzy-match repaired segments t�; the algorithm is initialized with two calls

Patching(P, ∅, 1, (s, t), t, false, ()) and Patching(P, ∅, 1, (s, t), t, true, ()), where () stands

for an empty list. At each level of the recursion tree a new patching operator is considered and

tested for applicability (D = true) or discarded (D = false). For a patching operator to be

applicable it needs to be compatible with the set of patching operators O applied so far to build

t� (see Section 4). If it is compatible with the rest of patching operators in O, the patching

operator is added to O and applied (lines 3–4); otherwise the branch of the recursion tree is cut.

When a leaf of the recursion tree is reached (i.e. n = length(P)) the corresponding fuzzy-

match repaired segment t� is added to the list T of candidate fuzzy-match repaired segments.

The algorithm ApplyPatchOp(o, t�) replaces in t� the sub-segment τ by τ ′; this can be safely

done if patching operator Pn is compatible with the other patching operators applied so far.

This algorithm assumes that patching operators that are compatible can be applied in any

order because the repaired segment to be generated would be the same. Thanks to this assump-

tion, the worst-case complexity of the algorithm is O(2n), with n = length(P), in which case

2n repaired segments are produced. If the algorithm had to explore the application of all the

patching operators in P and in all possible orders its worst-case complexity would be super-

exponential.

For the example introduced above, Algorithm 2 would produce 128 repaired seg-

ments if all patching operators were compatible. However, most of them are not com-

patible because they edit the same words in t (see next section) and the algorithm ends

up producing only 25 repaired segments. Some of these 25 repaired segments are identi-

cal but are produced by applying a different set of patching operators. For instance, the

repaired segment Bill se enteró de la estafa is produced by applying the patching opera-

tor (Gina found out,Bill found out,Gina se enteró,Bill se enteró) and either the patching op-

erator (about the news, about the fraud, de las noticias, de la estafa) or the patching operator

(the news, the fraud, las noticias, la estafa).

4 Restrictions

Ortega et al. (2014) introduce three restrictions: two related to the type of sub-segments used

to build the patching operators and a third one related to the words in t being edited. The first

two restrictions —one restricting the length of the sub-segments and the other one requiring

a certain amount of context words around mismatches— are optional and were introduced to

reduce the number of patching operators to be considered. These optional restrictions throw

away legal repairs that are however considered to be of low quality and will not be applied for

the experiments reported in Section 5.

The third restriction cannot be avoided and is needed in order to prevent two patch-

ing operators from editing the same word in t. However, it may happen that two

patching operators working on the same mismatch do not edit any of the words in t
but introduce missing ones. In those cases, the fuzzy-match repair algorithm of Or-

tega et al. (2014) may end up producing candidate fuzzy-match repaired segments t�

with repeated words. The following example illustrates this situation. Suppose the

segment s′ = the size does not exceed 100 cm to be translated with the help of the trans-

lation unit (s, t) = (the size does not exceed 100, el tamaño no supera los 100) whose

target segment can be repaired with the two patching operators (σ1, σ
′
1, τ1, τ

′
1) =

(exceed 100, exceed 100 cm, supera los 100, supera los 100 cm) and (σ2, σ
′
2, τ2, τ

′
2) =

(100, 100 cm, los 100, los 100 cm). As both patching operators do not edit (change) any word

in t they could be applied one after the other and produce the fuzzy-match repaired segment

t� = el tamaño no supera los 100 cm cm, which contains duplicated words due to the fact that

the word cm is to be inserted by both operators.

To avoid this problem we need to identify when two patching operators work on the same

mismatch, and to do so one needs to check the mismatches both in s and s′ because there

may be words in s not appearing in s′ (the mismatch only shows up in s), or words that do not

appear in s but are introduced in s′ (the mismatch only shows up in s′, as in the example above).

Hence two patching operators oi = (σi, σ
′
i, τi, τ

′
i) and oj = (σj , σ

′
j , τj , τ

′
j) will be marked as

incompatible if they edit the same word in t (as in the work by Ortega et al. (2014)) or they meet

the following condition:

(mismatch(σi, s) ∩mismatch(σj , s) �= ∅) ∨ (mismatch(σ′
i, s

′) ∩mismatch(σ′
j , s

′) �= ∅)
where mismatch(x, y) returns the set of mismatch words covered by sub-segment x in segment

y.

It is worth nothing that this new restriction may mark as incompatible two patch-

ing operators that, even though they work on the same mismatch, do not edit the same

words in t. In those cases it is still advisable to forbid the application of the two patch-

ing operators since it is very likely that they work on the same region in t and their

application interfere with one another. The following example illustrates this situation.

Suppose the segment s′ = the size is around 100 cm to be translated with the help of

the translation unit (s, t) = (the size is about 50 cm, el tamaño es de unos 50 cm) whose

target segment can be repaired with the two patching operators o1 = (σ1, σ
′
1, τ1, τ

′
1) =

(is about, is around, es de unos, está alrededor de) and o2 = (σ2, σ
′
2, τ2, τ

′
2) =

(about 50, around 100, de unos 50, de unos 100). Both operators share a mismatch (about) but

do not edit the same words in t: o1 edits the word es (which is replaced by está), introduces

en–es es–pt es–fr

TM # TUs 196,294 150,567 149,479

Avg. SL segment length 9.61 27.24 27.35

Test set
SL segments 1993 1983 1983

SL words 40238 45334 46350

Avg. SL segment length 20.19 22.67 21.73

Table 1: Data about the translation memories and test sets used in the experiments.

the word alrededor and removes (edits) the word unos; o2 edits the word 50 and replaces it

by 100. The two operators can be applied at the same time if operator o2 is applied first —the

repaired target segment being t� = el tamaño está alrededor de 100 cm— but not the other

way around. Recall that the algorithm described in Section 3 assumes that patching operators

can be applied independently of each other and the order in which they are applied does affect

the final result.

5 Experimental settings

To evaluate the potential of the fuzzy-match repair algorithm described in Section 3, we have

performed an oracle evaluation (see below) on three different language pairs: English–Spanish

(en–es), Spanish–Portuguese (es–pt) and Spanish–French (es–fr). These language pairs have

been chosen to study how the method behaves when translating between closely-related lan-

guages (e.g. Spanish–Portuguese and Spanish–French) and when the languages involved in

the translation are not so closely related (English–Spanish). In addition, of the two closely-

related language pairs we have used, Spanish and Portuguese are more alike than Spanish and

French: Spanish and Portuguese are both pro-drop, Ibero-Romance languages —they permit

null-subject sentences— whereas French is a non-pro-drop Gallo-Romance language.

As for the corpora used for the experiments, we have used three translation memories, one

per language pair, extracted from the DGT-TM 2015 multilingual translation memory;8 each

translation memory contains between 145,000 and 200,000 translation units. In addition, we

have also extracted three test sets from the same source. Each test set contains around 2,000

parallel segments with source segments no longer than 100 words. The experiments consist

of simulating the translation of each source segment in the test sets by using the translation

memories and using the corresponding target-language segment as a reference for evaluation.

Table 1 provides additional information about the translation memories and test sets used.

As a source of bilingual information we have used the free/open-source machine

translation platform Apertium (Forcada et al., 2011),9 which provides a single transla-

tion for each source segment;10 more precisely, we have used the language-pair packages

apertium-en-es,11 apertium-es-pt12 and apertium-fr-es.13 Apertium has been

used both to build patching operators by translating sub-segments σ into the target language

and to translate the segments in the test set for which a fuzzy match above the given threshold

has not been found. Table 2 provides the word error rate (WER) and BLEU scores attained

by Apertium when translating the source-language segments in the test set; the percentage of

out-of-vocabulary words (OOV) is also reported. As can be seen, the translations performed by

8https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
9https://www.apertium.org

10That is, sets M and M ′ in lines 4 and 5 of Algorithm 1 are singletons in this case.
11SVN revision 64348.
12SVN revision 62539.
13SVN revision 62696.

en–es es–pt es–fr
WER 65.3% 47.4% 55.2%
BLEU 18.6% 36.4% 24.7%
OOV 2.6% 2.4% 2.4%

Table 2: Apertium’s performance on the test sets and percentage of out-of-vocabulary words

(OOV).

Apertium need less post-editing in the case of the two closely-related language pairs (es–pt and

es–fr) than in the case of English–Spanish.

Finally, we evaluate the potential of our fuzzy-match repair method with fuzzy-match score

thresholds of 60%, 70% and 80% with the aim of studying whether out method is more capa-

ble of repairing fuzzy matches above a given threshold. In this regard it is worth noting that

professional translators usually set the fuzzy-match score threshold above 60% (Bowker, 2002).

5.1 Oracle Evaluation
The way to study the potential of our approach for fuzzy-match repair has been to generate,

for each source segment s′ in the test set, the set of all possible fuzzy-match repaired target

segments T and then use t′, the translation of s′, to choose the best one and evaluate its quality.

Obviously, in a real setting t′ would not be available and the best fuzzy-match repaired segment

would need to chosen using a method similar to those used for estimating the quality of machine

translation output (Specia and Soricut, 2013; Avramidis, 2013).

What follows is a detailed explanation of the procedure we have followed with each source

segment s′ in the test set:

1. Retrieve the set of translation units U whose fuzzy-match score FMS(s′, s) is above the

desired fuzzy-match threshold θ.

2. If there is no translation unit (s, t) so that FMS(s′, s) ≥ θ, i.e. U = ∅, use machine

translation to get a translation for s′. Otherwise use the TU (s, t) ∈ U with the highest

FMS(s′, s) and produce the set T with all possible target fuzzy-match repaired segments.

3. Select the fuzzy-match repaired segment t�∗ ∈ T with the minimum edit distance to t′.

Once all the segments in the test set have been processed the translations produced are evaluated

by comparing them to the target segments in the test set and computing the error rate over the

whole test set as follows: ∑N
i=0 ED(t∗i , t

′
i)∑N

i=0 max(|t∗i |, |t′i|)
(1)

where ED(x, y) returns the word-based edit distance between the segments x and y, N is the

number of segments in the test set, and |x| is the number of words of segment x. This way of

computing the error rate resembles the way in which the fuzzy-match score is computed.14

6 Results and Discussion

Table 3 shows, for the three different language pairs on which we have evaluated our approach

and for three different fuzzy-match score thresholds (FMT) —60%, 70% and 80%—, the error

rate computed as described in Equation (1) when:

14For instance, OmegaT (http://www.omegat.org) computes the fuzzy-matching score between s and s′ as

1− ED(s,s′)
max(|s|,|s′|) .

FMT: 60% en–es es–pt es–fr
TM MT FMR TM MT FMR TM MT FMR

Error (%) 55.0 65.3 36.5 56.5 47.4 31.3 56.4 55.2 34.7
Er. (%) on matches 20.1 65.3 17.9 22.5 47.4 17.0 20.3 55.2 16.5
matches 1184 1993 1184 1221 1983 1221 1206 1983 1206
Avg. length 22.6 22.1 22.6 21.1 20.6 21.1 22.8 22.4 22.8

FMT: 70% en–es es–pt es–fr
TM MT FMR TM MT FMR TM MT FMR

Error (%) 61.0 65.3 38.5 62.4 47.4 31.8 62.3 55.2 35.6
Er. (%) on matches 16.3 65.3 14.6 18.0 47.4 13.9 15.8 55.2 12.8
matches 828 1993 828 777 1983 777 786 1983 786
Avg. length 22.4 22.1 22.5 20.8 20.6 21.1 22.6 22.4 22.6

FMT: 80% en–es es–pt es–fr
TM MT FMR TM MT FMR TM MT FMR

Error (%) 69.7 65.3 42.6 70.1 47.4 33.8 69.5 55.2 38.2
Er. (%) on matches 13.1 65.3 11.9 15.3 47.4 11.9 12.2 55.2 9.7
matches 660 1993 660 641 1983 641 649 1983 649

Avg. length 22.3 22.2 22.4 20.8 20.6 21.1 22.5 22.4 22.8

Table 3: For the three different language pairs considered in our evaluation and for three dif-

ferent means of translation —translation memory (TM), machine translation (MT) and fuzzy-

match repair (FMR)— and fuzzy-match score thresholds (FMT), the table gives the error rate

over the whole test set, the error rate over the segments in the test set for which a match above the

given threshold is found in the translation memory, the amount of these segments (# matches)

and the average length of the target segments produced.

TM: the target segment in the translation unit with the highest fuzzy-match score is used as

a translation, if available; otherwise, an empty translation is used, and therefore the error

reflects the need to type the words in the reference translation.

MT: the same machine translation system used as SBI (Apertium) is used to translate the source

segments in the test set.

FMR: the translation to be evaluated is obtained by applying the fuzzy-match repair algorithm

described in Section 3 with the translation unit with the highest fuzzy-match score, if

available; otherwise, the translation is produced using machine translation.

Two error rates are reported, one computed on the whole test set and another computed only

on the set of segments for which a TU with a fuzzy-match score above the given threshold is

found (error on matches). The former provides and indication of the actual translation effort

a translator would made to translate the source segments in the test set. The latter provides

an indication of the performance of our method for fuzzy-match repair (FMR) without the

interference of whole-segment machine translation, since it focuses only on those segments for

which there is a translation unit to repair. This allows to directly compare FMR performance to

that of using the target segment in the best TU without any repair (TM). In addition, the number

of source segments for which a match is found in the translation memory and the average length

of the translations produced are provided.

30 40 50 60 70 80

10

15

20

25

30

Fuzzy-match score threshold

E
rr

o
r

ra
te

es–pt
en–es

es–fr

Figure 1: For the three language pairs used for evaluation, error rate over the segments in the

test set for which a match above the fuzzy-match score threshold is found in the translation

memory.

As can be seen, our method for fuzzy-match repair has the potential (recall that this is an

oracle evaluation) to improve the translator’s productivity for all three different language pairs:

the error rate is both below that of using the target segment in the best translation unit (TM)

and below that of using machine translation (MT). Furthermore, it is worthwhile to note that a

good part of the difference in performance between the three language pairs can be attributed

to the performance of the MT system; if we pay attention to the performance of FMR when the

evaluation only focuses on those segments for which a match has been found we can see that

the scores reported are quite similar for all language pairs, even though this does not happen in

the case of the MT scores reported, i.e. our method for fuzzy-match repair appears to be quite

robust to MT errors.

The error rate over the whole test set grows with the fuzzy-match score threshold (FMT).

This happens because the greater this threshold is, the less source segments can be translated

using fuzzy-match repair and, as a consequence, the amount of segments that are translated with

Apertium grows. If we focus only on those segments that can be translated by means of FMR,

we can see that the error rate decreases as the threshold grows; Figure 1 show how the error

rate on matches behaves as a function of the fuzzy-match score threshold. This is the expected

behaviour because as the threshold grows the amount of words to repair decreases.

With respect to the process of building patching operators, and provided that the perfor-

mance of the machine translation system differs between the language pairs, it is worth studying

how successful it is our method when it comes to use Apertium to build patching operators. Fig-

ure 2 plots the success rate when building patching operators as a function of the length of the

source sub-segments σ for a fuzzy-match score threshold of 60%, 70% and 80%; as can be seen,

success rates for different fuzzy-match thresholds behave very similarly. A patching operator

is successful when the translation of the sub-segment σ of s is found in t, that is, when the

machine translation system and the proposed translation unit exactly agree on the translation

2 4 6 8 10

0

0.2

0.4

0.6

σ sub-segment length

S
u
cc

es
s

ra
te

es–pt
en–es

es–fr

(a) σ success rate at 60% FMT

2 4 6 8 10

0

0.2

0.4

0.6

σ sub-segment length

S
u
cc

es
s

ra
te

es–pt
en–es

es–fr

(b) σ success rate at 70% FMT

2 4 6 8 10

0

0.2

0.4

0.6

σ sub-segment length

S
u

cc
es

s
ra

te

es–pt
en–es

es–fr

(c) σ success rate at 80% FMT

Figure 2: For the three different language pairs and for fuzzy-match score thresholds (FMT) of

60%, 70%, and 80% success rate when building patching operators as a function of the number

of words in the source sub-segments σ being translated.

of a source sub-segment: this acts as a safety feature, as patching is not attempted when this

agreement is absent. This is why our method is robust to machine translation errors.

As can be seen, the longer the sub-segments the harder it is that the translation obtained

from the SBI is found in t. This behaviour is present in all the language pairs and is more

pronounced when the translation involves non-related language pairs (en–es) than when the

languages are closely related (es–pt). The average length of σ in the patching operators used to

build the repaired target segment chosen by the oracle when the fuzzy-match score threshold is

set to 80% is around 2.8 words for en–es, 3.7 for es–fr and 4.7 for es–pt.

7 Concluding Remarks

In this paper we have extended the approach of Ortega et al. (2014), which uses any external

source of bilingual information to repair fuzzy matches coming from a translation memory, to

prevent two patching operators from working on the same mismatch, and we have extensively

evaluated its performance on three different language pairs and provided a more formal algo-

rithmic description.

The oracle evaluation we have conducted reveals the potential of our approach to fuzzy-

match repair. For three different language pairs we consistently improve the quality of the trans-

lations produced —both with respect to raw machine translation or unrepaired fuzzy matches—

even though the SBI we have used (the machine translation system Apertium) performs below

the state of the art for some language pairs. We hope that by combining different SBIs, e.g.

different machine translation systems as well as bilingual concordancers,15 the quality of the

repaired segments increase.

As a future work we plan to combine different SBI and try different methods to automat-

ically select the best fuzzy-match repair for a given SL segment. In particular we will adapt

existing techniques used for sentence-level machine translation quality estimation and devise a

set of features specially designed to tackle this particular problem.

References

Avramidis, E. (2013). Sentence-level ranking with quality estimation. Machine Translation, 27(3-4):239–

256.

Biçici, E. and Dymetman, M. (2008). Dynamic translation memory: Using statistical machine trans-

lation to improve translation memory fuzzy matches. Computational Linguistics and Intelligent Text
Processing, pages 454–465.

Bowker, L. (2002). Computer-aided translation technology: a practical introduction. University of Ottawa

Press.

Dandapat, S., Morrissey, S., Way, A., and Forcada, M. L. (2011). Using example-based MT to support

statistical MT when translating homogeneous data in a resource-poor setting. In Proceedings of the 15th
conference of the European Association for Machine Translation, pages 201–208. Leuven, Belgium.

Esplà-Gomis, M., Sánchez-Martı́nez, F., and Forcada, M. L. (2011). Using machine translation in

computer-aided translation to suggest the target-side words to change. In Proceedings of the 13th
Machine Translation Summit, pages 172–179, Xiamen, China.

Forcada, M. L., Ginestı́-Rosell, M., Nordfalk, J., O’Regan, J., Ortiz-Rojas, S., Pérez-Ortiz, J. A., Felipe

Sánchez-Martı́nez, G. R.-S., and Tyers, F. M. (2011). Apertium: a free/open-source platform for rule-

based machine translation. Machine Translation, 25(2):127–144.

Hewavitharana, S., Vogel, S., and Waibel, A. (2005). Augmenting a statistical translation system with a

translation memory. In Proceedings of the 10th conference of the EAMT on ’Practical applications of
machine translation’, pages 126–132, Carnegie Mellon University, Pittsburgh, USA.

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press, New York, NY, USA, 1st

edition.

Koehn, P. and Senellart, J. (2010). Convergence of translation memory and statistical machine transla-

tion. In Proceedings of AMTA Workshop on MT Research and the Translation Industry, pages 21–31,

Edinburgh, United Kingdom and Paris, France.

Kranias, L. and Samiotou, A. (2004). Automatic translation memory fuzzy match post-editing: a step

beyond traditional TM/MT integration. In Proceedings of the Fourth International Conference on
Language Resources and Evaluation, pages 331–334, Lisbon, Portugal.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady., 10(8):707–710.

Li, L., Parra Escartı́n, C., and Liu, Q. (2016). Combining translation memories and syntax-based smt.

Baltic Journal of Modern Computing, 4:165–177.

15Such as Reverso Context, http://context.reverso.net/translation, Linguee, http://www.

linguee.com/, or TransSearch, http://tsrali.com

Ortega, J. E., Sánchez-Martı́nez, F., and Forcada, M. L. (2014). Using any machine translation source for

fuzzy-match repair in a computer-aided translation setting. In Proceedings of the 11th Biennial Confer-
ence of the Association for Machine Translation in the Americas (AMTA 2014, vol. 1: MT Rsearchers),
pages 42–53, Vancouver, BC, Canada.

Simard, M. and Isabelle, P. (2009). Phrase-based machine translation in a computer-assisted translation

environment. Proceeding of the Twelfth Machine Translation Summit (MT Summit XII), pages 120–127.

Specia, L. and Soricut, R. (2013). Quality estimation for machine translation: preface. Machine Transla-
tion, 27(3-4):167–170.

Zhechev, V. and Genabith, J. V. (2010). Seeding statistical machine translation with translation memory

output through tree-based structural alignment. In Proceedings of SSST-4 - 4th Workshop on Syntax and
Structure in Statistical Translation, pages 43–49, Dublin, Ireland.

Fast, Scalable Phrase-Based SMT Decoding

hieu@moses-mt.org

s1031254@sms.ed.ac.uk

lanes@illinois.edu

junczys@amu.edu.pl

Hieu Hoang
Moses Machine Translation CIC, UK

Ni olay Bogoychev
University of Edinburgh, Scotland

Lane Schwartz
University of Illinois, USA

Marcin Junczys-Dowmunt
Adam Mickiewicz University

Abstract
The utilization of statistical machine translation (SMT) has grown enormously over the last

decade, many using open-source software developed by the NLP community. As commercial

use has increased, there is need for software that is optimized for commercial requirements,

in particular, fast phrase-based decoding and more efficient utilization of modern multicore

servers.

In this paper we re-examine the major components of phrase-based decoding and decoder im-

plementation with particular emphasis on speed and scalability on multicore machines. The

result is a drop-in replacement for the Moses decoder which is up to fifteen times faster and

scales monotonically with the number of cores.

1 Introduction

SMT has steadily progressed from a research discipline to commercial viability during the past

decade as can be seen from services such as the Google and Microsoft Translation services. As

well as general purpose services such as these, there is a large number of companies that offer

customized translation systems, as well as companies and organization that implement in-house

solutions. Many of these customized solutions use Moses as their SMT engine.

For many users, decoding is the most time-critical part of the translation process. Making

use of the multiple cores that are now ubiquitous in todays servers is a common strategy to

ameliorate this issue. However, it has been noticed that the Moses decoder, amongst others, is

unable to efficiently use multiple cores (Fernández et al., 2016). That is, decoding speed does

not substantially increase when more cores are used, in fact, it may actually decrease when

using more cores. There have been speculation on the causes of the inefficiency as well as

potential remedies.

This paper is the first we know of that focuses on improving decoding speed on multicore

servers. We take a holistic approach to solving this issue, creating a decoder that is optimized

for multi-core processing speed by concentrating on four main areas:

1. Faster memory management of data-structures through the use of customized memory

pools

2. Exploring alternatives to cardinality-based hypothesis stack configuration

3. Re-examining the efficiency of phrase-table lookup using translation rule caching and data

compression

4. Integrating the lexicalized re-ordering model into the phrase-table, thus eliminating the

need for independent random lookup this model

The result is a decoder that is significantly faster than the Moses baseline for single-

threaded operation, and scales with the number of cores.

We will maintain the Moses decoder’s embarrassingly parallel, one sentence-per-thread

decoding framework. As far as possible, model scores and functionality are compatible with

Moses to aid comparison and ease transition for existing users. The source code is available in

the existing Moses repository1.

The rest of the paper will be broken up into the following sections. The rest of this section

will discuss prior work and an outline of the phrase-based model. Section 2 will then describe

the modifications to improve decoding speed. We describe the experiment setup in Section 3

and present results Section 4. We conclude in the last section and discuss possible future work.

1.1 Prior Work

Most prior work on increasing decoding speed look to optimizing specific components of the

decoder or the decoding algorithm.

Heafield (2011) and Yasuhara et al. (2013) describes fast, efficient datastructures for lan-

guage models. Zens and Ney (2007) describes an implementation of a phrase-table for an SMT

decoder that is loaded on demand, reducing the initial loading time and memory requirements.

Junczys-Dowmunt (2012) extends this by compressing the on-disk phrase table and lexicalized

re-ordering model.

Chiang (2007) describes the cube-pruning and cube-growing algorithm which allows the

tradeoff between speed and translation quality to the adjusted with a single parameter. Wuebker

et al. (2012b) note that language model querying is amongst the most expensive operation in de-

coding. They sought to improved decoding speed by caching score computations early pruning

of translation options. This work is similar to Heafield et al. (2014) which group hypotheses

with identical language model context and incrementally expand them, reducing LM querying.

Fernández et al. (2016) was concerned with multi-core speed but treated decoding as a

black box within a parallelization framework.

There are a number of phrase-based decoding implementations, many of which imple-

ments the extensions to the phrase-based model described above. The most well known is

Moses (Koehn et al., 2007) which implements a number of speed optimizations, including cube-

pruning. It is widely used for MT research and commercial use.

Joshua (Li et al., 2009) also supports cube-pruning for phrase-based models.

Phrasal (Spence Green and Manning, 2014) supports a number of variants of the phrase-based

model. Jane (Wuebker et al., 2012a) supports the language model look-ahead described in Wue-

bker et al. (2012b) in addition to other tools to speed up decoding such as having a separate fast,

lightweight decoder. mtplz is a specialized decoder developed to implement the incremental

decoding described in Heafield et al. (2014).

The Moses, Joshua and Phrasal decoders implement multithreading, however, they all re-

port scalability problems, either in the paper (Phrasal) or via social media (Moses2 and Joshua3).

Jane and mtplz are single-threaded decoders, relying on external applications to parallelize

operations.

1https://github.com/moses-smt/mosesdecoder/tree/master/contrib/moses2
2https://github.com/moses-smt/mosesdecoder/issues/39
3https://twitter.com/ApacheJoshua/status/342022794097340416

This paper not only focuses on faster single-threaded decoding but also on overcoming the

shortcomings of existing decoding implementations on multicore servers. Unlike Fernández

et al. (2016), we will optimize decoding speed by looking inside the black box. We will compare

multicore performance the best-of-breed phrase-table described in Junczys-Dowmunt (2012)

with our own implementation. We will use the cube-pruning algorithm, however, the standard

phrase-based decoding algorithm is also available and a framework exists to accommodate other

decoding algorithms in future. We use KenLM (Heafield, 2011) due to it’s popularity and

consistent performance, but as with Moses, other language model implementations can be added

later.

1.2 Phrase-Based Model
The objective of decoding is to find the target translation with the maximum probability, given

a source sentence. That is, for a source sentence s, the objective is to find a target translation t̂
which has the highest conditional probability p(t|s). Formally, this is written as:

t̂ = argmax
t

p(t|s) (1)

where the arg max function is the search. The log-linear model generalizes Equation 1 to

include more component models and weighting each model according to the contribution of

each model to the total probability.

p(t|s) = 1

Z
exp(

∑
m

λmhm(t, s)) (2)

where λm is the weight, and hm is the feature function, or ‘score’, for model m. Z is the

partition function which can be ignored for optimization.

The standard feature functions in the phrase-based model include:

1. a distortion penalty

2. a phrase-penalty,

3. a word penalty,

4. an unknown word penalty.

5. log transforms of the target language model probability p(t),

6. log transforms translation model probabilities, pTM (t|s) and pTM (s|t), and word-based

translation probabilities pw(t|s) and pw(s|t),
7. log transforms of the lexicalized re-ordering probabilities,

Of these feature functions, we will focus on optimizing the speed of the phrase-table and

lexicalized re-ordering models.

1.3 Beam Search
A translation of a source sentence is created by applying a series of translation rules which

together translate each source word once, and only once. Each partial translation is known as

a hypothesis, which is created by applying a rule to an existing hypothesis. This hypothesis
expansion process starts with a hypothesis that has translated no source word and ends with

completed hypotheses that has translated all source words. The highest-scoring completed hy-

pothesis, according to the model score, is considered the best translation, t̂.
In the phrase-based model, each rule translates a contiguous sequence of source words.

Successive applications of translation rules do not have to be adjacent on the source side, de-

pending on the distortion limit. The target output is constructed strictly left-to-right from the

target side from the series of translation rules.

A beam search algorithm is used to create the completed hypothesis set efficiently. Hy-

potheses are grouped into stacks where each stack holds a number of comparable hypotheses.

Most phrase-based implementations group hypotheses according to coverage cardinality.

2 Proposed Improvements

We will also concentrate on four main areas for optimization.

2.1 Efficient Memory Allocation
The search algorithm creates and destroy a large number of intermediate objects such as hy-

potheses and feature function states. This puts a burden on the operating system due to the need

to synchronize memory access, especially when using a large number of threads. Libraries

such as tcmalloc (Ghemawat and Menage, 2009) are designed to reduce locking contention for

multi-threaded application but in our case, this is still not enough.

We shall seek to improve decoding speed by replacing the operating system’s general pur-

pose memory management with our own custom memory management scheme. Memory will

be allocated from a memory pool rather than use the operating system’s general purpose alloca-

tion functions.

A memory pool is a large block of memory that has been given to the application by the

operating system. The application is then responsible for allocating portions of this memory to

its components when requested. We will use thread-specific memory pools to increase speed

by avoiding locking contention during memory access. Our memory pools will be dynamic.

That is, the memory requirement does not have to be known or specified before running the

application, the pool can grow when required but they will never reduce in size. The pools are

deleted only when the application ends.

To further increase memory management speed, objects in the memory pool are not

deleted. Unused data structures accumulates in the pool until a reset event. The pool is as-

sumed to be empty and simply reused after the event. We instantiate two memory pools per

decoding thread, one which is never reset and another which is reset after the decoding of each

sentence. Data structures are created in either pool according to their life cycle.

Accumulating unused objects in the memory pools can result in unacceptably high memory

usage so object queues are available for high-churn objects which allows the decoder to re-cycle

unused objects before the reset event. This also increase speed as LIFO queues are used so that

the most recently accessed memory are used, increasing CPU cache hits.

2.2 Stack Configurations
The most popular stack configuration for phrase-based models is coverage cardinality, that is,

hypotheses that have translated the same number of source words are stored in the same stack.

This is implemented in Pharaoh, Moses and Joshua.

However, there are alternatives to this configuration. Och et al. (2001) uses a single stack

for all hypotheses, Brown et al. (1993) uses coverage stacks (ie. one stack per unique cover-

age vector) while Wuebker et al. (2012a) and Zens and Ney (2008) apply both coverage and

cardinality pruning. While useful, these prior works present only one particular stack config-

uration each. Ortiz-Martı́nez et al. (2006) explore a range of stack configurations by defining

a granularity parameter which controls the maximum number of stacks required to decode a

sentence.

We shall re-visit the question of stack configuration with a particular emphasis on how

they can help improve the tradeoff between speed and translation quality. We will do so in the

context of the cube-pruning algorithm, the algorithm that we will be using and which was not

available to many of the earlier work.

Figure 1: Moses decoding speed with two different phrase-table implementations

No cache Caching

Decoding time 2877 2540 (-12%)

Table 1: Decoding speed (in words / sec with 32 threads) when using phrase-table cache

2.3 Phrase-Table Optimizations
For any phrase-table table of a realistic size, memory and loading time constraints requires us to

use a load-on-demand implementation. Moses has several which we can make use of, each with

differing performance characteristics. Figure 1 shows the decoding speed for the fastest two

implementations. From this, it appears that the Probing phrase-table (Bogoychev and Lopez,

2016) has the fastest translation rule lookup, especially with large number of cores, therefore,

we will concentrate exclusively on this implementation from hereon.

We propose two optimizations. Firstly, the translation rule caching mechanism in Moses

saves the most recently used rules. However, this require locking and active management in

clearing of old rules. The result is slower decoding, Table 1.

We shall explore a simpler caching mechanism by creating a static cache of the most likely

translation rules to be used at the start of decoding.

Secondly, the Probing phrase-table use a simple compression algorithm to compress the

target side of the translation rule. Compression was championed by Junczys-Dowmunt (2012)

as the main reason behind the speed of their phrase-table but as we saw in Figure 1, this comes at

the cost of scalability to large number of threads. We shall therefore take the opposite approach

to and improve decoding speed by disabling compression.

2.4 Lexicalized Re-ordering Model Optimizations
Similar to the phrase-table, the lexicalized re-ordering model is trained on parallel data. A re-

sultant model file is then queried during decoding. The need for random lookup during querying

inevitably results in slower decoding speed. Previous work such as Junczys-Dowmunt (2012)

improve querying speed with more compact data structures.

However, the model’s query keys are the source and target phrase of each translation rule.

Rather than storing the lexicalized re-ordering model separately, we shall integrating it into the

translation model, eliminating the need to query a separate file. However, the model remain the

same under the log-linear framework, including having its own weights.

This optimization has precedent in Wuebker et al. (2012a) but the effect on decoding speed

ar-en fr-en

Phrase table 17 5.8

Language model (5-gram) 3.1 1.8

Lex re. model 2.3 0.6

Table 2: Model sizes in GB

ar-en fr-en

For speed testing

Set name Subset of training data

sentences 800k 200k

words 5.8m 5.9m

Avg words/sent 7.3 29.7

For model score testing

Set name OpenSubtitles newstest2011

sentences 2000 3003

words 14,620 86,162

Avg words/sent 7.3 28.7

Table 3: Test sets

were not published. We will compare results with using a separate model in this paper.

3 Experimental Setup

We trained a phrase-based system using the Moses toolkit with standard settings. The train-

ing data consisted of most of the publicly available Arabic-English data from Opus (Tiede-

mann, 2012) containing over 69 million parallel sentences, and tuned on a held out set. The

phrase-table was then pruned, keeping only the top 100 entries per source phrase, accord-

ing to p(t|s). All model files were then binarized; the language models were binarized us-

ing KenLM (Heafield, 2011), the phrase table using the Probing phrase-table, lexicalized re-

ordering model using the compact data structure (Junczys-Dowmunt, 2012). These binary for-

mats were chosen for their best-in-class multithreaded performance. Table 2 gives details of the

resultant sizes of the model files. For testing decoding speed, we used a subset of the training

data, Table 3.

For verification with a different dataset, we also used a second system trained on the

French-English Europarl corpus (2m parallel sentences). The two different systems have char-

acterics that we are interested in analyzing; ar-en have short sentences with large models while

fr-en have overly long sentences with smaller models. Where we need to compare model scores,

we used held out test sets.

Standard Moses phrase-based configurations are used, except that we use the cube-pruning

algorithm (Chiang, 2007) with a pop-limit of 4004, rather than the basic phrase-based algorithm.

The cube-pruning algorithm is often employed by users who require fast decoding as it gives

them the ability to trade speed with translation quality via a simple pop-limit parameter.

As a baseline, we use a recent5 version of the Moses decoder taken from the github repos-

4the pop-limit was chosen from public discussion on the Moses mailing list on an acceptable balance between

decoding speed and translation quality with Moses for commercial use
5The experiments were performed between January and May 2016 with the latest github code to hand. The main

ar-en experiments were rerun with the source code as of 8th June, 2016 to ensure there were no material difference.

Moses Our Work

threads 1 32 1 32

Memory 24% 39% 11% 13%

LM 12% 2% 47% 38%

Phrase-table 9% 5% 2% 4%

Lex RO 8% 2% 2% 2%

Search 2% 0% 14% 19%

Misc/Unknown 45% 39% 24% 29%

Table 4: Profile of %age decoding time

Figure 2: Decoding speed of Moses and our decoder, using the same models

itory.

For all experiments, we used a Dell PowerEdge R620 server with 16 cores, 32 hyper-

threads, split over 2 physical processors (Intel Xeon E5-2650 @ 2.00GHz). The server has

380GB RAM. The operating system was Ubuntu 14.04, the code was compiled with gcc 4.8.4

and Boost 1.596 and the tcmalloc library.

4 Results

4.1 Optimizing Memory

Over 24% of the Moses decoder running time is spent on memory management, Table 4. This

increases to 39% when 32 threads are used, dampening the scalability of the decoder. By

contrast, our decoder spends 11% on memory management and does not significantly increase

with more threads.

Figure 2 compares the decoding speed for Moses and our decoder, using the same models,

parameters and test set. Our decoder is 4.4 times faster with one thread, and 5.0 times faster

using all cores. Like Moses, however, performance actually worsens after approximately 15

threads.

The commit hash was bc5f8d15c6ce4bc678ba992860bfd4be6719cee8
6http://boost.org/

Figure 3: Trade-off between decoding time average model scores for different stack configura-

tions

4.2 Stack Configuration
We investigated the effects of the following three stack configurations on model score and de-

coding speed:

1. coverage cardinality,

2. coverage,

3. coverage and end position of most recently translated source word.

Coverage cardinality is the same as that in Moses and Joshua. Coverage configuration uses one

stack per unique coverage vector. Coverage and end position of most recently translated source

word extends the coverage configuration by separating hypotheses where the position of the last

translate word are different, even if the coverages are identical.

This is an optimization to reduce the number of checks on the distortion limit, which is

dependent on the last word position. The check is a binary function d(Ch, ehypo, ranger),
where Ch is the coverage vector of hypothesis h, eh is the end position of most recent source

word that has been translated, and ranger is the coverage of the rule to be applied.

By grouping hypotheses according to coverage and end position, the distortion limit only

needs to be checked for each group. However, stack pruning occurs on each hypothesis group

independently, therefore, potentially affecting search errors and model scores.

Figure 3 present the tradeoff between decoding time and average model, created by varying

the cube-pruning pop-limit. None of the different stack configurations significantly outperform

the others in either quality or decoding speed. However, the coverage & end position produces

slightly higher model scores at higher pop-limits, therefore, we continue to use this configura-

tion throughout the rest of this paper.

We verified that the translation quality of our decoder is comparable to that of Moses in

Figure 4, given the same parameters and models. This fits in with our intention of creating a

drop-in replacement for the Moses decoder.

4.3 Translation Model
In the first optimization, we create a static translation model cache containing translation rules

that translates the most common source phrases. This is constructed during phrase-table training

based on the source counts. The cache is then loaded when the decoder is started. It does not

require the overhead of managing an active cache but there is still some overhead in using a

cache. Overall however, using a static cache result in a 10% decrease in decoding time if the

optimum cache size is used, Table 5.

For the second optimization, we disable the compression of the target side of the translation

rules. This increase the size of the binary files from 17GB to 23GB but the time saved not

Figure 4: Translation quality for different pop-limits

Cache size Decoding Time Cache Hit %age

Before caching 229 N/A

0 239 (+4.4%) 0%

1,000 213 (-7.0%) 11%

2,000 204 (-10.9%) 13%

4,000 205 (-10.5%) 14%

10,000 207 (-9.7%) 17%

Table 5: Decoding time (in secs with 32 threads) for varying cache sizes

needing to decompress the data resulted in a 1.5% decrease in decoding time with 1 thread and

nearly 7% when the CPUs are saturated, Table 6.

4.4 Lexicalized Re-ordering Model
The lexicalized re-ordering model requires a probability distribution of the re-ordering be-

haviour of each translation rule learnt from the training data. This is represented in the model

file as a fixed number of probabilities for each rule, exactly how many probabilities is depen-

dant on the model’s parameterization during training. During decoding, a probability from this

distribution is assigned to each hypothesis according to the re-ordering of the translation rule.

Rather than holding the model probability distributions in the separate file, we pre-process

the translation model file to include the lexicalized re-ordering model distributions for each rule.

During decoding, the probability distribution is then taken from the translation model instead

of querying a separate file.

This resulted in a significant decrease in decoding time, especially with high number of

cores, Figure 5. Decoding speed increased by 40% when using one thread but is 5 times faster

when using 32 threads.

4.5 Scalability
Figure 6 shows decoding speed against the number of threads used. In our work, there is a

constant increase in decoding speed when more threads are used, decreasing slightly after 16

threads when virtual cores are employed by the CPU. Overall, decoding is 16 times faster than

single-threaded decoding when all 16 cores (32 hyperthreads) are fully utilized.

This contrast with Moses where speed increases up to approximately 16 threads but then

threads Compressed pt Non-compressed pt

1 3052 3006 (-1.5%)

5 756 644 (-14.8%)

10 372 362 (-2.7%)

15 284 250 (-12.0%)

20 244 227 (-7.0%)

25 218 209 (-4.1%)

30 206 192 (-6.8%)

35 203 189 (-6.9%)

Table 6: Decoding time (in secs with 32 threads) for compressed and non-compressed phrase-

tables

Figure 5: Decoding speed with Compact Lexicalized Re-ordering, and integrated into a model

the phrase-table

Figure 6: Comparison of decoding speed of our work and Moses (with & without the tcmalloc

library

Figure 7: Decoding speed with more cores

Figure 8: Decoding speed for fr-en model

become slower thereafter. Using the tcmalloc library has a small positive effect on decoding

speed but does little to improve scalability

Our work is 4.3 times faster than Moses with a single-thread and 10.4 faster when all cores

are used.

4.6 Other Models and Even More Cores

Our decoder show no scalability issues when we tested with the same model and tested set on a

larger server, Figure 7.

We verify the results with the French-English phrase-based system and test set. The speed

gains are even greater than the Arabic-English test scenario, Figure 8. Our decoder is 5.4 times

faster than Moses with a single-thread and 14.5 faster when all cores are saturated.

It has been suggested that using a larger language model would overpower the improve-

ments in decoding speed. We tested this conjecture by replacing the language model in the

ar-en experiment with a 96GB language model. The time to load of language model is signifi-

cant (394 sec) and was excluded from the translation speed. Results show that our decoder is 7

times faster than Moses and still scales monotonically until all CPUs are saturated, Figure 9.

Figure 9: Decoding speed with a large language model

5 Conclusion

We have presented a new decoder that is compatible with Moses. By studying the shortcomings

of the current implementation, we are able to optimize for speed, particularly for multicore

operation. This resulted in double digit gains compared to Moses on the same hardware. Our

implementation is also unaffected by scalability issues that has afflicted Moses.

In future, we shall investigate other major components of the decoding algorithm, particu-

larly the language model which has not been touched in this paper. We are also keen to explore

the underlying reasons for the scalability issues in Moses to get a better understanding where

potential performance issues can arise.

Acknowledgments

This work is sponsored by the Air Force Research Laboratory, prime contract FA8650-11-C-

6160. The views and conclusions contained in this document are those of the authors and should

not be interpreted as representative of the official policies, either expressed or implied, of the

Air Force Research Laboratory or the U.S. Government.

Thanks to Kenneth Heafield for advice and code.

References
Bogoychev, N. and Lopez, A. (2016). Fast and highly parallelizable phrase table for statistical machine

translation. In Proceedings of the First Conference on Statistical Machine Translation WMT16, Berlin,

Germany.

Brown, P. F., Della-Pietra, S. A., Della-Pietra, V. J., and Mercer, R. L. (1993). The mathematics of

statistical machine translation. Computational Linguistics, 19(2):263–313.

Chiang, D. (2007). Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228.

Fernández, M., Pichel, J. C., Cabaleiro, J. C., and Pena, T. F. (2016). Boosting performance of a statistical

machine translation system using dynamic parallelism. Journal of Computational Science, 13:37–48.

Ghemawat, S. and Menage, P. (2009). Tcmalloc: Thread-caching malloc.

Heafield, K. (2011). KenLM: faster and smaller language model queries. In Proceedings of the EMNLP
2011 Sixth Workshop on Statistical Machine Translation, pages 187–197, Edinburgh, Scotland, United

Kingdom.

Heafield, K., Kayser, M., and Manning, C. D. (2014). Faster Phrase-Based decoding by refining feature

state. In Proceedings of the Association for Computational Linguistics, Baltimore, MD, USA.

Junczys-Dowmunt, M. (2012). A space-efficient phrase table implementation using minimal perfect hash

functions. In Sojka, P., Hork, A., Kopecek, I., and Pala, K., editors, 15th International Conference on
Text, Speech and Dialogue (TSD), volume 7499 of Lecture Notes in Computer Science, pages 320–327.

Springer.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,

Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open source

toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages

177–180, Prague, Czech Republic. Association for Computational Linguistics.

Li, Z., Callison-Burch, C., Dyer, C., Khudanpur, S., Schwartz, L., Thornton, W., Weese, J., and Zaidan,

O. (2009). Joshua: An open source toolkit for parsing-based machine translation. In Proceedings of the
Fourth Workshop on Statistical Machine Translation, pages 135–139, Athens, Greece. Association for

Computational Linguistics.

Och, F. J., Ueffing, N., and Ney, H. (2001). An efficient A* search algorithm for statistical machine trans-

lation. In Workshop on Data-Driven Machine Translation at 39th Annual Meeting of the Association of
Computational Linguistics (ACL).

Ortiz-Martı́nez, D., Garcı́a-Varea, I., and Casacuberta, F. (2006). Generalized stack decoding algorithms

for statistical machine translation. In Proceedings on the Workshop on Statistical Machine Translation,

pages 64–71, New York City. Association for Computational Linguistics.

Spence Green, D. C. and Manning, C. D. (2014). Phrasal: A toolkit for new directions in statistical

machine translation. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages

114–121. Citeseer.

Tiedemann, J. (2012). Parallel data, tools and interfaces in opus. In LREC, pages 2214–2218.

Wuebker, J., Huck, M., Peitz, S., Nuhn, M., Freitag, M., Peter, J.-T., Mansour, S., and Ney, H. (2012a).

Jane 2: Open source phrase-based and hierarchical statistical machine translation. In 24th International
Conference on Computational Linguistics, page 483. Citeseer.

Wuebker, J., Ney, H., and Zens, R. (2012b). Fast and scalable decoding with language model look-

ahead for phrase-based statistical machine translation. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Short Papers-Volume 2, pages 28–32. Association for

Computational Linguistics.

Yasuhara, M., Tanaka, T., Norimatsu, J.-y., and Yamamoto, M. (2013). An efficient language model

using double-array structures. In Proceedings of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 222–232, Seattle, Washington, USA. Association for Computational

Linguistics.

Zens, R. and Ney, H. (2007). Efficient phrase-table representation for machine translation with applica-

tions to online mt and speech translation. In HLT-NAACL, pages 492–499.

Zens, R. and Ney, H. (2008). Improvements in dynamic programming beam search for phrase-based

statistical machine translation. In Proc. of IWSLT.

Youngki Park
Hwidong Na
Hodong Lee
Jihyun Lee
Inchul Song

Abstract

’

Source Sentence :

Sentence
korea, kim’s warm, steamed air has long

Sentence

mistranslation is caused not by the NMT model’s

’

’ ’

’

 =

-

3.1. Greedy Search

3.2. -best List Expansion

data-dependent

signature

signature
pool

exact

3.3. -best Rescoring

4.1. Experimental Setup

Theano
Platoon

popular

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1-best 2-best 4-best 8-best 16-best 32-best 64-best

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Candidates

Beam Search

SST (3K)

SST (100K)

SST* (100K)

Tokenized BLEU multi-bleu

4.2. Experimental Results

41.0

41.5

42.0

42.5

43.0

43.5

44.0

44.5

1-best 2-best 4-best 8-best 16-best 32-best 64-best

BL
EU

Candidates

Beam Search

SST (3K)

SST (100K)

SST* (100K)

4.3. Performance Analysis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

kNN Search (3K)

kNN Search (100K)

Approximate kNN Search (100K)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1-best 2-best 4-best 8-best 16-best 32-best 64-best

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Candidates

Greedy Search

kNN Search

n-best Reranking

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1-best 2-best 4-best 8-best 16-best 32-best 64-best

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Candidates

kNN Search (3K)

kNN Search (100K)

Approximate kNN Search (100K)

“ ” “
”

.

