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Abstract
The utilization of statistical machine translation (SMT) has grown enormously over the last

decade, many using open-source software developed by the NLP community. As commercial

use has increased, there is need for software that is optimized for commercial requirements,

in particular, fast phrase-based decoding and more efficient utilization of modern multicore

servers.

In this paper we re-examine the major components of phrase-based decoding and decoder im-

plementation with particular emphasis on speed and scalability on multicore machines. The

result is a drop-in replacement for the Moses decoder which is up to fifteen times faster and

scales monotonically with the number of cores.

1 Introduction

SMT has steadily progressed from a research discipline to commercial viability during the past

decade as can be seen from services such as the Google and Microsoft Translation services. As

well as general purpose services such as these, there is a large number of companies that offer

customized translation systems, as well as companies and organization that implement in-house

solutions. Many of these customized solutions use Moses as their SMT engine.

For many users, decoding is the most time-critical part of the translation process. Making

use of the multiple cores that are now ubiquitous in todays servers is a common strategy to

ameliorate this issue. However, it has been noticed that the Moses decoder, amongst others, is

unable to efficiently use multiple cores (Fernández et al., 2016). That is, decoding speed does

not substantially increase when more cores are used, in fact, it may actually decrease when

using more cores. There have been speculation on the causes of the inefficiency as well as

potential remedies.

This paper is the first we know of that focuses on improving decoding speed on multicore

servers. We take a holistic approach to solving this issue, creating a decoder that is optimized

for multi-core processing speed by concentrating on four main areas:

1. Faster memory management of data-structures through the use of customized memory

pools

2. Exploring alternatives to cardinality-based hypothesis stack configuration



3. Re-examining the efficiency of phrase-table lookup using translation rule caching and data

compression

4. Integrating the lexicalized re-ordering model into the phrase-table, thus eliminating the

need for independent random lookup this model

The result is a decoder that is significantly faster than the Moses baseline for single-

threaded operation, and scales with the number of cores.

We will maintain the Moses decoder’s embarrassingly parallel, one sentence-per-thread

decoding framework. As far as possible, model scores and functionality are compatible with

Moses to aid comparison and ease transition for existing users. The source code is available in

the existing Moses repository1.

The rest of the paper will be broken up into the following sections. The rest of this section

will discuss prior work and an outline of the phrase-based model. Section 2 will then describe

the modifications to improve decoding speed. We describe the experiment setup in Section 3

and present results Section 4. We conclude in the last section and discuss possible future work.

1.1 Prior Work

Most prior work on increasing decoding speed look to optimizing specific components of the

decoder or the decoding algorithm.

Heafield (2011) and Yasuhara et al. (2013) describes fast, efficient datastructures for lan-

guage models. Zens and Ney (2007) describes an implementation of a phrase-table for an SMT

decoder that is loaded on demand, reducing the initial loading time and memory requirements.

Junczys-Dowmunt (2012) extends this by compressing the on-disk phrase table and lexicalized

re-ordering model.

Chiang (2007) describes the cube-pruning and cube-growing algorithm which allows the

tradeoff between speed and translation quality to the adjusted with a single parameter. Wuebker

et al. (2012b) note that language model querying is amongst the most expensive operation in de-

coding. They sought to improved decoding speed by caching score computations early pruning

of translation options. This work is similar to Heafield et al. (2014) which group hypotheses

with identical language model context and incrementally expand them, reducing LM querying.

Fernández et al. (2016) was concerned with multi-core speed but treated decoding as a

black box within a parallelization framework.

There are a number of phrase-based decoding implementations, many of which imple-

ments the extensions to the phrase-based model described above. The most well known is

Moses (Koehn et al., 2007) which implements a number of speed optimizations, including cube-

pruning. It is widely used for MT research and commercial use.

Joshua (Li et al., 2009) also supports cube-pruning for phrase-based models.

Phrasal (Spence Green and Manning, 2014) supports a number of variants of the phrase-based

model. Jane (Wuebker et al., 2012a) supports the language model look-ahead described in Wue-

bker et al. (2012b) in addition to other tools to speed up decoding such as having a separate fast,

lightweight decoder. mtplz is a specialized decoder developed to implement the incremental

decoding described in Heafield et al. (2014).

The Moses, Joshua and Phrasal decoders implement multithreading, however, they all re-

port scalability problems, either in the paper (Phrasal) or via social media (Moses2 and Joshua3).