Diversity.

“ ” “ ” “ ” “ ”

41.43

46.62

50.22

52.32
52.85 52.97 53.06

40.00

42.00

44.00

46.00

48.00

50.00

52.00

54.00

1-best 2-best 4-best 8-best 16-best 32-best 64-best

BL
EU

Candidates

1 Model, BS

1 Model, SST

2 Model, BS

2 Model, SST

5 Model, BS

5 Model, SST

“ ” “
”

“ ” “ ”

noisy parallel approximate
decoding (NPAD)

(X) “I’ll go to
tion to Gangnam Station.”

(X) “Let’s go through Gang-
nam Station.”

(O) How’s going to Gangnam

(O) How’s going to Gangnam

nam Station.”

(X) “How do we go from

Station?”

References

arXiv preprint arXiv: 1409.0473.

arXiv: preprint arXiv: 1605.03835.

arXiv preprint arXiv: 1603.06147.

https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf.

In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)

arXiv preprint arXiv: 1601.00372.

In Proceedings of the 24th ACM International Conference on Information
and Knowledge Management

arXiv preprint arXiv: 1211.5063

arXiv preprint arXiv: 1508.07909

arXiv e-prints arXiv: 1605.02688.

arXiv preprint arXiv:
1212.5701

Ranking suggestions for black-box interactive
translation prediction systems with multilayer

perceptrons

Daniel Torregrosa dtorregrosa@dlsi.ua.es

Juan Antonio Pérez-Ortiz japerez@dlsi.ua.es

Mikel L. Forcada mlf@dlsi.ua.es

Departament de Llenguatges i Sistemes Informàtics

Universitat d’Alacant, E-03690 Sant Vicent del Raspeig, Spain

Abstract
The objective of interactive translation prediction (ITP), a paradigm of computer-aided trans-

lation, is to assist professional translators by offering context-based computer-generated sug-

gestions as they type. While most state-of-the-art ITP systems are tightly coupled to a machine

translation (MT) system (often created ad-hoc for this purpose), our proposal follows a resource-
agnostic approach, one that does not need access to the inner workings of the bilingual resources

(MT systems or any other bilingual resources) used to generate the suggestions, thus allowing

to include new resources almost seamlessly. As we do not expect the user to tolerate more

than a few proposals each time, the set of potential suggestions need to be filtered and ranked;

the resource-agnostic approach has been evaluated before using a set of intuitive length-based

and position-based heuristics designed to determine which suggestions to show, achieving

promising results. In this paper, we propose a more principled suggestion ranking approach

using a regressor (a multilayer perceptron) that achieves significantly better results.

1 Introduction

Translation technologies are frequently used to assist professional translators. Common ap-

proaches use machine translation (MT) (Hutchins and Somers, 1992) or translation memo-

ries (Somers, 2003, Chapter 3) to produce a first (and usually inadequate) prototype of the trans-

lation which is then edited by the professional translator in order to produce a target-language

text that is adequate for publishing. In both scenarios, the suggestion may be considered by the

professional translators as a source of inspiration: they will assemble the final translation on

some occasions by accepting and rearranging parts of the proposal, or on other occasions by

introducing their own words when an appropriate equivalent is not found in the suggestion.

Our approach, described in a previous work (Pérez-Ortiz et al., 2014), follows a different

paradigm known as interactive translation prediction (ITP), which, instead of presenting a

translation proposal that gets reshaped by the target-language sentence formed in the translator’s

mind, focuses on offering translation suggestions as the translation is carried out. Most state-of-

the-art ITP approaches obtain the suggestions by means of a modified (or tailor-made) statistical

machine translation system (SMT) (Koehn, 2004) that is able to provide additional information

(such as word alignments, alternative translations, and scores or probabilities for the translation).

These systems are able to leverage more information from the bilingual resource than if it were

used unmodified as a black-box, but doing so they inherit the common requirements of SMT,

namely, the dependency on the availability of extensive parallel corpora. It is worth noting that

integrating other resources of bilingual information would be almost impossible in this kind of

systems, as the ITP tool needs the additional information obtained from the underlying SMT

engine.

Unlike those previously described, the approach described here is able to use any bilingual

resource capable of delivering one or more translations into target language, regardless of how

they are obtained and without the need to modify the resource; suggestions are created by

generating all possible sub-segments of words in the source-language sentence (up to a given

length) and then querying the available bilingual resources for their translations. The nature of

these bilingual resources is not limited to MT systems, but they may also include translation

memories, dictionaries, catalogues of bilingual phrases, or any combination of them. A neural-

based machine learning algorithm trained on features extracted from the source sentence, from

the current prefix of the target sentence, and from the translated sub-segments is used to rank

and select which suggestions to show at each time step. Not having to rely on the inner workings

of each system allows us to integrate new resources without modifying how the ITP system

works; similarly, we do not need to modify the resources in any way. Both these features make it

possible to use any resource the professional translator has access to in a seamless way.

These translated sub-segments are then offered to the user as the translation is being typed

with the objective of saving keystrokes and, hopefully, time. In previous works we have explored

the performance of our approach considering rule-based MT systems (Pérez-Ortiz et al., 2014)

and in-domain and out-of-domain SMT systems (Torregrosa et al., 2014), using a naı̈ve strategy

based on a number of intuitive heuristics to rank and select a few suggestions that are shown

to the user. In this paper, however, we aim to improve the strategy by using machine learning

techniques. The improvement presented here is twofold: on the one hand, more coherent and

principled models are introduced; on the other hand, the results we achieve are significantly

better.

The remainder of the paper is organised as follows. After reviewing the state-of-the-art of

ITP in Section 2, we describe our method for generating and ranking translation suggestions

from bilingual resources in Section 3, emphasizing the differences between the sounder approach

presented in this paper and the former heuristic ranking method. We then introduce in Section 4

our experimental set-up and show the results of its evaluation. Finally, we discuss the results and

propose future lines of research in Section 5.

2 Related work

The systems which have most significantly contributed to the field of ITP are those built in the

pioneering TransType project (Foster et al., 1997; Langlais et al., 2000), and its continuation, the

TransType2 project (Macklovitch, 2006). These systems observe the current partial translation

already typed by the user and, by exploiting an embedded statistical MT engine, propose one or

more completions that are compatible with the sentence prefix entered by the user. The proposals

offered may range from one or several words to a completion of the remainder of the target

sentence. An automatic best-scenario evaluation with training and evaluation corpora belonging

to the same domain (Barrachina et al., 2009) showed that it might theoretically be possible to use

only 20–25% of the keystrokes in comparison with the unassisted translation for English–Spanish

translation (both directions) and around 45% for English–French and English–German.

A number of projects continued the research where TransType2 had left off. Caitra (Koehn,

2009) is an ITP tool which uses both the phrase table and the decoder of a statistical MT

system to generate suggestions. Researchers at the Universitat Politècnica de València have also

made significant improvements to a TransType2-style system such as allowing users to accept

discontinuous segments of the suggested translation (Domingo et al., 2016). The CASMACAT

project (Koehn et al., 2015) followed the same line of research, improving ITP using active and

on-line learning (Alabau et al., 2014). Commercial translation memory systems also integrate

some form of ITP as one of their basic features (see, for example, SDL Trados AutoSuggest

2.01), and new translation tools such as Lilt (Green et al., 2014) focus on delivering ITP on an

user-friendly web interface.

3 Method

As already described in other articles (Pérez-Ortiz et al., 2014; Torregrosa et al., 2014), our

method starts by generating all possible whole-word sub-segments of the source-language

sentence S of lengths l ∈ [1, L], where L is the maximum source sub-segment length measured

in words.2 The resulting sub-segments are then translated by means of a bilingual resource (or a

combination of bilingual resources). The set of potential proposals PS for sentence S is made

up of suggestions p, which in turn are made up of a target-language sub-segment tp and the

starting bp and ending ep positions of the corresponding sub-segment in S.

These suggestions are then offered as the translation T is being typed.3 Let Pr(x) be the

character-level set of prefixes of a string x, Tk the k-th word of T , and T̂ = T1...Tk−1ŵ the

partially translated sentence where ŵ ∈ Pr(Tk) is the currently typed prefix of Tk; we define the

set of compatible suggestions PS
compatible as

PS
compatible(ŵ) = {p ∈ PS : ŵ ∈ Pr(tp)}

For example, given S =“Mi sastre está sano”, with L = 2, the set of potential proposals will be

PS = { “My”, “My tailor”, “tailor”, “tailor is”, “is”, “is healthy”, “healthy”}; with T̂ =“My
t” and ŵ =“t”, the set of compatible suggestions would be PS

compatible = { “tailor”, “tailor
is”}.

As studied in (Pérez-Ortiz et al., 2014), the number of compatible suggestions depends not

only on the value of L, but also on the specific word prefix; for example, when users type the

letter d when translating a long sentence into Spanish, they will probably obtain a significant

number of suggestions starting with de4 originating from sub-segments located in different

source positions. Obviously, only suggestions originating from the part of the source sentence

currently being translated may be useful, but this position is difficult to determine unambiguously.

As we do not expect users to tolerate a long list of suggestions, more elaborated strategies are

needed both to rank suggestions and to reduce the list to a manageable size.

3.1 Previous approach

We have already proposed (Pérez-Ortiz et al., 2014) a naive way of ranking suggestions, based

on the following assumptions:

• the source-language sentence S and the target-language sentence T have similar lengths,

and translation is mainly monotonous; useful suggestions for the n-th word of T will be

generated from sub-segments close to the n-th word of S;

1http://www.translationzone.com/products/trados-studio/autosuggest/
2Suitable values for L will depend on the bilingual resource: on the one hand, we expect higher values of L to

be useful for high-quality MT systems, such as those translating between closely related languages, since adequate

translations may stretch to a relatively large number of words; on the other hand, L should be kept small for low-quality

MT systems whose translations quickly deteriorate as the length of the input sub-segment increases; of course, L will be

small for resources such as dictionaries.
3While T is fixed during automatic tests, professional translators may change their minds during the process.
4The preposition de (‘of’) is one of the most frequent words in Spanish texts.

• long suggestions are seldom useful,5 but when used there is a significant effort reduction;

• short suggestions are usually compatible,6 but do not save too much effort when used.

We therefore devised the following selection scheme: when the user translates the k-th word,

the shortest and longest (measured in number of words) suggestions originated from the closest

position in PS
compatible are offered, followed by the shortest and longest of the second closest

position, or, if no other position generated compatible suggestions, the second shortest and the

second longest suggestions from the previous position, and so on, up to a maximum number of

suggestions M .7

This heuristic performed remarkably well in spite of the simplicity of the approach: during

a conducted preliminary test using M = 4 with human translators (Pérez-Ortiz et al., 2014),

savings in the range of 25–65% keystrokes (depending on the language pair) were achieved,

without any explicit complaints from users about being offered too many suggestions.

3.2 Neural network model
The approach discussed in the preceding section can still be improved: on the one hand, more

rigorous and principled models rather than intuitive heuristics can be used; on the other hand, if

we get a better ranking of suggestions we can reduce the number of suggestions offered (reducing

the cognitive effort used for reading and selecting suggestions), the number of keystrokes or both.

Consequently, we propose to replace the previous intuitive heuristics with a ranker based on a

multilayer perceptron (Duda et al., 2000, Chapter 6).Four different systems will be trained, Full
feature set with usable suggestions, Full feature set with winning suggestions, Reduced feature
set with usable suggestions, and Reduced feature set with winning suggestions, depending on the

set of features and the kind of suggestions they will learn to identify:

• Full feature set: the full feature set that will be discussed in Subsection 3.3;

• Reduced feature set: a reduced feature set consisting of only two features, the length of

the suggestion and the normalized distance, as will be discussed in Subsection 3.3. This

that means that the model has access to similar information to that available to the previous

intuitive heuristic method.

• Winning suggestions: the set of winning suggestions, those that get chosen during the

automatic evaluation procedure described in Section 4. Winning suggestions are given a

score of 1, and the rest get a score of 0.8

• Usable suggestions: the set of usable suggestions, namely those which, for the current

partially translated sentence T̂ , could be used for advancing the translation, but are not

necessarily are part of the suboptimal sequence of actions the greedy automatic evaluation

procedure executes. For instance, given S =“Un coche rojo”, T =“A red car”, T̂ =“A r”,

p1 =“red” and p2 =“red car” both are deemed as usable, even when p2 would be more

advantageous. Usable suggestions are given a score of 1, and the rest get a score of 0.

5Our automatic testing strategy (see Section 4) only accepts suggestions that exactly match the provided reference.

However, professional translators may accept suggestions that slightly differ from their initial translation, editing the

suggestion or even adapting their planned translation. However, we lack a formal model that reflects this behaviour;

devising one is a requisite for conveying a more human-like automatic evaluation.
6Usually, short words such as determinants, prepositions, and non-ambiguous nouns are correctly translated even by

low quality resources.
7A system that reversed this order picking the longest and shortest suggestions, a second one picking first the longest

of each position and a third one picking first the shortest were also tested, but performed worse.
8During training, the desired output values will be 0 and 1, but during testing the network output will be a real value

between 0 and 1 that correlates with the goodness of the suggestion.

3.3 Features
We will use features fi, 1 ≤ i ≤ 30 for each p. As multilayer perceptrons cannot work with

nominal features, those will be transformed into multiple one-hot-encoded binary features and

then treated as numeric. Likewise, binary features are treated as numeric. The description of this

transformation will not be included in the definition of the features to avoid overcomplicating it;

when applied, the actual number of features grows to 79.

Length of the suggestion The length of the span the suggestion is generated from f1 = ep−bp
and the length of the translated sub-segment f2 = |tp|, both at the word and the character (f3, f4)

level. As discussed in Subsection 3.1, long suggestions are seldom used under our testing

conditions.

Position of the suggestion A set of features that relate to the position where each suggestion

comes from and where it is (potentially) offered. The features include the absolute position in

the source sentence f5 = bp and the position being currently worked on in the target sentence

f6 = k, the position normalized by the length of the sentence f7 = bp/|S| and f8 = k/|T |,9
the distance between source and target positions, both with absolute positions f9 = k − bp and

their normalized counterparts f10 = k/|T |−bp/|S|, and their position ratios f11 = k/bp. These

features help to determine how far we are from the suggestion source: long sentences will have

potentially higher values for the differences, but lower values on the ratio; the opposite stands for

short sentences. We also define (f12...f18), the equivalent feature set for character level positions

and distances.

Position and length A set of 3 nominalized features (f19, f20, f21) that relate to the position

and the length of the suggestion. Each feature takes a value in the {short, long} × {close, far}
set. We classify a suggestion as short if it has 2 or less words (f2) or 10 or less characters (f4),

and long otherwise. We classify a suggestion as close if it is 3 or less words away (f9), 20 or

less characters away (f15) or the ratio position (f11) is lower than 1.2; far otherwise. The feature

f19 uses word-level length and distance, f20 uses character-level length and distance, and f21
uses word-level length and ratio.

Distance distribution Given a training set, we compute the average x and standard deviation σ
values for the distribution of normalized distances and position ratios for the winning suggestions
set (as described in Subsection 3.2), we define four features:

• f22 = (f10 − x)/σ

• a nominal feature f23 that has 4 different classes depending on the relationship between f10
and the distribution: less than half σ away from x, a full σ away, 2σ away, or further;

• two more features (f24 and f25) similar to the two above, but replacing f10 with f11, using

their respective average and deviation.

Starting letter of the suggestion As discussed in Section 3, the starting letter of a word is

related to the size of the set of compatible suggestions PS
compatible. The nominal feature f26

takes the value of the first letter of the suggestion (ignoring the capitalization) if it belongs to the

English alphabet, and replaced with a generic other token otherwise.

Last action taken The binary feature f27 represents the action we took for the previous word

Tk−1: whether we typed it or it was part of an accepted suggestion.

9During testing, when the length of T cannot be known, we assume |T |= |S|.

S

T

El coche blanco está destrozado

The

white

car

is

wrecked

1 + 1
9

1
9

1
9

1
9

1
9 + 1

9 1 + 1
9 + 1

9
1
9

1
9 1 + 1

9 + 1
9

1
9 + 1

9
1
9

1
9

1
9 1 + 1

9 + 1
4

1
4

1
4 1 + 1

4

Figure 1: Alignment strengths for S =‘El coche blanco está destrozado’, T =‘The white
car is wrecked’, PS

compatible = { ‘The’, ‘The white’, ‘The white car’, ‘car’, ‘white car’,

‘white car is’,‘white’, ‘white is’, ‘white is wrecked’, ‘is’, ‘is wrecked’, ‘wrecked’}. Each sug-

gestion is given an alignment strength of 1, that gets evenly split along the surface of the

suggestion. Some suggestions like ‘white is wrecked’ cannot be aligned. Each position has a

label with the alignment strength over it; positions with more alignment strength are more likely

to be aligned.

Relationship to the last used suggestion The nominal feature f28 represents the relationship

of the current suggestion p with the last used one p′. It takes 5 possible values:

• p ends before p′, ep + 1 < bp′

• p is contiguous and is placed immediately before p′, ep + 1 = bp′

• p and p′ overlap,10 bp ∈ [bp′ , ep′] ∨ ep ∈ [bp′ , ep′]

• p is contiguous and is placed immediately after p′, bp − 1 = ep′

• p starts after p′, bp − 1 > ep′

At the beginning of the translation, where no suggestion has been used, all the suggestions are

deemed as belonging to the last category (starts after p′).

Light alignment model The light alignment model described in (Esplà-Gomis et al., 2012)

performs similarly to other state-of-the-art word-alignment methods using previously existing

bilingual resources without needing any training procedure. The model relies on a intuitive idea:

each sub-segment that contains Sj (the j-th word of S) whose translation covers Ty (the y-th

word of T), and vice-versa, increases the likelihood (measured in alignment strength) of Sj and

Ty to be aligned. An example of how the model works is shown in Figure 1.

In the same way as the ITP system described here, all possible whole-word sub-segments of

S and T up to a given length are generated, and then translated using a bilingual resource (MT

in (Esplà-Gomis et al., 2012)), although we cannot use the sub-segments that are the product

of translating sub-segments of T : T only becomes available during the process as the user is

10This would mean a given part of S participates on the generation of different parts of T , which, in general terms, is

unlikely to be desirable.

typing it (which means nothing at all is available at the start); translating these sub-segments as

the translator types could degrade the performance of the system to the point that it coud not be

effectively used, specially if working with complex MT systems, when the user computer has

low processing power or on-line.

We take the original idea one step further: suggestions that cover an area with high alignment
strength are more likely to be aligned; hence those covering the position currently being worked

on (k) are more likely to be used. To this end, we analyze the set of suggestions that overlap with

the end of the typed prefix T̂ . Let Pr and Suf be the character-level set of prefixes and suffixes

of a given string, we define extender, the set of suggestions that overlap with and extend the end

of the current typed prefix T̂

extender(T̂) = {p ∈ PS : Pr(tp) ∩ Suf(T̂) �= ∅}
As discussed by Esplà-Gomis et al. (2012), we operate on the idea that sub-segment alignment

applies alignment pressure: the larger the surface covered, the weaker the confidence in the

alignment. Each sub-segment pair is given an alignment strength of 1 unit. This strength is split

evenly along the surface of the suggestion as measured in square words. So, the force exerted on

each position is

vp =
1

(ep − bp)|tp|
To estimate which position j of S is being worked on, we look at how much alignment strength
is exerted on it. For this mean, we define

W (j, T̂) =
∑

p∈extender(T̂)

{
vp if j ∈ [bp, ep]
0 otherwise

As discussed, we interpret high alignment strength as high confidence in an alignment; positions

(j) of S with higher pressure for the position k of T currently being worked on are more likely

to be aligned. Hence, suggestions covering k whose area collects more alignment strength have

a higher probability of being direct translation of the segment of S being currently translated.

Moreover, we do not want to realign already used suggestions: for this mean we define PS
accepted,

the set of accepted suggestions. Having this in consideration, we add the combined alignment
strength pressing the area under each suggestion:

f29 =
∑

j∈span(p)

{
W (j, T̂) if p �∈ PS

accepted

0 otherwise
(1)

Conversely, we can exploit this alignment model to discredit suggestions originating in positions

j that may have been already covered in T . To this end, we calculate the alignment strength
over the already translated part of the sentence T = T1...Tk−1. Let occurrences(tp, T) be the

function that returns the number of times tp appears as a subsequence (substring) of T , we define

the set of suggestions that overlap with T ,

overlap(T) = {p ∈ PS : occurrences(tp, T) > 0}

As the target text of each suggestion tp may appear more than once in T̂ , we are unsure of

which alignment is the correct one. For addressing this problem, we split the alignment strength
between the different matches,

up =
vp

occurrences(tp, T)

S

T̂

El coche blanco está destrozado

The

white

car

is

w. . .

1 + 1
9

1
9

1
9

1
9

1
9 + 1

9 1 + 1
9 + 1

9
1
9

1
9 1 + 1

9 + 1
9

1
9 + 1

9
1
9

1
9

1
9 1 + 1

9 + 1
4

1
4

1
4 1 + 1

41

Figure 2: Alignment strengths for S =‘El coche blanco está destrozado’, T =‘The
white car is wrecked’, T̂ =‘The white car is w. . . ’, PS

compatible = { ‘The’, ‘The white’,

‘The white car’, ‘car’,‘white car’, ‘white car is’, ‘white’, ‘white is’, ‘white is wrecked’, ‘is’,

‘is wrecked’, ‘wrecked’}. Rectangles with solid outlines represent suggestions in overlap, those

with dashed outlines represent suggestions in extender. Assuming ‘white’ /∈ PS
accepted (‘white’

has not been used when typing T̂), ‘white’ has f26 = 1, eq. 1 and f27 = 1− (1 + 6/9), eq. 2,

‘wrecked’ has f26 = f27 = 1 + 1/4

We define the past alignment strength function, that includes those suggestions that could have

been used for T , even if those were never offered or used by the translator:

Wpast(j, T) =
∑

p∈overlap(T)

{
up ifj ∈ [bp, ep]
0 otherwise

We define a second feature that discredits suggestions originating from positions that have

evidence (in the form of suggestions that overlap with T) of having already been covered in the

translation:

f30 =
∑

j∈span(p)

{
Wpast(j, T) if p �∈ PS

accepted

0 otherwise
(2)

An example of how this both features work is discussed in Figure 2.

4 Experimental setup and results

As explained in Section 3.2, four different configurations are trained. Training, development

and test data are extracted from a corpus with 15,000 English–Spanish sentences extracted from

Europarl (Koehn, 2005) version 7, a collection of proceedings from the European Parliament;

11,000 sentences were used as training set, 1,000 as development or validation set and the

remaining 3,000 as test set. As a bilingual MT engine capable of providing the translation

of the sub-segments we used the free/open-source statistical MT system Moses (Koehn et al.,

2007) trained over 155,760 independent sentences from the same corpus, following the standard

procedure for training a baseline system.11 The evaluation was conducted for the translation of

texts from English to Spanish.

11The corpora is available at http://www.statmt.org/europarl. The sentences match those we used in a

previous paper (Torregrosa et al., 2014).

To generate the training set, using a source sentence and a reference, an automatic system

iteratively considers the first letter of each word and evaluates all the possible suggestions; those

that fully match the following words of the reference are tagged as usable in that context, and

those that would be part of the greedy suboptimal sequence of actions that leads to the best

performance are tagged as winning in that context.

In order to measure the performance of each configuration, we use the keystroke ratio

(KSR), that is, the ratio between the actual number of keys pressed for typing the translation and

the length in characters of the translation, as described by Langlais et al. (2000). Accepting a

suggestion, no matter its rank, costs one keystroke. It is worth noting that this metric does not

measure the time or effort needed to read the suggestions, and does not penalize the offering of

inappropriate suggestions in any way. The automatic evaluation system12 is similar to the one

described in the previous work (Pérez-Ortiz et al., 2014): it tries to emulate the behaviour of a

user that, given a source sentence S, mentally generates a translation T ,13 then proceeds to type

it, reading every offered suggestion and accepting the longest one that matches exactly T , if any.

Suggestions need to be full-word translations: if Tk is “thesaurus”, the suggestion “the” will not

be accepted. The system types the first letter of the next word in T , evaluates all the suggestions,

and either chooses the longest one that matches with T or types the rest of the word,14 until T
is completed.15 The models have been tested with different limits for the maximum number of

suggestions M ∈ [1, 8], sorted in descending order according to the multilayer perceptron output

value.

All the multilayer perceptron configurations have three layers: input, hidden and output.

Those trained with the reduced feature set only have two input neurons; perceptrons dealing

with the full feature set have 75 input units. We will explore different values for the number of

units in the hidden layer. All configurations have just one output neuron, and are fully connected.

All the neurons but the output neuron have logistic activation functions; as we are estimating a

regression function, the output neuron has the identity activation function.

For the training procedure, we use backpropagation with mean squared error (MSE) as the

error function to optimize, and no momentum or regularization of any kind. As neural networks

have trouble dealing with local minima (Gori and Tesi, 1992), each perceptron has been trained

five times with different random initializations. Table 1 shows that there is a strong correlation

between MSE and KSR; as a result of this we can presume that the systems with lower minimum

squared error MSE will do a better job ranking the suggestions, so we select the model that

achieves the lowest MSE out of the 5 different initializations. While the weights were updated

after computing the error of every event in the training set, the decision to stop the training (also

known as convergence condition) is based on the validation set, in order to minimise the risk of

overfitting. We will use these algorithms as implemented in the free open source neural network

library FANN (Nissen, 2003).

As hyperparameters, we explored different values for the learning rate and the number

of neurons in the hidden layer. All the configurations were tested with learning rates α ∈
{10−2, 10−3, 10−4}. The configurations using the reduced feature set were trained and tested

with N ∈ {2, 4, 8, 16} neurons in the hidden layer; the ones using the full feature set used

12While human evaluation is preferable, it is too expensive for systematically testing every model.
13During automatic evaluation, a reference translation is provided.
14This differs from the previously described approach, where the suggestions were evaluated after every keypress,

rather than only evaluating them at the start of each word.
15This evaluation model assumes a greedy left-to-right longest-match coverage and, as such, produces a suboptimal

solution. Experiments using an optimal coverage strategy that find the global optimum sequence of actions rather than

the suboptimal one achieved by the the greedy left-to-right longest match strategy, have been conducted, achieving

keystroke ratio improvements under 1%. As such experiments are much more computationally expensive, the left-to-right

longest-match strategy is used.

Configuration

M
1 2 3 4 5 6 7 8

Full set, Usable 0.87 0.88 0.88 0.88 0.88 0.87 0.87 0.86
Full set, winning 0.92 0.95 0.96 0.96 0.96 0.95 0.95 0.95

Reduced set, Usable 0.91 0.94 0.93 0.93 0.93 0.92 0.91 0.91
Reduced set, winning 0.90 0.90 0.89 0.87 0.87 0.86 0.85 0.84

Table 1: Pearson correlation coefficients between minimum squared error (MSE) and keystroke

ration (KSR) for each maximum number of suggestions M and configuration. Every configura-

tion shows strong positive correlation between MSE and KSR.

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 1 2 3 4 5 6 7 8

K
S

R

M

Full feature set, winning suggestions, N=128, α=10−4, MSE=0.0392

Perceptron
Heuristic

Minimum KSR
Stat. sig.

Figure 3: KSR for the multilayer perceptron hyperparameter configuration trained using the full
feature set and the winning suggestions set that got the best MSE. The system beats the baseline

in a statistically significant way for every tested value of the maximum number of suggestions

M .

N ∈ {2, 8, 32, 128} neurons in the hidden layer.

We will also use the previous intuitive heuristic approach, as described in Subsection 3.1

(referred to as heuristic onwards) as a baseline. Paired bootstrap resampling (Koehn, 2004) is

performed between the different models (including the heuristic approach) using 1000 iterations

and p ≤ 0.05; the best statistically significant KSR values achieved will be denoted with a circle.

Results show that the perceptrons trained with the winning suggestions and full feature set

(Figure 3) perform notably better than the ones trained with the reduced set (Figure 4). In every

figure, the line “Minimum KSR” denotes the best KSR we can achieve offering all the suggestions

using the current methodology, and circled points denote the best statistically significant KSR.

While several systems trained with the full feature set performed statistically significantly better

than the heuristic approach, no reduced feature set system manages to outperform the heuristic
baseline with M = [1, 2]. Those trained with the usable suggestions perform similarly to the

ones trained with the winning suggestions: the best performing systems are not statistically

significantly better or worse than the best ones using winning suggestions for most values of

the maximum number of suggestions M , but, overall, less configurations manage to beat the

baseline. Figure 5 compares the performance of the best system for each configuration.

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 1 2 3 4 5 6 7 8

K
S

R

M

Reduced feature set, winning suggestions, N=8, α=10−3, MSE=0.0541

Perceptron
Heuristic

Minimum KSR
Stat. sig.

Figure 4: KSR for the multilayer perceptron hyperparameter configuration trained using the

reduced feature set and the winning suggestions set that got the best MSE. The system beats the

baseline in a statistically significant way for every tested value of M , but for M = 1, 2, where it

achieves significantly worse KSR.

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 1 2 3 4 5 6 7 8

K
S

R

M

Best systems

Reduced set, usable
Reduced set, winning

Full set, winning
Full set, usable

Heuristic
Minimum KSR
Best stat. sig.

2−best stat. sig.

Figure 5: KSR for the best multilayer perceptron hyperparameter configuration for each training

set. The best models perform similarly regardless if predicting winning or usable suggestions,

even though the MSE is higher for the ones predicting usable suggestions. Best statistical

significance marks those values of the maximum number of suggestions M where the model

using the Full feature set with winning suggestions is statistically significantly better than the rest;

2-best statistical significance marks those where it is not significantly better or worse than the

model using the Full feature set with usable suggestions, but both are statistically significantly

better than the rest.

5 Conclusions and future work

Resource-agnostic ITP is a low-cost approach for computer-aided translation. We aim to provide

a competitive alternative to postediting that can easily integrate any bilingual resource the user

has access to.

The naı̈ve distance-based ranking described in (Pérez-Ortiz et al., 2014) provided results

comparable to glass-box ITP. We managed to significantly improve it employing a sounder

machine-learned model that manages to obtain keystroke savings in the range of 25–45% when

offering up to 4 suggestions to the user.

It is important to evaluate this model with more language pairs, specially those which

present special interest deemed their grammatical or lexical differences. Also, selecting which

features are more representative can further improve the performance of the models while

reducing the processing power needed to train and test the model.

There are other ITP systems being currently developed, namely Thot. (Ortiz-Martı́nez

and Casacuberta, 2014) Although it is addressing a different problem by using an ad-hoc SMT

system, it assists the user in a similar way. A comparison of the performance achieved will be

conducted to contextualize our method.

For further improving the results attained, we plan to use a distortion model as the one

proposed by Al-Onaizan and Papineni (2006), that can be used to predict which source words

will be translated next, integrating this information as a feature for the multilayer perceptron,

hopefully complementing our light alignment model described in Section 3.3. We also plan to

use a simplified language model to give a rough estimate of the likelihood of the concatenation

of T̂ and a given suggestion.

We also plan to explore the impact of simultaneously using different black-box bilingual

resources. Different strategies will be evaluated in order to integrate the available resources:

combining multiple black-box MT systems as described in (Jayaraman and Lavie, 2005); using

confidence-based measures in order to select the most promising translations as performed by

Blatz et al. (2004); predicting the best candidates for the translation of each particular sub-

segment by using only source-language information, thus avoiding the need to consult every

available resource, as explored by Sánchez-Martı́nez (2011); or letting the multilayer perceptron

manage the different suggestions, devising new features if needed.

Finally, we also aim to find evaluation metrics that improve the correlation with professionals

by mimicking how a professional translator would work with the tool. Currently, we only choose

suggestions that perfectly fit what the professionals are going to type; a translator could however

accept a partially matching suggestion and then replace the mismatching part, or even accept a

suggestion that does not match the planned translation, adapting it to the new prefix.

Acknowledgments This work has been partially funded by Generalitat Valenciana through

grant ACIF/2014/365 from VALi+d programme.

References

Al-Onaizan, Y. and Papineni, K. (2006). Distortion models for statistical machine translation. In Proceedings
of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the
Association for Computational Linguistics, pages 529–536.

Alabau, V., González-Rubio, J., Ortı́z-Martı́nez, D., Sanchis-Trilles, G., Casacuberta, F., Garcı́a-Martı́nez,

M., Mesa-Lao, B., Petersen, D. C., Dragsted, B., and Carl, M. (2014). Integrating online and active

learning in a computer-assisted translation workbench. In Proceedings of the First Workshop on
Interactive and Adaptive Statistical Machine Translation, page to appear, pages 1–8.

Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., Lagarda, A., Ney, H.,

Tomás, J., Vidal, E., and Vilar, J.-M. (2009). Statistical approaches to computer-assisted translation.

Computational Linguistics, 35(1):3–28.

Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte, C., Kulesza, A., Sanchis, A., and Ueffing,

N. (2004). Confidence estimation for machine translation. In Proceedings of the 20th International
Conference on Computational Linguistics, COLING ’04, pages 315–321, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Domingo, M., Peris, A., and Casacuberta, F. (2016). Interactive-predictive translation based on multiple

word-segments. Baltic Journal of Modern Computing, 4(2):282–291.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification. John Wiley and Sons Inc., second

edition.

Esplà-Gomis, M., Sánchez-Martı́nez, F., and Forcada, M. L. (2012). A simple approach to use bilingual

information sources for word alignment. Procesamiento del Lenguaje Natural, 49:93–100.

Foster, G. F., Isabelle, P., and Plamondon, P. (1997). Target-text mediated interactive machine translation.

Machine Translation, 12(1-2):175–194.

Gori, M. and Tesi, A. (1992). On the problem of local minima in backpropagation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(1):76–86.

Green, S., Chuang, J., Heer, J., and Manning, C. D. (2014). Predictive translation memory: A mixed-

initiative system for human language translation. In Proceedings of the 27th annual ACM symposium on
User interface software and technology, pages 177–187.

Hutchins, W. J. and Somers, H. L. (1992). An introduction to machine translation. Academic Press.

Jayaraman, S. and Lavie, A. (2005). Multi-engine machine translation guided by explicit word matching.

In Proceedings of the ACL 2005 on Interactive poster and demonstration sessions, pages 101–104.

Koehn, P. (2004). Statistical significance tests for machine translation evaluation. In Conference on
Empirical Methods on Natural Language Processing, pages 388–395.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In MT summit, volume 5,

pages 79–86.

Koehn, P. (2009). A web-based interactive computer aided translation tool. In Proceedings of the ACL-
IJCNLP 2009 Software Demonstrations, pages 17–20.

Koehn, P., Alabau, V., Carl, M., Casacuberta, F., Garcı́a-Martı́nez, M., González-Rubio, J., Keller, F., Ortiz-

Martı́nez, D., Sanchis-Trilles, G., Bonk, U. G. R., and and, C. B. (2015). CASMACAT: Final public

report. http://www.casmacat.eu/uploads/Deliverables/final-public-report.

pdf.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,

Moran, C., Zens, R., et al. (2007). Moses: Open source toolkit for statistical machine translation. In

Proceedings of the 45th annual meeting of the ACL: interactive poster and demonstration sessions, pages

177–180.

Langlais, P., Sauvé, S., Foster, G., Macklovitch, E., and Lapalme, G. (2000). Evaluation of TransType, a

computer-aided translation typing system: a comparison of a theoretical-and a user-oriented evaluation

procedures. In Conference on Language Resources and Evaluation (LREC).

Macklovitch, E. (2006). TransType2: The last word. In Proceedings of the 5th International Conference on
Languages Resources and Evaluation (LREC 06), pages 167–172.

Nissen, S. (2003). Implementation of a fast artificial neural network library (FANN). Technical report,

Department of Computer Science University of Copenhagen (DIKU). http://fann.sf.net.

Ortiz-Martı́nez, D. and Casacuberta, F. (2014). The new thot toolkit for fully automatic and interactive

statistical machine translation. In Proc. of the European Association for Computational Linguistics
(EACL): System Demonstrations, pages 45–48, Gothenburg, Sweden.

Pérez-Ortiz, J. A., Torregrosa, D., and Forcada, M. L. (2014). Black-box integration of heterogeneous

bilingual resources into an interactive translation system. EACL 2014 Workshop on Humans and
Computer-assisted Translation, pages 57–65.

Sánchez-Martı́nez, F. (2011). Choosing the best machine translation system to translate a sentence by

using only source-language information. In Proceedings of the 15th Annual Conference of the European
Associtation for Machine Translation, pages 97–104.

Somers, H. L. (2003). Computers and Translation: A Translator’s Guide. Benjamins translation library.

John Benjamins Publishing Company.

Torregrosa, D., Forcada, M. L., and Pérez-Ortiz, J. A. (2014). An open-source web-based tool for

resource-agnostic interactive translation prediction. The Prague Bulletin of Mathematical Linguistics,

102(1):69–80.

Multi-domain Adaptation for Statistical Machine
Translation Based on Feature Augmentation

Kenji Imamura kenji.imamura@nict.go.jp

Eiichiro Sumita eiichiro.sumita@nict.go.jp

National Institute of Information and Communications Technology,

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan

Abstract
Domain adaptation is a major challenge when applying machine translation to practical tasks.

In this paper, we present domain adaptation methods for machine translation that assume mul-

tiple domains. The proposed methods combine two model types: a corpus-concatenated model

covering multiple domains and single-domain models that are accurate but sparse in specific

domains. We combine the advantages of both models using feature augmentation for domain

adaptation in machine learning.

Our experimental results show that the BLEU scores of the proposed method clearly sur-

pass those of single-domain models for low-resource domains. For high-resource domains,

the scores of the proposed method were superior to those of both single-domain and corpus-

concatenated models. Even in domains having a million bilingual sentences, the translation

quality was at least preserved and even improved in some domains. These results demonstrate

that state-of-the-art domain adaptation can be realized with appropriate settings, even when

using standard log-linear models.

1 Introduction

Machine translation is used for translating a variety of text types, including speech. However,

it remains challenging to appropriately translate texts across all domains and only a limited

number of domains have been targeted.

The most promising approach to improve translation quality is to train the translator on

massive bilingual corpora. However, collecting such corpora is challenging and expensive in

several domains. Domain adaptation, which improves target domain quality by using data from

another domain, has been proposed as a solution (Foster and Kuhn, 2007; Foster et al., 2010;

Axelrod et al., 2011; Bisazza et al., 2011; Sennrich, 2012; Sennrich et al., 2013). This technique

is important when applying machine translation to practical tasks.

This paper presents methods of domain adaptation for statistical machine translation

(SMT) that assume multiple domains. The proposed methods combine multiple models using

log-linear interpolation. These are simple yet effective approaches to take advantage of multiple

domains based on feature augmentation (Daumé, 2007), a domain adaptation technique used in

machine learning. We propose the following two methods.

1. Simultaneous optimization of multiple domains: this method uses an optimizer extended

to multiple domains to optimize an augmented feature space.

2. Optimization of one domain at a time: this method restricts the feature space and regards

this space as that used in the standard log-linear model. This can be realized via a slight

modification of existing translation systems.

Both methods use a corpus-concatenated model, which covers multiple domains and con-

tains few unknown words, and single-domain models, which are accurate in their specific do-

mains. In addition, we tune the hyper-parameter of the multiple-model combination. With ap-

propriate settings, state-of-the-art domain adaptation can be realized even when using standard

log-linear models.

In this study, we use phrase-based statistical machine translation (PBSMT) (Koehn et al.,

2003, 2007) with preordering. The remainder of this paper is organized as follows. Section

2 briefly reviews domain adaptation in machine translation. Section 3 explains our proposed

methods in detail. Section 4 discusses the characteristics of our methods through experiments,

and Section 5 concludes the paper.

2 Domain Adaptation for Statistical Machine Translation

Domain adaptation is applied when the target domain (in-domain) data are insufficient but data

from another domain (out-domain) are available in sufficient quantities. Domain adaptation

in machine translation aims to improve the translation quality of in-domain texts using both

in-domain and out-domain data.

There are two types of domains: those that are predefined, such as “News” and “Web,”

and those that are artificially created via automatic clustering. Even when using automatic

clustering, the translation quality can be improved in some cases (Finch and Sumita, 2008;

Sennrich et al., 2013). However, in this study, we have used predefined domains.

Corpus Concatenation The simplest approach to achieving domain adaptation for SMT is

training the model using a concatenated corpus of in- and out-domain data. We refer to this

method as corpus concatenation. The trained model is optimized using development (held-out)

data of the in-domain.

In machine learning, a model trained on a concatenated corpus has features that are in-

termediate between the in- and the out-domains. Therefore, model accuracy is also generally

intermediate between models trained individually on the in-domain or the out-domain data (i.e.,

single-domain models).

In contrast, for machine translation, translation quality achieved with corpus concatenation

may be superior to that achieved with a single-domain model because the vocabulary coverage

increases. The improvement represents a trade-off between reduction in the number of unknown

words and greater inaccuracy of model parameters.

Linear/Log-linear Interpolation Statistical machine translation computes translation likeli-

hood using linear or log-linear interpolation of feature values obtained from submodels such as

phrase tables, language models, and lexicalized reordering models. The overall likelihood is

computed by the following equation:

logP (e|f) ∝ w · h(e, f) (1)

where h(e, f) is a feature vector and w is a weight vector of the feature functions.

Then, a domain-specific translation is generated by changing the weight vector w of each

domain. For example, Foster and Kuhn (2007) trained single-domain PBSMT models and

translated them while changing the weight vectors of the linear and log-linear interpolations.

Although they used perplexities as objective functions to estimate the weights, optimization

algorithms, such as minimum error rate training (MERT) (Och, 2003), have been used recently

to estimate weight vectors (Foster et al., 2010).

Feature augmentation (Daumé, 2007) is a domain adaptation method used in machine

learning that simultaneously optimizes the weight vector of each domain (cf., Section 3.1).

Clark et al. (2012) applied it to machine translation as a type of log-linear interpolation; how-

ever, they only adapted the weight vectors of a model.

Model Adaptation There are basically two approaches to achieve domain adaptation by

changing the feature vector h(e, f). The first is model adaptation, which modifies trained sub-

models, and the second is corpus filtering, which trains models using adapted corpora. The

fill-up method (Bisazza et al., 2011), translation model combination (Sennrich, 2012), and in-

stance weighting (Foster et al., 2010; Matsoukas et al., 2009) are well-known model adaptation

methods.

The fill-up method changes feature values. If a phrase is contained in an in-domain phrase

table, the feature values in that table are used. Otherwise, the feature values in the out-domain

phrase table are used.

Translation model combination generates a new phrase table by combining two translation

probabilities of in- and out- domains. The weights of the combination are determined using

each feature function to minimize the perplexity on a development set.

Instance weighting modifies each model parameter in the phrase table to discriminate be-

tween the in- and the out-domains by additional learning.

These methods reduce the number of unknown words because the candidates for phrase

translation are also altered when the phrase tables are modified. However, submodels other than

the phrase table must be adapted using other methods.

Corpus Filtering The other approach to changing the feature vector h(e, f) is to train the

models using the adapted corpora. Although corpus concatenation is one such approach, it uses

all sentences in the out-domain corpora. Training data should be selected for better adaptation.

Axelrod et al. (2011) selected training sentences similar to those in the in-domain from the out-

domain corpora on the basis of cross-entropy difference (i.e., modified Moore-Lewis filtering).

Then, they trained the models using the in-domain corpus with additional sentences.

Corpus filtering adapts not only phrase tables but also all submodels used in the translator.

However, the ideal number of additional sentences cannot be estimated in advance.

Another Approach Another approach that does not require changing the likelihoods is con-

necting two translators in series. A translation result generated by the out-domain translator is

re-translated by the in-domain translator (Jeblee et al., 2014). This method treats the generation

of domain-specific translation as error correction.

3 Multi-domain Adaptation

3.1 Feature Augmentation
Feature augmentation is used to adapt feature weights to domains in machine learning. The

feature space is segmented into the following subspaces: common, out-domain (source domain),

and in-domain (target domain). In-domain features are copied to the in-domain and common

spaces, and out-domain features are copied to the out-domain and common spaces. The adapted

weight vector is obtained by optimizing the entire space. The in- and out-domain features

deployed in the common space complement each other to improve likelihood accuracy.

Although feature augmentation is mainly used to adapt out-domain models to the in-

domain, it can be easily extended to D domains because it treats the in- and the out-domains

equivalently. In this case, the feature space is segmented into D + 1 subspaces: common,

domain 1 , ..., and domain D (Figure 1), which is expressed as follows:

h(f, e) = 〈hc,h1, . . . ,hi, . . . ,hD〉 (2)

Figure 1: Feature Augmentation Incorporating Corpus-Concatenated Model and Single-

Domain Models

where hc and hi denote the feature vectors of the common and the domain-specific spaces,

respectively. All features are deployed to the common space, but only features that match the

domain are copied to the domain space.

hc = Φ(f, e) (3)

hi =

{
Φ(f, e) if domain(f) = i
∅ otherwise

(4)

where Φ(f, e) denotes the subvector that stores the model scores and so on. It is equal to h(f, e)
if no feature augmentation is applied. We obtain the weight vector by optimizing this feature

matrix.

We use the default features of the Moses toolkit (Koehn et al., 2007) (15 dimensions) in the

experiments reported in Section 4. The number of dimensions in the augmented feature space

is 15 in the common space and 14 in each of the domain spaces1.

Clark et al. (2012) applied feature augmentation to machine translation from Arabic to

English (with News and Web domains) and Czech to English (six domains, e.g., Fiction). Only

a corpus-concatenated model was used to obtain features so that feature functions were not

changed to reflect the different domains.

3.2 Core of Proposed Methods
3.2.1 Corpus-Concatenated Model and Single-domain Models
In machine translation, compared to feature weights, feature functions have a greater effect on

translation quality. Therefore, it is natural to change the submodels depending on the space.

Similar to the feature deployment, we assign the corpus-concatenated model, which is con-

structed from all domain data, to the common space and the single-domain models, which are

constructed from one domain data, to the domain-specific spaces. Our approach is as follows.

1UnkPenalty, which indicates the number of unknown words, is only deployed to the common space because it

is not tunable.

• For all submodels, the corpus-concatenated model and single-domain models are con-

structed in advance.

• In feature augmentation, the scores obtained from the corpus-concatenated model are de-

ployed to the common space as the feature function values, while those from the single-

domain models are deployed to the domain spaces (Figure 1). Equations 3 and 4 are then

rewritten as follows:

hc = Φc(f, e) (5)

hi =

{
Φi(f, e) if domain(f) = i
∅ otherwise

(6)

where Φc(f, e) and Φi(f, e) denote feature vectors obtained from the corpus-concatenated

model and single-domain model i, respectively.

• While decoding, phrase pairs are first retrieved from both the corpus-concatenated and

single-domain phrase tables. The likelihood of each translation hypothesis is computed

using only the common space and domain space of the input sentence.

Use of the corpus-concatenated phrase table reduces the number of unknown words be-

cause phrase pairs appearing in other domains can be used to generate hypotheses. In ad-

dition, precise values of the feature functions can be obtained if the hypotheses exist in the

single-domain models. All submodels used in the translator can be adapted without consider-

ing their types (i.e., phrase tables, reordering models, and language models) because adaptation

is achieved by optimizing the augmented feature space. Therefore, this method can be easily

applied to other translation methods, such as tree-to-tree translation. Moreover, unlike corpus

filtering, this method does not need to consider the optimal number of additional data entries.

Note that, in machine translation, language models are sometimes constructed from very

large monolingual corpora. Such models are regarded as corpus-concatenated models that cover

broad domains. In this case, i.e., when we add models (feature functions) acquired from external

knowledge, they are located in the common space, which increases the number of dimensions.

3.2.2 Empty Value
In our method, several phrases appear only in one of the phrase tables of the corpus-

concatenated and single-domain models. The feature functions are expected to return appro-

priate values for these phrases. We refer to these as empty values. Even though an empty value

is a type of unknown probability and should be computed from the probability distribution of the

phrases, we treat it as a hyper-parameter. In other words, empty values are set experimentally

to maximize the BLEU score of a development corpus2.

3.3 Optimization
3.3.1 Joint Optimization
One merit of feature augmentation in machine learning is that conventional algorithms can be

used for optimization because feature augmentation operates only in the feature space.

Machine translation uses optimization algorithms such as MERT (Och, 2003), pairwise

ranking optimization (PRO) (Hopkins and May, 2011), and k-best batch MIRA (KBMIRA)

(Cherry and Foster, 2012). We employ KBMIRA in this paper because it is appropriate for

high-dimensional optimization3.

2Moses assigns -100 as the empty value (Koehn and Schroeder, 2007; Birch et al., 2007). As we describe in Section

4.2, this is extremely small and produces low BLEU scores.
3Another reason is that the BLEU score of a baseline system was the highest in our preliminary experiments.

A major difference between general machine learning and optimization in machine trans-

lation is in the loss functions. The loss functions of machine learning algorithms use likelihood

output by decoders. In contrast, the optimization algorithms employed in machine translation

use both likelihood and automatic evaluation scores, such as BLEU (Papineni et al., 2002).

Automatic evaluation scores are computed by comparing system outputs with their reference

translations over the entire document. In fact, MERT and KBMIRA contain BLEU scores of

the development set in their loss functions4. This means that BLEU scores must be computed

for each domain to optimize multiple domains.

To solve this problem, we modify the KBMIRA algorithm. The modifications to Algorithm

1 proposed by Cherry and Foster (2012) are as follows.

1. The variable BG that maintains BLEU statistics (such as the number of n-gram matches)

is extended to the D-dimensional array, where D denotes the number of domains.

2. The BLEU score of each translation is computed from BGi, where i is the domain of the

input sentence.

3. After the weights are updated, the BLEU statistics of the best translation are added to BGi.

These modifications optimize the feature weights of each domain space to the development

set of each domain.

3.3.2 Independent Optimization
Joint optimization is sometimes redundant because it optimizes all domains even when only

one domain is to be adapted. To solve this problem, we restrict and optimize the feature space

only to subspaces related to the domain that we want to adapt. We refer to this as independent

optimization.

Independent optimization restricts the feature space to the common and the domain i
spaces, and only the tuning data of domain i are used for optimization. Namely, Equation 2

is replaced with Equation 7.

h(f, e) = 〈hc,hi〉 (7)

hc = Φc(f, e) (8)

hi = Φi(f, e) (9)

This is the same as a standard log-linear model, which can be optimized without joint

optimization by using existing optimizers. Furthermore, we can use multiple decoders with

slight modifications because they only have to allow for 1) multiple models to be jointly used

and 2) setting the empty value.

The common space might not be strictly optimized compared to joint optimization. How-

ever, in machine translation, feature functions affect translation quality to a greater extent than

feature weights. Therefore, we assume that, in practice, partially rough optimization is not

problematic. Note that the following two points are common to joint optimization.

1. Features of the common space are obtained from the corpus-concatenated model.

2. An empty value is set appropriately.

4 Experiments

4.1 Experimental Settings
Domains/Corpora Four domains were used in this paper. The language pairs were English-

to-Japanese (En-Ja) and Japanese-to-English (Ja-En). The size of the corpora of each domain
4PRO, which was used by Clark et al. (2012) for feature augmentation, employs BLEU scores approximated by

sentences.

of Sentences # of Training Words

Domain Training Dev. Test En Ja

MED 222,945 1,000 1,000 3.1M 3.3M

LIVING 986,946 1,800 1,800 14.3M 16.5M

NTCIR 1,387,713 2,000 2,000 48.7M 52.3M

ASPEC 1,000,000 1,790 1,784 25.9M 28.7M

Table 1: Corpus Statistics

is listed in Table 1. The MED corpus is relatively small, whereas the other corpora comprise

nearly a million sentences each. Sentences with fewer than 80 words were used for training.

• MED: A pseudo-dialogue corpus between patients and medical doctors (or staff) in hospi-

tals. This was developed in-house.

• LIVING: A pseudo-dialogue corpus wherein visitors (or residents) from foreign countries

talk to local people. This was also developed in-house.

• NTCIR: A patent corpus. The training and development sets were provided by the inter-

national conference NTCIR-8, and the test set was provided by NTCIR-95.

• ASPEC: An Asian scientific paper excerpt corpus (Nakazawa et al., 2016)6. We used a

million sentences of high-confidence translation from ASPEC-JE.

Translation System Each source sentence was preordered using an in-house preordering sys-

tem (Section 4.5 of Goto et al. (2015)) trained for general-purpose. The same preordering

system was applied to all domains. In addition, all Japanese sentences, including the test sets,

were segmented into words in advance using the MeCab morphological analyzer (Kudo et al.,

2004).

The phrase tables and lexicalized reordering models were trained using the default settings

in the Moses toolkit. The 5-gram language models were learned from the target side of the

training sentences using KenLM (Heafield et al., 2013). Multi-domain KBMIRA, described in

Section 3.3.1, was used for optimization.

A clone of the Moses decoder was used for decoding. The settings were the same as the

default values in Moses, i.e., phrase table limit = 20, distortion limit = 6,

and the beam width was 200. When the decoder selected phrase pair candidates, 1) phrase

pairs were first obtained from all phrase tables, 2) a likelihood of each phrase was computed in

accordance with the augmented feature space, and 3) the highest 20 pairs were selected.

Empty Value The empty value described in Section 3.2.1 was set empirically. From integer

values of -3 to -20, we selected the empty value that achieved the highest BLEU score in the

set in which all development sets were concatenated. The resulting empty values were -7 for

En-Ja translation and -6 for Ja-En translation. If we treat these values as probabilities, they are

exp(−7) ≈ 0.0009 and exp(−6) ≈ 0.0025, respectively.

Evaluation Metrics We used word BLEU, the translation edit rate (TER) (Snover et al.,

2006), Meteor (English only) (Denkowski and Lavie, 2014), and the rank-based intuitive bilin-

gual evaluation score (RIBES; Japanese only) (Isozaki et al., 2010) as the evaluation metrics.

5http://research.nii.ac.jp/ntcir/index-ja.html
6http://lotus.kuee.kyoto-u.ac.jp/ASPEC/

The MultEval tool (Clark et al., 2011)7 was used for statistical testing8 with the significance

level set to p < 0.05. The mean scores of five runs were used to reduce instability in opti-

mization. Although we used multiple metrics, for simplicity we will describe the results using

BLEU.

Comparison Methods We compared various methods using the single-domain model as the

baseline. We used the following conventional methods, which have been described in Section

2.

• Corpus Concatenation: A corpus-concatenated model was constructed using all domain

data. Optimization and testing were performed using the development and test sets of each

domain.

• Feature Augmentation (Clark): Feature augmentation was applied to the adaptation;

however, all features of the common and domain-specific spaces were obtained from the

corpus-concatenated model. This is the same setting as that used by Clark et al. (2012),

except that we used multi-domain KBMIRA for optimization.

• Fill-Up: The fill-up method (Bisazza et al., 2011) was used for domain adaptation.

• TM Combination: Translation model combination (Sennrich, 2012) was applied for adap-

tation. We used the tmcombine program in the Moses toolkit.

• Corpus Filtering: The modified Moore-Lewis filtering scheme proposed by Axelrod et al.

(2011) was applied. All corpora, except for the target domain, were used as out-domain

corpora. The number of additional sentences was determined to maximize the BLEU score

of the development set.

As variations of the proposed methods, we tested the following settings.

• Proposed (Joint): The best setting of the proposed method using joint optimization (cf.,

Section 3.3.1).

• Proposed (Independent): The best setting of the proposed method using independent

optimization (cf., Section 3.3.2).

• Proposed (empty = -100): The empty value was set to -100, which is equivalent to the

Moses value. We used independent optimization in this setting; however, the same ten-

dency was observed when using joint optimization.

• Proposed (Out-Domain): The common space model was changed from the corpus-

concatenated model to the out-domain model learned from the other three domain corpora.

In addition, independent optimization was used.

4.2 Translation Quality
Tables 2 and 3 show the BLEU scores of the abovementioned methods for En-Ja and Ja-En

translations, respectively. Bold values represent the highest scores. The symbols (+) and (-)

denote whether the score was significantly improved or degraded compared to that of the single-

domain model (p < 0.05).

Because the domains used in the experiments are not closely related, many BLEU scores

were degraded by conventional adaptations. For instance, the corpus concatenation approach

7https://github.com/jhclark/multeval.
8We incorporated the RIBES script (http://www.kecl.ntt.co.jp/icl/lirg/ribes/index.html)

into the MultEval tool.

Domain

Method MED LIVING

BLEU TER RIBES BLEU TER RIBES

Single Domain Model 23.23 62.46 78.34 24.56 61.33 78.78

Corpus Concatenation 22.65(-) 64.08(-) 77.53(-) 22.99(-) 63.41(-) 77.52(-)

Feature Augmentation (Clark) 22.49(-) 63.78(-) 77.70(-) 22.97(-) 63.40(-) 77.41(-)

Fill-Up 22.42(-) 63.63(-) 77.46(-) 23.38(-) 63.16(-) 77.80(-)

TM Combination 23.81(+) 61.94(+) 78.37 24.05(-) 62.05(-) 78.62(-)

Corpus Filtering 24.02(+) 61.61(+) 78.43 24.50 62.08(-) 78.51(-)

Proposed (Joint) 23.69(+) 61.79(+) 78.67(+) 24.43 61.51 78.72

Proposed (Independent) 23.75(+) 61.78(+) 78.56 24.43 61.09(+) 78.80
Proposed (empty=-100) 23.66(+) 62.37 78.12 23.91(-) 61.84(-) 78.39(-)

Proposed (Out-Domain) 23.79(+) 62.19 78.46 24.29(-) 61.77(-) 78.75

Domain

Method NTCIR ASPEC

BLEU TER RIBES BLEU TER RIBES

Single Domain Model 38.62 47.85 80.16 32.69 54.12 78.16

Corpus Concatenation 38.09(-) 48.54(-) 79.88(-) 30.59(-) 55.95(-) 77.22(-)

Feature Augmentation (Clark) 38.09(-) 48.54(-) 79.90(-) 30.65(-) 55.91(-) 77.28(-)

Fill-Up 38.37(-) 48.12(-) 80.03(-) 31.50(-) 55.06(-) 77.62(-)

TM Combination 38.32(-) 48.11(-) 80.09(-) 31.97(-) 54.77(-) 77.84(-)

Corpus Filtering 38.77(+) 47.82 80.17 32.57(-) 54.14 78.14

Proposed (Joint) 38.72(+) 47.77 80.22(+) 32.69 54.20 78.10

Proposed (Independent) 38.83(+) 47.64(+) 80.22 32.76 54.13 78.15

Proposed (empty=-100) 38.56 47.90 80.10(-) 32.62 54.17 78.13

Proposed (Out-Domain) 38.65 47.78 80.28(+) 32.72 54.02 78.19

Table 2: Automatic Evaluation Scores of Various Methods (En-Ja Translation)

and feature augmentation (Clark) were degraded for most domains. This is because the corpus-

concatenated models are an average of all the domain models and the precision of the model

parameters was degraded for each specific domain.

The BLEU scores of Fill-Up were superior to those of corpus concatenation in several

cases but inferior to those of the single-domain models. The TM Combination scores were both

improved and degraded depending on the domain, and we could not confirm the effects. In cor-

pus filtering, the scores were improved or were at the same level compared to the single-domain

model, except for En-Ja translation of the ASPEC domain. Although only 100k sentences were

added in the ASPEC En-Ja domain, they affected translation quality. This shows that corpus

filtering is effective; however, determining the ideal number of additional sentences is difficult.

Conversely, all BLEU scores of the proposed methods (joint and independent) were signif-

icantly improved or were at the same level as those of the single-domain models. The indepen-

dent optimization scores tended to be better than those of joint optimization. When the empty

value was set to -100, the weight vector could not be optimized because the BLEU score did

not converge in some cases (N/A in Table 3). Focusing on the proposed method (out-domain),

the scores were degraded from those of the proposed methods (joint and independent) in most

cases. This indicates that the corpus-concatenated model is better than the out-domain model

for the common space.

Domain

Method MED LIVING

BLEU TER Meteor BLEU TER Meteor

Single Domain Model 17.38 71.14 25.49 19.71 67.08 27.58

Corpus Concatenation 17.07 70.72 25.26(-) 18.80(-) 68.50(-) 26.74(-)

Feature Augmentation (Clark) 16.75(-) 71.39 25.13(-) 18.95(-) 68.31(-) 26.75(-)

Fill-Up 16.56(-) 71.98(-) 25.11(-) 19.06(-) 68.45(-) 26.65(-)

TM Combination 17.55 71.17 25.65(+) 19.99(+) 67.22 27.31(-)

Corpus Filtering 18.14(+) 70.14(+) 26.16(+) 19.76 66.81(+) 27.48(-)

Proposed (Joint) 18.14(+) 69.29(+) 25.90(+) 20.16(+) 66.61(+) 27.45(-)

Proposed (Independent) 18.43(+) 69.85(+) 26.00(+) 20.17(+) 66.94 27.53

Proposed (empty=-100) 17.13 71.22 25.78(+) 19.86 67.24 27.67(+)

Proposed (Out-Domain) 17.32 70.93 25.34 19.66 67.31(-) 27.02(-)

Domain

Method NTCIR ASPEC

BLEU TER Meteor BLEU TER Meteor

Single Domain Model 33.63 52.67 35.68 21.75 64.95 31.01

Corpus Concatenation 33.21(-) 52.94(-) 35.33(-) 20.41(-) 66.00(-) 30.36(-)

Feature Augmentation (Clark) 33.24(-) 53.00(-) 35.38(-) 20.39(-) 66.18(-) 30.33(-)

Fill-Up 33.14(-) 53.06(-) 35.48(-) 20.98(-) 65.41(-) 30.58(-)

TM Combination 33.32(-) 52.78(-) 35.54(-) 21.16(-) 65.17(-) 30.77(-)

Corpus Filtering 33.73 52.45(+) 35.71 21.72 64.71(+) 31.03(+)

Proposed (Joint) 33.68 52.42(+) 35.70 21.75 64.79(+) 31.20(+)

Proposed (Independent) 33.70 52.33(+) 35.67 21.81 64.76(+) 31.19(+)

Proposed (empty=-100) N/A N/A N/A N/A N/A N/A

Proposed (Out-Domain) 33.52(-) 52.70 35.62 21.73 64.72(+) 31.06

Table 3: Automatic Evaluation Scores of Various Methods (Ja-En Translation)

In summary, compared to the other methods, the proposed methods achieved the best trans-

lation quality. Therefore, state-of-the-art domain adaptation can be realized with the appropriate

settings even when using a standard log-linear model such as independent optimization.

4.3 Effects as Single-Domain Adaptation

A typical situation wherein domain adaptation is needed would be one in which sufficient train-

ing data cannot be collected and new domain data must be translated. In this section, we in-

vestigate translation quality when changing training corpus size, focusing only on the En-Ja

translation in the MED domain. Note that the other domains are not changed.

Table 4 compares the results obtained using the single-domain model, corpus concatena-

tion, and the proposed method (independent). The symbols (+) and (-) denote scores that were

significantly improved or degraded compared to those of the single-domain model. The symbol

(†) denotes a score that was significantly improved compared to that of corpus concatenation.

When using one thousand training sentences (1k), the score achieved by the proposed

method was significantly higher than that achieved by the single-domain model and equal to that

achieved by corpus concatenation. When the size of the training corpus was increased, BLEU

scores increased for all methods. However, the improvement in the corpus concatenation score

was less than that in the single-domain model score. The single-domain model surpassed corpus

Single Domain Corpus Proposed

of Sentences Model Concatenation (Independent)

1k 6.42 17.51 (+) 17.59 (+)

3k 8.99 17.52 (+) 17.95 (+)(†)

10k 12.54 18.19 (+) 19.02 (+)(†)

30k 16.49 19.18 (+) 20.28 (+)(†)

100k 20.63 20.92 22.53 (+)(†)

223k (All) 23.23 22.65 (-) 23.75 (+)(†)

Table 4: BLEU Scores for Different Training Sizes (MED Domain, En-Ja Translation)

concatenation when more than 100 thousand (100k) training sentences were used. BLEU scores

for the proposed method exceeded those of the single-domain model and corpus concatenation

when more than three thousand (3k) training sentences were used. These results demonstrate

that the proposed method successfully integrated the merits of the single-domain and corpus-

concatenated models.

Here, we refer back to Tables 2 and 3. From these tables, it can be seen that the BLEU

scores of the proposed method (joint and independent) in the MED domain improved for both

En-Ja and Ja-En. We assume that it was possible to improve the translation quality because

the MED corpus was relatively small. In contrast, the translation quality was not necessarily

improved in other domains because these were trained using approximately a million sentences.

However, it should be noted that the translation quality was not degraded and, in some cases, it

was improved, even when the proposed method was applied to domains of very large corpora.

The proposed method is, therefore, robust to corpus size.

4.4 Unknown Words

The proposed methods take the advantage of the corpus-concatenated and single-domain mod-

els. Finally, we analyze the characteristics of the proposed methods from the viewpoint of

unknown words.

In this paper, we distinguish between source unknown words (source UNK) and target

unknown words (target UNK) by referring to the categories suggested by Irvine et al. (2013)9.

Source unknown words occur when the source words (or phrases) do not exist in the phrase

tables. Target unknown words occur when a reference translation cannot be generated because

the target words (or phrases) are not in the phrase tables even though the source words exist.

This can be determined by forced decoding (Yu et al., 2013).

Table 5 shows the sentence rates that include unknown words in the En-Ja translation.

Although there were differences depending on the domains, the rates of source and target UNK

both decreased in corpus concatenation compared to those in the single-domain models. For

example, in the MED domain, the rate of source UNK decreased from 9.1% to 1.0%, and that

of target UNK decreased from 38.5% to 18.1%. This result proved that words in the other

domains were used for translation. However, this result also proved that reduction of unknown

words does not directly contribute to translation quality because the quality of the single-domain

models was better than that of corpus concatenation. Hence, optimization is important.

The proposed methods further reduced unknown words, except for the NTCIR domain.

The proposed methods use phrase tables of the corpus-concatenated and single-domain models.

Even though these phrase tables were trained from corpora that partially overlap, the acquired

9The source unknown and target unknown words correspond to the SEEN and SENSE errors, respectively, used by

Irvine et al. (2013).

Domain

UNK Type Method MED LIVING NTCIR ASPEC

Source UNK

Single-Domain Model 9.1% 4.1% 7.9% 22.5%

Corpus Concatenation 1.0% 2.8% 6.5% 21.6%

Proposed (Independent) 0.9% 2.4% 6.4% 21.2%

Target UNK

Single-Domain Model 38.5% 26.4% 21.3% 26.5%

Corpus Concatenation 18.1% 20.1% 17.1% 21.6%

Proposed (Independent) 16.1% 17.0% 17.2% 20.0%

Table 5: Sentence Rates that Include Unknown Words (En-Ja Translation)

phrases were slightly different. Hence, the coverage of the proposed methods increased.

5 Conclusions

In this paper, we presented multi-domain adaptation methods for statistical machine translation.

The proposed methods combined the corpus-concatenated model, which has high coverage and

few unknown words, with single-domain models, which ensure precision of the feature func-

tions. To take advantage of the benefits of both models, we applied feature augmentation to

machine translation. In addition, we tuned the empty value to balance the two models.

In both joint and independent optimization, the translation quality was improved or at the

same level compared with the single-domain models in our experiments. The resulting BLEU

scores of the proposed method clearly surpassed those of the single-domain models in low-

resource domains. Even in domains with a million training sentences, the translation quality

remained at least equal, and in some domains, it was improved. These results show that state-

of-the-art domain adaptation can be realized with appropriate settings, even when using standard

log-linear models.

The proposed methods can be easily applied to other translation strategies, such as tree-

to-tree translation. We plan to apply our methods to tree-to-tree translation and evaluate the

effects.

Acknowledgments

This work was supported by “Promotion of Global Communications Plan — Research and De-

velopment and Social Demonstration of Multilingual Speech Translation Technology,” a pro-

gram of Ministry of Internal Affairs and Communications, Japan.

References

Axelrod, A., He, X., and Gao, J. (2011). Domain adaptation via pseudo in-domain data se-

lection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 355–362, Edinburgh, Scotland, UK.

Birch, A., Osborne, M., and Koehn, P. (2007). CCG supertags in factored statistical machine

translation. In Proceedings of the Second Workshop on Statistical Machine Translation, pages

9–16, Prague, Czech Republic.

Bisazza, A., Ruiz, N., and Federico, M. (2011). Fill-up versus interpolation methods for phrase-

based SMT adaptation. In Proceedings of the International Workshop on Spoken Language
Translation (IWSLT), San Francisco, California, USA.

Cherry, C. and Foster, G. (2012). Batch tuning strategies for statistical machine translation.

In Proceedings of the 2012 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 427–436, Montréal,

Canada.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. (2011). Better hypothesis testing for statistical

machine translation: Controlling for optimizer instability. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies,

pages 176–181, Portland, Oregon, USA.

Clark, J. H., Lavie, A., and Dyer, C. (2012). One system, many domains: Open-domain sta-

tistical machine translation via feature augmentation. In Proceedings of the 10th biennial
conference of the Association for Machine Translation in the Americas (AMTA 2012), San

Diago, California, USA.

Daumé, III, H. (2007). Frustratingly easy domain adaptation. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pages 256–263, Prague, Czech

Republic.

Denkowski, M. and Lavie, A. (2014). Meteor universal: Language specific translation eval-

uation for any target language. In Proceedings of the 9th Workshop on Statistical Machine
Translation, pages 376–380, Baltimore, Maryland, USA.

Finch, A. and Sumita, E. (2008). Dynamic model interpolation for statistical machine trans-

lation. In Proceedings of the Third Workshop on Statistical Machine Translation, pages

208–215, Columbus, Ohio, USA.

Foster, G., Goutte, C., and Kuhn, R. (2010). Discriminative instance weighting for domain adap-

tation in statistical machine translation. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 451–459, Cambridge, Massachusetts, USA.

Foster, G. and Kuhn, R. (2007). Mixture-model adaptation for SMT. In Proceedings of the Sec-
ond Workshop on Statistical Machine Translation, pages 128–135, Prague, Czech Republic.

Goto, I., Utiyama, M., Sumita, E., and Kurohashi, S. (2015). Preordering using a target-

language parser via cross-language syntactic projection for statistical machine transla-

tion. ACM Transactions on Asian and Low-Resource Language Information Processing,

14(3):13:1–13:23.

Heafield, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. (2013). Scalable modified Kneser-Ney

language model estimation. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 690–696, Sofia, Bulgaria.

Hopkins, M. and May, J. (2011). Tuning as ranking. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing, pages 1352–1362, Edinburgh, Scotland,

UK.

Irvine, A., Morgan, J., Carpuat, M., III, H. D., and Munteanu, D. (2013). Measuring machine

translation errors in new domains. Transactions of the Association for Computational Lin-
guistics, 1:429–440.

Isozaki, H., Hirao, T., Duh, K., Sudoh, K., and Tsukada, H. (2010). Automatic evaluation

of translation quality for distant language pairs. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing, pages 944–952, Cambridge, Mas-

sachusetts, USA.

Jeblee, S., Feely, W., Bouamor, H., Lavie, A., Habash, N., and Oflazer, K. (2014). Domain

and dialect adaptation for machine translation into Egyptian Arabic. In Proceedings of the
EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP), pages 196–206,

Doha, Qatar.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,

Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007).

Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th
Annual Meeting of the Association for Computational Linguistics Companion Volume Pro-
ceedings of the Demo and Poster Sessions, pages 177–180, Prague, Czech Republic.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In HLT-NAACL
2003: Main Proceedings, pages 127–133, Edmonton, Alberta, Canada.

Koehn, P. and Schroeder, J. (2007). Experiments in domain adaptation for statistical machine

translation. In Proceedings of the Second Workshop on Statistical Machine Translation, pages

224–227, Prague, Czech Republic.

Kudo, T., Yamamoto, K., and Matsumoto, Y. (2004). Applying conditional random fields to

Japanese morphological analysis. In Lin, D. and Wu, D., editors, Proceedings of EMNLP
2004, pages 230–237, Barcelona, Spain.

Matsoukas, S., Rosti, A.-V. I., and Zhang, B. (2009). Discriminative corpus weight estimation

for machine translation. In Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing, pages 708–717, Singapore.

Nakazawa, T., Yaguchi, M., Uchimoto, K., Utiyama, M., Sumita, E., Kurohashi, S., and Isahara,

H. (2016). ASEPC: Asian scientific paper excerpt corpus. In Proceedings of the Tenth Edition
of the Language Resources and Evaluation Conference (LREC-2016), Portoroz, Slovenia.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics, pages 160–167,

Sapporo, Japan.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic eval-

uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 311–318, Philadelphia, Pennsylvania, USA.

Sennrich, R. (2012). Perplexity minimization for translation model domain adaptation in statis-

tical machine translation. In Proceedings of the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages 539–549, Avignon, France.

Sennrich, R., Schwenk, H., and Aransa, W. (2013). A multi-domain translation model frame-

work for statistical machine translation. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 832–840, Sofia,

Bulgaria.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation

edit rate with targeted human annotation. In Proceedings of the 7th Biennial Conference
of the Association for Machine Translation in the Americas (AMTA-2006), pages 223–231,

Cambridge, Massachusetts, USA.

Yu, H., Huang, L., Mi, H., and Zhao, K. (2013). Max-violation perceptron and forced decoding

for scalable MT training. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1112–1123, Seattle, Washington, USA.

Bilingual Methods for Adaptive Training Data
Selection for Machine Translation

Boxing Chen Boxing.Chen@nrc-cnrc.gc.ca

Roland Kuhn Roland.Kuhn@nrc-cnrc.gc.ca

George Foster George.Foster@nrc-cnrc.gc.ca

Colin Cherry Colin.Cherry@nrc-cnrc.gc.ca

National Research Council Canada, Ottawa, ON, Canada

Fei Huang feihuang@fb.com

Facebook, New York, NY, USA

Abstract
In this paper, we propose a new data selection method which uses semi-supervised convolu-

tional neural networks based on bitokens (Bi-SSCNNs) for training machine translation sys-

tems from a large bilingual corpus. In earlier work, we devised a data selection method based

on semi-supervised convolutional neural networks (SSCNNs). The new method, Bi-SSCNN,

is based on bitokens, which use bilingual information. When the new methods are tested on

two translation tasks (Chinese-to-English and Arabic-to-English), they significantly outper-

form the other three data selection methods in the experiments. We also show that the Bi-

SSCNN method is much more effective than other methods in preventing noisy sentence pairs

from being chosen for training. More interestingly, this method only needs a tiny amount of

in-domain data to train the selection model, which makes fine-grained topic-dependent transla-

tion adaptation possible. In the follow-up experiments, we find that neural machine translation

(NMT) is more sensitive to noisy data than statistical machine translation (SMT). Therefore,

Bi-SSCNN which can effectively screen out noisy sentence pairs, can benefit NMT much more

than SMT.We observed a BLEU improvement over 3 points on an English-to-French WMT

task when Bi-SSCNNs were used.

1 Introduction

When building a statistical machine translation (SMT) system, it is important to choose bilin-

gual training data that are of high quality 1 and that are typical of the domain in which the

SMT system will operate. In previous work, these two goals of data selection, i.e., picking

high-quality data and picking data that ensure the SMT system is well-adapted to a given do-

main, have often been achieved separately. For instance, the papers (Munteanu and Marcu,

2005; Khadivi and Ney, 2005; Okita et al., 2009; Jiang et al., 2010; Denkowski et al., 2012)

focus on reducing the noise in the data. They use different scoring functions, such as language

model perplexity, word alignment score, or IBM model 1 score, to score each sentence pair,

top scored sentence pairs are selected. While the papers (Zhao et al., 2004; Lü et al., 2007;

Yasuda et al., 2008; Moore and Lewis, 2010; Axelrod et al., 2011; Duh et al., 2013; Axelrod

et al., 2015) focus on domain adaptation. They all select monolingual or bilingual data that

1Within each sentence pair, the target-language sentence is a good translation of the source sentence

are similar to the in-domain data according to some criterion. These state-of-the-art adaptive

data selection approaches (Axelrod et al., 2011; Duh et al., 2013; Axelrod et al., 2015) search

for bilingual parallel sentences using the difference in language model perplexity between two

language models trained on in-domain and out-domain data, respectively. Furthermore, (Duh

et al., 2013) extends these approaches from n-gram models to recurrent neural network lan-

guage models (Mikolov et al., 2010). While some previous work considers achieving the two

goals simultaneously, such as (Mansour et al., 2011) which uses IBM model 1 and a language

model to do data selection, (Durrani et al., 2015) uses a neural network joint model to select the

in-domain data.

In a recent paper (Chen and Huang, 2016), we describe one type of neural network for

carrying out data selection: a semi-supervised Convolutional Neural Network (SSCNN) that is

trained on the in-domain set to score one side of each sentence in a general-domain bilingual

corpus (either the source side or the target side) for its suitability as training material for an

SMT system. The highest-scoring sentence pairs are chosen to train the SMT system. Experi-

ments described in that paper, covering three different types of test domain and four language

directions, show that this SSCNN method yields significantly higher BLEU scores for the re-

sulting SMT system than for three state-of-the-art data selection methods when the amount of

training data selected is held constant. The advantage of the SSCNN over the earlier methods

is especially dramatic when the amount of in-domain data used to train the selection model is

small (less than 800 sentence pairs): the in-domain set for the SSCNN can be as few as 100

sentences, which makes fine-grained topic-dependent translation adaptation possible. In some

cases, the SSCNN is so effective at selecting good training data that it is possible to greatly

reduce the amount of training data for the SMT system without negative impact on translation

quality: this reduces the footprint of the system, which can be advantageous for many practical

applications.

In the experiments for (Chen and Huang, 2016), we found that the best variant of the SS-

CNN method was one in which we trained two CNN models - one that scores source-language

sentences and one that scores target-language sentences - and sum the scores of these two mod-

els to get the overall score of each sentence pair in the bilingual corpus. Thus, the SSCNN

variant we used assigns high scores to sentence pairs where both the source-language sentence

and its target-language partner resemble sentences in the in-domain corpus. Note what this

method does not do: it does not check that the target sentence is a good translation of the

source sentence. Essentially, it scores the extent to which both the source and target sentence

are in-domain, but does not in any way penalize bad translations. We say that such a method

is “symmetric”: it incorporates equal amounts of information from the source and the target

language, but it is not “bilingual”: it does not incorporate information about the quality of

translations.

The main motivation for this paper is to explore CNN-based data selection techniques that

are bilingual. It is based on semi-supervised CNNs that use bitokens as units instead of source or

target words (Marino et al., 2006; Niehues et al., 2011). For the bitoken semi-supervised CNN,

we should use the abbreviation “Bi-SSCNN”. We also experiment with the bilingual method

that combines IBM model 1 and language model (LM) scores and neural network joint model.

In this paper, we carried out experiments reported on two language pairs: Chinese-to-

English and Arabic-to-English. We fix the number of training sentences to be chosen for the

data selection techniques so that they can be fairly compared, and measure the BLEU score on

test data from the resulting MT systems. It turns out that three techniques have roughly the same

performance in terms of BLEU: the symmetric but non-bilingual word-based SSCNN method,

and two symmetric, bilingual techniques - the simple IBM-LM method, and the NNJM method.

The Bi-SSCNN method, on the other hand, outperforms all other methods: by +0.5 BLEU for

Chinese-to-English task, and by +0.3 BLEU for Arabic-to-English task.

Because the main motivation for the paper is exploration of bilingual methods for SSCNN-

based data selection, we perform another set of experiments to see how good each method is at

rejecting sentence pairs whose target side is not a translation of the source side. We do this by

permuting 50% of the pairs in the bilingual corpus. We then count the proportion of pairs chosen

by each method that are mismatched. In these experiments, all three bilingual methods - IBM-

LM, NNJM, and Bi-SSCNN outperform the other methods (they chose a smaller proportion of

mismatched sentence pairs) and Bi-SSCNN is even more effective than the other two bilingual

methods.

2 Four Data Selection Methods

In this section, we focus on four methods for data selection: the IBM-LM method, the NNJM

method, the original word-based SSCNN method, and the Bi-SSCNN method. The IBM-LM

method is similar to Mansour et al. (2011), which is a simple bilingual method that is a good

baseline for other bilingual methods. The NNJM-based data selection (Durrani et al., 2015)

is the first bilingual NN method. The word-based SSCNN method is described in (Chen and

Huang, 2016). The SSCNN method is symmetrical but not bilingual. The Bi-SSCNN method

is a newly proposed method, which is symmetrical as well as bilingual.

2.1 Data Selection with IBM1 and Language Models
The IBM-LM method is straightforward, since state-of-the-art methods use IBM models to

measure the mutual translation quality, and language models to select in-domain data. We

combine length-normalized scores from these models into a global score, i.e., target-given-

source IBM model 1 score, source-given-target IBM model 1 score, source language model

cross entropy difference, and target language model cross entropy difference, are normalized by

the corresponding sentence length and then averaged to obtain one score. The IBM models are

trained on whole general-domain data plus the in-domain set, while the language models are

trained on the in-domain set or a small (equal size to the in-domain set), random subset of the

general-domain corpus (excluding the small in-domain set).

To select a subset of data to be used for training an SMT system from a bilingual corpus,

the user must specify the number N of sentence pairs to be chosen. The N sentence pairs with

the highest global scores S(s, t) will be selected. This method is symmetrical - the roles of the

source-language and target-language sides of the corpus are the same - and bilingual, because

the IBM model 1 measures the degree to which each target sentence t is a good translation of

its partner s, and vice versa.

2.2 Data Selection with Neural Net Joint Model (NNJM)
The Neural Network Joint Model (NNJM), as described in (Devlin et al., 2014), is a joint

language and translation model based on a feedforward neural net (NN). It incorporats a wide

span of contextual information from the source sentence, in addition to the traditional n-gram

information from preceding target-language words. Specifically, when scoring a target word

wi, the NNJM inputs not only the n − 1 preceding words wi−n+1, ..., wi−1, but also 2m + 1
source words: the source word si most closely aligned with wi along with the m source words

si−m, ..., si−1 to the left of si and the m source words si+1, ..., si+m to the right of si.

The NNJMs used in our experiments input 4-grams on the target side and windows of size

11 on the source side (the aligned word, along with 5 words to the left of it and 5 words on

its right). Training is done in two passes: a pass over general-domain data plus the in-domain

set, followed by a pass over the in-domain set. While in the second pass, the source and target

word embeddings are fixed. For a particular language pair, for instance, Chinese-to-English,

four NNJMs are trained. There are two NNJMs informed by a wide-source language (Chinese)

context that act as LMs for the target language (English): a positive one NNJM(+,Chinese-to-

English) modeling in-domain target-language (English) sentences, and a negative one NNJM(-

,Chinese-to-English) modeling out-of-domain target-language (English) sentences. Both are

initialized with parameters and fixed source and target word embeddings which are learned

on the entire general-domain corpus plus the in-domain set. The second phase of training

for NNJM(+,Chinese-to-English) is on the in-domain set. It would be nice if we could train

NNJM(-,Chinese-to-English) on sentence pairs that are known to be out-of-domain, but there is

no easy way of obtaining such sentence pairs, so we simply carry out the second phase of train-

ing for this negative NNJM on a small, random subset of the general-domain corpus (excluding

the small in-domain set). The difference between the two scores, score(NNJM(+,Chinese-to-

English)) minus score(NNJM(-,Chinese-to-English)), as calculated on a sentence pair is an in-

dicator of how close to the in-domain set the sentence pair is.

We train in similar manner a positive and a negative NNJM that act as LMs for the

source language (Chinese) while consulting a wide context in the target language (English):

NNJM(+,English to Chinese) and NNJM(-,English to Chinese). The global, symmetrical

NNJM score S for a sentence pair is made up of equal contributions from these four models.

Since this metric contains information about the translation relationship between each

source sentence and its target counterpart, and since the ways in which the source and target

languages are used are mirror images of each other, the NNJM data selection method is both

bilingual and symmetrical.

2.3 Data Selection with Semi-Supervised CNN

As described in more detail in (Chen and Huang, 2016), we were inspired by the success of

convolutional neural networks (CNNs) applied to image and text classification (Krizhevsky

et al., 2012; Kim, 2014; Johnson and Zhang, 2015a,b) to use CNNs to classify training sentences

in either the source language or the target language as in-domain or out-of-domain.

Convolutional neural networks (CNNs) (LeCun and Bengio, 1998) are feed-forward neu-

ral networks that exploit the internal structure of data through convolutional and pooling layers;

each computation unit of the convolutional layer processes a small region of the input data.

When CNNs are applied to text input, the convolution layers process small regions of a docu-

ment, i.e., a sequence of words. CNNs are now used in many text classification tasks (Kalch-

brenner et al., 2014; Johnson and Zhang, 2015b; Wang et al., 2015). Chen and Huang (2016)

use CNNs to classify sentence pairs to in-domain and out-of-domain sentence pairs.

In many of these studies, the first layer of the network converts words to word embed-

dings using table lookup; the embeddings are sometimes pre-trained on an unnlabeled data.

The embeddings remain fixed during subsequent model training. A CNN trained with small

number of labled data and pre-trained word embeddings on large unlabeled data is termed

“semi-supervised”. Because we were interested in data selection scenarios where only small

amounts of in-domain data are available, we chose to use semi-supervised CNNs (SSCNNs)

with word2vec embeddings (Mikolov et al., 2013) pre-trained on a large general-domain,

monolingual corpus. The input region vector that represents a segment of data can be either

a concatenation of word vectors, in which the order of concatenation is the same as the word

order in the sentence, or it can be a bag-of-word/n-gram vector. The bag-of-word (BOW) rep-

resentation loses word order information but is more robust to data sparsity. A CNN whose

input being BOW representation is called bow-CNN while input with concatenation of vectors

is called seq-CNN.

On the other hand, the input sentence can also be represented with one-hot vectors, where

each vector’s length is the vocabulary size, value 1 at index i indicates word i appears in the

Figure 1: Semi-supervised CNN structure.

sentence, and 0 indicates its absence. The one-hot vector can be either one-hot “BOW” or one-

hot “seq” too. We input all four kinds of representations, i.e., bag-of-word one-hot vectors (one-

hot BOW), concatenation of one-hot vectors (one-hot seq), bag-of-word embedding vectors

(embedding BOW), concatenation of embedding vectors (embedding seq), to the CNN layers

to train the classification model, as shown in Figure 1.

To train the CNN itself, we take the in-domain set as the positive training sample and

randomly select the same number of sentences from the general-domain training data as the

negative training sample. The positively and negatively labeled data and the word embeddings

are fed to the convolution layer to train the final classification model. The resulting SSCNN

is then used to score each sentence in the general-domain corpus. As with the other methods

described above, the SSCNN was applied symmetrically - two SSCNNs were trained, one on

the source-language half of the in-domain set, the other on the target-language half, and their

scores were summed to obtain a global score for each sentence pair in the big general-domain

corpus. The top N sentence pairs are selected to train the SMT system. Note that though this

SSCNN method is symmetrical, it is not bilingual: there is no evaluation of whether the two

halves of each sentence pair are good translations of each other.

The experimental results given in (Chen and Huang, 2016) for the SSCNN method on

four different language directions and a variety of genres (SMS, tweets, Facebook posts, etc)

show that the resulting SMT systems typically outperform baseline systems trained with all

the general-domain data, and (for a fixed amount of selected training data) previously state-of-

the-art data selection methods. The advantage of the SSCNN method over other data selection

techniques is especially strong when the size of the initial in-domain data (the dev set) is small.

Therefore, if we wish to build a large scale topic-specific MT system with hundreds of topics,

we only need to collect a few hundreds sentence pairs for each topic. This makes fine-grained

topic-dependent translation adaptation possible.

2.4 Data Selection with a Bitoken Semi-supervised CNN

Despite the excellent performance of the SSCNN method described in the previous paragraphs,

we believed that further improvement might be possible if we devised a method based on SSC-

NNs that was not only symmetrical, but also bilingual. The problem with SSCNN is that unlike

the IBM-LM method or the NNJM method nothing about it filters out sentence pairs whose

source and target halves are bad translations of each other. We decided to experiment with

SSCNNs that take as input the bitokens of (Marino et al., 2006; Niehues et al., 2011).

Figure 2: Bitoken sequence.

The paper (Niehues et al., 2011) describes a “bilingual language model” (biLM): the idea

that SMT systems would benefit from wider contextual information from the source sentence.

BiLMs provide this context by aligning each target word in the training data with source words

to create bitokens. An n-gram bitoken LM for the sequence of target words is then trained.

Figure 2 (taken from (Stewart et al., 2014)) shows how a bitoken sequence is obtained

from a word-aligned sentence pair for the English to French language pair. Unaligned target

words (e.g., French word “d’́’ in the example) are aligned with NULL. Unaligned source words

(e.g., “very”) are dropped. A source word aligned with more than one target word (e.g., “we”)

aligned with two instances of “nous” is duplicated: each target word aligned with it receives a

copy of that source word.

The word embeddings for bitokens are learned directly by word2vec, treating each bitoken

as a word. For instance, in the French sentence shown in Figure 2, there are two occurrences

of the new target-language word nous/we, one occurrence of devions/had to, etc. To reduce the

size of the bitoken vocabulary, we exclude low-frequency bitokens from consideration: to be

taken into account, a Chinese-English bitoken must occur at least 10 times in the training data,

and an Arabic-English bitoken must occur at least 5 times.

After this embedding has been performed, the Bi-SSCNN is trained similarly as was de-

scribed above for the original word-based SSCNN. The only difference is the pooling strategy.

For the word-based SSCNN, we use maximum-pooling, while for the bitoken-based SSCNN,

we use average-pooling. This is because if a sentence contains one or more in-domain words,

it is very likely an in-domain sentence, so we use maximum pooling to highlight those typical

in-domain words for the word-based SSCNN. The reason for choosing average-pooling for Bi-

SSCNN is that if a sentence pair contains one or more in-domain bitokens, it is not necessarily a

good quality in-domain sentence pair. It is only when a sentence pair contains some in-domain

bitokens, and most of the bitokens are good translations, that it is considered to be a high quality

in-domain sentence pair.

language zh2en ar2en

test domain webforum nw&wl

train size 12.20M 5.29M

dev size 2,748 1,360

test size 1,224 5,812

Table 1: Summary of the data. Data is given as the number of sentence pairs, “M” represents

“million”. “nw” stands for “newswire”, “wl” stands for “weblog”.

As with the other methods, this data selection method is applied in a bilingual manner:

the gobal score used to evaluate sentence pairs is the unweighted sum of a score for two bi-

SSCNNs, one of which reverses the polarity of the source language (Chinese or Arabic) and the

target language (English).

3 Experiments on SMT

Our goal is to adapt the MT system when only a small amount of in-domain data is available.

So in most of our experiments, we ignored domain information about the training data, such as

the source of each corpus. What we have is a small development set (dev) and one or more test

sets (test) which are in the same domain.

3.1 Data setting

We carried out experiments in two different data settings. The first setting is the Chinese-to-

English “webforum” task from the BOLT project (zh2en); the test domain is a combination of

news and web posts. The training data from LDC2 are a mixture of newswire, web crawls, UN

proceedings, etc. The second setting is the NIST 2012 Arabic-to-English task (ar2en). Again,

the training data are available from LDC, and the test domain is a combination of newswire and

weblog. We use the NIST 2008 test data as the dev set and the NIST 2012 test set as the test.

Table 1 summarizes the statistics of the training, dev, and test data for both tasks. Note that

for both, the test domain includes newswire data, and the training data include a proportion of

newswire data are extracted from comparable data, around 10% for the Chinese-to-English task

and 20% for the Arabic-to-English task. We used all the comparable data available from LDC.

Some of the comparable data are quite noisy, making the task of data selection more challenging

both for two tasks.

Once a subset of the large in-domain, bilingual corpus has been selected by one of the

methods described above, that subset is used as training data for a standard phrase-based SMT

system.

3.2 Experimental setup

We employ the dev set as in-domain data. All the supervised CNN models (both the SSCNN

ones and the Bi-SSCNN ones) are trained with the in-domain dev data as positive examples

and an equal number of randomly selected general-domain sentences as negative examples. All

the meta-parameters of the CNN are tuned on held-out data; we generate one-hot based bow-

regions and seq-regions, word-embedding-based bow-regions and seq-regions and input them

to the CNN. We set the region size to 5 and stride size to 1. The non-linear function we chose

is “ReLU”, the number of weight vectors or neurons is 500. We use the online available CNN

2https://catalog.ldc.upenn.edu/

toolkit conText3. To train the general domain word embedding, we used word2vec4. The size

of the vector was set to 300.

The baseline SMT system for each language direction, “alldata” is trained using all

general-domain data. All other systems are trained with a subset of the general-domain data of

fixed size: 1.8 million sentence pairs (about 15% of the available training data) for the Chinese-

to-English task, and 1.4 million sentence pairs (about 26% of the available training data) for the

Arabic-to-English task. We experimented with the following five data selection methods. Note

that the last three methods are bilingual - they measure not only the quality of the source and

target sides of a sentence pair, but also the degree to which one is a good translation of the other

- but the first two are not:

1. LM: Data selection by 3-gram LMs with Witten-Bell 5 smoothing, using bilingual cross

entropy difference as the criterion. This is considered to be a state-of-the-art data selection

method for domain adaptation (Axelrod et al., 2011). The “sum LM” variant uses the sum

of the source and target LM scores for a sentence pair.

2. SSCNN: Data selection by semi-supervised CNN based on monolingual tokens (Section

2.3)

3. IBM-LM: Data selection by both IBM and language models (Section 2.1)

4. NNJM: Data selection by neural network joint models (Section 2.2)

5. Bi-SSCNN: Data selection by bitoken based semi-supervised CNN (Section 2.4)

3.3 Experimental results
We evaluated the system using the BLEU (Papineni et al., 2002) score on the test set. Follow-

ing (Koehn, 2004), we apply the bootstrap resampling test to do significance testing. Table 2

summarizes the results for each task. The number of selected sentence pairs for each language

pair (1.8 million pairs for Chinese-to-English, and 1.4 million pairs for Arabic-to-English) was

decided on the basis of tests on held-out data using the IBM-LM method. That is, 1.8 million

was the value of N that maximized the BLEU score of the final SMT system when IBM-LM

was used to select N sentence pairs as training data for Chinese-to-English, and 1.4 had the

same property for Arabic-to-English.