Jane and mtplz are single-threaded decoders, relying on external applications to parallelize

operations.

1https://github.com/moses-smt/mosesdecoder/tree/master/contrib/moses2
2https://github.com/moses-smt/mosesdecoder/issues/39
3https://twitter.com/ApacheJoshua/status/342022794097340416



This paper not only focuses on faster single-threaded decoding but also on overcoming the

shortcomings of existing decoding implementations on multicore servers. Unlike Fernández

et al. (2016), we will optimize decoding speed by looking inside the black box. We will compare

multicore performance the best-of-breed phrase-table described in Junczys-Dowmunt (2012)

with our own implementation. We will use the cube-pruning algorithm, however, the standard

phrase-based decoding algorithm is also available and a framework exists to accommodate other

decoding algorithms in future. We use KenLM (Heafield, 2011) due to it’s popularity and

consistent performance, but as with Moses, other language model implementations can be added

later.

1.2 Phrase-Based Model
The objective of decoding is to find the target translation with the maximum probability, given

a source sentence. That is, for a source sentence s, the objective is to find a target translation t̂
which has the highest conditional probability p(t|s). Formally, this is written as:

t̂ = argmax
t

p(t|s) (1)

where the arg max function is the search. The log-linear model generalizes Equation 1 to

include more component models and weighting each model according to the contribution of

each model to the total probability.

p(t|s) = 1

Z
exp(

∑
m

λmhm(t, s)) (2)

where λm is the weight, and hm is the feature function, or ‘score’, for model m. Z is the

partition function which can be ignored for optimization.

The standard feature functions in the phrase-based model include:

1. a distortion penalty

2. a phrase-penalty,

3. a word penalty,

4. an unknown word penalty.

5. log transforms of the target language model probability p(t),

6. log transforms translation model probabilities, pTM (t|s) and pTM (s|t), and word-based

translation probabilities pw(t|s) and pw(s|t),
7. log transforms of the lexicalized re-ordering probabilities,

Of these feature functions, we will focus on optimizing the speed of the phrase-table and

lexicalized re-ordering models.

1.3 Beam Search
A translation of a source sentence is created by applying a series of translation rules which

together translate each source word once, and only once. Each partial translation is known as

a hypothesis, which is created by applying a rule to an existing hypothesis. This hypothesis
expansion process starts with a hypothesis that has translated no source word and ends with

completed hypotheses that has translated all source words. The highest-scoring completed hy-

pothesis, according to the model score, is considered the best translation, t̂.
In the phrase-based model, each rule translates a contiguous sequence of source words.

Successive applications of translation rules do not have to be adjacent on the source side, de-

pending on the distortion limit. The target output is constructed strictly left-to-right from the

target side from the series of translation rules.



A beam search algorithm is used to create the completed hypothesis set efficiently. Hy-

potheses are grouped into stacks where each stack holds a number of comparable hypotheses.

Most phrase-based implementations group hypotheses according to coverage cardinality.

2 Proposed Improvements

We will also concentrate on four main areas for optimization.

2.1 Efficient Memory Allocation
The search algorithm creates and destroy a large number of intermediate objects such as hy-

potheses and feature function states. This puts a burden on the operating system due to the need

to synchronize memory access, especially when using a large number of threads. Libraries

such as tcmalloc (Ghemawat and Menage, 2009) are designed to reduce locking contention for

multi-threaded application but in our case, this is still not enough.

We shall seek to improve decoding speed by replacing the operating system’s general pur-

pose memory management with our own custom memory management scheme. Memory will

be allocated from a memory pool rather than use the operating system’s general purpose alloca-

tion functions.

A memory pool is a large block of memory that has been given to the application by the

operating system. The application is then responsible for allocating portions of this memory to

its components when requested. We will use thread-specific memory pools to increase speed

by avoiding locking contention during memory access. Our memory pools will be dynamic.

That is, the memory requirement does not have to be known or specified before running the

application, the pool can grow when required but they will never reduce in size. The pools are

deleted only when the application ends.

To further increase memory management speed, objects in the memory pool are not

deleted. Unused data structures accumulates in the pool until a reset event. The pool is as-

sumed to be empty and simply reused after the event. We instantiate two memory pools per

decoding thread, one which is never reset and another which is reset after the decoding of each

sentence. Data structures are created in either pool according to their life cycle.