In the table, the bilingual methods are the ones below the horizontal line. All methods

shown were applied in their symmetrical version, where the global score is obtained by adding

a source-based score to a target-based score.

It can be seen from the table that the three NN-based data selection methods - the orig-

inal word-based SSCNN, NNJM, and bitoken-based SSCNN - outperform the other methods.

Among these three, Bi-SSCNN is significantly better than the other two, outperforming the

original SSCNN by +0.5 BLEU on Chinese-to-English and +0.3 BLEU on Arabic-to-English.

What about the original motivation for devising data selection methods based on IBM-LM,

NNJMs and Bi-SSCNN: that methods employing bilingual information will do a better job of

screening out noisy sentence pairs, i.e., sentence pairs where each side is a bad translation of the

other? The BLEU results above do not make this aspect of the behaviour of the various methods

clear. For instance, the bilingual IBM-LM method obtains lower scores for both the Chinese-

to-English and the Arabic-to-English task than the non-bilingual original SSCNN method.

3http://riejohnson.com/cnn download.html
4https://code.google.com/archive/p/word2vec/
5For small amounts of data, Witten-Bell smoothing performed better than Kneser-Ney smoothing in our experiments

symmetrical bilingual zh2en ar2en

alldata – – 24.6 45.7

LM yes no 24.7 45.2

SSCNN yes no 25.1** 45.9

IBM-LM yes yes 24.9 45.4

NNJM yes yes 25.0* 45.8

Bi-SSCNN yes yes 25.6**++ 46.2**+

Table 2: Summary of BLEU results. */** means result is significantly better than the “alldata”

baseline at p < 0.05 or p < 0.01 level, respectively. +/++ means result is significantly better

than the “SSCNN” method at p < 0.05 or p < 0.01 level, respectively.

We therefore decided to test the ability of the methods above to screen out noisy sentence

pairs directly. Inspired by the experimental approach of (Goutte et al., 2012), we deliberately

corrupted a randomly chosen 50% of the sentence pairs in the two large general-domain corpora

for Chinese-to-English and Arabic-to-English by permuting the order of the target-language

(English) sentences, while leaving the rest of each general-domain corpus (and the dev set on

which data selection methods are trained) untouched. We can then see what percentage of

the sentence pairs chosen by each data selection method have a mismatched source-language

and target-language side. Because the NNJM-based and bitoken SSCNN-based approaches use

word alignment information, we re-ran word alignment on all the general-domain data (using

the IBM and HMM models trained on the original version of the data).

Table 3 shows the proportion of mismatched sentence pairs in the top N selected sen-

tence pairs. For each language direction, two different values of N are tried: N = 1.8M and

N = 200K for Chinese-to-English, and N = 1.4M and N = 200K for Arabic-to-English.

Data selection based on only a source LM (“src LM”) or target LM (“tgt LM”) is completely

ineffective at screening out mismatched sentence pairs: their proportion in the selected subset

is around 50%, just as it was in the large corpus the subset was selected from. Symmetrizing

LM data selection by adding the source LM and target LM yields an improvement that is par-

ticularly noticeable when only 200K sentence pairs are selected for each language direction:

38% of the highest-scoring 200K Chinese-English pairs and 39% of the highest-scoring 200K

Arabic-English pairs are mismatched. The variants of the original SSCNN method show a sim-

ilar pattern, with the symmetrical version performing better than the versions that rely only on

the source-side or target-side scores.

A definite improvement in performance is seen when we consider the three bilingual data

selection methods: IBM-LM, NNJM, and Bi-SSCNN. By far the best performer of the three is

Bi-SSCNN. When it ranks sentence pairs in the Chinese-English corpus, of the 1.8M pairs with

the highest scores, about 29% are mismatched; of the 200K pairs with the highest scores, about

11% are mismatched. The mismatch proportions for the highest-scoring Arabic-English pairs

are about 28% for the 1.4M subset and 10% for the 200K subset.

These results show that the three bilingual methods - IBM-LM, NNJM, and Bi-SSCNN -

are more effective at screening out noisy sentence pairs than the non-bilingual methods. It may

seem surprising that all three of these methods do not therefore also have the highest BLEU

scores in Table 2. A possible reason is that the general-domain data we used to train the system

are not too noisy. Moreover, (Goutte et al., 2012) showed that phrase-based MT is highly robust

to the sentence alignment errors: “performance is hardly affected when the misalignment rate is

below 30%, and introducing 50% alignment error brings performance down less than 1 BLEU

point.” Thus, the proportion of misaligned sentence pairs in a training corpus and the BLEU

symmetrical bilingual zh2en ar2en zh2en ar2en

#selected 1.8M 1.4M 200K 200K

src LM no no 0.501 0.502 0.497 0.489

tgt LM no no 0.496 0.505 0.495 0.492

sum LM yes no 0.461 0.454 0.376 0.389

src SSCNN no no 0.487 0.495 0.481 0.481

tgt SSCNN no no 0.488 0.498 0.476 0.488

sum SSCNN yes no 0.453 0.455 0.365 0.401

IBM-LM yes yes 0.411 0.417 0.355 0.312

NNJM yes yes 0.428 0.402 0.376 0.298

Bi-SSCNN yes yes 0.292 0.280 0.113 0.100

Table 3: The proportion of mismatched sentence pairs in the top N sentence pairs selected from

the 50% sentence pairs permuted corpora.

language zh2en ar2en

alldata 24.6 45.7

Bi-SSCNN 25.6 46.2

clean-in 25.4 46.0

Table 4: BLEU Results for Manually Selected Data.

score obtained from a system on that corpus are not highly correlated.

For most practical purposes, we care more about a data selection method ability to produce

a training corpus that will yield an SMT system with a high BLEU score than its ability to screen

out noisy sentence pairs. Nevertheless, it is reassuring that the method which yields the highest

BLEU score in our experiments, Bi-SSCNN, is also the one that is far better than the other

methods at screening out noisy pairs.

In another experiment, we manually selected subsets made up of data that were likely to be

in-domain (because they came from newswire and weblogs, just like the test set) and clean (we

excluded comparable data). We selected around 1.4M sentence pairs for Chinese-to-English

task and 1.0M for Arabic-to-English task.

As Table 4 shows, the resulting “clean-in” training data set yielded an SMT system that

performed about as well, or slightly worse, than an SMT system trained on data selected by

“Bi-SSCNN”. This is a strong argument in favour of using Bi-SSCNN, which is fully automatic

and doesn’t require any outside knowledge about the sentence pairs in the large general-domain

corpus.

3.4 Discussion

When we examined a random selection of sentence pairs in the big general-domain corpora and

looked at their scores as assigned by the Bi-SSCNN method, we made an interesting observa-

tion. The sentence pairs with lowest scores are out-of-domain, as expected, but also tend to

have very good translation quality. The overall ordering (from highest to lowest score) tends to

be 1. clean and in-domain pairs 2. noisy and in-domain pairs 3. noisy and out-of-domain pairs

4. clean and out-of-domain pairs.

This tendency, which is surprising at first glance, is understandable. Both the positive sam-

ples in the dev set and the sampled negative examples used to train the Bi-SSCNN classification

model are of good quality. Thus, the Bi-SSCNN has learned two top priorities: selecting for

clean, in-domain sentence pairs, and selecting against clean, out-of-domain sentence pairs. It

thus scores the former type of sentence pair highest, and the latter type lowest. Noisy sentence

pairs thus receive intermediate scores. This behaviour may be desirable from a practical point

of view: clean, out-of-domain sentence pairs are dangerous in the sense that they will populate

the phrase table with phrase translations that are likely to compete with the correct translations

for the given domain. Noisy out-of-domain sentence pairs will have a more random effect,

sprinkling the phrase table with low-frequency, unlikely translations, thus doing less harm (and

noisy in-domain pairs will probably have a mildly positive effect on the performance of the

resulting SMT system).

In our experiments, NNJM-based data selection did not stand out from other methods either

in terms of its impact on BLEU or in terms of its ability to screen out noisy sentence pairs. Study

of the NNJMs we trained suggests that part of the problem is their limited vocabulary size: 32K

words for both the source and the target language. All other words are mapped into a small

number of clusters. Unfortunately, many sentence pairs of poor quality end up with several

occurrences of particular cluster on both the source and the target side, which may mislead the

NNJMs into thinking that these sentence pairs are of good quality.

Note also that the SMT systems trained on the selected data did not contain an NNJM

feature (or, indeed, any neural component). It is possible that the NNJM-based method will

work better when applied to the task of selecting data from a bilingual corpus to train a second,

larger NNJM. We intend to explore this possibility in our future work.

4 Follow-up experiments on NMT

After we submitted this paper, we did some experiments with a neural machine translation

(NMT) system (Sutskever et al., 2014; Bahdanau et al., 2015) using Bi-SSCNN. 6 The exper-

iments were carried out with an open source system called Nematus (Sennrich et al., 2016),

which is an attention-based NMT system (Bahdanau et al., 2015). We carried out experiments

on English-to-French (en2fr) WMT task 7. The training data contain 12 million sentence pairs;

the dev set is a concatenation of newstest2012 and 2013, which contains 6,003 sentence pairs;

the test set is newstest2014, which contains 3,003 sentence pairs.

Table 4 summarizes our experiments. If we introduce 30% sentence alignment error to

the original data, we lost over 3 BLEU score (35.4 vs 32.0 on the 12.0M data set; 33.7 vs 30.6

on the 6.4M sampled data set.) Then, if we apply Bi-SSCNN to the 12.0M data which contains

30% sentence alignment error, by carefully manipulating the negative training samples of the

Bi-SSCNN, we can turn on the noise reduction and domain adaptation separately. Experiment

5 shows that when the data contain 30% alignment error, Bi-SSCNN can screen out the noise

in the data and improve the performance to 33.9 BLEU, from 30.6 BLEU for the experiment 4

baseline. Experiment 6 showed that if we only use Bi-SSCNN for domain adaptation on a data

with 30% sentence alignment error, the improvement is smaller, only 0.4 BLEU. Finally, if we

turn on both noise reduction and domain adaptation for Bi-SSCNN, we obtain the best result,

which is 34.2: a 3.6 BLEU point improvement over the baseline in experiment 4. This series of

experiments shows that 1. neural machine translation is more sensitive to noise than SMT; 2.

Bi-SSCNN is effective in carrying out both noise reduction and domain adaptation.

5 Conclusions

We proposed a new method for data selection from a large bilingual corpus for the purpose of

training an SMT system. The new method is based on a bitoken semi-supervised convolutional

6Due to the time limit, we did not finish the experiments with other data selection methods.
7The data is available at http://www-lium.univ-lemans.fr/ schwenk/nnmt-shared-task/

id data size data description BLEU

1 12.0M all original data 35.4

2 12.0M 30% alignment error 32.0

3 6.4M sampled from data 1: original data 33.7

4 6.4M sampled from data 2: with 30% alignment error 30.6

5 6.4M Bi-SSCNN noise reduction on data 2 33.9

6 6.4M Bi-SSCNN domain adaptation on data 2 31.0

7 6.4M Bi-SSCNN noise reduction and domain adaptation on data 2 34.2

Table 5: BLEU Results for English-to-French WMT task with neural machine translation sys-

tem.

neural networks. It outperformed its nearest competitor, a method that uses a word-based SS-

CNN, by +0.5 BLEU on a Chinese-to-English task and by +0.3 BLEU on an Arabic-to-English

task. Since one of the motivations underlying the creation of the Bi-SSCNN method (and two

other data selection methods, those based on IBM-LM and NNJM) was the ability to screen

out noisy sentence pairs, we carried out another type of experiment in which the methods were

explicitly tested for the ability to do this when half the pairs in the bilingual corpus have been

deliberately corrupted. According to this criterion, too, the Bi-SSCNN outperformed all other

methods.

In the follow-up experiments, we find that neural machine translation is more sensitive to

noisy data than statistical machine translation. Therefore, Bi-SSCNN, which can effectively

screen out noisy sentence pairs, can benefit NMT much more than SMT. For instance, given

a potential training corpus with 30% sentence alignment error, data selected with Bi-SSCNN

yields a system with a performance gain of over 3 BLEU points above the baseline.

References

Axelrod, A., He, X., and Gao, J. (2011). Domain adaptation via pseudo in-domain data selection. In

EMNLP 2011.

Axelrod, A., Resnik, P., He, X., and Ostendorf, M. (2015). Data selection with fewer words. In Proceed-
ings of the Tenth Workshop on Statistical Machine Translation, pages 58–65, Lisbon, Portugal.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to align and

translate. In ICLR.

Chen, B. and Huang, F. (2016). Semi-supervised convolutional networks for translation adaptation with

tiny amount of in-domain data. In Proceedings of the SIGNLL Conference on Computational Natural
Language Learning, Berlin, Germany.

Denkowski, M., Hanneman, G., and Lavie, A. (2012). The cmu-avenue french-english translation system.

In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages 261–266, Montréal,

Canada. Association for Computational Linguistics.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. (2014). Fast and robust neural

network joint models for statistical machine translation. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1370–1380, Baltimore,

Maryland. Association for Computational Linguistics.

Duh, K., Neubig, G., Sudoh, K., and Tsukada, H. (2013). Adaptation data selection using neural lan-

guage models: Experiments in machine translation. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 678–683, Sofia, Bulgaria.

Durrani, N., Sajjad, H., Joty, S., Abdelali, A., and Vogel, S. (2015). Using joint models for domain adap-

tation in statistical machine translation. In Proceedings of the Fifteenth Machine Translation Summit
(MT Summit XV).

Goutte, C., Carpuat, M., and Foster, G. (2012). The impact of sentence alignment errors on phrase-

based machine translation performance. In Tenth Biennial Conference of the Association for Machine
Translation in the Americas (AMTA-2012), San Diego, USA.

Jiang, J., Way, A., and Carson-Berndsen, J. (2010). Lattice score based data cleaning for phrase-based

statistical machine translation. In 14th Annual Conference of the European Association for Machine
Translation, Saint-Raphael, France.

Johnson, R. and Zhang, T. (2015a). Effective use of word order for text categorization with convolu-

tional neural networks. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 103–112, Denver,

Colorado.

Johnson, R. and Zhang, T. (2015b). Semi-supervised convolutional neural networks for text categorization

via region embedding. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R.,

editors, Advances in Neural Information Processing Systems 28, pages 919–927. Curran Associates,

Inc.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network for modelling

sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 655–665, Baltimore, Maryland.

Khadivi, S. and Ney, H. (2005). Automatic filtering of bilingual corpora for statistical machine trans-

lation. In Natural Language Processing and Information Systems, 10th International Conference on
Applications of Natural Language to Information Systems, pages 263–274, Alicante, Spain.

Kim, Y. (2014). Convolutional neural networks for sentence classification. CoRR, abs/1408.5882.

Koehn, P. (2004). Statistical significance tests for machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing (EMNLP), Barcelona, Spain.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional

neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

LeCun, Y. and Bengio, Y. (1998). Convolutional networks for images, speech, and time series. In Ar-

bib, M. A., editor, The Handbook of Brain Theory and Neural Networks, pages 255–258. MIT Press,

Cambridge, MA, USA.

Lü, Y., Huang, J., and Liu, Q. (2007). Improving Statistical Machine Translation Performance by Training

Data Selection and Optimization. In Proceedings of the 2007 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Prague, Czech Republic.

Mansour, S., Wuebker, J., and Ney, H. (2011). Combining translation and language model scoring for

domain-specific data filtering. In Proceedings of IWSLT.

Marino, J. B., Banchs, R. E., Crego, J. M., de Gispert, A., Lambert, P., Fonollosa, J. A. R., and Costa-jussà,

M. R. (2006). N-gram-based machine translation. Computational Linguistics, 32(4):527–549.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in

vector space. CoRR, abs/1301.3781.

Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010). Recurrent neural network

based language model. In Proceedings of the 11th Annual Conference of the International Speech
Communication Association (INTERSPEECH2010), pages 1045–1048. International Speech Commu-

nication Association.

Moore, R. C. and Lewis, W. (2010). Intelligent selection of language model training data. In ACL 2010.

Munteanu, D. S. and Marcu, D. (2005). Improving machine translation performance by exploiting non-

parallel corpora. Computational Linguistics, 31(4):477–504.

Niehues, J., Herrmann, T., Vogel, S., and Waibel, A. (2011). Wider context by using bilingual language

models in machine translation. In Proceedings of the Sixth Workshop on Statistical Machine Transla-
tion, pages 198–206, Edinburgh, Scotland. Association for Computational Linguistics.

Okita, T., Naskar, S., and Way, A. (2009). Noise reduction experiments in machine translation. In the
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, Bled, Slovenia.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A method for automatic evaluation of

Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 311–318, Philadelphia. ACL.

Sennrich, R., Haddow, B., and Birch, A. (2016). Edinburgh neural machine translation systems for wmt

16. In Proceedings of the First Conference on Machine Translation, pages 371–376, Berlin, Germany.

Association for Computational Linguistics.

Stewart, D., Kuhn, R., Joanis, E., and Foster, G. (2014). Coarse ’split and lump’ bilingual language models

for richer source information in smt. In Eleventh Biennial Conference of the Association for Machine
Translation in the Americas (AMTA-2014), Vancouver, Canada.

Sutskever, I., Vinyals, O., and Le, Q. V. V. (2014). Sequence to sequence learning with neural networks.

In Advances in Neural Information Processing Systems 27 (NIPS), pages 3104–3112.

Wang, P., Xu, J., Xu, B., Liu, C., Zhang, H., Wang, F., and Hao, H. (2015). Semantic clustering and

convolutional neural network for short text categorization. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 352–357, Beijing, China.

Yasuda, K., Zhang, R., Yamamoto, H., and Sumita, E. (2008). Method of selecting training data to build

a compact and ef?cient translation model. In International Joint Conference on Natural Language
Processing.

Zhao, B., Eck, M., and Vogel, S. (2004). Language model adaptation for statistical machine transla-

tion with structured query models. In Proceedings of the International Conference on Computational
Linguistics (COLING) 2004, Geneva.

Neural Interactive Translation Prediction

Rebecca Knowles rknowles@jhu.edu

Philipp Koehn phi@jhu.edu

Department of Computer Science, Center for Language and Speech Processing

Johns Hopkins University, Baltimore, MD, 21218, USA

Abstract
We present an interactive translation prediction method based on neural machine translation.

Even with the same translation quality of the underlying machine translation systems, the neural

prediction method yields much higher word prediction accuracy (61.6% vs. 43.3%) than the

traditional method based on search graphs, mainly due to better recovery from errors. We also

develop efficient means to enable practical deployment.

Interactive translation prediction (also called interactive machine translation) is an editing

mode for translators who interact with machine translation output. In this mode, the machine

translation system makes suggestions for how to complete the translation (“auto-complete”),

and the translator either accepts suggested words or writes in their own translation. When the

suggestion is rejected, the machine translation system recomputes its prediction for how to

complete the sentence from the given prefix and presents the corrected version to the translator.

In prior work, phrase-based machine translation systems have been used for interactive

translation prediction, and suggestions were made either by re-decoding constrained by the

prefix (Green et al., 2014) or by searching for the prefix in the original search graph (Och et al.,

2003; Barrachina et al., 2009). Recently, neural translation models have been proposed and

in some cases have shown superior performance over phrase-based models (Jean et al., 2015;

Sennrich et al., 2016). We propose to use such models for interactive translation prediction.

Parallel to this work, Wuebker et al. (2016) also explore a similar approach to using neural MT

for interactive translation prediction.

The decoding mechanism for neural models provides a natural way of doing interactive

translation prediction. We show that neural translation models can provide better translation

prediction quality and improved recovery from rejected suggestions. We also develop efficient

methods that enable neural models to meet the speed requirements of live interactive translation

prediction systems.

1 Interactive Translation Prediction

Interactive translation prediction leaves the translator in charge of writing the translation and

places the machine translation system in an assisting role. Rather than having a translator post-

edit machine translated output, the system actively makes suggestions as the translator writes

their translation. This modality is similar to an auto-complete function. Whenever the translator

diverges from the suggestion (by typing a word that differs from the model’s suggestion), the

system recalculates (taking the translator’s input into account) and generates new suggestions.

Implementations of interactive translation can be found in the CASMACAT1 (see Figure 1) and

1http://www.casmacat.eu

Figure 1: Interactive translation prediction in CASMACAT: The system suggests to continue the

translation with the words mehr als 18, which the user can accept by pressing the TAB key.

Lilt2 computer aided translation tools. This interaction mode is preferred by translators over

post-editing (Koehn, 2009).

The goal of interactive translation prediction is to offer suggestions that the translator will

accept. Existing approaches with statistical machine translation use the static search graph

produced by the machine translation system. The system attempts to match the partial transla-

tor input (called the prefix) to the search graph, using approximate string matching techniques

(minimal string edit distance) when an exact match cannot be found. As a baseline, we use a

statistical machine translation system for interactive translation prediction that closely follows

Koehn (2009) and Koehn et al. (2014). The prefix could be matched by constraint decoding,

however, at a much higher computational cost.

Initial work on interactive translation prediction can be found in the TransType and

TransType2 projects (Langlais et al., 2000; Foster et al., 2002; Bender et al., 2005; Barrachina

et al., 2009). Our current work focuses on how to produce suggestions; for various approaches

to interaction modalities, see Sanchis-Trilles et al. (2008) (mouse actions), Alabau et al. (2011)

(hand-writing) and Cubel et al. (2009) (speech).

2 Neural Machine Translation

The use of neural network methods in machine translation has followed their recent success

in computer vision and automatic speech recognition. Motivations for their use include better

generalization of the statistical evidence (such as the use of word embeddings that have similar

representations for related words), and more powerful non-linear inference.

The current state-of-the-art neural machine translation approach (Bahdanau et al., 2015)

consists of:

• an encoder stage where the input sentence is processed by two recurrent neural networks,

one running left-to-right, the other right-to-left, resulting in hidden states for each word

that encode it with its left and right context,

• a decoder stage where the output sentence is produced left-to-right, by conditioning on

previous output words in the form of a hidden state (roughly corresponding to a language

model in traditional statistical machine translation) and on the input encoding (roughly

corresponding to a translation model), and

• an attention mechanism that conditions the prediction of each output word on a distribu-

tion over input words (roughly corresponding to an alignment function).

We describe a fairly general neural machine translation approach in order to motivate its

use in the interactive translation prediction setting, illustrated in Figure 2. For more details,

see Bahdanau et al. (2015), whose notation this section follows, or Edinburgh’s WMT 2016

submission (Sennrich et al., 2016), whose system we use in our experiments.

2https://lilt.com/

Target words yt are emitted from hidden states st.

The hidden state st is informed by the input

sequence, weighted by an attention mechanism

αt,1, ..., αt,T .

The source language sequence x1, ..., xT is en-

coded as the hidden states h of two recurrent neu-

ral networks.

Figure 2: Neural MT model used in this paper (figure from Bahdanau et al. (2015)).

At each time step t, the standard decoder computes the conditional probability of generat-

ing a word yt given the input sentence �x. This is defined to be:

p(yt|{ŷ1, · · · , ŷt−1}, �x) = g(ŷt−1, ct, st) (1)

where g is a non-linearity, ŷt−1 is the word produced by the previous decoding step, ct is a

context vector, and st is the hidden state for time t.
During encoding, annotations ht were produced for each word xt in the input sentence

�x = (x1, · · · , xT). These ht were produced by concatenating the forward and backward hid-

den states produced for each word by the forward and backward RNNs, respectively. The

context vector ct in Equation 1 is a weighted average of the annotations. First, weights

αtj = exp(etj)/
∑T

k=1 exp(etk) are computed, where etj = a(st−1, hj) can be thought of

as an alignment model (parameterized as a neural network and jointly trained with the rest of

the system). The weight αtj can be interpreted as the probability that yt is aligned to xj , re-

sulting in soft alignments used by the system’s attention mechanism to weight the focus of the

context vector. The context vector is then computed as ct =
∑T

j=1 αtjhj .

As indicated above, decoding in this attention-based neural machine translation approach

proceeds word by word. At each step of the decoding process, a probability distribution over

possible next words is computed. This is conditioned on the previous word, the context vector,

and the hidden state. The highest scoring word is selected and used in the conditioning con-

text for the next step. Alternatively, similar to beam search in traditional statistical machine

translation decoding, the top n next words may be considered and competing hypotheses with

different output words maintained. Each of the hypotheses (consisting of a word sequence and

a hidden state, and ranked by the combined word translation probabilities) is extended at the

next decoding step.

There are various choices for the exact design of the recurrent neural networks used in

the encoder and decoder. Going beyond basic approaches that use a simple hidden layer, more

complex designs such as long short term memory (LSTM) cells or gated recurrent units (GRU)

may be employed.

3 Neural Interactive Translation Prediction

The decoding process for neural translation models points to a straightforward implementation

of interactive translation prediction. Instead of using the model’s predictions in the conditioning

context for the next step, the words in the prefix provided by the translator can be used. Hence,

the next word prediction is conditioned on the choice of the translator, rather than the prediction

of the model.

During decoding for translation (as described above), the model’s predictions

{ŷ1, · · · , ŷt−1} are fed back into the model to produce the next predicted word. In order to

do interactive prediction, we instead feed the true prefix {y∗1 , · · · , y∗t−1} produced by the trans-

lator back into the model. Thus we redefine the conditional probability of generating a word yt
to be:

p(yt|{y∗1 , · · · , y∗t−1}, �x) = g(y∗t−1, ct, st) (2)

In this work, we present two variations on neural interactive translation prediction:

• The no beam search method produces the single best hypothesis for each new word, given

the prefix provided by the translator, which is fed into the model during decoding (as

described above).

• The beam search method conducts beam search and selects the most probable full trans-

lation of the sentence. If and when the translator diverges from this full translation, a new

beam search is conducted from the translator-generated prefix through to the end of the

sentence. We show results for beam size 12, but note that a beam size of 2 provides most

of the improvement (a similar observation was made by Sutskever et al. (2014) with respect

to standard MT evaluation).

While beam search is known to produce better BLEU scores than models without beam

search, it is also more computationally expensive. We demonstrate that it performs well on the

interactive translation prediction task, but note that full beam search is too slow for use in a live

system.

Passing the translator prefix into the system (when the translator diverges from the pre-

dicted sequence) may produce subsequent errors in the translation, for instance by causing the

attention mechanism to be misfocused. We show that the system is often able to recover from

these errors, but that it occasionally results in incoherent sequences of suggestions. However,

we show that the sequences of rejected suggestions produced by the neural systems tend to be

shorter than those produced by the traditional search graph based systems.

4 Experimental Setup

Since a user study that collects sufficient data for the various settings of our methods would be

too costly, we resort to a simulation where a preexisting human translation is used in place of

the translator’s input to the interactive translation system. We do this by treating the preexisting

human translation as though it is being typed live, one word (or letter) at a time, by a translator

interacting with our prediction system. While we expect that in practical use, the human trans-

lator may match the machine translation’s suggestions more closely (for example, by accepting

synonyms which we score as “wrong” as they are not exact matches), we can nevertheless com-

pare methods based on their prediction accuracy against the human translation relative to one

another.

Data Our experiment is carried out on the German–English data sets3 made available for

the shared news translation task of the Conference for Machine Translation (WMT). The data

consists of a 115 million word parallel corpus (Europarl, News Commentary, CommonCrawl),

3http://www.statmt.org/wmt16/

System Configuration BLEU
Neural no beam search 34.5

beam size 12 36.2

+ ensemble 37.5

+ r2l reranking 38.6

Phrase-based 34.5

Table 1: Quality measured by BLEU scores (case-sensitive) of the systems used in this paper

on the WMT 2016 news test set (German-English).

and about 75 billion words of additional English monolingual data (LDC Gigaword, monolin-

gual news, monolingual CommonCrawl). We use the official 2999 sentence test set (average

sentence length 23 tokens) to measure the accuracy of our methods.

Neural Translation Model The neural machine translation model uses Nematus4, a fork of

the DL4MT toolkit5 by Cho (2015). It was trained on all the available parallel data and a similar

amount of synthetic parallel data that was generated by translating part of the monolingual news

data into German (Sennrich et al., 2015a). It uses byte pair encoding (Sennrich et al., 2015b) for

a vocabulary of 90,000 words. Training this model on GPU takes about three weeks. We use the

publicly available model6 that matches the training settings of Edinburgh’s WMT submission

(Sennrich et al., 2016).

Phrase-Based Model The phrase based model, which we use as a baseline to produce search

graph based predictions, uses all available parallel and monolingual training data. The system

matches Johns Hopkins University’s submission to the WMT shared task (Ding et al., 2016).

This version does not use the byte pair encodings used by the neural models.

System Quality Since we are concerned with the translation speed, we consider a few simpli-

fications of the neural translation model. We do not use ensemble decoding (”ensemble”) or a

reranking stage (”r2l reranking”)7. Each of these simplifications makes decoding several times

faster at a cost to quality of 1-2 BLEU points. See Table 1 for a comparison of quality scores for

the different settings. Without beam search, the neural system used has the same BLEU score

as the phrase-based system. This has the nice advantage that we are comparing methods based

on systems of similar quality. It also shows the potential for improvement if computational

concerns are removed. For a longer discussion of the speed of the methods, see Section 6.

5 Results

See Figure 3 for an example of the neural interactive translation prediction model’s output for

one sentence. The figure displays the correct word choices (taken from the reference trans-

lation), the model’s prediction (using the prefix of the reference translation as conditioning

context), and the most probable word choices according to the model’s probability distribution.

Some of the failures are near-synonyms (numbers instead of levels, or increasing instead

of rising) that we might expect would be accepted by real human users of the system. For the

purposes of our evaluation, we count even these near-synonyms as incorrect (as they are not

exact string matches). However, it is worth noting the prevalence of these near-synonyms: in

the neural versions, we find that 21.0% of incorrect predictions (22.4% with beam search) are

4https://github.com/rsennrich/nematus/
5https://github.com/nyu-dl/dl4mt-tutorial/
6https://github.com/rsennrich/wmt16-scripts/
7For more on these methods, please see Sennrich et al. (2016)

Input: Das Unternehmen sagte, dass es in diesem Monat mit Bewerbungsgesprächen beginnen
wird und die Mitarbeiterzahl von Oktober bis Dezember steigt.

Correct Prediction Prediction probability distribution
� the the the (99.2)
� company company company (90.9), firm (7.6)

� said said said (98.9)
� it it it (42.6), this (14.0), that (13.1), job (2.0), the (1.7), ...

� will will will (77.5), is (4.5), started (2.5), ’s (2.0), starts (1.8), ...

� start start start (49.6), begin (46.7)

inter@@ job job (16.1), application (6.1), en@@ (5.2), out (4.8), ...

� viewing state state (32.4), related (5.8), viewing (3.4), min@@ (2.0), ...

� applicants talks talks (61.6), interviews (6.4), discussions (6.2), ...

� this this this (88.1), so (1.9), later (1.8), that (1.1)

� month month month (99.4)
� , and and (90.8), , (7.7)
� with and and (42.6), increasing (24.5), rising (6.3), with (5.1), ...

� staff staff staff (22.8), the (19.5), employees (6.3), employee (5.0), ...

� levels numbers numbers (69.0), levels (3.3), increasing (3.2), ...

� rising increasing increasing (40.1), rising (35.3), climbing (4.4), rise (3.4), ...

� from from from (97.4)
� October October October (81.3), Oc@@ (12.8), oc@@ (2.9), Oct (1.2)

� through to to (73.2), through (15.6), until (8.7)

� December December December (85.6), Dec (8.0), to (5.1)

� . . . (97.5)

Figure 3: Example with about average prediction accuracy. Note the good recovery from failure

and that several of the correct choices rank highly in the probability distribution of predicted

words (values in parentheses indicate percent of probability mass assigned to words; only words

with ≥1% shown). Tokens containing @@ are an artifact of byte pair encoding.

synonyms8 of the correct answer (in the phrase-based system, this drops to 17.7%). Were these

to be accepted by a real translator, overall system accuracy scores would improve.

The neural method copes well with failure, and typically resumes with plausible predic-

tions. One exception is the prediction of talks after having seen ... will start interviewing. This

may be due to the attention mechanism being thrown off after a sequence of low-probability

prefix words.

5.1 Word Prediction Accuracy

Figure 3 also illustrates the evaluation metric we use to measure the quality of the prediction

methods. It measures how many words are predicted correctly (see the first column in the

figure). Note that we measure on the level of tokens, so we score the split word inter@@
viewing (an artifact of byte pair encoding) as a single token, rather than two tokens.

Table 2 shows the prediction accuracy for the three methods. The neural systems clearly

outperform the method based on the search graph of the phrase-based model (with over 60%

prediction accuracy for the neural systems and just 43.3% for the phrase-based). We discuss

more reasons for this improvement in Section 5.3.

8Here we define words to be synonyms if their Wu-Palmer similarity (Wu and Palmer, 1994) in WordNet (Fellbaum,

1998) is equal to 1.

System Configuration Word Prediction Accuracy
Neural no beam search 61.6%

beam size 12 63.6%

Phrase-based - 43.3%

Table 2: Word prediction accuracy: Ratio of words predicted by the interactive translation

prediction system that matched the human reference translation exactly.

System Configuration Letter Prediction Accuracy
Neural no beam search 86.8%

beam size 12 87.4%

Phrase-based - 72.8%

Table 3: Letter prediction accuracy: Ratio of letters predicted correctly.

5.2 Letter Prediction Accuracy

A useful feature of interactive translation prediction is the ability to react to single key strokes

of the user. Consider an example from Figure 3. The system has a preference for numbers over

levels. The latter is preferred by the human translator, hence the system fails to make the right

prediction. If the user types the letter l, the system should quickly update its prediction to levels,

the most likely word (from the probability distribution that generated the original hypothesis)

that starts with this letter. In general, when the user types the initial letters of a word, the

system should predict the most probable word with this letter prefix. In the beam search setting,

the system first runs through the first word of each of the hypotheses in the beam (from most

to least probable) to see if any match the the translator’s letter prefix, before falling back to

the probability distribution over the full vocabulary. With a beam size of 12, the correct word

appears in the beam (but not as the predicted word) 25.2% of the time.

To measure the accuracy of system predictions for word completion, we count the number

of incorrectly-predicted characters. To give a more complex example, suppose that the human

translator wants to use the word increased. The system first predicts rising, but after seeing the

letter i, it updates its prediction to increasing. It predicts all letters correctly until it comes to the

final e. When the user enters increase, the system updates its prediction to increased. We count

this as two wrongly predicted letters: increased. Table 3 shows the scores for our methods.

Again, the neural methods clearly outperform the phrase-based method.

Note that this measure is not as clearly tied to user actions as word prediction accuracy. In

the user interface shown in Figure 1, correctly predicted words are accepted by pressing TAB,

while incorrectly predicted words have to typed in completely (assuming no word completion).

So, the percentage of correctly predicted words reflects the ratio of words that do not have to

be typed in. The effort savings for word completion are less clear, since there are various ways

the user could interact with the system. In our example, when the user sees the prediction

increasing but wants to produce increase, there are several choices even within the CASMACAT

user interface. The user could accept the system’s suggestion, and then delete the suffix ing and

type in ed. Or, she could type in the entire prefix increase until the system makes the correct

prediction — which in this example does not yield any savings at all: the user may accept the

prediction with TAB or type in d herself.

System Configuration 1 2 3 4 5

Neural no beam search 55.9% 61.8% 61.3% 62.2% 61.1%

beam size 12 58.0% 62.9% 62.8% 64.0% 61.5%

Phrase-based - 28.6% 45.5% 46.9% 47.4% 48.4%

Table 4: Ratio of words correct after first failure.

Figure 4: Neural (no beam) recovery from first failure at each position in the window of 5 words

following the first failure, binned by probability assigned to correct solution (see legend).

5.3 Recovering from Failure

To get a more detailed picture of the performance of the neural prediction method, we explore

how it recovers from failure. First, how well does the method predict the words following its

first failure? We look at a window of up to five words following the first failure in a sentence

(note that if the first failure is near the end of the sentence, the window will be truncated at the

end of the sentence). See Table 4 for numbers for the methods.

The neural system predicts the first word in the window correctly 55.9% of the time, after

it fails on a word. The second word in the window is predicted correctly 61.8% with similar

numbers for the following words. So, failing on a word does impact the prediction of the

word immediately following the failure, but only slightly words further down the sentence. The

phrase-based method only correctly predicts 28.6% of the first words immediately after failing

on a word. This suggests that the phrase-based method has a harder time recovering initially.

Interestingly, not all failures have an equal impact on the predictability of the subsequent

words. Figure 4 shows the prediction accuracy for the neural method (without beam search)

in more detail for the same five word window following the system’s first error. We examine

the way that the probability assigned to the correct word (which the model failed to predict)

influences recovery from errors. When the model assigns extremely low probability (below

1%) to the correct answer, it performs very poorly on the next word, getting it correct only

44.1% of the time. On the other hand, when the model assigns relatively high probability to

the correct word (25% to 50%), the probability of correctly guessing the next word rises to

72.1%. We can think of the probability assigned to the correct word as approximating how

close the model was to being correct when it made the first error. When its prediction is far

from correct, it has difficulty recovering, but when it is close to correct, it does not suffer a drop

in performance in predicting the next words.

System Config. 1 2 3 4 5 6 7 8 9 10+

Neural no beam 8168 3229 1422 694 350 187 89 33 16 25

beam 12 8378 3072 1320 615 305 151 75 46 14 15

Phrase - 3403 2150 1227 825 530 360 282 212 157 774

Figure 5: The graph shows number of mispredicted words, categorized by lengths of the se-

quence of mispredicted words to which they belong. The table gives a breakdown of the number

of sequences of each length.

We observe examples of this phenomenon (and its ties to near-synonyms) in Figure 3.

When the model assigns low probability to the correct answer (e.g. interviewing), there are

sequences of incorrect predictions. In the case of rising, the model predicts increasing, a near-

synonym, and assigns the highest probability to increasing, rising, and climbing (in descending

order). As we saw in Section 5.2, the neural system predicts more synonyms than the search

graph system. We hypothesize that this is partly due to the neural system having additional

information about the semantics of words (as represented by their embeddings), while the search

graph system treats synonyms and non-synonyms alike.

5.4 Length of Sequences of Mispredicted Words
Another revealing set of statistics is the length of sequences of word prediction failures. If

the method fails on one word, and predicts the next word correctly, we have a 1-word failure

sequence. However, if it misses the next word also and only recovers after that, we have a 2-

word failure sequence, and so on. Shorter failure sequences indicate better models (and a better

user experience). Figure 5 visualizes the sequences of word prediction failures by showing how

many mispredicted words can be accounted for by each failure sequence length (mispredictions

in shorter sequences are represented by light colors while mispredictions in long sequences are

shown in darker red).

The methods show a stark contrast. The neural methods have a much higher number of 1-

word failure sequences (8168 and 8378 vs. 3403) and 2-word failure sequences (3229 and 3072

vs. 2150, comprised of 6458 and 6144 vs. 4300 mispredicted words) but comparably very few

long failure sequences. For instance, only a small fraction of the neural systems’ mispredicted

words occur in sequences of greater than 15 errors in a row (93 or 16 words total), while 7129

of the phrase-based system’s word prediction errors occur in misprediction sequences of length

greater than 15 words. This is not simply a consequence of the greater word prediction accuracy

of the neural systems; in particular, the phrased based model shows far more long misprediction

sequences than one would expect were those errors distributed uniformly randomly (the neural

systems also have more long misprediction sequences than would be expected if the errors

Length 1-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 100-104

CPU 108.6 115.7 122.7 127.0 131.3 136.1 140.7 145.2 184.4

GPU 7.0 7.2 7.4 7.4 7.4 7.4 7.6 7.6 7.6

Table 5: Decoding speed per word in milliseconds (neural model, no beam search) for different

sentence lengths.

occurred randomly, but to a lesser extent).

These numbers suggest that the neural method recovers much better from failures, while

the phrase-based system has more difficulty. Since the neural method considers every word in

the vocabulary at any point in the sequence, it can always place the user’s choice in a word

prediction sequence, and does not have to resort to string edit distance to match up with the

user’s translation.

6 Speed Considerations

We have shown that the neural method delivers superior prediction accuracy, but is it fast

enough? To be used in an interactive user interface, the method has to quickly produce alterna-

tive sentence completion predictions. A common time limit in human computer interaction is

100 milliseconds for the system’s response. Any longer feels sluggish and annoying to the user.

6.1 Speed Measurements

In a basic setup, the neural machine translation decoder has to step through the user’s prefix, and

then produce predicted words until the end of the sentence. In other words, it has to translate the

entire sentence for a response to a user interaction. Table 5 gives numbers for decoding speed,

running on a multi-core CPU (32 core 3.20GHz Intel Xeon CPU E5-2667 v3, although only 2-3

cores are utilized on average) and a GPU (Tesla K80).

Decoding time is spent mostly on the matrix multiplications to compute hidden and output

layer vectors. The computational cost of the argmax operation to pick the best word is negligi-

ble, hence the computational cost is essentially the same for matching words in the user prefix

and predicting new words.

To predict a single word, the CPU requires over 100 milliseconds, which is clearly too slow.

The time it takes to translate a single word slightly increases with the length of the sentence,

since the attention mechanism has to sum over a larger context of source language words.

On a GPU, the cost to predict one word drops to 7 milliseconds. For a 20-word sentence,

this means (7 × 20) 140 milliseconds which is also beyond our 100 millisecond time limit.

6.2 Fast Recovery

However, we can employ the following optimizations:

• We can precompute the initial translation when the document is uploaded. This gives us

the entire prediction sequence.

• The user will diverge from the suggested translation at some point. We do not need to

match the accepted user prefix again, since we can use the cached prediction sequence up

to this point.

• We can produce a limited sequence of predicted words rather than a completely new full

translation. In the user interface illustrated in Figure 1, only three words are shown. We

may initially respond to the user interface with a small sequence of words and deliver the

remaining words later.

• To have a full sentence completion at any time, we may initially patch together a limited

prediction with the original sentence completion, since later words are less likely to be

influenced by the local user choice.

(1) Initial hypothesis A sovereign prel@@ ate of the Champions League season .
(2) Translator prefix A confident

(3) New prediction (3 words) start to the

(4) Alignment start to the→ prel@@ ate of the Champions
(5) New hypothesis A confident start to the Champions League season .

Figure 6: Example of patching a 3-word prediction into the original sentence completion.

We propose a method (without beam search) that patches together a limited (say, 3 word)

new prediction with the existing sentence completion each time that the translator diverges

from the predicted translation. An example of this is shown in Figure 6 (we reference the

row numbers parenthetically in the following description). We begin by precomputing a full

translation when the document is uploaded (row 1). If and when the translator diverges from

this (row 2), we compute predictions for the next 3 words only (row 3) and attempt to patch

them together with the original translation.

We find the patch position by computing the KL divergence between the probability dis-

tribution that produced the last of the 3 new words and the stored probability distributions that

produced the words in a 5-word window (following the position of the the last word in the trans-

lator prefix). This results in an alignment between the last of the 3 new words and the index

of some word in the existing translation (row 4). The new translation hypothesis consists of

concatenating the translator prefix, the 3 newly predicted words, and any words following the

position of the index in the existing translation hypothesis that minimized the KL divergence

(row 5).

By patching together earlier predictions with a short sequence of predictions based on new

input from the translator, we can guarantee that we can serve the translator new predictions

quickly. The new prediction and patching combined takes an average of 54.3 milliseconds to

compute. This approach yields a word prediction accuracy of 56.4% and a letter prediction

accuracy of 84.2% (a drop from the full search neural model by 5.2% and 2.4%, respectively,

but still vastly outperforming the phrasal search graph system).

In a real-life setting, we may sometimes have enough time to recompute the full sentence

in the background, rather than relying on patching together different predictions, so we could

expect performance closer to the performance noted earlier. Additionally, we could use beam

search (or other improvements to the neural model) in order to precompute better initial se-

quences, which we expect would also improve performance.

6.3 Analysis

In the example in Figure 6, the new hypothesis is in fact the correct translation. If the initial

error by the system is a single-token error (for example a synonym), we might expect the last

of the 3 newly translated words to align to the word at the center of the window. In this case it

(correctly) aligns one position to the right of this and produces the desired hypothesis.

When the alignment is close to the center of the window, this suggests that the sentence

does not require much reordering. The patching heuristic is somewhat imprecise and has dif-

ficulty handling sentences with long-range reordering. In Figure 7 we compute the failure

Figure 7: Ratio correct after first failure for the 4th and 5th words in the window.

recovery ratios for the 4th and 5th words in the window following the first error,9 conditioned

on the alignment position.

An alignment position of 3 indicates that the 3rd newly translated word aligned with the

3rd word in the window (as would be expected if no reordering were needed). Similarly, an

alignment position of 1 indicates that the 3rd newly translated word aligned to the 1st word

following the failure, and so on. We see that when a longer-distance alignment occurs, the

ratio drops, demonstrating either an error of alignment or the system’s difficulty in handling

long-distance reordering.

7 Conclusion

In this paper we demonstrate that neural machine translation systems can effectively be applied

to interactive translation prediction, improving upon the performance of traditional methods.

We show that they recover well from errors, have shorter sequences of incorrect predictions,

and produce more near-synonyms of the correct answers. Finally, we demonstrate a method

that allows for practical deployment given real-life time constraints.

Acknowledgments

This work was supported, in part, by the Human Language Technology Center of Excellence

(HLTCOE) through the 2016 SCALE workshop CADET, as well as by a National Science

Foundation Graduate Research Fellowship under Grant No. DGE-1232825 (to the first author).

Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect those of the sponsors.

References

Alabau, V., Sanchis, A., and Casacuberta, F. (2011). Improving on-line handwritten recognition using

translation models in multimodal interactive machine translation. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Techologies, pages 389–

394, Portland, Oregon, USA. Association for Computational Linguistics.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to align and

translate. In ICLR.

Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., Lagarda, A., Ney, H.,

9We show only performance for the 4th and 5th words in the window; performance on the first three is identical to

the no-beam-search values reported in Table 4, as the patching occurs after this sequence of 3 new predictions.

Toms, J., Vidal, E., and Vilar, J.-M. (2009). Statistical approaches to computer-assisted translation.

Computational Linguistics, 35(1).

Bender, O., Hasan, S., Vilar, D., Zens, R., and Ney, H. (2005). Comparison of generation strategies for

interactive machine translation. In Proceedings of the 10th Conference of the European Association for
Machine Translation (EAMT), Budapest.

Cho, K. (2015). Neural machine translation tutorial. Technical report.

Cubel, E., Khadivi, S., Lagarda, A., Ney, H., Toms, J., Vidal, E., and Vilar, J.-M. (2009). Statistical

approaches to computer-assisted translation. Computational Linguistics, 35(1).

Ding, S., Duh, K., Khayrallah, H., Koehn, P., and Post, M. (2016). The JHU machine translation systems

for WMT 2016. In Proceedings of the First Conference on Machine Translation (WMT).

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. MIT Press.

Foster, G., Langlais, P., and Lapalme, G. (2002). User-friendly text prediction for translators. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

148–155, Philadelphia. Association for Computational Linguistics.

Green, S., Wang, S. I., Chuang, J., Heer, J., Schuster, S., and Manning, C. D. (2014). Human effort and

machine learnability in computer aided translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1225–1236, Doha, Qatar. Association for

Computational Linguistics.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing In Science & Engineering,

9(3):90–95.

Jean, S., Firat, O., Cho, K., Memisevic, R., and Bengio, Y. (2015). Montreal neural machine translation

systems for wmt15. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages

134–140, Lisbon, Portugal. Association for Computational Linguistics.

Koehn, P. (2009). A process study of computer-aided translation. Machine Translation, 23(4):241–263.

Koehn, P., Tsoukala, C., and Saint-Amand, H. (2014). Refinements to interactive translation prediction

based on search graphs. In Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages 574–578, Baltimore, Maryland. Association for

Computational Linguistics.

Langlais, P., Foster, G., and Lapalme, G. (2000). Transtype: a computer-aided translation typing system.

In Proceedings of the ANLP-NAACL 2000 Workshop on Embedded Machine Translation Systems.

Och, F. J., Zens, R., and Ney, H. (2003). Efficient search for interactive statistical machine translation.

In Proceedings of Meeting of the European Chapter of the Association of Computational Linguistics
(EACL).

Sanchis-Trilles, G., Ortiz-Martı́nez, D., Civera, J., Casacuberta, F., Vidal, E., and Hoang, H. (2008).

Improving interactive machine translation via mouse actions. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Processing, pages 485–494, Honolulu, Hawaii. Association

for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2015a). Improving neural machine translation models with

monolingual data. CoRR, abs/1511.06709.

Sennrich, R., Haddow, B., and Birch, A. (2015b). Neural machine translation of rare words with subword

units. CoRR, abs/1508.07909.

Sennrich, R., Haddow, B., and Birch, A. (2016). Edinburgh neural machine translation systems for WMT

16. In Proceedings of the First Conference on Machine Translation (WMT).

Sutskever, I., Vinyals, O., and Le, Q. V. V. (2014). Sequence to sequence learning with neural networks.

In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., editors, Advances in
Neural Information Processing Systems 27, pages 3104–3112. Curran Associates, Inc.

Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd An-
nual Meeting on Association for Computational Linguistics, pages 133–138, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Wuebker, J., Green, S., DeNero, J., Hasan, S., and Luong, M.-T. (2016). Models and inference for prefix-

constrained machine translation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 66–75, Berlin, Germany. Association for

Computational Linguistics.

Guided Alignment Training for Topic-Aware
Neural Machine Translation

Wenhu Chen hustchenwenhu@gmail.com

RWTH Aachen University, Ahornstr. 55, Aachen, Germany

Evgeny Matusov ematusov@ebay.com

eBay, Inc. Kasernenstr. 25, Aachen, Germany

Shahram Khadivi skhadivi@ebay.com

eBay, Inc. Kasernenstr. 25, Aachen, Germany

Jan-Thorsten Peter peter@cs.rwth-aachen.de

RWTH Aachen University, Ahornstr. 55 Aachen, Germany

Abstract
In this paper, we propose an effective way for biasing the attention mechanism of a sequence-

to-sequence neural machine translation (NMT) model towards the well-studied statistical word

alignment models. We show that our novel guided alignment training approach improves trans-

lation quality on real-life e-commerce texts consisting of product titles and descriptions, over-

coming the problems posed by many unknown words and a large type/token ratio. We also

show that meta-data associated with input texts such as topic or category information can sig-

nificantly improve translation quality when used as an additional signal to the decoder part of

the network. With both novel features, the BLEU score of the NMT system on a product title

set improves from 18.6 to 21.3%. Even larger MT quality gains are obtained through domain

adaptation of a general domain NMT system to e-commerce data. The developed NMT system

also performs well on the IWSLT speech translation task, where an ensemble of four variant

systems outperforms the phrase-based baseline by 2.1% BLEU absolute.

1 Introduction

NMT systems were shown to reach state-of-the-art translation quality on tasks established in

MT research community such as IWSLT speech translation task Cettolo et al. (2012). In this

paper, we also apply NMT approach to e-commerce data: user-generated product titles and

descriptions for items put on sale. Such data are very different from newswire and other texts

typically considered in the MT research community. Titles in particular are short (usually fewer

than 15 words), contain many brand names which often do not have to be translated, but also

product feature values and specific abbreviations and jargon. Also, the vocabulary size is very

large due to the large variety of product types, and many words are observed in the training data

only once. At the same time, these data are provided with additional meta-information about

the item (e.g. product category such as clothing or electronics), which can be used as context

to perform topic/domain adaptation for improved translation quality.

At first glance, established phrase-based statistical MT approaches are well-suited for e-

commerce data translation. In a phrase-based approach, singleton, but unambiguous words

and phrases are usually translated correctly. Also, since the alignment between source and

target words is available, it is possible to transfer certain entities from the source sentence to

the generated target sentence “in-context” without translating them. Such entities can include

numbers, product specifications such as “5S” or brand names such as “Samsung” or “Lenovo”.

In training, these entities can be replaced with placeholders to reduce the vocabulary size.

However, NMT approaches are more powerful at capturing context beyond phrase bound-

aries and were shown to better exploit available training data. They also successfully adapt

themselves to a domain, for which only a limited amount of parallel training data is avail-

able Luong and Manning (2015). Also, previous research Mathur et al. (2015) has shown that

it is difficult to obtain translation quality improvements with topic adaptation in phrase-based

SMT because of data sparseness and a large number of topics (e. g. corresponding to product

categories), which may or may not be relevant for disambiguating between alternative trans-

lations or solving other known MT problems. In contrast, we expected NMT to better solve

the topic adaptation problem by using the additional meta-information as an extra signal in the

neural network. To the best of our knowledge, this is the first work where the additional in-

formation about the text topic is embedded into the vector space and used to directly influence

NMT decisions.

In an NMT system, the attention mechanism introduced in Luong et al. (2014) is impor-

tant both for decoding as well as for restoration of placeholder content and insertion of unknown

words in the right positions in the target sentence. To improve the estimation of the soft align-

ment, we propose to use the Viterbi alignments of the IBM model 4 Brown et al. (1993) as an

additional source of knowledge during NMT training. The additional alignment information

helps the current system to bias the attention mechanism towards the Viterbi alignment.

This paper is structured as follows. After an overview of related NMT work in Section 2,

we propose a novel approach in Section 3 on using statistical word alignemt to bias the training

of neural MT attention mechanism, we call it guided alignment training. In Section 4, we de-

scribe in more detail how topic information can benefit NMT. Section 5 and Section 6 describes

our domain adaptation approach. Experimental results are presented in Section 7. The paper is

concluded with a discussion and outlook in Section 8.

2 Related Work

Neural machine translation is mainly based on using recurrent neural networks to grasp long

term dependencies in natural language. An NMT system is trained on end-to-end basis to maxi-

mize the conditional probability of a correct translation given a source sentence Sutskever et al.

(2014), Bahdanau et al. (2014), Cho et al. (2014b). When using attention mechanism, large

vocabularies Jean et al. (2014), and some other techniques, NMT is reported to achieve compa-

rable translation quality to state-of-art phrase-based translation systems. Most NMT approaches

are based on the encoder-decoder architecture Cho et al. (2014a), in which the input sentence

is first encoded into a fixed-length representation, from which the recurrent neural network de-

coder generates the sequence of target words. Since fixed-length representation cannot give

enough information for decoding, a more sophisticated approach using attention mechanism is

proposed by Bahdanau et al. (2014). In this approach, the neural network learns to attend to

different parts of source sentence to improve translation quality. Since the source and target lan-

guage vocabularies for a neural network have to be limited, the rare words problem deteriorates

translation quality significantly. The rare word replacement technique using soft alignment pro-

posed by Luong et al. (2014) gives a promising solution for the problem. Both encoder-decoder

architecture and insertion of unknown words into NMT output highly rely on the quality of the

attention mechanism, thus it becomes the crucial part of NMT. Some research has been done

to refine it by Luong et al. (2015), who proposed global and local attention-based models, and

Cohn et al. (2016), who used biases, fertility and symmetric bilingual structure to improve the

attention model mechanism. The most recent work done by Mi et al. (2016) is highly paral-

lel with our guided alignment training, Section 3. They use statistical alignment to supervise

the NMT in a similar fashion as we do, the difference is that they smooth the statistical align-

ment and apply Euclidean distance directly to the objective function, while we try with different

divergence function and also re-weight it before adding to the overall objective function.

Research on topic adaptation most closely related to our work was performed by Hasler

et al. (2014), but the features proposed there were added to the log-linear model of a phrase-

based system. Here, we use the topic information as part of the input to the NMT system.

Another difference is that we primarily work with human-labeled topics, whereas in Hasler

et al. (2014) the topic distribution is inferred automatically from data.

When translating e-commerce content, we are faced with a situation when only a few

product titles and descriptions were manually translated, resulting in a small in-domain parallel

corpus, but a large general-domain parallel corpus is available. In such situations, domain

adaption techniques have been used both in phrase-based systems Koehn and Schroeder (2007)

and NMT Luong and Manning (2015). In addition, while diverse NMT models using different

features and techniques are trained, an ensemble decoder can be used to combine them together

to make a more robust model. This approach was used by Luong et al. (2015) to outperform the

state-of-art phrase-based system with their NMT approach in the WMT 2015 evaluation.

3 Guided Alignment Training

When using the attention-based NMT Bahdanau et al. (2014), we observed that the attention

mechanism sometimes fails to yield appropriate soft alignments, especially with increasing

length of the input sentence and many out-of-vocabulary words or placeholders. In translation,

this can lead to disordered output and word repetition.

In contrast to a statistical phrase-based system, the NMT decoder does not have explicit

information about the candidates of the current word, so at each recurrent step, the attention

weights only rely on the previously generated word and decoder/encoder state, as depicted in

Figure 1. The target word itself is not used to compute its attention weights. If the previous word

is an out-of-vocabulary (OOV) or a placeholder, then the information it provides for calculating

the attention weights for the current word is neither sufficient nor reliable anymore. This leads

to incorrect target word prediction, and the error propagates to the future steps due to feedback

loop. The problem is even larger in the case of e-commerce data where the number of OOVs

and placeholders is considerably higher.

To improve the estimation of the soft alignment, we propose to use the Viterbi alignments

of the IBM model 4 as an additional source of knowledge during the NMT training. Therefore,

we first extract Viterbi alignments using GIZA++ toolkit Och and Ney (2003), then we use them

to bias the attention mechanism. Our approach is to optimize on both the decoder cost and the

divergence between the attention weights and the alignment connections generated by statistical

alignments. The multi-objective optimization task is then expressed as a single-objective func-

tion, which is a linear combination of two loss functions: original and new guided-alignment.

3.1 Decoder Cost
NMT proposed by Bahdanau et al. (2014) maximizes the conditional log-likelihood of target

sentence y1, . . . , yT given the source sentence x1, . . . , x
′
T :

HD(y, x) = − 1

N

N∑
n=1

log pθ(yn|xn) (1)

where (yn, xn) refers to nth training sentence pair, and N denotes the total number of sentence

pairs in the training corpus. In the paper, we name the negative log-likelihood as decoder cost

to distinguish from alignment cost. When using encoder-decoder architecture by Cho et al.

(2014b), the conditional probability can be written as:

p(y1 . . . yT |x1 . . . xT ′) =
T∏

t=1

p(yt|yt−1 · · · y1, c) (2)

with p(yt|yt−1 · · · y1, c) = g(st, yt−1, c), where T is the length of the target sentence and T ′ is

the length of source sentence, c is a fixed-length vector to encode source sentence, st is a hidden

state of RNN at time step t, and g(·) is a non-linear function to approximate word probability.

If attention mechanism is used, the vector c in each sentence is replaced by time-variant rep-

resentation ct that is a weighted summary over a sequence of annotations (h1, · · · , hT ′), and

hi contains information about the whole input sentence, but with a strong focus on the parts

surrounding the ith word Bahdanau et al. (2014). Then, the context vector can be defined as:

ct =
T ′∑
i

αtihi where αti =
exp(eti)∑T ′

k=1 exp(etk)
. (3)

This means, αti for each annotation hi is computed by normalizing the score function with

the softmax. Also, eti = a(st−1, hi) is the function to calculate the score of t-th target word

aligning to i-th word in the source sentence. The alignment model a(·, ·) is used to calculate

similarity between previous state st−1 and bi-directional state hi. In our experiments, we took

the idea of the dot global attention model of Luong et al. (2015), but we still keep the order

ht−1 → at → ct → ht as proposed by Bahdanau et al. (2014). We calculate the dot product of

encoder state hi with the last decoder state st−1 instead of the current decoder state. We observe

that this dot attention model (Equation 4) works better than concatenation in our experiments.

a(st−1, hi) = (Wsst−1)
T (Whhi) (4)

3.2 Alignment Cost
We introduce alignment cost to penalize attention mechanism when it is not consistent with

statistical word alignment. We represent the pre-trained statistical alignments by a matrix A,

where Ati refers to the probability of the tth word in the target sentence of being aligned to the

ith word in the source sentence. In case of multiple source words aligning to the same target

word, we normalize to make sure
∑

i Ati = 1, in the case of non-aligned target words, we do not

add any penalty. In attention-based NMT, the matrix of attention weights α has the same shape

and semantics as A. We propose to penalize NMT based on the divergence of the two matrices

during the training, the divergence function can e. g. be cross entropy Gce or mean square error

Gmse as in Equation 5. As shown in Figure 1, A comes from statistical alignment and is fed

into our guided-alignment NMT as an additional input to penalize the attention mechanism.

Gce(A,α) = − 1

T

T∑
t=1

T ′∑
i=1

Ati logαti Gmse(A,α) =
1

T

T∑
t=1

T ′∑
i=1

(Ati − αti)
2 (5)

We combine decoder cost and alignment cost to build the new loss function H(y, x,A, α):

H(y, x,A, α) = w1G(A,α) + w2HD(y, x) (6)

During training, we optimize the new compound loss function H(y, x,A, α) with regard to the

same parameters as before. The guided-alignment training influences the attention mechanism

to generate alignment closer to Viterbi alignment and has the advantage of unchanged parameter

space and model complexity. When training is done, we assume that NMT can generate robust

alignment by itself, so there is no need to feed an alignment matrix as input during evaluation.

As indicated in Equation 6, we set w1 and w2 for weights of decoder cost and alignment cost

to balance their weight ratio. We performed further experiments (see section 7) to analyze the

impact of different weight settings on translation quality.

4 Topic-aware Machine Translation

In the e-commerce domain, the information on the product category (e.g., “mens’ clothing”,

“mobile phones“, “kitchen appliances”) often accompanies the product title and description

and can be used as an additional source of information both in the training of a MT system

and during translation. In particular, such meta-information can help to disambiguate between

alternative translations of the same word that have different meaning. The choice of the right

translation often depends on the category. For example, the word “skin” has to be translated

differently in the categories “mobile phone accessories” and “make-up”. Outside of the e-

commerce world, similar topic information is available in the form of e.g. tags and keywords

for a given document (on-line article, blog post, patent, etc.) and can also be used for word sense

disambiguation and topic adaptation. In general, a document may belong to multiple topics.

Here, we propose to feed such meta-information into the recurrent neural network to help

generate words which are appropriate given a particular category or topic.

4.1 Topic Representation
The idea is to represent topic information in a D-dimensional vector l, where D is the number

of topics. Since one sentence can belong to multiple topics (possibly with different probabili-

ties/weights), we normalize the topic vector so that the sum of its elements is 1. It is fed into the

decoder to influence the proposed target word distribution. The conditional probability given

the topic membership vector can be written as (cf. Equations 2 and 3):

p(yt|y<t−1, ct, st−1, l) = p(yt|yt−1, ct, st−1, l) ≈ g(yt−1, st−1, ct, l)

where g(·) is used to approximate the probability distribution. In our implementation, we intro-

duce an intermediate readout layer to build the function g(·), which is a feed-forward network

as depicted in Figure 2.

4.2 Topic-aware Decoder
In the NMT decoder, we feed the topic membership vector to the readout layer in each recurrent

step to enhance word selection. As shown in Figure 1 and Figure 2, topic membership vector l
is fed into the NMT decoder as an additional input besides source and target sentences:

p(yt|y<t−1, ct, st−1, l) = p(yt|rt) where rt = Wr[ct; ft−1; st−1; l] + br (7)

Here, Wr is the concatenation of original transformation matrix and l, rt is the output from

readout layer and ft is the embedding of the last target word yt−1; st−1 refers the last decoder

state. Wr and br are weights and bias for the linear transformation, respectively. We can

rearrange the formula as:

rt = [W ′
r,Wc][ct; ft−1; st−1; l] + br

= [W ′
r[ct; ft−1; st−1] + br] +Wcl

= r′t + Ec

(8)

where Wr is concatenation of original transformation matrix W ′
r and topic transformation ma-

trix Wc. Then adding topic into readout layer input is equivalent to adding an additional topic

Figure 1: Topic-aware, alignment-guided encoder-decoder model. Topic information l is added

to the decoder as an additional input, influencing every decoding step; statistical alignment A is

added to the attention layer to supervise the learning of the attention mechanism.

vector Ec into the original readout layer output. Assuming l is a one-hot category vector, then

Wcl is equivalent to retrieving a specific column from the matrix Wc. Hence, we can name this

additional vector Ec as topic embedding, regarded as a vector representation of topic informa-

tion. It is quite similar to word embedding by Mikolov et al. (2013), we will further analyze the

similarity between different topics in Figure 3.

The readout layer depicted in Figure 2 merges information from the last state st−1, previ-

ous word embedding ft−1 (coming from word index yt−1, which is sampled w.r.t. the proposed

word distribution), as well as the current context ct to generate output. It can be seen as a

shallow network, which consists of a max-out layer Goodfellow et al. (2013), a fully-connected

layer, and a softmax layer.

5 Bootstrapping

When trained on small amounts of data, the attention-based neural network approach does not

always produce reliable soft alignment. The problem gets worse when the sentence pairs avail-

able for training are getting longer. To solve this problem, we extracted bilingual sub-sentence

units from existing sentence pairs to be used as additional training data. These units are exclu-

sively aligned to each other, i. e. all words within the source sub-sentence are aligned only to

the words within the corresponding target sub-sentence and vice versa. The alignment is deter-

mined with the standard approach (IBM Model 4 alignment trained with the GIZA++ toolkit

Och and Ney (2003)). As boundaries for sub-sentence units, we used punctuation marks, in-

cluding period, comma, semicolon, colon, dash, etc. To simplify bilingual sentence splitting,

we used the standard phrase pair extraction algorithm for phrase-based SMT, but set the min-

imum/maximum source phrase length to 8 and 30 tokens, respectively. From all such long

phrase pairs extracted by the algorithm, we only kept those which are started or ended with a

punctuation mark or started/ended a sentence; both on the source and on the target side.

For the bootstrapped training, we merged the original training data with the extracted sub-

Figure 2: Topic-aware readout layer. The topic information vector, l, is fed to the readout layer

in each recurrent step to influence target word selection.

sentence units and ran the neural training algorithm on this extended training set. Since the

extracted bilingual sub-sentence units generally showed good correspondence between source

and target due to the constraints described above, the expectation was that having such units

repeated in the training data as stand-alone training instances would guide the attention mecha-

nism to become more robust and make it easier for the neural training algorithm to find better

correspondences between more difficult source/target sentence parts. Also, having both short

and long training instances was expected to make neural translation quality less dependent on

the input length.

6 E-commerce Domain Adaptation

For the e-commerce English-to-French translation task, we only have a limited amount of in-

domain parallel training data (item titles and descriptions). To benefit from large amounts of

general-domain training data, we follow the method described by Luong and Manning (2015).

We first train a baseline NMT model on English-French WMT data (common-crawl, europarl

v7, and news commentary corpora) for two epochs to get the best result on a development set,

and then we continue training the same model on the in-domain training set for a few more

epochs. In contrast to Luong and Manning (2015), however, we use the vocabularies of the

most frequent 52K source/target words in the in-domain data (instead of the out-of-domain data

vocabularies). This causes NMT to focus on translation of the most relevant in-domain words.

7 Experimental Results

7.1 Data Sets and Preprocessing
We performed MT experiments on the German-to-English IWLST 2015 speech translation

task Cettolo et al. (2012) and on an in-house English-to-French e-commerce translation task.

As part of data preprocessing, we tokenized and lowercased the corpora, as well as replaced

numbers, product specifications, and other special symbols with placeholders such as $num.

We only keep these placeholders in training, but preserve their content as XML markups in the

dev/test sets, which we try to restore using attention mechanism. This content is inserted for the

generated placeholders on the target side based on the attention mechanism (see Luong et al.

(2014)). In the beam search for the best translation, we make sure that each placeholder content

is used only once. Using the same mechanism, we also pass OOV words to the target side “as

is” (without using any special unknown word symbol).

On both tasks, we evaluate all systems and system variants using case-insensitive

BLEU Papineni et al. (2002) and TER Snover et al. (2006) scores on held-out development

and test data using a single human reference translation.

Data-set IWSLT e-commerce

Language German English English French

Training

Sentences 165 201 516 000

Running words 3 873 816 3 656 038 2 592 202 2 895 089

Full vocabulary 103 390 45 068 119 607 129 848

Dev
Sentences 567 910

Running words 9 812 10 695 10 339 11 283

Test

Sentences 1100 910

Running words 19 019 22 895 10 817 11 016

Source OOV rate w.r.t. full/NMT Voc. 5.16/6.12 % 2.56/5.76 %

Table 1: Corpus statistics for the IWSLT and e-commerce translation tasks. OOV rate is calcu-

lated after preprocessing, placeholders like $num, $url, etc. largely decrease the OOV rate in

the e-commerce dev and test sets.

7.1.1 IWSLT TED Talk Data
For the IWSLT German-to-English task (translation of transcribed TED talks), we map the

topic keywords of each TED talk in the 2015 training/dev/test evaluation campaign release to

ten general topics such as politics, environment, education, and others. All sentences in the

same talk share the same topic, and one talk can belong to several topics. Instead of using the

official IWSLT dev/test data, we set aside 81/159 talks for development/test set, respectively.

Out of these talks, we used 567 dev and 1100 test sentences which have the highest probability

of relating to a particular topic (bag-of-words classification using the remaining 1365 talks as

the training data). The corpus statistics of the data sets obtained this way are given in Table 11.

7.1.2 E-commerce Data
For the e-commerce English-to-French task, we used the product category such as “fashion” or

“electronics” as topic information (a total of 80 most widely used categories plus the category

“other” that combined all the less frequent categories). The training set contained both product

titles and product descriptions, while dev and test set only contained product titles. Each title or

description sentence was assigned to only one category. The statistics of the e-commerce data

sets are given in Table 1.

7.2 Model Training
We implemented our neural translation model in Python using the Blocks deep learning library

van Merriënboer et al. (2015) based on the open-source MILA translation project. We com-

pared our implementation of NMT baseline system with Bahdanau et al. (2014) on the WMT

2014 English-to-French machine translation task and obtained a similar BLEU score on the of-

ficial test set as they reported in Bahdanau et al. (2014). Then we implemented the topic-aware

1This data set with topic labels is publicly available at https://github.com/wenhuchen/iwslt-2015-de-en-topics.

E-commerce En→Fr BLEU [%] TER [%]

Baseline NMT 18.6 68.5

+prefixed human-labeled categs 18.3 69.3

+readout human-labeled categs 19.7 65.3

+readout LDA topics 14.5 74.9

Table 2: Comparison of different approaches for topic-aware NMT.

algorithm (section 4), guided alignment training (section 3), and the bootstrapped training (sec-

tion 5) into the NMT model. We trained separate models with various feature combinations.

We also created an ensemble of different models to obtain the best NMT translation results.

In our experiments, we set the dimension of both source and target word embeddings to

620 and use a bi-directional GRU encoder and attention-based GRU decoder, the cell dimension

of both are set to 1000. We selected the 50k most frequent German words and top 30k English

words as vocabularies for the IWSLT task, and most frequent 52k English/French words for the

e-commerce task. The optimization of the objective function was performed by using AdaDelta

algorithm Zeiler (2012). We set the beam size to 10 for dev/test set beam search translation.

For training implementation, we use stochastic gradient descent with batch size of 100,

saving model parameters after a certain number of epochs. We saved around 30 consecutive

model parameters. We selected the best parameter set according to the sum of the established

MT evaluation measures BLEU Papineni et al. (2002) and 1-TER Snover et al. (2006) on the

development set. After model selection, we evaluated the best model on the test set. We report

the test set BLEU and TER scores in Table 5 and Table 7.

We use TITAN X GPUs with 12GB of RAM to run experiments on Ubuntu Linux 14.04.

The training converges in less than 24 hours on the IWSLT talk task and around 30 hours on the

e-commerce task. The beam search on the test set for both tasks takes around 10 minutes, the

exact time depends on the vocabulary size and beam size.

7.3 Effect of Topic-aware NMT
We tested different approaches to find out where topic information fits best into NMT, since

topic information can affect alignment, word selection, etc. The most naive approach is to

insert a pseudo topic word in the beginning of a sentence to bias the context of the sentence to a

certain topic. We also tried topic vectors of different origin in the read-out layer of the network.

We used both topics predicted automatically with the Latent Dirichlet Analysis (LDA) and

human-labeled topics to feed into the network as shown in Figure 1.

The results on the e-commerce task in Table 2 show that category information as a pseudo

topic word does not carry enough semantic and syntactic meaning in comparison to real source

words to have a positive effect on the target words predicted in the decoder. The BLEU score

of such system (18.3%) is even below the baseline (18.6%). In contrast, the human-labeled

categories are more reliable and are able to positively influence word selection in the NMT

decoder, significantly (19.7% BLEU) outperforming the baseline.

Replacing the human-labeled topic one-hot vectors of size 80 with the LDA-predicted topic

distribution vectors of the same dimension in the read-out layer of the neural network deteri-

orated the BLEU and TER scores significantly. We attribute this to data sparseness problems

when training the LDA of dimension 80 on product titles.

On the German-to-English task, we also observed MT quality improvements when using

human-labeled topic information as described in Figure 1. Here, we extracted the topic embed-

ding Ec from different experiments and show their cosine distance in Figure 3. It’s straight-

forward that in different experiments, the same topic tends to share similar representation in

SRC ich möchte Ihnen heute Morgen gerne von meinem Projekt, Kunst Aufräumen, erzählen.

NMT I want to clean you this morning, from my project, to say Art.

+topics I would like to talk to you today by my project, Art clean.

REF I would like to talk to you this morning about my project, Tidying Up Art.

SRC . . . unsere Kollegen an Tufts verbinden Modelle wie diese mit durch Tissue Engineering

erzeugten Knochen, um zu sehen, wie Krebs sich von einem Teil des Körpers zum nächsten

verbreiten könnte.

NMT . . . our NOAA colleagues combined models of models like this with tissue generated bones

from bones to see how cancer could spread from one part of the body, to the next

distribution.

+topics . . . our colleagues at Tufts are using models like this with tissue-based engineered bones

to see how cancer could spread from a part of the body to the next part.

REF . . . our colleagues at Tufts are mixing models like these with tissue-engineered bone to see

how cancer might spread from one part of the body to the next.

Table 3: Example of improved translation quality when topic information is used as input in the

neural MT system (German-to-English IWSLT test set).

Figure 3: Topic embedding cosine

distance.

Figure 4: Refined alignment examples us-

ing guided-alignment learning (green blocks

refer to the identical alignments from Base-

line NMT and guided-alignment NMT, blue

blocks refer to the alignment from base-

line NMT, yellow blocks refer to guided-

alignment NMT).

continuous embedding space. At the same time, closer topic pairs like “politics” and “issues”

tend to have shorter distance from each other. Examples of improved German-to-English NMT

translations when human-labeled topic information is used are shown in Table 3.

7.4 Implementation of Guided Alignment
To balance decoder cost and the attention weight cost, we experimented with different weights

for these costs. We analyzed the relation between weight ratio and the final result in Table 4.

Besides fixing the cost ratios during training, we also apply a heuristic to adjust the ratio as

the training is progressing. One approach is to set a high value for the alignment cost in the

beginning, then decay the weight to 90% after every epoch, finally eliminating the influence

of the alignment after some time. This approach helps for the IWSLT task, but not on the e-

commerce task. We assume that the alignment for the TED talk sentences seems to be easier for

NMT to learn on its own than the alignment between product titles and their translations. We

also analyzed the effect of using different loss functions for calculating alignment divergence

(see Section 3.2). The difference between the squared error and cross-entropy is not so large as

En→Fr
BLEU TER

% %

Baseline NMT 18.6 68.3

+ce (decay) 20.5 65.8

+ce (1:2) 20.6 65.5

+ce (1:1) 20.2 65.0

+ce (2:1) 20.9 65.7

+mse (1:1) 20.8 64.5

Table 4: Comparison of different

loss functions and weight ratios

for guided alignment (cf. Equa-

tion 5).

En→Fr systems
BLEU TER

% %

1. NMT in-domain (ID) 18.6 68.5

2. 1) + topic vectors 19.7 65.3

3. 1) + bootstrapping 20.1 66.2

4. 1) + guided alignment 20.9 65.7

5. NMT with 2) and 4) 21.3 64.3

6. NMT with 2) and 3) and 4) 20.7 66.2

7. NMT out-of-domain (OOD) 13.8 77.4

8. 7) + guided alignment 16.3 74.5

9. 8) + domain adaptation 25.0 60.1

Ensemble
system 4)

24.5 60.9
system 5)

NMT system 6)

ID NMT w. 3) and 4)

Ensemble system 9)

25.6 58.6NMT 9) with DW

OOD 9) w. topic vectors

Table 5: Translation results on the En→Fr e-commerce

task. (DW: decaying weight for the statistical alignment).

SRC Vintage Ollech & Wajs Early Bird Diver watch, Excellent!

SMT Vintage Ollech & Wajs début oiseau montre de plongée, excellent!

NMT Montre de plongée vintage Ollech & Wajs early bird, excellent!

REF Montre de Plongée Vintage Ollech & Wajs Early Bird, Excellent !

Table 6: Example of improved translation quality of the NMT ensemble system vs. phrase-

based baseline system (English-to-French title test set).

shown in Table 4. Since the cross-entropy function has a consistent form as decoder cost, we

decided to use it in further experiments. We extracted the NMT attention weights and marked

the connection with the highest score as hard alignment for each word. We drew the alignment

in Figure 4 to compare baseline NMT and alignment-guided NMT. It can be seen from the graph

that the guided alignment training truly improves the alignment correspondence.

7.5 Overall Results

The overall results on the e-commerce translation task and IWSLT task are shown in Table 5

and Table 7, respectively. We observed consistency on both tasks, in a sense that a feature that

improves BLEU/TER results on one task is also beneficial for the other.

For comparison, we trained phrase-based SMT models using the Moses toolkit Koehn

et al. (2007) on both translation tasks. We used the standard Moses features, including a 4-

gram LM trained on the target side of the bilingual data, word-level and phrase-level translation

probabilities, as well as the distortion model with the maximum distortion of 6. Our stronger

phrase-based baseline included additional 5 features of a 4-gram operation sequence model –

OSM Durrani et al. (2015).

On the e-commerce task, which is more challenging due to a high number of OOV words

and placeholders, we observed that NMT translation output had many errors related to incor-

rect attention weights. To improve the attention mechanism, we applied guided alignment and

De→En systems BLEU % TER %

1 Phrase-based system 24.7 55.4

2 Phrase-based system + OSM 25.7 55.1

3 NMT 23.4 60.1

4 NMT + topic vectors 23.7 59.6

5 NMT + bootstrapping 24.1 58.6

6 NMT + guided alignment 23.8 60.8

7 NMT + topic vectors + bootstrapping 24.2 59.4

8 NMT + topic vectors + bootstrapping + guided alignment 24.6 57.7

9 Ensemble

NMT + topic vectors

27.8 55.4
NMT + topic vectors + guided alignment

NMT + topic vectors + bootstrapping

NMT + topic v. + guided alignment + bootstrapping

Table 7: Overview of the translation results on the German-to-English IWSLT task.

bootstrapping. Both boosted the translation performance. Adding topic information increased

the BLEU score to 21.3%. We selected the four best model parameters from various experi-

ments to make an ensemble system, this improved the BLEU score to 24.5%. For the following

experiment, we had pre-trained a model on WMT15 parallel data with the guided alignment

technique, and then continued training on the e-commerce data for several epochs as described

in section 6, performing domain adaptation. This approach proved to be extremely helpful, giv-

ing an increase of over 3.0% absolute in BLEU. Finally, we also applied ensemble methods on

variants of the domain-adapted models to further increase the BLEU score to 25.6, which is 7.0

BLEU higher than the NMT baseline system, and only 0.6% BLEU behind the BLEU score of

26.2% for the state-of-the-art phrase-based baseline. Table 6 shows examples where the ensem-

ble NMT system is better than the phrase-based system despite the slightly lower corpus-level

BLEU score. In fact, a more detailed analysis of the sentence-level BLEU scores showed that

the NMT translation of 386 titles out of 910 was ranked higher than the SMT translation, the

reverse was true for 460 titles. In particular, the word order of noun phrases was observed to be

better in the NMT translations.

On the IWSLT task (Table 7), the baseline NMT was not as far behind the phrase-based

system as on the e-commerce task, and thus the obtained improvements were smaller than for

product title translations. We observed that topic information is less helpful than bootstrapping

and guided alignment learning. When we combined them, we reached the same BLEU score as

the phrase-based system (see Table 7). Finally, we combined four variant systems to create an

ensemble, which resulted in the BLEU score of 27.8%, surpassing the phrase-based translation

with the OSM model by 2.1% BLEU absolute.

8 Conclusion

We have presented a novel guided alignment training for a NMT model that utilizes IBM model

4 Viterbi alignments to guide the attention mechanism. This approach was shown experimen-

tally to bring consistent improvements of translation quality on e-commerce and spoken lan-

guage translation tasks. Also on both tasks, the proposed novel way of utilizing topic meta-

information in NMT was shown to improve BLEU and TER scores. We also showed improve-

ments when using domain adaptation by continuing training of an out-of-domain NMT system

on in-domain parallel data. In the future, we would like to investigate how to effectively make

use of the abundant monolingual data with human-labeled product category information that we

have available for the envisioned e-commerce application.

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473.

Brown, P. F., Pietra, S. A. D., Pietra, V. J. D., and Mercer, R. L. (1993). The mathematics of statistical

machine translation: Parameter estimation. Computational Linguistics, 19:263–311.

Cettolo, M., Girardi, C., and Federico, M. (2012). Wit3: Web inventory of transcribed and translated talks.

In Proceedings of the 16th Conference of the European Association for Machine Translation (EAMT),
pages 261–268, Trento, Italy.

Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the properties of neural machine

translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.

(2014b). Learning phrase representations using RNN encoder-decoder for statistical machine transla-

tion. arXiv preprint arXiv:1406.1078.

Cohn, T., Hoang, C. D. V., and Vymolova, E. (2016). Incorporating structural alignment biases into an

attention neural translation model. arXiv preprint arXiv:1601.01085.

Durrani, N., Schmid, H., Fraser, A., Koehn, P., and Schütze, H. (2015). The operation sequence model-

combining n-gram-based and phrase-based statistical machine translation. Computational Linguistics.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Maxout networks.

arXiv preprint arXiv:1302.4389.

Hasler, E., Blunsom, P., Koehn, P., and Haddow, B. (2014). Dynamic topic adaptation for phrase-based

MT. In Proceedings of EACL, pages 328–337.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2014). On using very large target vocabulary for neural

machine translation. CoRR, abs/1412.2007.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,

Moran, C., Zens, R., et al. (2007). Moses: Open source toolkit for statistical machine translation. In

Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions,

pages 177–180. Association for Computational Linguistics.

Koehn, P. and Schroeder, J. (2007). Experiments in domain adaptation for statistical machine translation.

In Proceedings of the second workshop on statistical machine translation, pages 224–227. Association

for Computational Linguistics.

Luong, M.-T. and Manning, C. D. (2015). Stanford neural machine translation systems for spoken lan-

guage domain.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural

machine translation. arXiv preprint arXiv:1508.04025.

Luong, M.-T., Sutskever, I., Le, Q. V., Vinyals, O., and Zaremba, W. (2014). Addressing the rare word

problem in neural machine translation. arXiv preprint arXiv:1410.8206.

Mathur, P., Federico, M., Köprü, S., Khadivi, S., and Sawaf, H. (2015). Topic adaptation for machine

translation of e-commerce content. Proceedings of MT Summit XV, page 270.

Mi, H., Wang, Z., and Ittycheriah, A. (2016). Supervised attentions for neural machine translation. arXiv
preprint arXiv:1608.00112.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment models. Compu-
tational Linguistics, 29(1):19–51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic evaluation

of machine translation. In Proceedings of the 40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computational Linguistics.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation edit rate

with targeted human annotation. In Proceedings of association for machine translation in the Americas,

pages 223–231.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In

Advances in neural information processing systems, pages 3104–3112.

van Merriënboer, B., Bahdanau, D., Dumoulin, V., Serdyuk, D., Warde-Farley, D., Chorowski, J., and

Bengio, Y. (2015). Blocks and fuel: Frameworks for deep learning. arXiv preprint arXiv:1506.00619.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Improving Neural Machine Translation on
resource-limited pairs using auxiliary data of a

third language

Ander Martı́nez ander.martinez.zy4@is.naist.jp

Yuji Matsumoto matsu@is.naist.jp

Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-0192, Japan

Abstract
In the recent years interest in Deep Neural Networks (DNN) has grown in the field of Natural

Language Processing, as new training methods have been proposed. The usage of DNN has

achieved state-of-the-art performance in various areas. Neural Machine Translation (NMT)

described by Bahdanau et al. (2014) and its successive variations have shown promising results.

DNN, however, tend to over-fit on small data-sets, which makes this method impracticable for

resource-limited language pairs. This article combines three different ideas (splitting words

into smaller units, using an extra dataset of a related language pair and using monolingual

data) for improving the performance of NMT models on language pairs with limited data. Our

experiments show that, in some cases, our proposed approach to subword-units performs better

than BPE (Byte pair encoding) and that auxiliary language-pairs and monolingual data can help

improve the performance of languages with limited resources.

1 Introduction

In the recent years interest in Deep Neural Networks (DNN) has grown in the field of Natu-

ral Language Processing (NLP), as new training methods (Blunsom and Kalchbrenner, 2013;

Sutskever et al., 2014) have been proposed. The encoder-decoder approach for Neural Machine

Translation (NMT) consists in encoding the source sentence into an intermediate vector repre-

sentation and then generating (decoding) the target sentence from this representation. Cho et al.

(2014) is an example of this approach.

The NMT approach of jointly training alignment and translation models described by Bah-

danau et al. (2014) and its successive variations have shown promising results. Its attention

mechanism deals with the problem of having a fixed length vector for sentences of varying

length by encoding the source sentence into a set of vectors, one vector for each of the tokens

in the source sentence.

NMT doesn’t need complex feature engineering, which is convenient when dealing with

resource-limited languages. However, a large parallel corpus is still needed in order to get

competitive performance and avoid overfitting. As an example, Bahdanau et al. (2014) and

Jean et al. (2015) use a dataset of about 12 million parallel sentences.

Two main problems arise when using a small dataset for training a MT model.

One of those problems is that the vocabulary exposed by a small dataset is inherently small.

Also, even if a word shows up in the data it may occur too few times for learning a reliable

representation. One strategy for minimizing this problem is subdividing words into subword

units, like syllables. Doing so reduces the total vocabulary size and increases the hit-rate of

each symbol in the dataset. This has been explored in Sennrich et al. (2015b).

Another problem concerns large NMT models. When the number of parameters is too

large compared to the data size, the model may optimize for memorizing all or a large part of

the dataset instead of modeling the translation; overfitting in practice. A solution to this problem

is to reduce the model size to better match the amount of data. However, many relevant features

may not be modeled with a smaller number of parameters. Another approach is to artificially

increase the number of samples by counterfeiting or using data of a third language.

This research explores how much of an improvement using auxiliary parallel sentences

from a third language to the target language (A → T) in modeling MT from of a resource-

limited language pair (S → T) brings. We also explore the effect of using an auxiliary language

on the decoder side.

For the case of phrase-based Statistical Machine Translation, similar ideas have been ex-

plored before with varied results. For example, for closely related pairs (Nakov and Ng, 2012)

or through lexical triangulation (Crego et al., 2010; Dholakia and Sarkar, 2014). For NMT, a

couple of authors have also explored this possibility. Dong et al. (2015) modeled translation

to different targets from a common source with shared representation. Firat et al. (2016) also

explored the case of a common target language for different source languages. Both papers

claimed to get higher translation quality over individually trained models. A comparison to

these papers follows in Section 2.

In order to assist the learning of the target language pair, MT for the auxiliary pair is

trained jointly. We argue that doing so prevents the language pair with the small dataset from

overfitting and leads to more robust models. This problem could also be addressed through

Transfer Learning, as explored in Yosinski et al. (2014) and Zoph et al. (2016), but that approach

falls outside the scope of this article.

A third solution to parallel data scarcity is using monolingual data in addition in order to

make the Language Model (LM) at the target side stronger. A strong LM at the decoder can

increase performance, as already tried by Sennrich et al. (2015a).

We perform experiments that are analogous to the ones described in Firat et al. (2016) with

focus on the more resource-limited pairs and use their results as a baseline for comparison.

This article has the following sections: Section 2 summarizes previous related work; in

Section 3, the proposed approach is described; Section 4 presents some experiments with their

results and analysis; finally, in Section 5, we draw some conclusions.

2 Related work

2.1 Neural Machine Translation
The Neural Machine Translation method proposed in Bahdanau et al. (2014) on which this work

is based is briefly described in this section.

NMT models, like SMT models, are trained to maximize the conditional log-probability

of every translation in the training set Y (i) w.r.t. their corresponding source sentence X(i) and

model’s parameters θ.

θ∗ = argmax
θ

∑
i:Y (i)∈Y

log p(Y (i)|X(i), θ). (1)

In order to compute the probability of a translation, the sequence x = (x1, . . . , xT) is first

encoded into a sequence of annotations h = (h1, . . . , hT), by a bidirectional recurrent neural

network.

ht = [�ht;�ht] = [f1(xt, �ht+1); f2(xt,�ht−1)], (2)

where f1 and f2 are both Gated Recurrent Units (GRU) as described in Cho et al. (2014).

This annotations are used by the decoder to estimate the probability of the translation,

one word at a time, based also on the previous words in the sentence. A convex sum of the

annotations, cτ , is computed each time according to their contribution to the upcoming word.

The weight of each annotation is computed in the following way:

cτ =

Tx∑
i=1

ατ,ihi, (3)

ατ,i =
exp{a(hi, zτ−1, Ey[ỹτ−1])}∑Tx

j=1 exp{a(hj , zτ−1, Ey[ỹτ−1])}
, (4)

where zτ−1 is the previous hidden state of the decoder GRU and Ey[ỹτ−1] is the word embed-

ding of the previously produced word. During training, the embedding of the expected previous

word is used instead. The function a scores the relevance of the annotation in the current con-

text. It is defined as a projection of the sum of the projections of each of its parameters.

A softmax layer can be applied on a projection of cτ , zτ and the embedding of the previous

work to compute the probability of each candidate word in the target vocabulary.

p(yτ |y<τ , x) ∝ exp{q(yτ−1, zτ , cτ)}. (5)

When generating translations of new sentences beam-search is used based on the trained

probability model.

The hidden state of the decoder zτ is updated with respect to the convex sum cτ , as de-

scribed in Cho et al. (2014).

zτ = g(yτ−1, zτ−1, cτ). (6)

In this article, the part of the network that produces h is referred as encoder and the rest of

the network as decoder. In articles by other authors, the parameters used exclusively to compute

ατ may not be considered part of the decoder.

2.2 Subword-units
Out-of-vocabulary words and low word hits are an inherent problem to small datasets. Instead

of using words as translation unit, sub-word elements can be used. By doing so, we get more

symbols from the same dataset and thus a bigger percentage of all possible symbols will appear

and the number of appearances of each of these symbols will become higher. Also, by making

the symbols shorter the number of possible symbols also reduces.

Sennrich et al. (2015b) tried using subword units for improving translation of rare words.

For doing so, they first applied BPE (Byte pair encoding) (Gage, 1994) to the word list at the

character level. BPE consists in replacing the most common symbol pairs with a new symbol

consecutively until the symbol table has a certain size. They didn’t merge symbols across words.

In order to have more similar subword units at the source and target languages, they

transliterated the Cyrillic characters into Latin characters and trained the merging jointly. This

works for the use case explored in that article of translating proper names and other words that

can be mapped phonetically. However, it doesn’t match well with morphemes (the smallest

meaningful unit of a language), which are usually short, and it minimizes word hits, which isn’t

desirable in the case of small datasets.

They tried two vocabulary sizes: one of 60,000 words and another one of 90,000 words for

the joint case.

2.3 Multilingual Neural Machine translation
The idea of jointly training additional language pairs to improve the translation quality of a

model has already been tried.

The method explained in Dong et al. (2015) consists in translating to a set of languages

from English using the same English encoder for each pair. They only investigate the case

where the source language is shared. This approach mainly improves the quality of the encoder

side as it studies more datapoints, but the quality of the decoder doesn’t improve that much

because its amount of data remains the same.

The model described by Bahdanau et al. (2014) has 85,967,240 floating point parameters

when using a vocabulary size of 30,000 at both ends. Of these parameters 32.95% are related

to the encoder and 67.05% to the decoder and soft-alignment system. This suggests that the

decoder will overfit more easily under data-scarce conditions.

Another article investigating the use of additional language pairs is Firat et al. (2016). They

train five language pairs in both directions, which makes ten individual models. For each of the

six languages, the same encoder and decoder parameters are used when repeated in a pair and

the parameters of the attention mechanism (function a in Equation (4) in this article) are shared

for all pairs.

In the encoder, the hidden states, called annotations, obtained from the forward and back-

ward RNN are projected into a new vector. This allows for the annotations to be more language-

independent, as it doesn’t make a difference whether a feature is extracted by the network iter-

ating over the source sentence forwards or backwards.

hn
t = Wn

adp[
�ht;�ht] (7)

For each of the language pairs, they feed a minibatch to the corresponding model and

update its weights accordingly; one language-pair at a time.

They obtained significant improvement for small datasets and when the repeated language

(English) was in the decoder.

They applied this method to datasets of varying sizes, starting on 100K parallel sentences

for English-French translation and 210K for German-English.

2.4 Monolingual data
Sennrich et al. (2015a) introduced a method for integrating pre-trained LMs with NMT models

in order to improve the translation quality. In their Deep-Fusion approach, they trained a LM

on monolingual data and a NMT model on parallel data, and then integrated the LM prediction

before the Softmax layer to contribute in the selection of the next word.