Accumulating unused objects in the memory pools can result in unacceptably high memory

usage so object queues are available for high-churn objects which allows the decoder to re-cycle

unused objects before the reset event. This also increase speed as LIFO queues are used so that

the most recently accessed memory are used, increasing CPU cache hits.

2.2 Stack Configurations
The most popular stack configuration for phrase-based models is coverage cardinality, that is,

hypotheses that have translated the same number of source words are stored in the same stack.

This is implemented in Pharaoh, Moses and Joshua.

However, there are alternatives to this configuration. Och et al. (2001) uses a single stack

for all hypotheses, Brown et al. (1993) uses coverage stacks (ie. one stack per unique cover-

age vector) while Wuebker et al. (2012a) and Zens and Ney (2008) apply both coverage and

cardinality pruning. While useful, these prior works present only one particular stack config-

uration each. Ortiz-Martı́nez et al. (2006) explore a range of stack configurations by defining

a granularity parameter which controls the maximum number of stacks required to decode a

sentence.

We shall re-visit the question of stack configuration with a particular emphasis on how

they can help improve the tradeoff between speed and translation quality. We will do so in the

context of the cube-pruning algorithm, the algorithm that we will be using and which was not

available to many of the earlier work.



Figure 1: Moses decoding speed with two different phrase-table implementations

No cache Caching

Decoding time 2877 2540 (-12%)

Table 1: Decoding speed (in words / sec with 32 threads) when using phrase-table cache

2.3 Phrase-Table Optimizations
For any phrase-table table of a realistic size, memory and loading time constraints requires us to

use a load-on-demand implementation. Moses has several which we can make use of, each with

differing performance characteristics. Figure 1 shows the decoding speed for the fastest two

implementations. From this, it appears that the Probing phrase-table (Bogoychev and Lopez,

2016) has the fastest translation rule lookup, especially with large number of cores, therefore,

we will concentrate exclusively on this implementation from hereon.

We propose two optimizations. Firstly, the translation rule caching mechanism in Moses

saves the most recently used rules. However, this require locking and active management in

clearing of old rules. The result is slower decoding, Table 1.

We shall explore a simpler caching mechanism by creating a static cache of the most likely

translation rules to be used at the start of decoding.

Secondly, the Probing phrase-table use a simple compression algorithm to compress the

target side of the translation rule. Compression was championed by Junczys-Dowmunt (2012)

as the main reason behind the speed of their phrase-table but as we saw in Figure 1, this comes at

the cost of scalability to large number of threads. We shall therefore take the opposite approach

to and improve decoding speed by disabling compression.

2.4 Lexicalized Re-ordering Model Optimizations
Similar to the phrase-table, the lexicalized re-ordering model is trained on parallel data. A re-

sultant model file is then queried during decoding. The need for random lookup during querying

inevitably results in slower decoding speed. Previous work such as Junczys-Dowmunt (2012)

improve querying speed with more compact data structures.

However, the model’s query keys are the source and target phrase of each translation rule.

Rather than storing the lexicalized re-ordering model separately, we shall integrating it into the

translation model, eliminating the need to query a separate file. However, the model remain the

same under the log-linear framework, including having its own weights.

This optimization has precedent in Wuebker et al. (2012a) but the effect on decoding speed



ar-en fr-en

Phrase table 17 5.8

Language model (5-gram) 3.1 1.8

Lex re. model 2.3 0.6

Table 2: Model sizes in GB

ar-en fr-en

For speed testing

Set name Subset of training data

# sentences 800k 200k

# words 5.8m 5.9m

Avg words/sent 7.3 29.7

For model score testing

Set name OpenSubtitles newstest2011

# sentences 2000 3003

# words 14,620 86,162

Avg words/sent 7.3 28.7

Table 3: Test sets

were not published. We will compare results with using a separate model in this paper.

3 Experimental Setup

We trained a phrase-based system using the Moses toolkit with standard settings. The train-

ing data consisted of most of the publicly available Arabic-English data from Opus (Tiede-

mann, 2012) containing over 69 million parallel sentences, and tuned on a held out set. The

phrase-table was then pruned, keeping only the top 100 entries per source phrase, accord-

ing to p(t|s). All model files were then binarized; the language models were binarized us-

ing KenLM (Heafield, 2011), the phrase table using the Probing phrase-table, lexicalized re-

ordering model using the compact data structure (Junczys-Dowmunt, 2012). These binary for-

mats were chosen for their best-in-class multithreaded performance. Table 2 gives details of the

resultant sizes of the model files. For testing decoding speed, we used a subset of the training

data, Table 3.