The LM was based on the RNNLM (Deoras, 2011) approach using GRUs in the decoder,

which in effect, is very similar to the model described in Section 2.1 but without the attention

mechanism. That is, the decoder only depends on one monolingual y sentence, without any

encoder. The equivalents to Equations 5 and 6 are:

p(yτ |y<τ) ∝ exp{q(yτ−1, z
LM
τ)}. (8)

zLM
τ = g(yτ−1, z

LM
τ−1). (9)

In order to integrate this LM with the Translation Model (TM), they first scale the hidden

state of the LM and then concatenate it to the hidden state of the TM before computing the

softmax. The scale factor gτ for the LM is given by:

gτ = σ(vTg z
LM
τ + bg), (10)

where vg and bg are learned weights and bias, respectively. After merging, the equivalent to

Equation 5 is

p(yτ |y<τ , x) ∝ exp{q(yτ−1, zτ , z
LM
τ , cτ)}. (11)

The model from Bahdanau et al. (2014) already trains something close to a LM from the

parallel data, as can be seen in Equation 5. This approach increases the complexity of the model,

as two states for two decoders need to be updated for every timestep.

3 Proposed solution

The method proposed here consists in jointly training various models with shared parameters;

either the encoder or the decoder parameters. By jointly training the models they will co-adapt

and benefit from each other. In the experiments we only explore the possibility of using one

extra auxiliary language, either as the source language or as the target language, in addition

to the intended source and target languages. More than one extra language could be used in a

similar fashion.

In addition to using parallel data from an auxiliary language we also experiment with using

monolingual data to obtain improved results.

We used subword units instead of words as the translation unit as a method to deal with

large vocabulary sizes and differences in morpheme-per-word ratios (synthetic vs isolating).

3.1 Subword units
We pre-processed the data to split words into subword units for training.

Any word in the dataset was split into a number of subword units equal to its number of

vowels. Each of the subword units consists of a vowel with all its surrounding consonants.

Numbers aren’t split. Word-boundary marks were included into the subwords. As an example,

the sentence ”the 54 polychromatic mats” is split into the sequence [” the ”, ” 54 ”, ” pol”,

”lychr”, ”chrom”, ”mat”, ”tic ”, ” mats ”].

The motivation behind this approach is that the subword-units generated by this approach

are similar in shape to syllables and syllables map relatively well to morphemes in many lan-

guages. By using these short subword-units the model could learn some kind of morphological

derivation.

In our experiments we used a vocabulary size of 30k symbols. Using only these symbols

would result in too many out-of-vocabulary symbols. In order to alleviate this problem we tried

to fit the infrequent symbols into the vocabulary by trimming one consonant at a time from the

beginning or the end of the symbol until they matched a symbol in the vocabulary. We didn’t

trim consonants from word-boundaries and when for the inner symbols we trimmed from the

side with more consonants. This reduced the number of unknown symbols considerably but

didn’t eliminate them. Note that sometimes excessive trimming can happen to the point that the

original word cannot be restored, but this is still preferable to an unknown symbol.

The subword units are merged after translation before computing the BLEU score in order

to be comparable to other authors’ results. The subword units are merged using a simple regular

expression of the form ”s/([:consonant:]+) \1/\1/g”.

We notice two problems with this approach. For languages with long consonants clusters

like Czech the vocabulary size will grow faster. We observed this problem with German when

compared to English. The number of out-of-vocabulary symbols in our datasets can be seen in

Table 1.

The other problem is related to sound changes. For languages with a lot of sound changes,

like consonant gradation in Finnish, morphological changes can produce a different symbol,

which increases the need of data. As an example, the word poika will use the symbols poik
and ka but in genitive it changes to pojan resulting in poj and jan , two different symbols.

This approach produces more symbols for each sentence than the BPE approach. As an

example, Firat et al. (2016) got 43.67M Finnish tokens from a 2.03M sentence dataset, i.e. 21.5

symbols per sentence, while our method produces 52.0 symbols. For English and German they

got 26.9 and 28.3 respectively, while we get 47.9 and 45.2. This increased number of symbols

helps specially with small datasets and languages with many one-syllable morphemes.

3.2 Auxiliary language parallel data
We train a model on an auxiliary language pair which shares one of its languages with the target

language pair together with the main model. Both models, the target translation model and the

auxiliary translation model, are trained to minimize the Negative Log Likelihood (NLL) on their

corresponding datasets. In order to train both of them jointly, for each of them, the mean NLL

and the gradients with respect to each parameter are computed on a minibatch. The weighted

sum of these gradients are further used by ADADELTA (Zeiler, 2012) to update the weights.

To prevent one of the models’ updates from outweighing the other’s, gradients of shared

parameters are scaled based on their previous d costs, in such a way that the weakest model’s

gradients get promoted. The intuition behind this is that, if they are generalizing correctly,

the main model and the auxiliary model should produce similar costs, as they are defined in a

similar fashion. If a model performs better than the other we can decelerate its optimization

while accelerating the other to balance them properly. The auxiliary model has less risk of

overfitting, as it trains on a bigger dataset. Therefore, if the main model produces costs similar

to those produced by the auxiliary model it is generalizing better than when the cost function

evaluates lower. The parameters that are not shared by the two models are not scaled.

The scale factor at epoch t for the gradient’s of the auxiliary model sauxt and the target

model stgtt are computed as follows:

sauxt =

(
1

2
− 1

1 + e(μ
tgt
t −μaux

t)s

)
l +

1

2
, (12)

stgtt = 1− sauxt ; (13)

where s and l are hyperparameters that control the steepness and he range of the function,

respectively. μtgt
t and μaux

t are the mean of the last d costs for the target model and the auxiliary

model, calculated as follows:

μm
t =

t∑
j=t−d

Jm
j , (14)

where m ∈ {tgt, aux} and Jm
j is the cost computed by model m at timestep j. The pseudo-

code for this algorithm can be seen in Algorithm 1 and the shape of Equation 12 in Figure

1.

We group sentences of similar length in minibatches so that each minibatch contains

roughly the same number of symbols (in our experiments, no more than 4000 symbols per

batch). Therefore, minibatches of longer sentences contain less sentence pairs. Because each

minibatch can contain a different number of sentences and different number of words per sen-

tence, averaging over words is necessary. Our cost function averaged the cost of every word in

a sentence in every sentence in a minibatch. The cost of a word was measured as Negative Log

Likelihood,

Jm
t (Xt, Yt) =

1

Nt

Nt∑
i=1

⎛
⎝ 1

length(Y
(i)
t)

length(Y
(i)
t)∑

j=1

− logPθ(Y
(i,j)
t |Xt)

⎞
⎠, (15)

Figure 1: Equation 12 with parameters s = 5 and l = 0.9

where Xt and Yt are the source and translation sentences in the minibatch at timestep t, Nt is

the number of sentence pairs in the minibatch and length(Y
(i)
t) is the length in symbols of the

the translation i at timestep t.
In Figure 2 we can see how the costs from the German-English and the French-English

models descend at the same pace. The s hyperparameter was set to 50. The weighted sum of

these gradients are further used by ADADELTA Zeiler (2012) to update the weights.

3.3 Monolingual data
Monolingual data can be leveraged in a similar way to auxiliary data. We input monolingual

sentences as both, input and expected output, in the manner of an auto-encoder (e.g. De→De).

In contrast with the data from an auxiliary pair the model for the monolingual data is

trained after the target model has converged. The encoder and the decoder are trained separately.

First the non-shared part (either encoder or decoder) is trained until convergence and then the

rest of the model is trained using Equation 12 to scale the updates.

We used different parameters for Equation 12 for the auxiliary language-pair data and the

monolingual data.

This kind of model, similar to an auto-encoder, is expected to quickly memorize a copying

mechanism from source to target. The method here described can slow down this memorization.

4 Evaluation

4.1 Data and Methods
The datasets used in the experiments are similar to some described in Firat et al. (2016). We

performed two sets of experiments: one for the case where the auxiliary language is in the

source (De+Fr → En) side and the other one for the case where the auxiliary language is in

the target side (En → Fi+Fr). In both cases French is the auxiliary language. The parallel

data is from the datasets available for WMT’15 for each language pair. We randomly picked

100k and 200k sentences for the En-Fi case and 210k and 420k sentences for the De-En case.

The development and test sets are for En-Fi were newsdev-2015 and newstest-2015
respectively; and for De-En, newstest-2013 and newstest-2015 respectively.

All the sentences were tokenized using the tokenize.perl script included

in Moses and then cleaned using the scripts normalize-punctuation.perl,

remove-non-printing-char.perl and deescape-special-chars.perl. In-

Algorithm 1 Training

1: procedure TRAIN

2: costs aux, costs tgt← ([] , [])
3: b← 0.5
4: while not done do
5: Mtgt,Maux ← getNextMinibatches()
6: Jtgt, Jaux ← (costTgt(θtgt,Mtgt),costAux(θaux,Maux))
7: for θi ∈ (θtgt ∪ θaux) do
8: if θi ∈ (θtgt ∩ θaux) then
9: gtgt ← ∂

∂θi
costTgt(θtgt,Mtgt)

10: gaux ← ∂
∂θi

costAux(θaux,Maux)
11: g ← b · gaux + (1− b) · gtgt
12: else if θi ∈ θtgt then
13: g ← ∂

∂θi
costTgt(θtgt,Mtgt)

14: else
15: g ← ∂

∂θi
costAux(θaux,Maux)

θi ← applyADADELTA(θi, g)

16: push Jtgt onto costs tgt
17: push Jaux onto costs aux
18: if |costs aux| > d then shift costs aux

19: if |costs tgt| > d then shift costs tgt

20: (μaux, μtgt) ← (mean(costs aux), mean(costs tgt))

21: b←
(

1
2 − 1

1+e(μtgt−μaux)s

)
l + 1

2

stead of space separated words, we used the subword units described in Section 3.1 with a

vocabulary size of 30k symbols. Unlike the BPE subword method used in Firat et al. (2016)

our method allows for UNK symbols. The amount of these symbols and other statistics of the

datasets can be seen in Table 1.

Twelve models were trained, three on each of the four described datasets. We first trained

four models using only the described subword approach, without any additional data. Then, we

also trained four models using the auxiliary data. Finally, we further train the models from the

previous step using the monolingual data in addition to the main and auxiliary datasets.

All the models had the same number of parameters in their encoders and decoders.

We evaluate the performance of the trained models based on their BLEU score using the

multi-bleu.perl script from Moses. We merged the subword tokens into words before

evaluation and computed the score on lowercase text.

4.2 Implementation

The code1 for the proposed method was implemented in Python using Theano (2016). It runs on

a single GPU computing the cost and gradients for each language pair one at a time. This could

be parallelized using an extra GPU to speed the training up. We used three different models of

GPU for training: GeForce GTX 980 Ti, Tesla K40m and GeForce GTX TITAN X.

We used a vocabulary size of 30k symbols for each language. All the hidden layers had

1,000 units. The embeddings for the each symbol were 620 dimensions long. The attention

vectors from the bidirectional RNNs where projected into 1,000 dimension vector as described

1Code available at https://github.com/basaundi/amta2016

role sentence pairs symbols UNK

src tgt src tgt

en-fi

train 100k 4.7m 5.2m 11.6k (0.2%) 39.6k (0.7%)

train 200k 9.3m 10.4m 23.3k (0.2%) 78.6k (0.7%)

development 1500 54.2k 60.6k 904 (1.7%) 986 (1.6%)

test 1370 45.4k 51k 940 (2.1%) 858 (1.7%)

en-fr auxiliary 4m 222.3m 262.6m 783.6k (0.3%) 747.7k (0.4%)

fi monolingual 8m 399.5m 3.6m (0.9%)

de-en

train 210k 10m 9.5m 350.2k (3.5%) 90.2k (0.9%)

train 420k 20.1m 19m 700.3k (3.5%) 180.3k (0.9%)

development 3000 115.5k 105.6k 3641 (3.2%) 1120 (1.1%)

test 2169 80k 75.3k 2801 (3.5%) 1330 (1.8%)

fr-en auxiliary 4m 267.4m 227.2m 1m (0.4%) 862.3k (0.4%)

de monolingual 8m 357m 5.2m (1.5%)

Table 1: Statistics of the corpora used in the experiments. The symbols are subword tokens as

described in this article.

Size BPE Firat SW +Aux +Aux +Mono

En → Fi
100k 3.93/3.42 3.21/4.2 4.17/3.89 3.81/3.74 4.54/3.99

200k 5.21/4.79 4.16/5.71 5.28/4.70 5.15/5.08 5.63/5.32

Table 2: BLEU scores for the Finnish development and test datasets (separated by /). SW is

our new subword-unit method, +Aux is using subwords and English-French auxiliary data and

+Aux +Mono is using subwords with auxiliary and monolingual data.

in Equation 7.

The models are optimized using ADADELTA Zeiler (2012) with the ρ parameter set to 0.95.

We clipped all the gradients to an L2 norm of 1 after weight-summing them as described in

Section 3.2.

During training, a minibatch from each used dataset was fed to the corresponding compu-

tational graph. Sentences of similar length were grouped together in minibatches of no more

than 40k symbols. Therefore, minibatches of longer sentences contained less sentences than

those with shorter sentences.

We trained the models for a week and kept the one that performed best on the development

set. For the models using monolingual data, we first trained the model on the corresponding

training and auxiliary datasets. Then, we further trained the model using also the auxiliary data

and monolingual data stopping after the third drop of performance on the development data.

This happened quite fast, as the model memorizes the copy mechanism easily.

We used different values for hyperparameters s and l in Equation 12 for those parameters

shared with the auxiliary language-pair model (saux = 50 and laux = 1) and those parameters

shared with the monolingual model (smono = 30 and lmono = 0.9). For both cases the number

of previous costs d used for the running average was 30.

4.3 Results and analysis
The results for the experiments are summarized in Tables 2 and 3. For German, we can see that

the results from Firat et al. (2016) for their original approach using the same dataset were better

for the same target dataset in all cases. They didn’t try English-Finnish translation with small

datasets.

Size Single † Firat † SW +Aux +Aux +Mono

De → En
210k 14.27/13.20 16.96/16.26 15.85/14.24 16.61/15.39 16.66/15.30

420k 18.32/17.32 19.81/19.63 18.72/17.10 18.58/17.17 18.62/17.26

Table 3: BLEU scores for the German development and test datasets (separated by /). SW is

our new subword-unit method, +Aux is using subwords and auxiliary data and +Aux +Mono
is using subwords with auxiliary and monolingual data. † Results from Firat et al. (2016).

When compared to the results from the single language-pair model using BPE, we can see

that our approach for the subword units worked well with German. The performance gap is

bigger with the smaller dataset. Our approach produces more symbols for the same dataset,

which means there is more data for training. However, guessing the right word also becomes

harder because more subwords need to be decoded correctly in order to get one correct word.

This difference should be more noticeable for languages with longer words. In Table 5, we can

see that many subwords were guessed correctly by the different models but didn’t form the right

word.

Using the auxiliary language pair helped for the German-English model with the small

dataset. The extra data didn’t help with the bigger dataset. Our guess is that one week wasn’t

enough for the model to benefit from all the data, as our method takes a lot of time to complete

one iteration when using a single GPU. The score on the development dataset was still growing

when the training was stopped. The performance for the model trained on the bigger dataset im-

proved when trained with the extra monolingual dataset. This improvement in the performance

could be an effect of the extra training time. In Table 4 we can see the translations generated by

the different models to a sample sentence.

For the English-Finnish models the auxiliary data helped only for the bigger dataset be-

cause the smaller dataset overfitted for Finnish before it could use any French data. Our results

are inferior to the results from the approach described by Firat et al. (2016) 2. The auxiliary

dataset helped better when the auxiliary language was in the encoder (i.e., the language in the

decoder was repeated).

In Figure 2 we can see how the NLL cost descended at the same pace for both German-

English and French-English effectively preventing the model from overfitting for the smaller

dataset. In our experiments we observe that the BLEU score on the validation set starts to

decrease when the cost goes under 1.0 when using our proposed subword units.

Introducing the monolingual data helped prevent the English-Finnish models from overfit-

ting but wasn’t very helpful for German. In Figure 3 we observe how, without the additional

data, the model over-fits and prepends an unnecessary adjective to the word Ukraine associated

to school and Ukraine. The incorrect translation means ”All children return to latter Ukraine”.

The proposed subword-units are able to generate new words that do not appear in the

training or auxiliary dataset by analogy. As an example, the word biometrically was guessed

correctly by the German-English model even though this word appears in the test set for the

first time and the English-Finnish model could generate the word liitoksen (liitos + GEN, of the

annexation).

5 Conclusion

We evaluated three different ideas that could help improve NMT for language pairs with limited

resources. We trained three models applying from one to the three of the ideas on four different

datasets and assessed them by measuring their BLEU scores on the same test-set.

2Computed using the code at https://github.com/nyu-dl/dl4mt-multi

Figure 2: NLL-per-word cost evolution for a model trained on a single language pair (de-en) and

one trained using an auxiliary language pair. The cost for the model trained without auxiliary

data sinks because of overfitting. For the other model, the costs of the target language-pair

(upper) and the auxiliary language-pair (lower) descend at the same pace.

The first idea was to use subword-units instead of words. The subword-units we applied

were intended to map better to single morphemes when compared to other methods as BPE. Our

experiments showed that these kind of subword-units can help with smaller datasets, getting a

+1.24 BLEU score improvement when compared to BPE for German-English translation when

trained on a 210k sentence pair dataset.

Using data form an auxiliary language-pair helped improve the performance for small

datasets (about 200k parallel sentences) but when the dataset was too small (100k parallel sen-

tences) and the auxiliary language was in the decoder side the model ended memorizing the

small dataset despite the extra data. Even though the extra data improved the performance the

solution by Firat et al. (2016) got better results for German-English translation.

The monolingual data helped prevent overfitting in the cases when the dataset in the de-

coder side was too small. The monolingual data didn’t help very much with German-English

translation. Our proposed solution increased considerably the time needed for each iteration

and thus the time for convergence.

In the future, we would like to rethink the subword-unit approach to represent better the

consonant-gradation and other small sound changes related to morpheme combination. Also,

faster GPUs may make our solution more feasible in the future.

Figure 3: Alignments for English-Finnish translations by the ”SW” (left) and ”+Aux+Mono”

models (right). The first model prepends the adjective ”jälkimmäiseen” (latter) to Ukraine and

omits the words eivät (not) and koulu (school).

source die premierminister indiens und japans trafen sich in tokio .

reference india and japan prime ministers meet in tokyo

subword 210k the prime minister of india and japan in tokyo in tokyo .

+aux 210k the prime ministers of india and japan met came in tokyo .

+aux+mono 210k the prime minister of india and japan came to tokyo .

subword 420k prime minister india and japan met in tokio .

+aux 420k the prime minister of india and japan joined in tokyo .

+aux+mono 420k the prime minister , india and japan , met in tokyo .

Table 4: Sample translations of the first German sentence in the test set produced by the different

models.

source the organisations have promised a career solution by the

end of autumn , but according to the latest estimation it

would be achieved this week .

reference järjestöt ovat luvanneet työuraratkaisun syksyyn mennessä ,

mutta tuoreimman arvion mukaan se syntyisi tämän viikon aikana .

subword 100k järjestöt ovat luvanneet erinomaisen urauden loppuun

saattamisen loppuun saakka , mutta myöhemmin tällä viikolla

toteutetulla arviolla voitaisiin saavuttaa tämän viikon kuluessa .

+aux 100k järjestöt ovat luvanneet suorituskeskustelun jälkeen

syksyn loppuun mennessä , mutta viimeisimpien arvioiden

mukaan tämä ehdotus voitaisiin .

+aux+mono 100k järjestöt ovat luvanneet tehtyä urakentamalla syksyn loppuun

mennessä , mutta viimeisimpänä arvUNKstana se olisi

saavuttanut tämän viikon kuluesss .

subword 200k järjestöillä on luvattu uralla uratkaisu vuoden loppuun mennessä ,

mutta viimeisimmän arvion mukaan se olisi saavutettavissa .

+aux 200k järjestöt ovat luvanneet saavutettavan uran loppuun mennessä ,

mutta viimeisten arvioiden mukaan tämä olisi mahdollista

saavuttaa tällä viikolla .

+aux+mono 200k järjestöt ovat luvanneet suoran ratkaisun syksyn loppuun mennessä ,

mutta viimeisin arvioitu olisi viime viikolla saavutettavissa .

Table 5: Sample translations into Finnish. Many subwords were guessed correctly but didn’t

form the correct word.

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align

and Translate. arXiv:1409.0473 [cs, stat]. arXiv: 1409.0473.

Blunsom, P. and Kalchbrenner, N. (2013). Recurrent Continuous Translation Models. Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.

(2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Trans-

lation. arXiv:1406.1078 [cs, stat]. arXiv: 1406.1078.

Crego, J. M., Max, A., and Yvon, F. (2010). Local lexical adaptation in Machine Translation through tri-

angulation: SMT helping SMT. In Proceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010). Coling 2010 Organizing Committee.

Deoras, A. (2011). RNNLM - Recurrent Neural Network Language Modeling Toolkit. Microsoft Research.

Dholakia, R. and Sarkar, A. (2014). Pivot-based triangulation for low-resource languages. In Proc. AMTA,

pages 315–328.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). Multi-Task Learning for Multiple Language

Translation. In ACL.

Firat, O., Cho, K., and Bengio, Y. (2016). Multi-Way, Multilingual Neural Machine Translation with a

Shared Attention Mechanism. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 866–875, San

Diego, California. Association for Computational Linguistics.

Gage, P. (1994). A New Algorithm for Data Compression. C Users Journal, 12(2):23–38.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On Using Very Large Target Vocabulary for

Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1–10, Beijing, China. Association for Computational Linguistics.

Nakov, P. I. and Ng, H. T. (2012). Improving Statistical Machine Translation for a Resource-Poor Lan-

guage Using Related Resource-Rich Languages. Journal of Artificial Intelligence Research, 44. arXiv:

1401.6876.

Sennrich, R., Haddow, B., and Birch, A. (2015a). Improving Neural Machine Translation Models with

Monolingual Data. arXiv:1511.06709 [cs]. arXiv: 1511.06709.

Sennrich, R., Haddow, B., and Birch, A. (2015b). Neural Machine Translation of Rare Words with Sub-

word Units. arXiv:1508.07909 [cs]. arXiv: 1508.07909.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks.

In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 27, pages 3104–3112. Curran Associates, Inc.

Theano, D. T. (2016). Theano: A Python framework for fast computation of mathematical expressions.

arXiv:1605.02688 [cs]. arXiv: 1605.02688.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural

networks? arXiv:1411.1792 [cs]. arXiv: 1411.1792.

Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. arXiv:1212.5701 [cs]. arXiv:

1212.5701.

Zoph, B., Yuret, D., May, J., and Knight, K. (2016). Transfer Learning for Low-Resource Neural Machine

Translation. arXiv:1604.02201 [cs]. arXiv: 1604.02201.

Which Words Matter in Defining Phrase
Reorderings in Statistical Machine Translation?

Hamidreza Ghader h.ghader@uva.nl

Christof Monz c.monz@uva.nl

Informatics Institute, University of Amsterdam, The Netherlands

Abstract
Lexicalized and hierarchical reordering models use relative frequencies of fully lexicalized

phrase pairs to learn phrase reordering distributions. This results in unreliable estimation for

infrequent phrase pairs which also tend to be longer phrases. There are some smoothing tech-

niques used to smooth the distributions in these models. But these techniques are unable to

address the similarities between phrase pairs and their reordering distributions. We propose

two models to use shorter sub-phrase pairs of an original phrase pair to smooth the phrase re-

ordering distributions. In the first model we follow the classic idea of backing off to shorter

histories commonly used in language model smoothing. In the second model, we use syntactic

dependencies to identify the most relevant words in a phrase to back off to. We show how

these models can be easily applied to existing lexicalized and hierarchical reordering models.

Our models achieve improvements of up to 0.40 BLEU points in Chinese-English translation

compared to a baseline which uses a regular lexicalized reordering model and a hierarchical

reordering model. The results show that not all the words inside a phrase pair are equally im-

portant in defining phrase reordering behavior and shortening towards important words will

decrease the sparsity problem for long phrase pairs.

1 Introduction

The introduction of lexicalized reordering models (LRMs) (Tillmann, 2004; Koehn et al., 2005)

was a significant step towards better reordering by modeling the orientation of the current phrase

pair with respect to the previously translated phrase. LRMs score the order in which phrases

are translated by using a distribution of distinguished orientations conditioned on phrase pairs.

Typically, the set of orientations consists of: monotone (M), swap (S) and discontinuous (D).

However, LRMs are limited to reorderings of neighboring phrases only. Galley and Manning

(2008) proposed a hierarchical phrase reordering model (HRM) for more global reorderings.

LRMs and HRMs both use relative frequencies observed in a parallel corpus to estimate

the distribution of orientations conditioned on phrase pairs. As a result, they both suffer from

the same problem of estimating reliable distributions for cases that occur rarely during training

and therefore have to resort to smoothing methods to alleviate sparsity issues.

Cherry (2013) builds on top of HRMs and proposes a sparse feature approach which uses

word clusters instead of fully lexicalized forms for infrequent words to decrease the effect of

sparsity on the estimated model.

In this paper, we propose two types of approaches to use the most influential words from

inside the original phrase pairs to estimate better orientation distributions for infrequent phrase

pairs that takes phrase pair similarity more into account. In the first approach, we define a back-

off model to shorten towards important words inside the original phrase pairs following the idea

Dirichlet Smoothed

Source Target Freq M S DL DR

a 中国政府 chinese government 2834 0.216 0.034 0.315 0.433

b 日本政府 japanese government 580 0.157 0.039 0.299 0.503

c 尼泊尔政府 nepalese government 11 0.525 0.001 0.101 0.370

Recursive Map Smoothed

Source Target Freq M S DL DR

a 中国政府 chinese government 2834 0.216 0.034 0.315 0.432

b 日本政府 japanese government 580 0.158 0.039 0.300 0.501

c 尼泊尔政府 nepalese government 11 0.400 0.009 0.202 0.388

Table 1: Examples of similar phrase pairs and their orientation probabilities using Dirich-

let (Equation 1) and Recursive MAP (Equation 2) smoothing. M=monotone, S=swap,

DL=discontinous left, and DR=discontinous right.

of back-off models in language model smoothing. This is, to some extent, complementary to

the HRM in the sense of using smaller phrase pairs to make better prediction. The difference is

that within HRMs smaller phrase pairs are merged into longer blocks when possible, while we

propose to use shorter forms of phrase pairs when possible. In the second approach, we propose

to produce generalized forms of original, fully lexicalized phrase pairs by including important

words and marginalizing others allowing for smoothed distributions that better capture the true

distributions of orientations. Here, we use syntactic dependencies from the original phrase pair

to generalize and shorten in a more linguistically informed way.

The main contribution of this paper includes new methods to use shortened and general-

ized forms of a phrase pair to smooth the original phrase orientation distributions. We show

that our smoothing approaches result in improvements in a phrase-based machine translation

system, even when compared against a strong baseline using both LRM and HRM together.

These methods do not require any changes to the decoder and do not lead to any additional

computations during the decoding.

Our second contribution is a deeper analysis showing that orientation distributions con-

ditioned on long phrase pairs typically depend on a few words within phrase pairs and not the

whole lexicalized form. This supports and adds to the sparse reordering features (Cherry, 2013).

2 Problem Definition

In order to smooth the original maximum likelihood estimation, LRMs originally back off to

the general distribution over orientations:

P po | f̄ , ēq “ Cpo, f̄ , ēq ` σP poqř
o1 Cpo1, f̄ , ēq ` σ

(1)

which is also known as Dirichlet smoothing, where σP poq denotes the parameters of the Dirich-

let prior that maximizes the likelihood of the observed data, Cpo, f̄ , ēq refers to the number of

times a phrase pair cooccurs with orientation o, and σ is the equivalent sample size, i.e., the

number of samples required from P poq to reflect the observed data (Smucker and Allan, 2005).

Cherry (2013) and Chen et al. (2013) introduce recursive MAP smoothing, which makes use of

more specific priors by recursively backing off to orientation priors, see Equation 2. While re-

cursive MAP smoothing factorizes phrase pairs into source and target phrases, it still considers

the phrases themselves as fixed units.

P po | f̄ , ēq “ Cpo, ē, f̄q ` αsPspo | f̄q ` αtPtpo | ēqř
o1 Cpo1, ē, f̄q ` αs ` αt

Pspo | f̄q “
ř

ē Cpo, f̄ , ēq ` αgPgpoqř
o1,ē Cpo1, f̄ , ēq ` αg

Ptpo | ēq “
ř

f̄ Cpo, f̄ , ēq ` αgPgpoqř
o1,f̄ Cpo1, f̄ , ēq ` αg

Pgpoq “
ř

f̄ ,ē Cpo, f̄ , ēq ` αu{3ř
o1,f̄ ,ē Cpo1, f̄ , ēq ` αu

(2)

To better understand what kind of information is ignored by both of the aforementioned

smoothing methods, consider the phrase pairs and their corresponding distributions given in

Table 1, for which we would expect similar distributions. The phrase pairs in rows (a) and (b)

are frequently observed during training, resulting in reliable estimates. On the other hand, the

phrase pair in row (c) is infrequent, leading to a very different distribution, due to the smoothing

prior, while being semantically and syntactically close to (a) and (b). In Table 1, we can also

observe that recursive MAP smoothing results in slightly more similar distributions compared

to plain Dirichlet smoothing but the overall differences remain noticeable.

In this paper, we argue that in order to obtain smoother reordering distributions for phrase-

pairs such as the ones in Table 1, one has to take phrase-internal information into account.

3 Related Work

The problem of data sparsity of training LRMs has first been addressed by Nagata et al. (2006)

who propose to use POS tags and word clustering methods and distinguish the first or last word

of a phrase, based on the language, as the head of a phrase.

Somewhat complementary to our work, Galley and Manning (2008) introduced hierar-

chical reordering models that group phrases occurring next to the current phrase into blocks,

ignoring the internal derivation within a block, which biases orientations more towards mono-

tone and swap. At the same time, orientations are still conditioned on entire phrase pairs, which

means that their approach suffers from the same sparsity problems as LRMs. This problem

has been more directly addressed by Cherry (2013) who uses unsupervised word classes for

infrequent words of the phrase pairs in the form of sparse features. Like (Nagata et al., 2006),

the first and last words of phrase pair are used as features in his model. Unfortunately, this

approach also introduces thousands of additional sparse features, many of which have to be

extracted during decoding, requiring changes to the decoder as well as a sizable tuning set.

Durrani et al. (2014) investigate the effect of generalized word forms on reordering in an

n-gram-based operation sequence model, where they use different generalized representations

including POS tags and unsupervised word classes to generalize reordering rules to similar

cases with unobserved lexical operations.

While the approaches above use discrete representations, (Li et al., 2014) propose a dis-

criminative model using continuous space representations of phrase pairs to address data spar-

sity problems. They train a neural network classifier based on recursive auto-encoders to gen-

erate vector space representations of phrase pairs and base reordering decision on those rep-

resentations. They apply their model as an additional hypergraph reranking step since direct

integration into the decoder would make hypothesis recombination more complex and substan-

tially increase the size of the search space.

In addition to reordering models, several approaches have used word classes to improve

other models within a statistical machine translation system, including translation (Wuebker

et al., 2013) and language models, where the problem of data sparsity is particularly exacerbated

for morphologically rich target languages (Chahuneau et al., 2013; Bisazza and Monz, 2014).

4 Model Definition

In this section, we propose two different models which use different words as source of infor-

mation to better estimate reordering distributions of sparse phrase pairs. Each model uses a

different generalization scheme to obtain less sparse but still informative representations.

4.1 Interpolated Back-off Sub-phrases
In n-gram language modeling shorter n-grams have been used to smooth the probability distri-

butions of higher order sparse n-grams. Lower order n-grams form the basis of Jelinek-Mercer,

Katz, Witten-Bell and absolute discount smoothing methods (Chen and Goodman, 1999). For

instance, Jelinek-Mercer smoothing linearly interpolates distributions of lower orders to smooth

the distributions of higher order n-grams.

We use this as a motivation that shorter phrase pairs in lexicalized reordering models could

play the role of lower-order n-grams in language model smoothing. But while backing off is

obvious in language modeling, it is not straightforward in the context of lexicalized reordering

models as there are several plausible ways to shorten a phrase pair, which is further complicated

by the internal word alignments of the phrase pairs.

(a) Original phrase pair (b) Eligible shortening

(c) Ineligible shortening (d) Hierarchical reordering situation

Figure 1: Backing off to shorter phrase pairs using eligible sub-phrase pairs (b). For compari-

son, we also include an example of a grouping of phrases as done in HRM (d).

The example in Figure 1 illustrates how sub-phrase pairs (Figure 1b and 1c) of the longer

phrase pair (Figure 1a) can be used to estimate the discontinuous left orientation for a longer,

infrequent phrase pair. Following the strategy within language modeling to back off to shorter

n-grams, we back off to the sub-phrase pairs that are consistent with the inside alignment of the

longer phrase pair and provide a shorter and less sparse history. In this example, the number

of times that sub-phrase pair (政府, government), see Figure 1b, appears with a discontinuous
left jump of the length of the previous phrase pair for the next translation is considered when

estimating the discontinuous left orientation for the longer phrase pair. On the other hand, the

sub-phrase pair (尼泊尔, nepalese), see Figure 1c, cannot be used to predict a future discontinu-
ous left of the long phrase pair, as there is no direct way to connect it to (f0, e4). The difference

between this model and HRM can be seen in Figure 1d. HRM groups small phrase pairs from

the context into longer blocks and determines the orientation with respect to grouped block,

while our model looks into the phrase pair itself and uses possible shortenings to better estimate

the orientation distribution conditioned on the original phrase pair. Our model can be applied

to HRMs as well as LRMs to estimate a better distribution for long infrequent phrase pairs.

In order to provide a formal definition which sub-phrase pairs to consider when backing

off, let us assume that A is the set of alignment connections between the source f̄ and target ē
side of a longer phrase pair. The set of eligible sub-phrase pairs, Ef̄ ,ē, is defined as follows:

Ef̄ ,ē “ tpf̄ rl,ks, ērl1,nsq| 1 ď k ď m, 0 ď l ď k, 0 ď l1 ď n and

pf̄ rl,ks, ērl1,nsq consistent with A if l ą 0 ^ l1 ą 0 u
(3)

where f̄ rl,ks is a sub-phrase of f̄ with length l which ends at the kth word of f̄ , m and n are

the lengths of f̄ and ē respectively and the consistency with the alignment is ensured by the

following three conditions (Koehn et al., 2005):

1. Dei P ērl1,ns, fj P f̄ rl,ks : pi, jq P A

2. @ei P ērl1,ns : pi, jq P A ñ fj P f̄ rl,ks

3. @fi P f̄ rl,ks : pi, jq P A ñ ei P ērl1,ns

Figure 2: The distributions needed to estimate the conditional probability p̂pM |
f1f2f3, e1e2e3q include ppDR | f2, e3q and ppM | f2f3, e2e3q

Considering Figure 2, it is clear why (f̄ r1,2s, ēr1,3s) and (f̄ r2,3s, ēr2,3s) are considered

eligible shortenings. Other possible shortenings such as (f̄ r2,2s, ēr3,3s) and (f̄ r1,3s, ēr1,2s) either

violate the consistency conditions or do not run up to the end of the target side of the original

phrase pair as in the definition above. Note that n is a constant here and ērl1,ns means that all

sub-phrase pairs must finish at the end of the target side of the original phrase pair. Otherwise

one cannot directly determine the orientation with respect to the next phrase pair.

In our model, we compute the smoothed orientation distribution conditioned on a phrase

pair by linearly interpolating the distribution of all eligible sub-phrases:

P̂ po | f̄ , ēq “
ÿ

pf̄ rl,ks,ērl1,nsqPEf̄,ē

λl,l1P pΩpf̄ rl,ks, f̄ , oq | f̄ rl,ks, ērl1,nsq (4)

where Ef̄ ,ē is the set of eligible sub-phrase pairs and f̄ rl,ks indicates a sub-phrase of f̄ with

length l ending at the kth word of f̄ , ērl1,ns is a sub phrase of ē with the length of l1 which ends

at the last word of ē and the function Ωpf̄ rl,ks, f̄ , oq returns the correct orientation considering

the position of source sub-phrase f̄ rl,ks with respect to either end of the source phrase f̄ and

orientation o.

In order to compute the linear interpolation over the conditional distributions of the sub-

phrase pairs, we have to determine the weight of each term in the linear interpolation (Equation

4). Here, we use expectation-maximization (EM) over a held-out data set, which is word-

aligned using GIZA++ (Och and Ney, 2003). We extract phrase pairs using a common phrase

extraction algorithm (Koehn et al., 2005) and count the number of occurrences of orientations

for each phrase pair. These counts are used with unsmoothed reordering probabilities learned

over the training data to compute the likelihood over the held-out data. We designed the EM

algorithm to learn a set of lambda parameters for each length combination of the original phrase

pairs. To reduce the number of parameters, we assume that all sub-phrases with the same length

on source and target side share the same weight. This model is referred to as the BackOff model

in the remainder of this paper.

4.2 Recursive Back-off MAP Smoothing
Above we used linear interpolation to estimate the final distribution from the orientation dis-

tributions of shorter sub-phrase pairs. Here we investigate another method aiming to affect the

distributions of frequent phrase pairs to a lesser extent than those of non-frequent ones.

To this end, we use recursive MAP smoothing to estimate the distribution of the original

phrase pair. In linear interpolation, all phrase pairs with the same length will get the same por-

tion of their estimated distribution from their sub-phrases. On the other hand, for more frequent

phrase pairs, the maximum likelihood distribution of the phrase pair itself is more reliable than

the distributions of its sub-phrase pairs. Thus, a model relying more on the distribution of the

original phrase pairs for frequent phrase pairs would be desirable.

To achieve this, we use a formulation similar to recursive MAP smoothing (Equation 2)

with recursively backing off to the distributions of shorter sub-phrase pairs. At each recursion

step we use the distribution of the longest sub-phrase pair as the prior distribution. Taking our

definition for eligible sub-phrase pairs into account (Equation 3), all other sub-phrase pairs of

the original phrase pair are sub-phrase pairs of the longest sub-phrase pair, in the case that the

original phrase pair does not include unaligned words. For cases including unaligned words

like the example in Figure 3, there could be sub-phrases where none of them is the sub-phrase

of the other. In these cases we include the distributions of all those sub-phrases with the same

equivalent sample size as the prior distributions. The estimated probability distribution of a

phrase pair (f̄ ,ē) is defined as follows:

P̂ po | f̄ , ēq “
Cpo, f̄ , ēq ` ř

pf̄L,ēLqPLf̄,ē
αP̂ pΩpf̄L, f̄ , oq | f̄L, ēLq

ř
oPO Cpo, f̄ , ēq ` ř

pf̄L,ēLqPLf̄,ē
α

(5)

where Lf̄ ,ē refers to the set of eligible sub-phrase pairs of pf̄ , ēq that are not sub-phrase pairs of

each other and which is defined as follows:

Lf̄ ,ē “ tpf̄ 1, ē1q P Ef̄ ,ēztpf̄ , ēqu| �Dpf̄2, ē2q P Ef̄ ,ēztpf̄ , ēq, pf̄ 1, ē1qu : f̄ 1 Ď f̄2 ^ ē1 Ď ē2u
(6)

Figure 3: Illustration of sub-phrases where neither of the two pairs pf1f2f3, e2e3q and

pf2f3, e1e2e3q of the original phrase pair pf1f2f3, e1e2e3q is a sub-phrase of the other.

Here, f̄ 1 Ď f̄2 means that f̄ 1 is a sub-phrase of or equal to f̄2. As a result, Lf̄ ,ē is the set of

longest eligible sub-phrase pairs of original phrase pair where none of them is a sub-phrase of

the others. For Ef̄ ,ē see Equation 3. O is the set of possible orientations. Note that we refer to

this model shortly as RecursiveBackOff model from now on. We also refer to both this model

and the BackOff model described in the previous section as back-off models.

4.3 Dependency Based Generalization
The methods described so far generalize the original phrase pairs by shortening towards the last

aligned words as the most important words to define the reordering behavior of a phrase pair. In

the remainder of this section, we use dependency parses to define how to generalize the original

phrase pair and shorten towards important words.

Head-driven hierarchical phrase based translation (Li et al., 2012) suggests that using heads

of phrases can be beneficial for better reordering in general. In our work, we define the heads

of a phrase to be its exposed heads. Given a dependency parse, the exposed heads are all

words inside a subsequence that are modifying a word outside it. Figure 4 shows an example

of exposed heads in a phrase pair. The highlighted words are the exposed heads of the phrase

pair. Exposed heads have been used in multiple linguistically motivated approaches as strong

predictors of the next word in structured language models (Chelba and Jelinek, 2000; Garmash

and Monz, 2015) and the next rule in a hierarchical translation system (Li et al., 2012).

In our model, besides training a regular lexicalized or hierarchical reordering model on

surface forms of phrases, we train another reordering model which keeps the exposed heads

lexicalized and replaces the remaining words in a phrase pair by a generalized representation.

Assume that RE is the set of dependency relations in the dependency parse tree of sentence S.

Figure 4: Examples of exposed heads in a Chinese-English phrase pair (between square brack-

ets). The underlined words are the exposed heads since they have an incoming dependency

originating outside of the phrase.

We consider each relation as an ordered pair pw1
l, wkq which means w at index k of sentence

S modifies w1 at index l. In addition, assuming f j
i is a phrase in S, starting from the ith and

ending with the jth word in sentence S, then the generalization wG of a word is:

wG “
$’&
’%

wk if wk P f j
i , Dpw1

l, wkq P RE :

l ă i or l ą j or w1 “ ROOT

Genpwkq otherwise

Here, k and l are indices of words w and w1 in sentence S and ROOT is the root of the

dependency parse of sentence S. The function Genpwq returns a generalization form for word

w. We define this function in three different ways to create three different models.

1. Genpwkq = POS tag(wk)

2. Genpwkq = <mod> if wk´1 is not equal to <mod> and nothing otherwise

3. Genpwkq remove wk.

The question is how to use these generalizations to improve the estimation of the reordering

distribution for each phrase pair. Our first model applies a generalization to the bilingual training

data and creates a reordering model similar to the regular lexicalized reordering model, but

based on relative frequency of generalized phrase pairs. In practice, a phrase pair may have

multiple generalizations due to different dependency parses in different contexts. Since it is

difficult to produce a dependency parse for the target side during decoding, we assume that

a phrase pair will always have one possible generalization. Under this assumption, we can

approximate the orientation distribution of a phrase pair to be:

P̂ po | f̄ , ēq “ P po | f̄G, ēGq (7)

We can use the orientation distribution of a generalization as our estimate of the distri-

bution of a phrase pair that produces the generalization. Here, f̄G and ēG are word by word

generalizations of f̄ and ē. In case of multiple generalizations we use the one maximizing

P pf̄G, ēG | f̄ , ēq. Depending on which of the three definitions for Genpwkq we use, we name

our models as PMLH (POS Modifiers Lexicalized Heads), MMLH (Merged Modifiers Lexical-

ized Heads), and LH (Lexicalized Heads) respectively.

As an alternative model, we propose to use the generalized distributions as a prior distri-

bution in Dirichlet smoothing, where the distribution of each phrase pair is smoothed with the

distribution of its generalized form. This should result in more accurate distributions since it

affects the distributions of frequent phrase pairs to a lesser extent.

5 Experiments

We evaluate our models for Chinese-to-English translation. Our training data consists of the par-

allel and monolingual data released by NIST’s OpenMT campaign, with MT04 used for tuning

and news data from MT05 and MT06 for testing, see Table 2. Case-insensitive BLEU (Papineni

et al., 2002) and translation error rate (TER) (Snover et al., 2006) are used as evaluation metrics.

5.1 Baseline
We use an in-house implementation of a phrase-based statistical machine translation system

similar to Moses (Koehn et al., 2007), including the commonly used translation, lexical weight-

ing, language, lexicalized reordering, and hierarchical reordering models. We use both lexical-

ized and hierarchical reordering models together, since this is the best model reported in (Gal-

ley and Manning, 2008) and our smoothing methods can be easily applied to the both models.

Word alignments are produced using GIZA++ (Och and Ney, 2003), using grow-diag-final-and

(Koehn et al., 2003). A 5-gram language model is trained on the English Gigaword corpus

Corpus Lines Tokens(ch) Tokens(en)

train 937K 22.3M 25,9M

MT04 (dev) 1,788 49.6K 59.2K

MT05 (test) 1,082 30.3K 35.8K

MT06 (test) 1,181 29.7K 33.5K

Table 2: Statistics for the Chinese-English bilingual corpora used in all experiments. Token

counts for the English side of dev and test sets are averaged across all references.

with 1.6B tokens using interpolated, modified Kneser-Ney smoothing. The lexicalized and the

hierarchical reordering models are trained with relative and smoothed frequencies using Dirich-

let smoothing (Equation 1), for both left-to-right and right-to-left directions distinguishing four

orientations: monotone (M), swap (S), discontinuous left (DL), and discontinuous right (DR).

Feature weights are tuned using PRO (Hopkins and May, 2011) and statistical differences are

computed using approximate randomization (Riezler and Maxwell, 2005).

In addition to the baseline, we reimplemented the 2POS model by Nagata et al. (2006),

which uses the POS tag of the first and last words of a phrase pair to smooth the reordering

distributions. The 2POS model is used in combination with the baseline lexicalized and hierar-

chical reordering models. Comparing our models to the 2POS model allows us to see whether

backed-off sub-phrases and exposed heads of phrase pairs yield better performance than simply

using the first and last words.

5.2 Comparison Systems and Results

We compare the baseline to the models described in Section 4. For all systems other than

the baseline, the lexicalized and the hierarchical reordering models are replaced by the corre-

sponding smoothed models. When computing the RecursiveBackOff model (Section 4.2), using

Equation 5, we set the value of α to 10, following Cherry (2013) and Chen et al. (2013).

For the dependency-based model, we use the dependency parses of the source and the

target side of the training corpus. The Stanford Neural-network dependency parser (Chen and

Manning, 2014) is used to generate parses for both sides of the training corpus. From a depen-

dency parse, we extract the smallest subtree that includes all incoming and outgoing relations of

the words of a phrase. This is done for both the source and the target side phrases. Considering

these subtrees, all words with an incoming connection from outside are exposed heads.

The experimental results for all models are shown in Table 3. As one can see, all our

models achieve improvements in terms of BLEU on the test sets. The improvements for our

back-off models are only significant for RecursiveBackOff over MT06 and MT05+MT06. The

improvements over MT05 by our dependency-based shortenings are statistically significant for

all models except PMLH. In the case of MT06, only the improvements resulting from MMLH

are not statistically significant. However, both the PMLH and the MMLH model achieve the

same improvements over MT05 and MT06 combined, and both are statistically significant. The

LH model performs better than these models and also achieves higher improvement on the

merged data. This model generalizes much more than the other models and is the only model

that changes the distributions of single word phrases which are among the most frequently used

phrase pairs. However, for frequent phrase pairs, being mapped to the same generalization

form can be potentially harmful. In order to be able to control the effect of the model on the

phrase pairs based on their frequency, we use the distributions in LH as a prior distribution with

Dirichlet smoothing (Equation 1). This results in the LHSmoothed model shown in Table 3

which achieves the best improvements over both MT05 and MT06.