For verification with a different dataset, we also used a second system trained on the

French-English Europarl corpus (2m parallel sentences). The two different systems have char-

acterics that we are interested in analyzing; ar-en have short sentences with large models while

fr-en have overly long sentences with smaller models. Where we need to compare model scores,

we used held out test sets.

Standard Moses phrase-based configurations are used, except that we use the cube-pruning

algorithm (Chiang, 2007) with a pop-limit of 4004, rather than the basic phrase-based algorithm.

The cube-pruning algorithm is often employed by users who require fast decoding as it gives

them the ability to trade speed with translation quality via a simple pop-limit parameter.

As a baseline, we use a recent5 version of the Moses decoder taken from the github repos-

4the pop-limit was chosen from public discussion on the Moses mailing list on an acceptable balance between

decoding speed and translation quality with Moses for commercial use
5The experiments were performed between January and May 2016 with the latest github code to hand. The main

ar-en experiments were rerun with the source code as of 8th June, 2016 to ensure there were no material difference.



Moses Our Work

# threads 1 32 1 32

Memory 24% 39% 11% 13%

LM 12% 2% 47% 38%

Phrase-table 9% 5% 2% 4%

Lex RO 8% 2% 2% 2%

Search 2% 0% 14% 19%

Misc/Unknown 45% 39% 24% 29%

Table 4: Profile of %age decoding time

Figure 2: Decoding speed of Moses and our decoder, using the same models

itory.

For all experiments, we used a Dell PowerEdge R620 server with 16 cores, 32 hyper-

threads, split over 2 physical processors (Intel Xeon E5-2650 @ 2.00GHz). The server has

380GB RAM. The operating system was Ubuntu 14.04, the code was compiled with gcc 4.8.4

and Boost 1.596 and the tcmalloc library.

4 Results

4.1 Optimizing Memory

Over 24% of the Moses decoder running time is spent on memory management, Table 4. This

increases to 39% when 32 threads are used, dampening the scalability of the decoder. By

contrast, our decoder spends 11% on memory management and does not significantly increase

with more threads.

Figure 2 compares the decoding speed for Moses and our decoder, using the same models,

parameters and test set. Our decoder is 4.4 times faster with one thread, and 5.0 times faster

using all cores. Like Moses, however, performance actually worsens after approximately 15

threads.

The commit hash was bc5f8d15c6ce4bc678ba992860bfd4be6719cee8
6http://boost.org/



Figure 3: Trade-off between decoding time average model scores for different stack configura-

tions

4.2 Stack Configuration
We investigated the effects of the following three stack configurations on model score and de-

coding speed:

1. coverage cardinality,

2. coverage,

3. coverage and end position of most recently translated source word.

Coverage cardinality is the same as that in Moses and Joshua. Coverage configuration uses one

stack per unique coverage vector. Coverage and end position of most recently translated source

word extends the coverage configuration by separating hypotheses where the position of the last

translate word are different, even if the coverages are identical.

This is an optimization to reduce the number of checks on the distortion limit, which is

dependent on the last word position. The check is a binary function d(Ch, ehypo, ranger),
where Ch is the coverage vector of hypothesis h, eh is the end position of most recent source

word that has been translated, and ranger is the coverage of the rule to be applied.

By grouping hypotheses according to coverage and end position, the distortion limit only

needs to be checked for each group. However, stack pruning occurs on each hypothesis group

independently, therefore, potentially affecting search errors and model scores.

Figure 3 present the tradeoff between decoding time and average model, created by varying

the cube-pruning pop-limit. None of the different stack configurations significantly outperform

the others in either quality or decoding speed. However, the coverage & end position produces

slightly higher model scores at higher pop-limits, therefore, we continue to use this configura-

tion throughout the rest of this paper.

We verified that the translation quality of our decoder is comparable to that of Moses in

Figure 4, given the same parameters and models. This fits in with our intention of creating a

drop-in replacement for the Moses decoder.