Model MT05 MT06 MT05 + MT06

BLEUÒ TERÓ BLEUÒ TERÓ BLEUÒ TERÓ RIBESÒ
Lex+Hrc 32.25 60.13 33.00 57.17 32.84 58.62 79.24

Nagata’s 2POS 32.20 60.31 33.13 57.07 32.87 58.66 79.11

BackOff 32.40 60.45 33.10 57.00 33.00 58.69 79.07

RecursiveBackOff 32.37 60.29 33.34Ÿ,- 57.08 33.05Ÿ,- 58.65 79.28
PMLH 32.41 60.08 33.26Ÿ,- 57.05 33.04Ÿ,- 58.53 79.26
MMLH 32.62Ĳ,Ÿ 59.84-,Ĳ 33.18 56.91Ÿ,- 33.04Ÿ,- 58.35Ĳ,Ÿ 79.43
LH 32.64Ĳ,Ÿ 59.85Ÿ,Ĳ 33.26Ÿ,- 56.85Ĳ,- 33.11Ĳ,Ÿ 58.32Ĳ,Ĳ 79.34
LHSmoothed 32.65Ĳ,Ĳ 59.80Ÿ,Ĳ 33.38Ÿ,- 56.77Ĳ,Ÿ 33.20Ĳ,Ÿ 58.25Ĳ,Ĳ 79.35

Table 3: Model comparison using BLEU, TER (lower is better), and RIBES over news data,

which is combination of newswire and broadcast news in case of MT06 and just newswire for

MT05. Scores better than the baseline are in italics. Ĳ and Ÿ indicate statistically significant

improvements at p ă 0.01 and p ă 0.05, respectively. The left hand side Ĳ or Ÿ is with

respect to Lex+Hrc and the right hand side ones with respect to Nagata’s 2POS. PMLH refers

to the model using POS tags for modifiers and keeps exposed heads lexicalized. MMLH merges

modifiers and keeps exposed heads lexicalized. LH removes modifiers. LHSmoothed uses the

LH model with Dirichlet smoothing.

In addition to BLEU, we also report results using TER. Results for TER are in line with

BLEU. BLEU and TER are general translation quality metrics, which are known to be not

very sensitive to reordering changes (Birch et al., 2010). To this end we also include RIBES

(Isozaki et al., 2010), a reordering-specific metric that is designed to directly address word-order

differences between hypothesis and reference translation in translation tasks with long distant

reordering language pairs and is highly sensitive to word-order mistakes.

5.3 Analysis

The improvements achieved by our BackOff and RecursiveBackOff methods show that these

models capture some useful generalizations by shortening the phrase pairs towards the last

aligned words in the target side as the most important words. The difference between the two

models indicates that shortening is less beneficial for frequent phrase pairs and shorter phrase

pairs which are less affected by lower-order distributions.

The improvements achieved by our generalization models support our hypothesis that not

all words inside a phrase pair have the same impact on the reordering properties of the phrase

pair as a whole. The experimental results for the PMLH model show that the lexicalized form of

modifier words inside a phrase pair may just have the negative effect of increasing data sparsity.

Observing the improvements achieved by MMLH, we can go further and say that even the

number of modifiers of an exposed head in a phrase does not influence reordering properties

of a phrase pair. The improvements achieved by our LH model show not only that the number

of modifiers but also the mere presence or absence of them does not significantly influence the

reordering properties of a phrase pair.

One thing to bear in mind is that the PMLH and MMLH models do not change the distri-

bution of single word phrase pairs which are mostly frequent phrase pairs, while the LH model

does change these distributions as well. With the LHSmoothed model we have controlled this

effect and decreased it to be negligible for frequent single word phrase pairs. However, it still

changes the distributions of infrequent single word phrase pairs. Comparing the results of LH

and LHSmoothed in Table 3, we suspect that the difference between the models for MT06 is

Target Length

1 2 3 4 5 6 7

S
o
u
rc

e
L

en
g
th

1 8232 2719 879 269 89 18 7

2 2344 1777 1055 410 158 58 18

3 316 390 376 252 100 61 29

4 42 46 97 63 29 28 14

5 2 3 11 11 10 8 12

6 0 1 1 3 3 5 2

7 0 0 0 3 1 1 1

Table 4: Number of times that phrase pairs with different lengths and a frequency of less than 10

in the training data have been used during test on MT06 by the baseline. Phrase pairs occurring

less than 10 times account for 72% of all phrases used during decoding of MT06.

Source ... 由于东京和汉城当局均寄望能于二○○五年底前签署自由贸易协

定 ...

Baseline ... tokyo and seoul authorities are to be placed in 2005 before the end of the signing

of a free trade agreement ...

LHSmoothed ... tokyo and seoul authorities both in the hope of signing a free trade agreement

before the end of 2005 ...

Ref ... tokyo and seoul both hoped to sign a fta agreement by the end of 2005 ...

Source 俄罗斯多次 指控西方插手东欧事务 ...

Baseline russia has repeatedly accused of meddling in the affairs of the western and eastern

europe ...

LHSmoothed russia has repeatedly accused western intervention in the eastern european affairs ...

Ref russia has been accusing the west of interfering in the affairs of eastern europe ...

Table 5: Examples from MT05 illustrating reordering improvements over the baseline.

due to the effect of frequent single word phrase pairs.1 However, comparing the results of

LHSmoothed with other models we can say that even infrequent single word phrase pairs have

benefited from the higher generalization level offered by this model. The statistics of infrequent

phrase pairs used during testing and their lengths are shown in Table 4, giving an indication

of why this model achieves the highest improvements. The table is showing that 41% of the

infrequent phrase pairs (frequency ă 10) used during translating MT06 have length of one in

the both sides. So our models other than LH and LHSmoothed can not have neither positive nor

negative effect on almost half of the infrequent phrase pairs. This also probably could explain

why the back-off models achieve such a little improvements when 75% of infrequent phrase

pairs have length ă 3 in both sides.

In general, our dependency based models change the distributions to a larger extent than

our back-off models, where not all long phrase pairs have eligible sub-phrase pairs, while the de-

pendency models more often result in shorter generalizations. Table 5 provides some examples

where our LHSmoothed model has improved the translations by better modeling of reorderings.

To further the understanding of how the reordering distributions of infrequent phrase pairs used

in the examples in Table 5 are affected by our models, we show some examples in Table 6, be-

fore and after applying our model. As a result of our model, the phrase pair (寄望, in the hope)

1We also used the distributions from PMLH and MMLH as priors in Dirichlet smoothing, but it did not lead to any

noticeable changes in the results.

寄望 in the hope M S DL DR

Monotone with previous

Baseline 0.10 0.01 0.11 0.78

LHSmoothed 0.28 0.01 0.01 0.70

Counts in training 0 0 0 1

能于 of

Discontinuous right with next

Baseline 0.10 0.01 0.12 0.77

LHSmoothed 0.06 0.01 0.07 0.87

Counts in training 0 0 0 1

签署自由贸易协定 signing a free trade agreement

Discontinuous right with previous

Baseline 0.10 0.02 0.68 0.20

LHSmoothed 0.21 0.03 0.30 0.46

Counts in training 0 0 1 0

Table 6: Orientation distributions shift of some infrequent phrase pairs that has been used with

the correct orientation to produce our translations using LHSmoothed model in Table 5

receives an increase in monotone orientation probability although it has frequency of zero for

this orientation. The next phrase pair (能 于, of) receives an increase in discontinuous right

probability resulting in the correct usage of this orientation during translation. The most inter-

esting case is the substantial decrease in the probability of discontinuous left and the increase in

discontinuous right for the phrase pair (签署自由贸易协定, signing a free trade agreement),

even though it has frequency 1 for the former orientation and 0 for the latter. These shifts within

the probability distributions lead to the better translation generated by LHSmoothed model for

the first example in Table 5.

6 Conclusions

We have introduced a novel method that builds on the established idea of backing off to shorter

histories, commonly used in language model smoothing, and shown that it can be successfully

applied to smoothing of lexicalized and hierarchical reordering models in statistical machine

translation. Furthermore, we have shown that not all sub-phrase pairs are influential in that

regard. The sub-phrase pair consisting of just exposed heads of a phrase pair tends to be the most

important one and most other words inside a phrase pair have negligible influence on reordering

behavior. Earlier approaches, such as (Nagata et al., 2006) and (Cherry, 2013), often assume

that the last and the first word of a phrase pair are important, but our experiments indicate that

exHGposed heads tend to be stronger predictors. We showed that generalized representations

of phrase pairs based on exposed heads can help decrease sparsity and result in more reliable

reordering distributions.

Considering the analysis of the length of infrequent phrase pairs used during translation,

we also conclude that a smoothing model that would be able to further improve the distribution

of single word phrase pairs is crucial for achieving higher improvements during translation.

For future work, we plan to investigate the effect surface word forms from outside of a

phrase pair can have on reordering. This could further help improve reordering distributions

of infrequent single word phrase pairs more effectively as they constitute a large portion of the

phrases used during decoding.

Acknowledgments

This research was funded in part by the Netherlands Organization for Scientific Research

(NWO) under project numbers 639.022.213 and 612.001.218.

References

Birch, A., Osborne, M., and Blunsom, P. (2010). Metrics for MT evaluation: evaluating reordering.

Machine Translation, 24(1):15–26.

Bisazza, A. and Monz, C. (2014). Class-based language modeling for translating into morphologically rich

languages. In Proceedings of the 25th Annual Conference on Computational Linguistics (COLING),
pages 1918–1927.

Chahuneau, V., Schlinger, E., Smith, N. A., and Dyer, C. (2013). Translating into morphologically rich

languages with synthetic phrases. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1677–1687.

Chelba, C. and Jelinek, F. (2000). Structured language modeling. Computer Speech & Language,

14(4):283–332.

Chen, B., Foster, G., and Kuhn, R. (2013). Adaptation of reordering models for statistical machine trans-

lation. In Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 938–946.

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using neural networks. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pages

740–750.

Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language modeling.

Computer Speech & Language, 13(4):359–393.

Cherry, C. (2013). Improved reordering for phrase-based translation using sparse features. In Proceedings
of the 2013 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 22–31.

Durrani, N., Koehn, P., Schmid, H., and Fraser, A. (2014). Investigating the usefulness of generalized word

representations in SMT. In Proceedings of the 25th Annual Conference on Computational Linguistics
(COLING), pages 421–432.

Galley, M. and Manning, C. D. (2008). A simple and effective hierarchical phrase reordering model. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 848–856.

Garmash, E. and Monz, C. (2015). Bilingual structured language models for statistical machine translation.

In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages

2398–2408.

Hopkins, M. and May, J. (2011). Tuning as ranking. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 1352–1362.

Isozaki, H., Hirao, T., Duh, K., Sudoh, K., and Tsukada, H. (2010). Automatic evaluation of translation

quality for distant language pairs. In Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing, pages 944–952.

Koehn, P., Axelrod, A., Mayne, A. B., Callison-Burch, C., Osborne, M., and Talbot, D. (2005). Ed-

inburgh System Description for the 2005 IWSLT Speech Translation Evaluation. In Proceedings of
International Workshop on Spoken Language Translation.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,

Moran, C., Zens, R., et al. (2007). Moses: Open source toolkit for statistical machine translation.

In Proceedings of the 45th annual meeting of the Association for Computational Linguistics, pages

177–180.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology - Volume 1, pages 48–54.

Li, J., Tu, Z., Zhou, G., and van Genabith, J. (2012). Head-driven hierarchical phrase-based translation.

In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages

33–37.

Li, P., Liu, Y., Sun, M., Izuha, T., and Zhang, D. (2014). A neural reordering model for phrase-based

translation. In Proceedings of the 25th Annual Conference on Computational Linguistics (COLING),
pages 1897–1907.

Nagata, M., Saito, K., Yamamoto, K., and Ohashi, K. (2006). A clustered global phrase reordering model

for statistical machine translation. In Proceedings of the 21st International Conference on Computa-
tional Linguistics and the 44th annual meeting of the Association for Computational Linguistics, pages

713–720.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment models. Compu-
tational Linguistics, 29(1):19–51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method for automatic evaluation of

machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318.

Riezler, S. and Maxwell, J. T. (2005). On some pitfalls in automatic evaluation and significance testing

for MT. In Proceedings of the Association for Computational Linguistics Workshop on Intrinsic and
Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 57–64.

Smucker, M. D. and Allan, J. (2005). An investigation of dirichlet prior smoothing’s performance advan-

tage. Technical Report IR-391, The University of Massachusetts, The Center for Intelligent Information

Retrieval.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation edit

rate with targeted human annotation. In Proceedings the 7th Biennial Conference of the Association for
Machine Translation in the Americas (AMTA), pages 223–231.

Tillmann, C. (2004). A unigram orientation model for statistical machine translation. In Proceedings of
the 2004 Conference of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology, pages 101–104.

Wuebker, J., Peitz, S., Rietig, F., and Ney, H. (2013). Improving statistical machine translation with word

class models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1377–1381.

w1 w2

x ∈ R
dx×N y ∈ R

dy×N u ∈ R
dx×1 v ∈ R

dy×1

(uᵀx, vᵀy)√
(uᵀx)

√
(vᵀy)

Ex,y[u
ᵀx, vᵀy]√

Ex[uᵀx]
√

Ey[vᵀy]

U ∈ R
dx×k V ∈

R
dy×k

Ex,y[(UᵀxyᵀV)]

Ex[(UᵀxxᵀU)] =Ik; Ey[(V ᵀyyᵀV)] = Ik

U = k C−1
xx CxyC

−1
yy Cyx

V = C−1
yy CyxU

≈ 1200

35.9

±0.35

Automatic Construction of Morphologically
Motivated Translation Models for Highly Inflected,

Low-Resource Languages

John Hewitt johnhew@seas.upenn.edu

Department of Computer and Information Science, University of Pennsylvania

Philadelphia, PA 19104

Matt Post post@cs.jhu.edu

David Yarowsky yarowsky@jhu.edu

Center for Language and Speech Processing, Johns Hopkins University

Baltimore, MD 21211

Abstract
Statistical Machine Translation (SMT) of highly inflected, low-resource languages suffers from

the problem of low bitext availability, which is exacerbated by large inflectional paradigms.

When translating into English, rich source inflections have a high chance of being poorly es-

timated or out-of-vocabulary (OOV). We present a source language-agnostic system for auto-

matically constructing phrase pairs from foreign-language inflections and their morphological

analyses using manually constructed datasets, including Wiktionary. We then demonstrate the

utility of these phrase tables in improving translation into English from Finnish, Czech, and

Turkish in simulated low-resource settings, finding substantial gains in translation quality. We

report up to +2.58 BLEU in a simulated low-resource setting and +1.65 BLEU in a moderate-

resource setting. We release our morphologically-motivated translation models, with tens of

thousands of inflections in each of 8 languages.

1 Introduction

Statistical machine translation systems are typically trained on large bilingual parallel corpora

(bitext). Low-resource machine translation focuses on translation of languages for which there

exists little bitext, and where translation quality is subsequently often poor. Highly inflected

languages—those that exhibit large inflectional paradigms of words with a common dictio-

nary entry—excacerbate the problems of a low-resource setting. Many inflections of words in

an inflectional paradigm are complex and rare, and their translations are unlikely to be well-

estimated even in a moderately large parallel corpus. For example, Koehn (2005) point to the

highly inflected nature of Finnish as a reason for poor translation performance into English even

in high-resource settings.

However, even where bitext may be lacking or scarce, there are often many other resources

available. One source of rich morphological information is Wiktionary.1 This paper describes

a method for using resources extracted from Wiktionary to automatically map inflections in

paradigms of morphologically rich languages to ranked sets of English phrasal translations.

This is done by the following procedure:

1https://www.wiktionary.org/

Figure 1: The translation model (TM) construction pipeline. This depicts the process by which

we map each morphologically annotated inflection to a ranked set of English phrasal transla-

tions.

1. We begin with resources from the UniMorph project (Sylak-Glassman et al., 2015), which

produced millions of tuples pairing inflected words forms with their lemmas and a rich

morphological tag (which we refer to as a UniMorph tag or vector) that was designed to

be a universal representation of morphological features (§3).

2. We next take a small set of pairs of UniMorph vectors and short English sentences that

were produced in an Elicitation Corpus, designed to collect inflections that in English are

expressed phrasally instead of morphologically (§4).

3. We then produce phrasal translation pairs by extracting English phrases from these sen-

tences and pairing them with the foreign language through the UniMorph tag (§5). We

investigate different methods for extracting and scoring phrase pairs.

4. Finally, we evaluate the utility of these phrase pairs to improve machine translation in

simulated low-resource settings (§6).

A depiction of the full pipeline is in Figure 1.

2 Prior Work

Maximizing the utility of a baseline phrase table has been the focus of a large body of prior work

in translating from morphologically rich languages. Habash (2008) work on the OOV problem

in Arabic, mapping OOV types to in-vocabulary (INV) types by orthographic and morphologi-

cal smoothing methods. Mirkin et al. (2009) take inspiration from the Textual Entailment (TE)

problem, using WordNet to determine a set of entailed alternatives for English OOV tokens.

However, since this OOV-resolution scheme is dependent on the existence of a semantic re-

source like WordNet in the source language, it is unsuitable in general low-resource settings.

Yang and Kirchhoff (2006) implement a backoff model for Finnish and German, stemming

and splitting OOV tokens at test time and searching a baseline phrase table for the resulting

simplified forms.

Many systems attempt to address the incorrect independence assumptions traditional

phrase-based MT systems impose on inflections in the same paradigm. Koehn and Haddow

(2012) train a baseline phrase-based translation model, and back off to a factored model that

Inflection Lemma Mood POS Tense Gender Number Animacy Person
bude absolvovat absolvovat IND VB FUT 2 SG

absolvuj absolvovat IMP VB 2 SG

absolvujete absolvovat IND VB PST MASC 2 ANIM SG

absolvoval jste absolvovat IND VB PST MASC 2 INAN SG

Table 1: Czech verb inflections and partial annotations from Wiktionary. Empty cells indicate

that the inflection is not marked in that dimension.

decomposes OOV tokens into lemma+morphology. Dyer (2007) address the intuition that

even INV tokens may have poorly estimated translations. They decode on a confusion network

of tranformations of source sentences, imposing penalties for backing off from surface tokens.

Each of these approaches attempts to use pre- or post-processing to make up for poorly

estimated, low-coverage phrase tables. We take advantage of an entirely new resource, a very

large, massively multilingual, morphologically-annotated dictionary, to directly improve phrase

table coverage and provide improved estimations for INV types. Thus, the practical translation

gains we see through our methods should be orthogonal to those of prior work. This paper

presents a method of constructing English phrases that express inflectional features, and a novel

system of mapping these phrases to foreign inflections, with the following qualities:

• We use no bitext, and no language-dependent morphological information.

• We apply our system to the Wiktionary dataset, constructing substantial phrase tables for 8

languages, with the capacity to build a model for each of the 73 languages with more than

10,000 inflections in Wiktionary.

• We demonstrate the utility of these phrase tables, finding substantial gains when augment-

ing low-resource MT of Czech, Finnish, and Turkish.

• We present insights on the utility of morphological information in translation by conduct-

ing an ablation study in two dimensions, analyzing the effects of varying available bitext

and available morphological information for each language.

3 UniMorph Inflectional Paradigms

The Universal Morphological Feature Schema (UniMorph) represents fine-grained distinctions

in meaning expressed through inflectional morphology cross-lingually (Sylak-Glassman et al.,

2015). The schema defines 23 distinct dimensions across which inflections can vary indepen-

dently. Though English does not express many of these features through morphology, their

purposes can still be intuitive:

of the houses : NN, GEN, PL, DEF (Noun, Genitive, Plural, Definite)

with a hammer : NN, COM, SG, INDF (Noun, Comitative, Singular, Indefinite)

The dimensions are as follows:

Aktionsart, Animacy, Aspect, Case, Comparison, Definiteness, Deixis, Evidentiality,

Finiteness, Gender+, Information Structure, Interrogativity, Mood, Number, Part of

Speech, Person, Polarity, Politeness, Switch-Reference, Tense, Valency, Voice

A total of 212 possible values are distributed across the dimensions. The morphological infor-

mation of each inflection is encoded in its “UniMorph vector.”

Inflection Lemma Case Number
absurdity absurdita GEN SG

absurdit absurdita GEN PL

absurdit absurdita DAT SG

absurditm absurdita DAT PL

Table 2: Czech noun inflections and partial annotations from Wiktionary.

Sylak-Glassman et al. (2015) scraped Wiktionary, extracted inflectional paradigms in hun-

dreds of languages, and transformed the inflectional annotations to UniMorph vectors. The ed-

itors of Wiktionary often include all inflections for each lemma, so full inflectional paradigms

are scraped. The result, as shown for nouns in Table 2 and verbs in Table 1, is a list of inflec-

tions with corresponding lemmata, and inflectional values as a UniMorph vector. Each language

has a corresponding table of inflection entries with their corresponding UniMorph vector. The

size of the Wiktionary dataset varies from language to language, including 2,990,482 Finnish

inflections and 15,132 Swahili inflections.

To a large extent, combining a lemma with the information in the UniMorph vector recon-

structs the meaning of the inflection. We do not claim perfect reconstruction, as no inflectional

morphological schema can perfectly encode language-independent meaning. However, prac-

tical gains in translation quality do not require a perfect schema. We instead focus on the

substantial signal provided by UniMorph annotations, and show that they are highly effective at

providing cross-linguistic information.

4 English Inflectional Elicitation

Wiktionary provides us with UniMorph vectors for inflections, but provides no information

about how to express these vectors in English. These expressions are difficult to generate,

as English expresses inflectional information phrasally. For this, we use a corpus of 8,000

UniMorph-annotated English sentences, which we call the Elicitation Corpus. The corpus was

developed in an attempt to document the full inflectional variation in 49 languages of morpho-

logical interest.

The process worked as follows. For each language, we first collected all its important mor-

phological tags. We then hand-built the Cartesian product of all inflectional variation expressed

by the language. Thus, if a language inflected nouns exactly for 4 values of number and 3 values

of case, we constructed 12 vectors of (Number × Case). Then, for each UniMorph tag, keeping

the specific language and part of speech in mind, we manually wrote an English sentence with

a head word on which the same inflectional features are expressed. For example, for the tag

VB, 3, PRS, PRF, PASS (Verb, 3rd person, Present, Perfect, Passive)

we might generate the sentence

[The apple] has been eaten.

These sentences were given to a bilingual native speaker. The goal of each sentence was to

elicit, in the foreign language, the inflection encoded by the lemma we used and the UniMorph

vector expressed in English. We wanted to avoid sentential translations, aiming instead for

individual inflections. To this end, portions of each sentence necessary for syntactic coherence

but deemed unnecessary to express inflectional values were enclosed in brackets. Each line in

the corpus is a tuple of (English sentence, UniMorph vector).

By construction, the corpus spans a large amount of the variance of inflectional expres-

sion of most languages. Further, equivalent UniMorph vectors in multiple languages were not

English Sentence UniMorph Vector
[They] were eating [when the door broke.] IND, PST, PROG, 3, PL

[The view was blocked] by the houses INS, PL

Was [he] not speaking? PST, PROG, NEG, INT, 3, SG

[He is] sleeping PRS, PROG, POS, 3, SG

Table 3: Entries from the Elicitation Corpus. Each sentence on the left was constructed to

express the UniMorph vector on the right. Note that not all are fully defined, e.g., missing

definiteness, potentially due to the original source language not inflecting for that dimension.

de-duplicated, so many common vectors are paired with multiple English sentences. This per-

mits the corpus to store information about the frequency with which varying ways are used to

express the same features. This eventually aids us in ranking phrase templates. For example,

the genitive in English is expressed equivalently as the house’s roof and the roof of the house.

More examples of sentences in the Elicitation Corpus are given in Table 3.

5 Constructing Morphological Phrase Tables

In this section, we detail the pipeline by which we automatically construct a translation model

or phrase table for each language represented in the Wiktionary dataset.

1. We extract and rank English phrase templates from the 8000-sentence Elicitation Corpus.

2. We use UniMorph vectors to pair our phrase templates with inflections from Wiktionary,

and estimate direct and inverse translation probabilities.

3. We complete phrase templates with lemmata to finish the translation hypotheses.

5.1 Phrase Template Extraction
Each sentence in the Elicitation Corpus expresses a UniMorph vector in English. However, the

context and specific head word of the sentence constrain the usefulness of the sentence. Taking

our earlier example, we wish to generalize

[The apple] has been eaten.

such that the inflectional values are kept, but the resulting “template” is maximally reusable in

different contexts, and for different lemmata. Recalling the UniMorph vector associated with

this sentence, we wish to extract

has been VBN : {VB, 3, PRS, PRF, PASS}
The context has been removed, the morphological head word replaced with a part of speech

“variable”. In effect, the goal of this extraction is to retain exactly the information described

by the UniMorph vector. Information like the lemma will be provided by each source language

inflection. We use two simple methods to extract phrase templates from the Elicitation Corpus.

5.1.1 Naive Template Extraction
From each sentence in our Elicitation Corpus, we extract a “naive template”. After part-of-

speech tagging the sentence, all parenthesis-denoted context is removed. Then, we replace the

rightmost word whose POS matches the UniMorph vector POS with a variable. For this vari-

able, we choose the most descriptive POS, e.g., VBD instead of VB, to preserve the information

necessary to conjugate an English lemma as a replacement for the variable.

Table 4 gives examples in which this naive method produces incorrect or incomplete re-

sults. To augment template extraction, we also use a slightly more principled heuristic method.

English Sentence Naive Template Generated Templates
(They) were eating (when the door broke.) were VBG they were VBG, were VBG

(The dog went) from the boy. from the NN from the NN

(The view was blocked) by the leaves. by the NNS by the NNS

Was (he) not speaking? was not VBG* was he not VBG

(He is) sleeping. VBG* he is VBG, is VBG

Table 4: Template extractions. * denotes a clearly incorrect result given the UniMorph vector

in Table 3.

Figure 2: The extraction process, from sentences to templates. Each line shows the next word

added to the template. Boxed phrases are final templates. Greyed words have not yet been

considered by the algorithm, or have been excluded from the template.

5.1.2 Heuristic Template Extraction
To automatically generate phrase templates, we make the assumption that we’re working only

with simple sentences, and we assume the presence of context-marking parenthesis. Given these

assumptions, we construct an algorithm to extract only the inflectional value-carrying neighbors

of the head as part of the phrase table.

1. Determine the head of the sentence by searching for the last word tagged with a POS

corresponding to the correct word class. (e.g., VBN and VBP correspond to VB)

2. Walk backwards from the head, prepending every closed-class word to the output template.

3. When an open-class word is seen, stop.

4. Replace the head of the sentence with its part-of-speech tag.

Open-class words such as nouns or verbs are unlikely to encode inflectional values, and

are likely to include undesirable specifics for the sentence (such as a verb’s subject.) However,

there are a few verbs that are necessary for expressing, for example, tense and aspect. As such,

we manually compiled a list of these words, and modified our POS tagger to let them pass.

Words such as had, have, going, am, are, did..., for example, are used to express aspect and

mood in English. We used a Brown corpus-trained tagger from the nltk python package (Bird

et al., 2009).

A few examples of this process are given in Figure 2. The first example demonstrates

the multiple potential phrase templates for a single sentence. Because our system is language-

independent, we have no information about whether a pronoun in an MT setting will be omitted

(as in languages with pro-drop). By extracting phrase templates with and without a pronoun,

we expect that the language model will bias towards the with-pronoun phrase in sentences with

pro-drop, and towards the without-pronoun phrase in sentences with a marked pronoun.

Inflection Phrase Template Lemma Translation Phrasal Translation
blafovali they were VBG blafovat, bluff they were bluffing

filmujme let ’s VB filmovat, film let ’s film

kaupunginvaltuuston of the NN kaup. . . , city council of the city council

Table 5: Phrase completion example. Once an inflection has been paired with (a) phrase tem-

plate(s), we look up its lemma translation, conjugate it, and insert it into the template to com-

plete the phrasal translation.

5.2 Matching Phrase Templates to inflections’ UniMorph Vectors
A phrase template t with UniMorph vector t.v is proposed as a candidate translation for in-

flection i with UniMorph vector i.v if t.v is a superset of the features in i.v, where UniMorph

vectors are considered unordered sets of inflectional values. We use this superset-match method

instead of only constructing phrase pairs with exact morphological matches to account for a

large amount of underdefined Wiktionary inflections, each with very few values in its Uni-

Morph vector. The superset matching scheme provides these underdefined inflections with a

large number of low-probability phrase templates, reflecting the noise due to the lack of mor-

phological information.

The set of all phrase templates T for vector i.v is

T(i.v) = { t | t.v ⊇ i.v}
Each t ∈ T(i.v) has a value freq(t|T(i.v)), the count of sentences in the Elicitation Corpus

with the phrase template t whose UniMorph vector is a superset of i.v. Thus, each vector i.v
for which there exists at least 1 template has a total count

total(i.v) =
∑

t∈T(i.v)

freq(t|T(i.v))

The direct translation probability, that t is the correct way to express UniMorph vector i.v, is

thus

P(t|i.v) = freq(t|T(i.v))
total(i.v)

We also calculate the probability that v is the best morphological analysis of t by calculating

the total probability mass of t in all T . Thus, totalP(t) =
∑

i∈I P(t|T(i.v)), where I is the set

of all inflections. The inverse translation probability is thus

P(i.v|t) = P(t|i.v)
totalP(t)

Intuitively, the inverse translation probability discounts highly specified templates (with a rich

UniMorph vector) in underspecified settings.

5.3 Phrase Template Completion
So far, we have described a system for mapping morphological feature vectors to sets of English

phrase templates. The Wiktionary dataset provides a map from foreign inflections to their cor-

responding feature vectors. Composing the two, we map foreign inflections to phrase templates.

The final step in the process is to complete, or compile out the phrase templates, replacing the

part-of-speech variable with an inflected English word whose corresponding lemma translates

to the foreign inflection’s lemma. The Wiktionary dataset provides a mapping from foreign

inflection to corresponding foreign lemma. We use a lemma dictionary built from Wiktionary

and Google Translate to map between foreign lemma and English lemma. (Note that for all

languages in Wiktionary, including those missing from Google Translate, a lemma dictionary

is extractable with the inflections used.) Finally, we inflect the English lemma using an En-

glish pattern library (De Smedt and Daelemans, 2012). The input and output of phrase template

completion are shown in Table 5.

5.4 Phrase Table Construction
Running our system on the Wiktionary inflections for Finnish, Czech, Russian, Korean, Geor-

gian, Swahili, Turkish, and Urdu, we construct a phrase table for each language, containing

the top-5 phrasal translations for each inflection, as well as their computed direct and inverse

translation probabilities. We release all constructed models for use in morphological analysis

as well as end-to-end SMT.2

6 Experimental Design

We evaluate our system by examining its effectiveness in improving the quality of end-to-end

MT from Czech, Finnish, Russian and Turkish into English. We use the Joshua decoder (Post

et al., 2015) with Hiero grammars (Chiang, 2007). For many of our target languages, the only

bitext available is the Bible. We thus simulate a low-resource setting by training on the Bible.

We simulate moderately higher-resource settings by appending differing numbers of lines of

modern bitext (described below) to the bible. We test on newswire from the Workshop on

Statistical Machine Translation (Bojar et al., 2015a).

For all translation models, we use a gigaword-trained 5-gram language model (LM). We

anticipated that the English phrases in our tables might be discounted by the language model

due to higher-order (3- and 4-gram) misses in the gigaword corpus. In preliminary experiments,

we trained language models with lmplz (Heafield et al., 2013) on the training data with our

phrases appended. However, we saw best performance when using the gigaword LM, and by

using it across all TMs, the BLEU scores are kept comparable.

Table 6 presents statistics on how many tokens and types in the test data are found in our

Wiktionary inflections, anchoring the potential benefit of the system. We note that for Finnish,

Czech, and Turkish, our system covers a large number of both OOV and in-vocabulary (INV)

tokens in each of the resource settings. This points to potential translation quality gains through

coverage of previously OOV wordforms as well as improved translation of poorly estimated

wordforms.

6.1 Morphological Information Ablation Study
Along with testing the validity of our particular generation of morphologically-motivated

phrasal translations, we present an ablation study, highlighting the effects of using varying

portions of the morphological information provided to us, in 4 cases.

1. We consider the use of no morphological information. This completely unmodified Joshua

system is our baseline.

2. We test the inclusion of a lemma dictionary with the bitext, including no morphological

information. As a small dictionary largely comes for free for even low-resource languages,

we see this as a stronger baseline.

3. We test the inclusion of an inflection dictionary. This is made possible through the Wik-

tionary dataset. This augmentation method pairs each inflection with a corresponding bare

2https://github.com/john-hewitt/morph16

Bible Bible +20k Bible+20k+Wiktionary Abs %

Covered Total % Covered Total % Covered Total % Added

Finnish Types 1,999 8,497 23.5 4,558 8,497 53.6 5,896 8,497 69.3 15.75
Finnish Tokens 7,456 16,447 45.3 11,613 16,447 70.6 13,188 16,447 80.1 9.58
Czech Types 3,445 16,581 20.7 9,616 16,581 57.9 10,110 16,581 60.9 2.98
Czech Tokens 26,377 51,373 51.3 41,972 51,373 81.7 42,618 51,373 82.9 1.26
Turkish Types 1,658 3,677 45.0 2,698 3,677 73.3 2,824 3,677 76.8 3.43
Turkish Tokens 4,268 7,337 58.1 6,036 7,337 82.2 6,205 7,337 84.5 2.30
Russian Types 4,112 15,346 26.8 9,949 15,346 64.8 9,950 15,346 64.8 0.01

Russian Tokens 25,882 45,390 57.0 38,407 45,390 84.6 38,408 45,390 84.6 0.00

Table 6: The first column reports the number of tokens and types in the newswire test set that

are in-vocabulary in a model trained on the Bible. It also reports the total number of tokens and

types in the test set, and the percent of coverage. The second column reports the same statistics

for a model trained on the Bible and 20,000 sentences of modern text. The third column reports

the same statistics for a model that is trained on the Bible plus 20,000 sentences of modern text,

and includes our inflections. The column Abs % Added reports how many percentage points of

type and token coverage are gained when adding the inflections.

English lemma. This encodes some morphological information, as it groups all inflections

of a paradigm together by their common lemma.

4. We test our full system, mapping inflections to English phrasal translations motivated by

the morphological features of the inflection.

6.2 How much does morphology help when I have X much data?
Our methods are particularly exciting as they come largely for free from the Wiktionary corpus,

and do not depend on the amount of bitext available for a language. However, it is interesting to

examine the utility of our work as we vary the definition of low-resource. We evaluate our work

by training models on Bible bitext with varying amounts of bitext and analyzing the benefit of

augmenting each model with our system:

1. We train a model only on translated portions of the Bible.

2. We consider a slightly higher-resource setting, appending 1000 sentences of Europarl

(Koehn, 2005), SETIMES3 (Tyers and Alperen, 2010), extracted from OPUS (Tiedemann,

2009), or Common Crawl (Bojar et al., 2015b) (depending on the language, described

below) to the Biblical training set.

3. We train a model with 20,000 lines of modern data and the biblical training set.

4. For Finnish and Czech only, we consider the highest of our low-resource settings, append-

ing 50,000 lines of modern data to the biblical training set.

6.3 Augmentation Method
The inclusion of outside data as augmentation for an existing translation model is non-trivial,

as the probabilities in the outside data are unrelated to those of the table. The well-estimated

translations of each must be given substantial probability mass in the resulting combined table

without adversely promoting poorly estimated phrase pairs. We test a dual grammar method,

3http://nlp.ffzg.hr/resources/corpora/setimes/

Language # of Inflections
Finnish 2,990,482

Russian 326,361

Turkish 275,342

Czech 145,230

Georgian 121,625

Korean 76,739

Swahili 15,132

Urdu 13,682

Table 7: The number of annotated inflections provided by the Wiktionary dataset for each of

the eight languages for which we build phrase tables. Note that these numbers come from the

latest release of UniMorph, and may differ modestly from the number of inflections used in our

experiments.

wherein our artificial phrases and their translation probabilities are constructed as a Joshua

phrase table, and assigned weights tuned by Joshua in tandem with its bitext-derived phrase

table. We also test a bitext augmentation method, wherein the artificial phrases are appended to

the bitext. In particular, we concatenate the bitext to itself 10X, and allocate a quota of 10 lines

total for all translation candidates of each inflection in our artificial data. Finally, we test the

two methods in combination.

We found no consistent best method out of the three. Thus, we present either the best of the

three, or just the dual grammar method, as it simplified manually identifying when artificially

constructed phrases were used by the decoder.

6.4 Training, Tuning, Testing Sets

For the Finnish-English, Czech-English, Russian-English, and Turkish-English language pairs,

we train a Hiero model on 29,000 sentences of Biblical data. Separately, for Finnish and Czech,

we train models on 29,000 sentences of Biblical data with 1,000, 20,000, and 50,000 sentences

of Europarl. For Russian and Turkish, we train models on 29,000 sentences of biblical data with

1,000 and 20,000 sentences of CommonCrawl and SETIMES data, respectively.

Our tuning and test sets are consistent, per language, through all experiments. We tuned

Finnish-English on the Workshop on Machine Translation (WMT) 2015 dev set (1810 sen-

tences), and tested on the WMT 2015 test set (1724 sentences). We tuned Czech-English on the

WMT 2013 test set (3000 sentences) and tested on the WMT 2014 test set (3287 sentences). We

tuned Turkish-English on half of the WMT 2016 test set (506 sentences) and tested on the other

half (505 sentences). We tuned Russian-English on the WMT 2013 test set (3000 sentences)

and tested on the WMT 2014 test set (3308 sentences).

7 Results and Analysis

Figure 3 illustrates that our system is able to correctly generate the English expression of com-

plex inflectional information, both intelligently filling in OOVs and providing better translations

for poorly-estimated inflections. Table 8 shows the results of our end-to-end tests. Our study of

end-to-end MT proceeds in two dimensions, varying both the amount of training data and the

amount of morphological information. We focus our analysis on Finnish, Czech, and Turkish,

for which we see substantial gains in BLEU. We present a negative result for Russian, docu-

mented in Table 8. Post-hoc examination of the tokens and types of test corpora in Table 6

explains this: only a few, low-frequency types in the Russian test corpus are covered in the

Figure 3: Newswire sentences from the test set where a source inflection is either OOV or

poorly estimated in a low-resource setting, and a precise translation is generated by our system.

The baseline system is trained on the Bible + 20,000 sentences of Europarl. Our system’s

translation is denoted by “With morph”. Targeted inflections are boxed, and their translations

from our system are in rounded boxes along with the reference translations. Also provided, for

reference, is Google Translate’s translation of the inflection. We note that Google’s Finnish and

Czech models were not constrained in the amount of training data, but still fail to capture the

genitive case of city council in Finnish and the instrumental case of nickname in Czech. Manual

analysis showed that for the Czech citovna, the baseline was was not generated in the system

translation; instead, the Czech inflection was expressed fully as was quoted.

Unmodified Lemmata Inflections Full Morph

Finnish Bible 4.70 5.29† **5.85 **7.28

Bible + 1k Europarl 5.39 6.07† **6.59 **7.73

Bible + 20k Europarl 8.58 9.07† **9.51 **10.37

Bible + 50k Europarl 9.76 10.43 10.61† **11.41
Czech Bible 5.29 5.69† **5.91 **6.17

Bible + 1k Europarl 6.98 7.33† **7.64 ** 8.01

Bible + 20k Europarl 13.98 14.04 14.22 *14.33

Bible + 50k Europarl 16.23 16.20 *16.02 **16.69
Turkish Bible 3.58 4.09† 4.02 4.23

Bible +1k SETIMES 4.78 5.00 4.96 *5.28

Bible +20k SETIMES 7.85 8.05 8.19 8.26
Russian Bible 1.18 1.32† 1.26 1.20

Bible + 1k Common 6.24 6.26 6.25 6.26

Bible + 20k Common 11.20 11.22 11.17 11.21

Table 8: All experiment results. * and ** denote significantly better results than the lemma-

lemma model of on the same bitext, at p < 0.05 and 0.01, respectively. To motivate our use

of the lemma-lemma model as a sronger baseline for significance testing than the unaugmented

MT system, we denote with a † where the lemma-lemma model is significantly better than the

unaugmented system. We use the bootstrap resampling method of Koehn (2004) to estimate

significance tests.

Wiktionary dataset. We also note that the potential benefit of our system is constrained by the

quality and size of the Wiktionary dataset for a given language. Table 7 gives the size the dataset

for each of the eight languages for which we release a phrase table.4

7.1 Full Morphological Translation Model
Augmenting an SMT system with a translation model built by our full morphological analysis

and generation improves translation quality significantly across Finnish, Czech, and Turkish,

even at higher levels of resources. We expected that the potential benefit of adding morpho-

logical information would decrease as the training set size of the baseline model increased. At

increasing sizes of training corpora, the gains from morphology decrease, but remain significant

for Finnish and Czech. This may suggest that morphological information aids in the translation

of poorly estimated inflections even in settings of moderate resources. It is worth noting that

adding even 20k sentences of Europarl to the training data improved over a baseline Bible sys-

tem more than adding the entirety of our morphological information. However, when adding

the morphology on top of the added bitext, there are substantial gains.

7.2 Inflection-Lemma Model
Augmenting an SMT system with a translation model that naively pairs all Wiktionary inflec-

tions with their English lemma equivalents also improves translation quality, often to a substan-

tial percentage of the full model’s gains. These gains may be due to OOV coverage, even with

poor translations. It is encouraging to see that this model does not perform as well as the full

morphological model. This points to the utility of the UniMorph vectors and our phrases in

providing the capacity for good translation estimates, not just OOV coverage. For Finnish and

Czech, the percentage of a full morphological system’s gains recovered by an inflection-lemma

4http://unimorph.org

model seems to be independent of the resource setting. This model recovered an average of

50% of the gains of the full Finnish system, and 50.2% for Czech.

7.3 Lemma-Lemma Model

Augmenting an SMT system with a translation model that pairs entries in a dictionary also

improves translation at most resource levels. However, it is an impoverished system that lacks

the OOV coverage of the inflection-lemma model. Except for Turkish at the 0k and 1k levels, the

lemma-lemma model underperforms the inflection-lemma model, as expected. Regardless, it is

a stronger baseline than an unmodified MT system, significantly outperforming the unmodified

system in half of the experimental settings.

8 Summary and Future Work

Translation of highly inflected languages presents compounding data scarcity problems for SMT

systems with little bitext. The information encoded in the inflections of highly inflected lan-

guages is formalized in UniMorph, and a large, multilingual, freely available repository of

UniMorph-annotated inflections exists in the Wiktionary dataset. Using a small UniMorph-

annotated English corpus, we generalize English inflectional phrase templates to express a wide

range of UniMorph vectors. We then use the inflectional information to assign English phrase

templates as translation candidates to inflections from Wiktionary. Building translation models

from these pairs, we substantially improve the quality of MT in a range of low-resource settings.

Analyzing a range of resource settings and levels of morphological information, we find

that a full morphological system outperforms inflection-lemma mappings and lemma-lemma

mappings. We also find that morphological information is less useful in higher-resource set-

tings, but can still provide substantial gains. We believe this approach holds promise for con-

structing translation systems for language pairs that do not have much in the way of bitext.

In service of this goal, we release translation models constructed for Finnish, Czech, Russian,

Korean, Georgian, Swahili, Turkish, and Urdu.

For future work, we believe it would be useful to investigate how well these phrase-table

augmentation techniques work when combined with other approaches to low-resource machine

translation into English, such as lemmatized backoff models.

References

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python. ” O’Reilly Media,

Inc.”.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, C., Koehn, P., Logacheva,

V., Monz, C., Negri, M., Post, M., Scarton, C., Specia, L., and Turchi, M. (2015a). Findings of the

2015 workshop on statistical machine translation. In Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1–46, Lisbon, Portugal. Association for Computational Linguistics.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, C., Koehn, P., Logacheva,

V., Monz, C., Negri, M., Post, M., Scarton, C., Specia, L., and Turchi, M. (2015b). Findings of the

2015 workshop on statistical machine translation. In Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1–46, Lisbon, Portugal. Association for Computational Linguistics.

Chiang, D. (2007). Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228.

De Smedt, T. and Daelemans, W. (2012). Pattern for python. J. Mach. Learn. Res., 13:2063–2067.

Dyer, C. J. (2007). The’noisier channel’: translation from morphologically complex languages. In Pro-
ceedings of the Second Workshop on Statistical Machine Translation, pages 207–211. Association for

Computational Linguistics.

Habash, N. (2008). Four techniques for online handling of out-of-vocabulary words in arabic english

statistical machine translation. In Proceedings of the 46th Annual Meeting of the Association for Com-
putational Linguistics on Human Language Technologies: Short Papers, pages 57–60. Association for

Computational Linguistics.

Hajič, J., Hajičová, E., Panevová, J., Sgall, P., Bojar, O., Cinková, S., Fučı́ková, E., Mikulová, M., Pajas, P.,

Popelka, J., Semecký, J., Šindlerová, J., Štěpánek, J., Toman, J., Urešová, Z., and Žabokrtský, Z. (2012).

Announcing prague czech-english dependency treebank 2.0. In Proceedings of the 8th International
Conference on Language Resources and Evaluation (LREC 2012), pages 3153–3160, İstanbul, Turkey.

ELRA, European Language Resources Association.

Heafield, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. (2013). Scalable modified kneser-ney language

model estimation. In ACL (2), pages 690–696.

Koehn, P. (2004). Statistical significance tests for machine translation evaluation. Barcelona, Spain.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In MT summit, volume 5,

pages 79–86.

Koehn, P. and Haddow, B. (2012). Interpolated backoff for factored translation models. In Proceedings of
the Tenth Conference of the Association for Machine Translation in the Americas (AMTA).

Mirkin, S., Specia, L., Cancedda, N., Dagan, I., Dymetman, M., and Szpektor, I. (2009). Source-language

entailment modeling for translating unknown terms. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2, pages 791–799. Association for Computational Linguistics.

Post, M., Cao, Y., and Kumar, G. (2015). Joshua 6: A phrase-based and hierarchical statistical machine

translation system. The Prague Bulletin of Mathematical Linguistics.

Sylak-Glassman, J., Kirov, C., Yarowsky, D., and Que, R. (2015). A language-independent feature schema

for inflectional morphology. In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 674–680, Beijing, China. Association for Computational Linguistics.

Tiedemann, J. (2009). News from OPUS - A collection of multilingual parallel corpora with tools and

interfaces. In Nicolov, N., Bontcheva, K., Angelova, G., and Mitkov, R., editors, Recent Advances in
Natural Language Processing, volume V, pages 237–248. John Benjamins, Amsterdam/Philadelphia,

Borovets, Bulgaria.

Tyers, F. M. and Alperen, M. S. (2010). South-east european times: A parallel corpus of balkan languages.

In Proceedings of the LREC Workshop on Exploitation of Multilingual Resources and Tools for Central
and (South-) Eastern European Languages, pages 49–53.

Yang, M. and Kirchhoff, K. (2006). Phrase-based backoff models for machine translation of highly in-

flected languages. In EACL, pages 3–7.