4.3 Translation Model
In the first optimization, we create a static translation model cache containing translation rules

that translates the most common source phrases. This is constructed during phrase-table training

based on the source counts. The cache is then loaded when the decoder is started. It does not

require the overhead of managing an active cache but there is still some overhead in using a

cache. Overall however, using a static cache result in a 10% decrease in decoding time if the

optimum cache size is used, Table 5.

For the second optimization, we disable the compression of the target side of the translation

rules. This increase the size of the binary files from 17GB to 23GB but the time saved not



Figure 4: Translation quality for different pop-limits

Cache size Decoding Time Cache Hit %age

Before caching 229 N/A

0 239 (+4.4%) 0%

1,000 213 (-7.0%) 11%

2,000 204 (-10.9%) 13%

4,000 205 (-10.5%) 14%

10,000 207 (-9.7%) 17%

Table 5: Decoding time (in secs with 32 threads) for varying cache sizes

needing to decompress the data resulted in a 1.5% decrease in decoding time with 1 thread and

nearly 7% when the CPUs are saturated, Table 6.

4.4 Lexicalized Re-ordering Model
The lexicalized re-ordering model requires a probability distribution of the re-ordering be-

haviour of each translation rule learnt from the training data. This is represented in the model

file as a fixed number of probabilities for each rule, exactly how many probabilities is depen-

dant on the model’s parameterization during training. During decoding, a probability from this

distribution is assigned to each hypothesis according to the re-ordering of the translation rule.

Rather than holding the model probability distributions in the separate file, we pre-process

the translation model file to include the lexicalized re-ordering model distributions for each rule.

During decoding, the probability distribution is then taken from the translation model instead

of querying a separate file.

This resulted in a significant decrease in decoding time, especially with high number of

cores, Figure 5. Decoding speed increased by 40% when using one thread but is 5 times faster

when using 32 threads.

4.5 Scalability
Figure 6 shows decoding speed against the number of threads used. In our work, there is a

constant increase in decoding speed when more threads are used, decreasing slightly after 16

threads when virtual cores are employed by the CPU. Overall, decoding is 16 times faster than

single-threaded decoding when all 16 cores (32 hyperthreads) are fully utilized.

This contrast with Moses where speed increases up to approximately 16 threads but then



# threads Compressed pt Non-compressed pt

1 3052 3006 (-1.5%)

5 756 644 (-14.8%)

10 372 362 (-2.7%)

15 284 250 (-12.0%)

20 244 227 (-7.0%)

25 218 209 (-4.1%)

30 206 192 (-6.8%)

35 203 189 (-6.9%)

Table 6: Decoding time (in secs with 32 threads) for compressed and non-compressed phrase-

tables

Figure 5: Decoding speed with Compact Lexicalized Re-ordering, and integrated into a model

the phrase-table

Figure 6: Comparison of decoding speed of our work and Moses (with & without the tcmalloc

library



Figure 7: Decoding speed with more cores

Figure 8: Decoding speed for fr-en model

become slower thereafter. Using the tcmalloc library has a small positive effect on decoding

speed but does little to improve scalability

Our work is 4.3 times faster than Moses with a single-thread and 10.4 faster when all cores

are used.

4.6 Other Models and Even More Cores

Our decoder show no scalability issues when we tested with the same model and tested set on a

larger server, Figure 7.

We verify the results with the French-English phrase-based system and test set. The speed

gains are even greater than the Arabic-English test scenario, Figure 8. Our decoder is 5.4 times

faster than Moses with a single-thread and 14.5 faster when all cores are saturated.

It has been suggested that using a larger language model would overpower the improve-

ments in decoding speed. We tested this conjecture by replacing the language model in the

ar-en experiment with a 96GB language model. The time to load of language model is signifi-

cant (394 sec) and was excluded from the translation speed. Results show that our decoder is 7

times faster than Moses and still scales monotonically until all CPUs are saturated, Figure 9.



Figure 9: Decoding speed with a large language model

5 Conclusion

We have presented a new decoder that is compatible with Moses. By studying the shortcomings

of the current implementation, we are able to optimize for speed, particularly for multicore

operation. This resulted in double digit gains compared to Moses on the same hardware. Our

implementation is also unaffected by scalability issues that has afflicted Moses.

In future, we shall investigate other major components of the decoding algorithm, particu-

larly the language model which has not been touched in this paper. We are also keen to explore

the underlying reasons for the scalability issues in Moses to get a better understanding where

potential performance issues can arise.
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