Investigating the Impact of Various Partial
Diacritization Schemes on Arabic-English

Statistical Machine Translation

Sawsan Alqahtani, Mahmoud Ghoneim, Mona Diab
{sawsanq, mghoneim, mtdiab}@gwu.edu

Department of Computer Science

The George Washington University, USA

Washington, DC 20052

Abstract
Most diacritics in Arabic represent short vowels. In Arabic orthography, such diacritics are

considered optional. The absence of these diacritics naturally leads to significant word am-

biguity to top the inherent ambiguity present in fully diacritized words. Word ambiguity is a

significant impediment for machine translation. Despite the ambiguity presented by lack of

diacritization, context helps ameliorate the situation. Identifying the appropriate amount of di-

acritic restoration to reduce word sense ambiguity in the context of machine translation is the

object of this paper. Diacritic marks help reduce the number of possible lexical word choices

assigned to a source word which leads to better quality translated sentences. We investigate

a variety of (linguistically motivated) partial diacritization schemes that preserve some of the

semantics that in essence complement the implicit contextual information present in the sen-

tences. We also study the effect of training data size and report results on three standard test

sets that represent a combination of different genres. The results show statistically significant

improvements for some schemes compared to two baselines: text with no diacritics (the typical

writing system adopted for Arabic) and text that is fully diacritized.

1 Introduction

Resolving natural language ambiguity is at the crux of the NLP enterprise. Ambiguity refers to

the problem of possibly having different interpretations for different segments (words, phrases,

etc.) of a sentence. Languages such as Arabic, Hebrew and Persian are typically written in a

manner that exacerbates this ambiguity problem and increases the homograph rate by under-

specifying some of the letters such as short vowels and consonantal gemination, which in turn

increases the effect of having multiple interpretations for the same word. This renders text even

more ambiguous than typically expected.

While context helps native speakers of the language resolve some of the ambiguity, con-

text alone does not always produce adequate clarity for interpretation. The problem is further

complicated in Arabic by the fact that there are no native speakers of Modern Standard Ara-

bic (MSA), which is the language used in education and formal settings. Instead, speakers of

Arabic converse in various dialects of Arabic which are at times starkly different from MSA.

One solution for this problem is diacritic restoration, or diacritization, which refers to ren-

dering the underspecified diacritics explicit in the text. We investigate the problem of diacritiza-

tion within the context of Arabic-to-English Statistical Machine Translation (SMT) system. We

address the problem in MSA texts, the majority of which are underspecified for these diacritic

marks. We focus here on the most prominent Arabic diacritics which are short vowels (i, u, a),

the syllable boundary marker, known as sukoon (o), indefiniteness marker, known as nunation

(F, K, N), and the consonantal doubling marker (gemination) known as shadda (∼)1. In this

study, we aim to investigate what is the appropriate level and type of diacritic restoration that

would have the biggest impact on natural language understanding as tested and evaluated via

machine translation. Hence we experiment with various diacritization schemes based on lexical

and/or syntactic information.

This current work is a follow on to the pilot work presented in (Diab et al., 2007). However

it is different in the following respects: 1- we explore automatically diacritized data; 2- we

define more schemes that target both lexical and/or syntactic properties of the Arabic language.

3- we test the robustness of our observations taking into consideration varying training size and

cross genre evaluation.

2 Related Work

Automatic Arabic diacritization has been addressed thoroughly in (Zitouni et al., 2006; Elshafei

et al., 2006; Nelken and Shieber, 2005; Habash and Rambow, 2007; Pasha et al., 2014;

Maamouri et al., 2008). Full diacritization indicates rendering the text with all the most promi-

nent diacritics, namely (a, i, u, o, ∼).2 Initial efforts in automatic diacritization include rule-

based approaches to add all diacritics in the texts (Debili and Achour, 1998; El-Imam, 2004);

however, it is expensive to maintain these rules to be generalized for unseen instances.

Most studies focused on full diacritic restoration. For Automatic Speech Recognition

(ASR), (Vergyri and Kirchhoff, 2004; Ananthakrishnan et al., 2005) perform full diacritization

on MSA speech transcripts for language modeling. They show that developing ASR models

on fully diacritized datasets improves performance significantly. Supervised classifiers such as

Hidden Markov Model (HMM) and Maximum Entropy (MaxEnt) have been employed for di-

acritization (Gal, 2002; Bebah et al., 2014; Zitouni and Sarikaya, 2009; Zitouni et al., 2006).

In a study conducted by Ananthakrishnan et al. (2005), the researchers use MaxEnt trained

on MSA with lexical and n-gram features to improve ASR. Another study uses decision trees

and stochastic language models to fully diacritize texts in order to render graphemes to synthe-

sized speech (Cherif et al., 2015). The Buckwalter Arabic Morphological Analysis (BAMA)

(Buckwalter, 2002) system has been used along with a single tagger or a language model to

select amongst the diacritized analyses in context to render text fully diacritized (Vergyri and

Kirchhoff, 2004; Ananthakrishnan et al., 2005).

In Marton et al. (2010), the authors show that some inflectional and lexical related morpho-

logical features improve the performance of syntactic parsing in Arabic. Although Marton et al.

(2010) have not used diacritics directly in their work, they use the same essential information

that is used to diacritize Arabic texts. Diab et al. (2007) not only investigate the impact of full

diacritization on Statistical Machine Translation (SMT) but also introduce the notion of partial

diacritization. They also show that several schemes have a small positive effect albeit not sig-

nificant on SMT performance over none and full diacritization despite the significant increase

in the number of types. Although the results in Diab et al. (2007) are not statistically significant,

they provide directions of research that we can exploit to increase the performance of Arabic

related NLP applications. In a study conducted by AlHanai and Glass (2014), three partial dia-

critic schemes have been defined and compared to both fully and non-diacritized versions of the

1We use Buckwalter Transliteration encoding: http://www.qamus.org/transliteration.htm
2In some studies such as (Habash and Rambow, 2007; Pasha et al., 2014), they also address hamza restoration.

words. In their study, it is found that fully-diacritized text without gemination have statistically

better performance than fully diacritized texts including gemination in ASR application. Our

work follows the same general procedure as (Diab et al., 2007; AlHanai and Glass, 2014) where

we study the impact of some aspects of diacritization information in NLP applications, SMT in

particular.

For Arabic reading comprehension, Hermena et al. (2015) studies the impact of partial

diacritics in improving Arabic speakers’ reading comprehension. Their study shows the effec-

tiveness of having some level of diacritization between none and fully diacritized forms that

help the readers disambiguate homographs that cannot be understood by the surrounding con-

texts. This shows the importance of having accurate automatic partial diacritization not only

in improving different NLP applications but also to diacritize texts to help readers understand

Arabic texts better. Having the goal of helping other researchers develop partial diacritization,

Bouamor et al. (2015) has conducted a pilot study that minimally diacritize the dataset to re-

duce lexical ambiguity and help generate models to find an optimal level of diacritization in

some NLP applications. Although the result of this minimally-diacritized annotation has been

highly affected by the annotators’ subjectivity and background, it has shown some promising

results for future studies.

The idea of integrating Word Sense Disambiguation (WSD) technologies into the SMT

framework has been studied previously, tackling different aspects of the phenomenon and show-

ing statistically significant improvement integrating explicit WSD into the SMT system (Chan

et al., 2007; Carpuat and Wu, 2007; Yang and Kirchhoff, 2012; Aminian et al., 2015). Mainly,

WSD integration improves the ability of the system to choose the target translation if it has been

incorporated efficiently. Carpuat and Wu (2007) show an improvement in Chinese-to-English

SMT system in eight different automatic evaluation metrics when they integrate WSD in their

translation system at decode time. They use the same parallel corpus used for training and the

phrase translation table generated by the SMT tool to disambiguate senses of the words by us-

ing the aligned phrases in the target language. All of the previous work incorporates features

that help disambiguate senses in a supervised or unsupervised manner to generate better quality

translation. Some of these studies change the SMT pipeline to integrate WSD but others imple-

ment it as a pre-processing step at decode time. In this study, we have the same goal as theirs

which is to appropriately select the correct sense of a target word at decode time. We implement

this by adding a certain amount of diacritics in Arabic as preprocessing in the data preparation

step. Thus, the translation quality is not only enhanced by the appropriate choice of target word

but also by the fact that the word alignment procedure is improved.

3 Scheme Extraction

We investigate the impact of various partial diacritization schemes on SMT application. We

compare their performance against two baselines, specifically FULL diacritization where all

the diacritics are present and NONE where no diacritics are present. Similar to the extraction

strategy of (Diab et al., 2007; AlHanai and Glass, 2014), each of these schemes is identified from

fully diacritized Arabic datasets. Additionally, the extraction process of some schemes involves

the full morphological analysis of the words’ part of speech and their lemmas. To identify these

morphological features, we use MADAMIRA, a morphological analyzer and disambiguator for

the Arabic language (Pasha et al., 2014). The quality of diacritization schemes rely on the

performance of the automatic diacritization to predict diacritics. It is important to note that we

rely on the underlying diacritized lemma form for ensuring extraction accuracy.

(Diab et al., 2007) define six different diacritization schemes based on their usage promi-

nence in the Arabic Treebank (ATB) (Maamouri et al., 2008). Namely, they are fully diacritized

(FULL), passive voice diacritic marks (PASS), consonant doubling or gemination (GEM), pres-

ence of the syllable boundary marker sukoon (SUK), syntactic case and mood diacritics (CM),

and the case of no diacritization (NONE). In this study, we adopt the same previously mentioned

schemes in addition to introducing several new ones: FULL-CM, PASS+CM, PASS+GEM,

SUK+GEM, PASS+SUK, PASS+SUK+GEM, FULL-CM-PASS, TANWEEN.3 The following

is a detailed explanation of these diacritic schemes.

The schemes are linguistically-motivated reflecting lexical, syntactic, or both types of in-

formation. The Arabic sentences are written in Buckwalter Transliteration4 and are tokenized

according to the ATB style (Arabic TreeBank Tokenization). It is crucial to note that if the

word is not affected by the defined diacritic pattern, we remove all of its diacritics (i.e. NONE

scheme).

Baselines: NONE: indicates that no diacritics are kept at all in the sentence, including the

removal of the naturally occurring diacritics.

e.g. w+ ADAft An Tbyb AEln wfAp AlmEtql , bEd An HAwl AtxA* kl AlAjrA’At AllAzmp l+ AnqA*
+h .

FULL: indicates that all diacritics are kept in the sentence.

e.g. wa+ AaDAfat Aan∼a TabiybAF AaEolana wafApu AlmuEotaqalu , baEoda Aano HAwala
Ait∼ixA*a kul∼i AlAijorA’Ati All∼Azimapi li+ AinoqA*i +hu .

Singleton Schemes (Lexical): SUK: is an explicit marking of the absence of a short vowel

typically between syllables, known as sukoon. We keep sukoon in the word whenever it is

present in the underlying lemma.

e.g. w+ ADAft An Tbyb AEoln wfAp AlmEotql , bEod Ano HAwl AtxA* kl AlAjorA’At AllAzmp l+
AnoqA* +h .

GEM: renders explicit the doubling of consonants (shaddah or gemination) whenever the

shaddah is present in the underlying lemma of the word.

e.g. w+ ADAft An∼ Tbyb AEln wfAp AlmEtql , bEd An HAwl At∼xA* kl∼ AlAjrA’At AllAzmp l+
AnqA* +h .

Singleton Schemes (Inflectional): CM (Case and Mood): reflects syntactic case and mood

on nominals and verbs, respectively. We keep the last diacritic marker whenever the part of

speech explicitly indicates the presence of case or mood.

e.g. w+ ADAft An TbybAF AEln wfApu AlmEtqlu , bEda An HAwl AtxA*a kl∼i AlAjrA’Ati AllAzmpi
l+ AnqA*i +h .

PASS (passivization): indicates that the diacritic(s) reflecting passive voice on verbs are

the only markers kept.

e.g. w+ qAlt AlqyAdp Aljnwbyp b+ myAmy fy byAn , An jvmAn Almtwfy s+ yurAEay wfq AltqAlyd
w+ AlAErAf Aldynyp , Alty yntmy l +hA .

Singleton Schemes (Both): TANWEEN: reflects syntactic case and indefiniteness on nomi-

nals. We keep all tanween marks (K, F, N).

e.g. w+ ADAft An TbybAF AEln wfAp AlmEtql , bEd An HAwl AtxA* kl AlAjrA’At AllAzmp l+
AnqA* +h .

Combined Schemes (Lexical): SUK+GEM: Combines SUK and GEM diacritic schemes.

e.g. w+ ADAft An∼ Tbyb AEoln wfAp AlmEotql , bEod Ano HAwl At∼xA* kl∼ AlAjorA’At AllAzmp
l+ AnoqA* +h .

3Naming Convention: Similar to the mathematical operations, the symbol [-] indicates that we remove the diacritics

of the scheme presented after the symbol from the scheme presented before the symbol. The symbol [+] indicates that

we add the diacritic scheme for each of these schemes to define a new one.
4More description can be found in http://www.qamus.org/transliteration.htm

FULL-CM-PASS: indicates that all diacritics are kept in the word except the syntactic level

diacritics.

e.g. wa+ qAlat AlqiyAdap Aljanuwbiy∼ap bi+ mayAmiy fiy bayAn , Aino juvomAn Almutawaf∼ay
sa+ yrAEy wifoq Alt∼aqAliyd wa+ AlAaEorAf Ald∼iyniy∼ap , Al∼atiy yanotamiy li +hA .

Combined Schemes (Inflectional): PASS+CM: combines the properties of PASS and CM

schemes.

e.g. w+ qAlt AlqyAdpu Aljnwbypu b+ myAmy fy byAnK , An jvmAnu Almtwfy s+ yurAEay wfqa
AltqAlydi w+ AlAErAfi Aldynypi , Alty yntmy l +hA .

Combined Schemes (Both): FULL-CM: the same as FULL but we remove the CM related

diacritics from the word.

e.g. wa+ AaDAfat Aan∼a Tabiyb AaEolana wafAp AlmuEotaqal , baEod Aano HAwala Ait∼ixAV
kul AlAijorACAt All∼Azimap li+ AinoqAV +hu .

PASS+GEM: Combines the features of PASS and GEM schemes.

e.g. w+ qAlt AlqyAdp Aljnwby∼p b+ myAmy fy byAn , An jvmAn Almtwf∼y s+ yurAEy wfq AltqAlyd
w+ AlAErAf Aldyny∼p , Al∼ty yntmy l +hA .

PASS+SUK: Combines the features of PASS and SUK schemes.

e.g. w+ qAlt AlqyAdp Aljnwbyp b+ myAmy fy byAn , Ano jvomAn Almtwfy s+ yurAEay wfoq AltqAlyd
w+ AlAErAf Aldynyp , Alty ynotmy l +hA .

PASS+SUK+GEM: Combines PASS, SUK, and GEM schemes.

e.g. w+ qAlt AlqyAdp Aljnwby∼p b+ myAmy fy byAn , Ano jvomAn Almtwf∼y s+ yurAEay wfoq
AltqAlyd w+ AlAErAf Aldyny∼p , Al∼ty ynotmy l +hA .

As indicated previously, the goal of the various schemes is to reduce the number of pos-

sible choices for translating a sentence by distinguishing meanings at the word level which

in turn affect the phrase level. For example, the word ’bEd’ can be understood as baEod

(Adv), buEod (Noun), baEuda (Verb), baEida (Verb), buEida (Verb-Passive), baE∼ada (Verb),

buE∼ida (Verb-Passive) and biEad∼i (Prep+Noun) which means ”after;post, yet”, ”dimension;

distance; remoteness”, ”became distant (Aspect:State)”, ”became distant (Aspect:Action)”,

”kept distant to something”, ”displace; exclude; alienate”, ”became displaced; excluded; alien-

ated”, ”by counting”, respectively. The diacritic schemes defined here segment the space in

different ways to reduce some aspects of this ambiguity. For example, SUK segments the space

into two subgroups where both ‘baEod’ and ‘buEod’ share the form ‘bEod’ while others remain

‘bEd’. Similarly, GEM creates three segments. It uniquely identifies ‘biEad∼i’ as ‘bEd∼’ solv-

ing its ambiguity and groups ‘baE∼ada’ and ‘buE∼ida’ as ’bE∼d’ (still ambiguous, although

to a lesser extent) and the remaining five words as ‘bEd’. Adding PASS to GEM will solve the

ambiguity regarding ‘baE∼ada’ and ‘buE∼ida’ (become ‘bE∼d’ and ‘buE∼id’, respectively).

While FULL solves all ambiguity, it actually over specifies every word by including Case

and Mood which in turn increases data sparsity. For example the word ‘buEod’ can take the

following forms ‘buEoda’, ‘buEodi’, ‘buEodu’, ‘buEodK’, ‘buEodN’, ‘buEod’ according to

the FULL scheme. FULL-CM would decrease this sparseness but again there is still some

redundancy (e.g. ‘baEod’ can take the forms ‘baEodu’ ‘baEodi’ ‘baEoda’ as the last diacritic is

neither a Case nor a Mood marker). The ability of these schemes to disambiguate is sensitive

to the genre of the text where some variations might not appear or become rarely used. Also

sparsity would be a limiting factor for small training data sizes. The objective of this study is

to explore the appropriate level of diacritization information that reduces ambiguity to practical

levels within the context of SMT. As it is hard to define these practical levels, we report results

on different training data sizes and using test sets that exhibit different combinations of genres.

It is important to note that this study does not aim at distinguishing the different possible senses

of the word with diacritics specified (fully diacritized). To illustrate, the word ’buEod’ may

mean dimension, distance or remoteness; this level of disambiguation cannot be addressed using

diacritics alone but depends on context which is not addressed directly by this work, but is

assumed to be taken care of through the SMT pipeline as a whole.

4 Experimental Setup

4.1 Dataset

To train the SMT model, we use an Arabic-English parallel dataset which includes 60M to-

kens and is created from 53 LDC (Linguistic Data Consortium) catalogs. This dataset includes

multiple genres such as newswire, broadcast news, broadcast conversations, newsgroups, and

weblogs. We use three different test datasets from multiple genres: NIST 2009, 2006, and 2005

Open Machine Translation Evaluation,5 which correspond to MT09, MT06, and MT05, respec-

tively. MT09 is 41,640 tokens from weblogs and newswires; MT06 consists of 49,154 tokens

from newswire, broadcast news, and weblogs; MT05 consists of 33,407 tokens from newswire.

We use NIST 2008 Open Machine Translation Evaluation (MT08),6 which is 45,555 tokens

from newswire and web collection genres, for tuning. It is important to note that the number of

types varies across diacritic schemes as opposed to the number of tokens which is consistent for

all schemes. Table 1 shows the number of types for each of the train and test datasets associated

with each diacritic scheme.

For both Arabic and English datasets, we separate punctuations and numbers from the text

and convert them to standard forms (PUNC and NUM) in order to reduce the number of types

and errors to some extent. We use the morphological analyzer toolkit, MADAMIRA (Pasha

et al., 2014) to tokenize the Arabic side of the parallel dataset according to Arabic Treebank

tokenization (ATB) style (Maamouri et al., 2004). All diacritic patterns have the same exact

preprocessing; the only difference is the number and the type of diacritics added to the dataset.

For the English side of the parallel dataset, we tokenize the dataset using Tree Tagger (Schmid,

1995) and lowercase all letters.

Diacritic Pattern No. of Types Type Increase % No. of Types Type Increase %
(Train) (Train) (MT09/MT06/MT05) (MT09/MT06/MT05)

NONE 303,049 - 8,562 / 9,205 / 6,128 -

FULL 432,832 42.83 11,072 / 12,027 / 7,966 29.32 / 30.66 / 29.99

SUK 306,648 1.19 8,644 / 9,324 / 6,186 0.96 / 1.29 / 0.95

GEM 308,424 1.77 8,638 / 9,312 / 6,175 0.89 / 1.16 / 0.77

CM 414,615 36.81 10,936 / 11,845 / 7,868 27.73 / 28.68 / 28.39

PASS 306,003 0.97 8,603 / 9,237 / 6,155 0.48 / 0.35 / 0.44

TANWEEN 342,025 12.86 9,363 / 10,134 / 6,720 9.36 / 10.09 / 9.66

SUK+GEM 311,024 2.63 8,702 / 9,400 / 6,220 1.64 / 2.12 / 1.50

FULL-CM-PASS 329,123 8.60 8,912 / 9,611 / 6,337 4.09 / 4.41 / 3.41

PASS+CM 417,876 37.89 10,969 / 11,869 / 7,892 28.11 / 28.94 / 28.79

FULL-CM 329,632 8.77 8,939 / 9,652 / 6,359 4.40 / 4.86 / 3.77

PASS+GEM 311,202 2.69 8,676 / 9,344 / 6,201 1.33 / 1.51 / 1.19

PASS+SUK 309,499 2.13 8,683 / 9,353 / 6,211 1.41 /1.61 / 1.35

PASS+SUK+GEM 313,788 3.54 8,739 / 9,429 / 6,245 2.07 / 2.43 / 1.91

Table 1: This table shows the number of types for each diacritic scheme for test and train

datasets. Type Increase columns indicate the percentage of increase in the number of types

compared to NONE.

5Catalog Numbers: LDC2010T23 (MT09), LDC2010T17 (MT06), LDC2010T14 (MT05).
6Catalog Number: LDC2010T21.

4.2 SMT System
We train standard phrase-based SMT system using Moses toolkit version 2.1.1 (Koehn et al.,

2007). The parallel corpus is word aligned using GIZA++ (Och and Ney, 2003) with a max-

imum sentence length of 250 words. The phrase tables contains up to 8-words phrases. We

use SRILM (Stolcke et al., 2002) to build 5-gram language model with modified Kneser-Ney

smoothing (James, 2000). Our language modeling data consists of the English Gigaword 5th

edition LDC2011T07 and the English side of the training datasets. The best weight parameters

are tuned using the Minimum Error Rate Training (MERT) algorithm (Och, 2003) to maxi-

mize BLEU score (Papineni et al., 2002). To account for optimization algorithm instability, we

replicate optimization three times per experiment. We use bootstrap resampling and approxi-

mate randomization (Clark et al., 2011) to statistically test for significant differences using two

evaluation metrics: BLEU (Papineni et al., 2002) and TER (Snover et al., 2006). As BLEU

reflects a bias toward fluency in the target language and TER identifies the least post editing,

they capture complementary aspects of the translation. We consider NONE and FULL as the

baselines which show the the impact of under- and over-specification of the diacritics. As dis-

cussed before, NONE accounts for the dataset without any diacritics added (consonants only)

which is the default setting for most current SMT systems whereas FULL shows the impact of

all automatically generated lexical and syntactic diacritic marks.

5 Results & Discussion

Diacritic Pattern BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓
Dataset MT09 MT06 MT05

Baselines
NONE 47.0 � 45.5 25.4 56.5 27.9 48.0

FULL 46.7 45.4 25.3 56.3 27.9 47.7 •
Singleton Schemes (Lexical)

SUK 47.0 � 45.5 25.4 56.5 27.8 48.1

GEM 47.2 • � 45.3 • 25.5 � 56.0 • � 27.9 47.6 •
Singleton Schemes (Inflectional)

CM 46.9 45.5 25.2 56.7 27.8 48.1

PASS 47.1 � 45.4 25.4 56.0 • � 27.9 47.8 •
Singleton Schemes (Both)

TANWEEN 46.7 45.9 25.3 56.7 27.9 48.1

Combined Schemes (Lexical)
SUK+GEM 47.2 � 45.4 25.4 56.2 • 27.9 48.3

FULL-CM-PASS 47.4 • � 45.2 • � 25.5 • � 55.9 • � 28.0 47.7 •
Combined Schemes (Inflectional)

PASS+CM 47.0 � 45.5 25.3 56.5 27.7 48.0

Combined Schemes (Both)
FULL-CM 47.2 • � 45.3 25.5 • � 56.2 • 28.0 47.9

PASS+GEM 47.5 • � 45.1 • � 25.7 • � 56.0 • � 28.1 • � 47.6 •
PASS+SUK 47.3 • � 45.3 • 25.3 56.4 27.9 48.0

PASS+SUK+GEM 47.1 � 45.3 25.3 56.3 • 27.9 47.8 •

Table 2: This table shows the SMT performance using BLEU and TER evaluation metrics.

The symbol • indicates statistically significant improvement compared to NONE; the symbol �
indicates statistically significant improvement compared to FULL.

The main goal of this study is to investigate the relative performance between the different

diacritic schemes on the Arabic-English SMT. We use p-value <0.05 as the level of significance.

Generally speaking, PASS+GEM, which involves both lexical and inflectional information, has

significantly higher results than both baselines across both metrics; exception can be found in

MT05 using TER metric where the PASS+GEM has comparable performance to FULL. FULL-

CM-PASS, which includes all semantic distinguishing diacritics, has also significantly higher

results in MT09 and MT06, compared to the baselines across all metrics. In MT05, FULL-CM-

PASS significantly outperforms NONE using the TER metric only; however, it has comparable

performance to both baselines using the BLEU metric. Additionally, GEM has a considerably

significant performance in a fair number of experiments. TANWEEN and CM are the worst

performing models because it could not outperform the baselines in any of the datasets using

any of the metrics. This is expected since both CM and TANWEEN reflect a relatively low

lexical semantic variation compared to other schemes.

Furthermore, although the explicit marker for the absence of diacritic, SUK, in the Ara-

bic vocabulary plays a major role in distinguishing meaning, it does not yield competitive re-

sults against either baseline except in one experiment. The same finding can be observed in

PASS+CM which covers inflectional properties only. Comparing the baselines with each other,

NONE seems to have higher results using the BLEU metric although the increase of the perfor-

mance is significant only in MT09. On the other hand, FULL yields higher results than NONE

using TER metric; the increase in performance is also not significant except in MT05.

Type OOV Rate Number of Types Token OOV Rate
Diacritic Pattern MT09 MT06 MT05 (MT09/MT06/MT05) MT09 MT06 MT05

NONE 2.51% 4.36% 1.29% 8,562 / 9,205 / 6,128 1.06% 1.30% 0.31%

FULL 2.83% 4.37% 1.39% 11,072 / 12,027 / 7,966 1.29% 1.58% 0.40%

Singleton Schemes (Lexical)
SUK 2.50% 4.31% 1.28 % 8,644 / 9,324 / 6,186 1.06% 1.31% 0.31%

GEM 2.54% 4.37% 1.31% 8,638 / 9,312 / 6,175 1.07% 1.32% 0.32%

Singleton Schemes (Inflectional)
CM 2.68% 4.20% 1.28% 10,936 / 11,845 / 7,868 1.25% 1.52% 0.37%

PASS 2.52% 4.43% 1.28 % 8,603 / 9,237 / 6,155 1.07% 1.32% 0.31%

Singleton Schemes (Both)
TANWEEN 2.51% 4.24% 1.29% 9,363 / 10,134 / 6,720 1.10% 1.36% 0.34%

Combined Schemes (Lexical)
SUK+GEM 2.54% 4.33% 1.30% 8,702 / 9,400 / 6,220 1.08% 1.32% 0.32%

FULL-CM-PASS 2.72% 4.46% 1.36% 8,912 / 9,611 / 6,337 1.13% 1.37% 0.33%

Combined Schemes (Inflectional)
PASS+CM 2.69% 4.28% 1.28% 10,969 / 11,869 / 7,892 1.25% 1.54% 0.37%

Combined Schemes (Both)
FULL-CM 2.73% 4.46% 1.35% 8,939 / 9,652 / 6,359 1.13% 1.37% 0.33%

PASS+GEM 2.55% 4.44% 1.31% 8,676 / 9,344 / 6,201 1.08% 1.33% 0.32%

PASS+SUK 2.51% 4.38% 1.27% 8,683 / 9,353 / 6,211 1.07% 1.32% 0.31%

PASS+SUK+GEM 2.55% 4.40% 1.30% 8,739 / 9,429 / 6,245 1.08% 1.33% 0.32%

Table 3: This table shows the rate of type and token OOV in the test sets for each diacritic

scheme. For convenience, we also add the number of types (the same information as Table 1).

The number of tokens for each dataset is: 41,640 tokens for MT09, 49,154 tokens for MT06,

and 33,407 tokens for MT05.

Obviously, the number of type increase for each diacritic scheme in each dataset follows

the same trend. NONE has the lowest number of types while FULL has the highest; the re-

maining diacritic schemes lie in between. When we compare the number of types and the

performance of the diacritic schemes, we can see that there is a level of number of types be-

tween NONE and FULL that achieves good performance in distinguishing lexical meaning.

This suggests that the increase of the number of types to some extent between NONE and

FULL is acceptable with adequate amount of tokens/types in the training phase. This increase

must provide appropriate lexical signals to enhance the overall performance because providing

redundant lexical/inflectional signals may also degrade the performance. The number of types

in the best performing diacritic schemes is closer to NONE as we can see from Table 1. On the

other hand, we can observe that schemes that did not contribute to distinguishing the meaning

have relatively high number of types compared to NONE (i.e. the number of types in such

schemes is close to that in FULL). The increase in out of vocabulary (OOV) tokens follows the

same trend as the number of types as shown in Table 3. They have comparative rate that ranges

between 1.06% to 1.29% in MT09, 1.30% to 1.58% in MT06, and 0.31% to 0.40% in MT05.

Because all diacritic schemes have the same number of tokens, the slight increase in OOV rate

shows the impact of the diacritic scheme coverage on the test dataset.

Looking at the performance of the diacritic schemes in each dataset, it is observed that

MT05 has not been affected by any of them. The only diacritic scheme that outperforms both

baselines in this dataset is PASS+GEM with a 0.2 BLEU point improvement. However, al-

though the results in MT05 are not significant, almost all diacritic schemes have comparable

performance to NONE and FULL. Using the BLEU metric, MT09 benefits the most from these

diacritics schemes: GEM, FULL-CM-PASS, FULL-CM, PASS+GEM, and PASS+SUK. It is

unclear whether the genres in each dataset plays a major role here; MT05 is extracted from

newswire collection only while MT09 and MT06 includes both newswire and web collection.

Moreover, We can observe from Table 1 that the number of types in MT09 and MT06 consid-

erably higher than MT05 which may also be a factor.

The overall performance for the defined diacritic schemes shows potential improvement

which would enhance the SMT system performance to some degree. Because the phrase-based

SMT system implicitly takes context of the word into its consideration, we believe that devel-

oping more sophisticated schemes that recognize context would have even a more significant

impact on SMT performance especially in distinguishing words with much less sparsity.

Label NONE GEM
Source Sentence E$ kl lHZp kAn +hA Axr lHZp fy HyAp +k E$ kl∼ lHZp kAn∼ +hA Axr lHZp fy HyAp +k

Target Sentence live every moment was the last moment in your life live every moment as if it were the last moment in your life

Gold References

1: Live each moment as though it is the last moment in your life .

2: Live every moment as if it was the last moment of your life .

3: Live each moment as though it were the last moment of your life .

4: Live every moment as if it’s the last moment of your life .

Label NONE FULL-CM
Source Sentence w+ hl wDEt qmp brwksyl AlAxyrp wa+ halo waDaEat qim∼ap bruwkosiyl AlAaxiyrap Had∼

Hd l+ Hlm Aldstwr AlAwrwby ? li+ Hulom Ald∼usotuwr AlAuwruwb∼iy ?

Target Sentence do you put the recent summit in brussels and whether the recent brussels summit put an end to

according to the dream of the european constitution the dream of the european constitution

Gold References

1: and has the latest brussels summit put an end to the dream of a european constitution

2: did the latest summit in brussels put an end to the dream of a european constitution

3: did the recent brussels summit put an end to the dream of a european constitution

4: has the last brussels summit put an end to the dream of a european constitution

Table 4: This table shows the outputs for NONE and GEM systems for the first sentence; the

second sentence shows the output for NONE and FULL-CM, along with their gold references.

Table 4 shows an output example from GEM and PASS+GEM systems compared to the

baseline NONE to illustrate our intuition behind specifying partial diacritic schemes. The word

’kAn’ 7 may have the meanings ’was’ or ’as if it was/were’ as produced by NONE and GEM

respectively. Adding ∼ to this word makes the system consider ’kAn’ and ’kAn∼’ as distinct

words with different lexical meanings. Although FULL produces the same translation output

for the first sentence as GEM, FULL’s overall performance is less than most of the diacritic

patterns and it causes the dataset to be extremely sparse. For the second sentence, we compare

the target translation for NONE and FULL-CM. NONE considers different sense for the word

”wDEt” which is ”waDaEota” (means ’you put’) whereas the correct sense for this word is

7We normalize all forms of letter Alef (A,|,<,>) to ’A’ during our preprocessing. Also, words in the datasets may

exhibit tokenization and preprocessing errors generated by MADAMIRA such as the word ’kAn’ which should have

been tokenized as ’k+ An”.

”waDaEat” (means ’it/she puts’) as appears in FULL-CM. Additionally, NONE translation of

”Hd” into ’according’ is not the accurate choice whereas the lexical target choice has been

accurately predicated in the FULL-CM (’an end’).

5.1 Training Size Effect
To tease apart the training size effect on performance, we conduct the same experiments using

30% and 50% of tokens in the training dataset chosen randomly, and then compare their perfor-

mance with the full training size. Table 5 shows the training number of types for 30% and 50%

of the dataset for each diacritic scheme. Results in Table 6 illustrates the drop in the overall

performance using smaller amount of training data for almost all the experimental conditions.

As we decrease the training size, the influential triggers in the diacritic patterns become less im-

pactful compared to NONE and do not contribute to the performance except in few cases. Most

of the diacritic schemes in MT05 outperform FULL, as we decrease the training size, which is

expected since FULL introduces the most sparsity in the experimental set up.

Diacritic Pattern 100% 50% 30%
NONE 303,049 232,282 186,791

FULL 432,832 336,951 266,819

SUK 306,648 235,322 187,858

GEM 308,424 236,682 188,899

CM 414,615 322,722 258,234

PASS 306,003 234,613 187,256

TANWEEN 342,025 264,595 211,293

SUK+GEM 311,024 238,878 190,627

FULL-CM-PASS 329,123 253,209 201,258

PASS+CM 417,876 325,260 260,187

FULL-CM 329,632 253,751 201,804

PASS+GEM 311,202 238,882 190,570

PASS+SUK 309,499 237,575 189,568

PASS+SUK+GEM 313,788 241,058 192,282

Table 5: This table shows the number of types for each diacritic scheme in the training data for

each proportional experiment.

Reducing to 50% of the training data size, we still maintain some experimental condi-

tions that achieve significantly higher results than the baselines. GEM and PASS+SUK+GEM

provides significant higher results than both baselines across all datasets. FULL-CM-PASS

also outperforms both baselines in MT09 and MT06 only. The number of diacritic schemes

that outperform NONE in MT05 increases compared to using the full training data. For the

30% training condition, there are four diacritic schemes that significantly outperform NONE

in MT09; namely, SUK, GEM, PASS, and their combination PASS+SUK+GEM. None of the

diacritic schemes achieve significantly higher results than NONE in both MT06 and MT05, ex-

cept FULL-CM in MT05 with 0.2 improvement. MT05 and MT06 actually show significantly

worse results for several of the diacritic schemes that involve inflectional diacritics: FULL, CM,

PASS+CM in case of both datasets in addition to PASS and PASS+GEM in MT06. We can ob-

serve that each proportion of the dataset exhibits different diacritic schemes that outperform the

baselines with FULL-CM-PASS always outperforming both baselines although not consistently

statistically significant.

5.2 Automatic Diacritization Performance
The impact of the diacritic schemes on the Arabic-to-English SMT performance is highly de-

pendent on the accuracy of the automatic Arabic diacritization toolkit in addition to its per-

formance in part of speech tagging. Evaluating their performance in the newswire genre,

MADAMIRA reports an overall error rate of 13.7% for FULL diacritization and tokenization

Dataset MT09 MT06 MT05
Diacritic Pattern 100% 50% 30% 100% 50% 30% 100% 50% 30%

NONE 47.0 � 46.9 � 45.2 � 25.4 25.3 � 24.3 � 27.9 28.0 27.3 �
FULL 46.7 46.3 44.4 25.3 24.9 23.2 27.9 27.8 26.6

SUK 47.0 � 47.1 � 46.0 •� 25.4 25.4 � 24.4 � 27.8 28.2 •� 27.3 �
GEM 47.2 •� 47.2 •� 45.5 •� 25.5 � 25.6 •� 24.2 � 27.9 28.3 •� 27.3 �
CM 46.9 46.4 44.4 25.2 24.8 23.9 � 27.8 27.7 27.0 �

PASS 47.1 � 46.9 � 45.6 •� 25.4 25.2 � 24.0 � 27.9 28.1 � 27.2 �
TANWEEN 46.7 46.8 � 45.1 � 25.3 25.3 � 24.1 � 27.9 27.9 27.3 �
SUK+GEM 47.2 � 47.0 � 45.3 � 25.4 25.1 � 24.3 � 27.9 28.2 � 27.3 �

FULL-CM-PASS 47.4 •� 47.2 •� 45.4 � 25.5 •� 25.5 •� 24.3 � 28.0 28.1 � 27.4 �
PASS+CM 47.0 � 46.3 44.4 25.3 24.5 23.7 � 27.7 27.8 26.9 �
FULL-CM 47.2 •� 46.9 � 45.2 � 25.5 •� 25.2 � 24.3 � 28.0 28.1 � 27.5 •�

PASS+GEM 47.5 •� 47.3 •� 45.3 � 25.7 •� 25.2 � 23.9 � 28.1 •� 28.0 27.1 �
PASS+SUK 47.3 •� 46.8 � 45.5 � 25.3 25.0 24.3 � 27.9 28.1 27.4 �

PASS+SUK+GEM 47.1 � 47.2 •� 45.53 •� 25.3 25.5 •� 24.2 � 27.9 28.3 •� 27.4 �

Table 6: This table shows the SMT performance using BLEU for each test dataset according

to the different training sizes. For convenience, we repeat the numbers for the whole dataset

(100%). The symbol • indicates statistically significant improvement compared to NONE; the

symbol � indicates statistically significant improvement compared to FULL.

and 3.9% for part of speech tagging error rate. To assess the performance of MADAMIRA in

diacritization for each of the schemes, we use LDC Arabic Treebank (ATB) corpora from some

genres that are used in our SMT model, which is approximately 500,510 tokens: broadcast news

which includes ATB 5, 7, 10, and 12 in addition to web collection data which includes ATB 6

and 11. This corpora provides many gold morphological features including diacritization and

tokenization. We exclude newswire collection from our evaluation because MADAMIRA is

trained on this genre; thus, we try to avoid the performance bias towards newswire.

Diacritic Pattern NONE FULL SUK GEM CM PASS TANWEEN

Diacritization Error - 9.35% 0.73% 0.67% 6.77% 0.17% 2.82%

Diacritic Pattern SUK+GEM FULL-CM-PASS PASS+CM FULL-CM PASS+GEM PASS+SUK PASS+SUK+GEM

Diacritization Error 1.17% 3.42% 6.9% 3.62% 0.82% 0.87% 1.3%

Table 7: This table shows MADAMIRA diacritization error for each of the linguistically mo-

tivated schemes. The diacritization error excludes the tokenization error rate and considers the

word to be a match if they have the same tokenization and diacritization.

In this evaluation, we consider the words in both the automatically tagged corpus and the

gold data to be a match if they have the exact same tokenization and diacritization. The tok-

enization F1 score for this dataset is 96.40% which is the same tokenization performance score

for all schemes. Table 7 shows the diacritization error for each of the diacritization schemes

which takes the frequency of words that are affected by the associated diacritic pattern into its

consideration. We can observe from Table 7 that FULL has the highest error rate followed by

CM and PASS+CM. Removing CM (or CM+PASS) related diacritics from FULL substantially

decreases the error rate compared to FULL. SUK, GEM, and PASS related scheme have the

highest performance. Hence, we can say that case and mood related diacritics are the hardest

diacritics to predict using MADAMIRA; this suggests a strong correlation with the underper-

formance of such schemes that involve CM on SMT. As we discussed previously, diacritic

schemes are built from automated sources for tokenization, diacritization, part of speech tag-

ging, and lemmatization. This reliance on external morphological analyzers and disambiguators

easily propagates errors to higher levels especially in pipelined set ups. However, it is also not

realistic to rely on gold sources as they are expensive and limited in their sizes.

6 Conclusion

We investigated the impact of various linguistically motivated partial diacritization schemes on

Arabic-to-English SMT performance. We find that PASS+GEM and FULL-CM-PASS have

statistically higher results than two robust baselines using several SMT metrics despite signif-

icant increase in the number of types in the data sets which indicates that such diacritization

schemes are capturing and modeling important information at a more appropriate level of gran-

ularity. There are other diacritic schemes that perform well in some of the evaluation metrics

and datasets. Additionally, having a relatively large dataset has a significant impact on per-

formance. Moreover improving the underlying diacritization technology will probably have a

significant impact on performance.

7 Acknowledgements

We thank Abdelati Hawwari and the three anonymous reviewers for their valuable comments

and suggestions. This publication was made possible by grant NPRP 6-1020-1-199 from the

Qatar National Research Fund (a member of Qatar Foundation). The statements made herein

are solely the responsibility of the author[s].

References

AlHanai, T. and Glass, J. (2014). Lexical modeling for Arabic ASR: A systematic approach.

Proceedings of INTERSPEECH.

Aminian, M., Ghoneim, M., and Diab, M. (2015). Unsupervised false friend disambiguation

using contextual word clusters and parallel word alignments. Syntax, Semantics and Structure
in Statistical Translation, page 39.

Ananthakrishnan, S., Narayanan, S., and Bangalore, S. (2005). Automatic diacritization of

Arabic transcripts for automatic speech recognition. In Proceedings of the 4th International
Conference on Natural Language Processing, pages 47–54.

Bebah, M., Amine, C., Azzeddine, M., and Abdelhak, L. (2014). Hybrid approaches for auto-

matic vowelization of Arabic texts. International Journal on Natural Language Computing
(IJNLC).

Bouamor, H., Zaghouani, W., Diab, M., Obeid, O., Oflazer, K., Ghoneim, M., and Hawwari,

A. (2015). A pilot study on Arabic multi-genre corpus diacritization annotation. In ANLP
Workshop 2015, page 80.

Buckwalter, T. (2002). Buckwalter Arabic morphological analyzer version 1.0. Linguistic Data
Consortium.

Carpuat, M. and Wu, D. (2007). Improving statistical machine translation using word sense

disambiguation. In EMNLP-CoNLL, volume 7, pages 61–72.

Chan, Y. S., Ng, H. T., and Chiang, D. (2007). Word sense disambiguation improves sta-

tistical machine translation. In Annual Meeting-Association for Computational Linguistics,

volume 45, page 33.

Cherif, W., Madani, A., and Kissi, M. (2015). Towards an efficient opinion measurement in

Arabic comments. Procedia Computer Science, 73:122–129.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. (2011). Better hypothesis testing for statistical

machine translation: Controlling for optimizer instability. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies:
short papers-Volume 2, pages 176–181. Association for Computational Linguistics.

Debili, F. and Achour, H. (1998). Voyellation automatique de l’arabe. In Proceedings of the
Workshop on Computational Approaches to Semitic Languages, pages 42–49. Association

for Computational Linguistics.

Diab, M., Ghoneim, M., and Habash, N. (2007). Arabic diacritization in the context of statistical

machine translation. In Proceedings of MT-Summit.

El-Imam, Y. A. (2004). Phonetization of Arabic: Rules and algorithms. Computer Speech &
Language, 18(4):339–373.

Elshafei, M., Al-Muhtaseb, H., and Alghamdi, M. (2006). Statistical methods for automatic

diacritization of Arabic text. In The Saudi 18th National Computer Conference. Riyadh,

volume 18, pages 301–306.

Gal, Y. (2002). An HMM approach to vowel restoration in Arabic and Hebrew. In Proceedings
of the ACL-02 Workshop on Computational Approaches to Semitic Languages, pages 1–7.

Association for Computational Linguistics.

Habash, N. and Rambow, O. (2007). Arabic diacritization through full morphological tagging.

In Human Language Technologies 2007: The Conference of the North American Chapter
of the Association for Computational Linguistics; Companion Volume, Short Papers, pages

53–56. Association for Computational Linguistics.

Hermena, E. W., Drieghe, D., Hellmuth, S., and Liversedge, S. P. (2015). Processing of Arabic

diacritical marks: Phonological–syntactic disambiguation of homographic verbs and visual

crowding effects. American Psychological Association.

James, F. (2000). Modified Kneser-Ney smoothing of n-gram models. Research Institute for
Advanced Computer Science, Tech. Rep. 00.07.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,

Shen, W., Moran, C., Zens, R., et al. (2007). Moses: Open source toolkit for statistical ma-

chine translation. In Proceedings of the 45th annual meeting of the ACL on interactive poster
and demonstration sessions, pages 177–180. Association for Computational Linguistics.

Maamouri, M., Bies, A., Buckwalter, T., and Mekki, W. (2004). The penn Arabic treebank:

Building a large-scale annotated Arabic corpus. In NEMLAR conference on Arabic language
resources and tools, volume 27, pages 466–467.

Maamouri, M., Bies, A., and Kulick, S. (2008). Enhancing the Arabic treebank: A collaborative

effort toward new annotation guidelines. In LREC.

Marton, Y., Habash, N., and Rambow, O. (2010). Improving Arabic dependency parsing with

lexical and inflectional morphological features. In Proceedings of the NAACL HLT 2010 First
Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 13–21. Associ-

ation for Computational Linguistics.

Nelken, R. and Shieber, S. M. (2005). Arabic diacritization using weighted finite-state trans-

ducers. In Proceedings of the ACL Workshop on Computational Approaches to Semitic Lan-
guages, pages 79–86. Association for Computational Linguistics.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings
of the 41st Annual Meeting on Association for Computational Linguistics-Volume 1, pages

160–167. Association for Computational Linguistics.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment models.

Computational linguistics, 29(1):19–51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method for automatic

evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, pages 311–318. Association for Computational Linguistics.

Pasha, A., Al-Badrashiny, M., Diab, M., Kholy, A. E., Eskander, R., Habash, N., Pooleery, M.,

Rambow, O., and Roth, R. (2014). MADAMIRA: A fast, comprehensive tool for morpholog-

ical analysis and disambiguation of Arabic. In Proceedings of the Ninth International Con-
ference on Language Resources and Evaluation (LREC’14). European Language Resources

Association (ELRA).

Schmid, H. (1995). Improvements in part-of-speech tagging with an application to German. In

Proceedings of the ACL SIGDAT-Workshop.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of trans-

lation edit rate with targeted human annotation. In Proceedings of Association for Machine
Translation in the Americas, volume 200.

Stolcke, A. et al. (2002). SRILM-an extensible language modeling toolkit. In Interspeech,

volume 2002, page 2002.

Vergyri, D. and Kirchhoff, K. (2004). Automatic diacritization of Arabic for acoustic modeling

in speech recognition. In Proceedings of the Workshop on Computational Approaches to
Arabic Script Based Languages, pages 66–73. Association for Computational Linguistics.

Yang, M. and Kirchhoff, K. (2012). Unsupervised translation disambiguation for cross-domain

statistical machine translation. In Proceedings of Association for Machine Translation in the
Americas.

Zitouni, I. and Sarikaya, R. (2009). Arabic diacritic restoration approach based on maximum

entropy models. Computer Speech & Language, 23(3):257–276.

Zitouni, I., Sorensen, J. S., and Sarikaya, R. (2006). Maximum entropy based restoration of

Arabic diacritics. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics,

pages 577–584. Association for Computational Linguistics.

