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Abstract
Lexicalized and hierarchical reordering models use relative frequencies of fully lexicalized

phrase pairs to learn phrase reordering distributions. This results in unreliable estimation for

infrequent phrase pairs which also tend to be longer phrases. There are some smoothing tech-

niques used to smooth the distributions in these models. But these techniques are unable to

address the similarities between phrase pairs and their reordering distributions. We propose

two models to use shorter sub-phrase pairs of an original phrase pair to smooth the phrase re-

ordering distributions. In the first model we follow the classic idea of backing off to shorter

histories commonly used in language model smoothing. In the second model, we use syntactic

dependencies to identify the most relevant words in a phrase to back off to. We show how

these models can be easily applied to existing lexicalized and hierarchical reordering models.

Our models achieve improvements of up to 0.40 BLEU points in Chinese-English translation

compared to a baseline which uses a regular lexicalized reordering model and a hierarchical

reordering model. The results show that not all the words inside a phrase pair are equally im-

portant in defining phrase reordering behavior and shortening towards important words will

decrease the sparsity problem for long phrase pairs.

1 Introduction

The introduction of lexicalized reordering models (LRMs) (Tillmann, 2004; Koehn et al., 2005)

was a significant step towards better reordering by modeling the orientation of the current phrase

pair with respect to the previously translated phrase. LRMs score the order in which phrases

are translated by using a distribution of distinguished orientations conditioned on phrase pairs.

Typically, the set of orientations consists of: monotone (M), swap (S) and discontinuous (D).

However, LRMs are limited to reorderings of neighboring phrases only. Galley and Manning

(2008) proposed a hierarchical phrase reordering model (HRM) for more global reorderings.

LRMs and HRMs both use relative frequencies observed in a parallel corpus to estimate

the distribution of orientations conditioned on phrase pairs. As a result, they both suffer from

the same problem of estimating reliable distributions for cases that occur rarely during training

and therefore have to resort to smoothing methods to alleviate sparsity issues.

Cherry (2013) builds on top of HRMs and proposes a sparse feature approach which uses

word clusters instead of fully lexicalized forms for infrequent words to decrease the effect of

sparsity on the estimated model.

In this paper, we propose two types of approaches to use the most influential words from

inside the original phrase pairs to estimate better orientation distributions for infrequent phrase

pairs that takes phrase pair similarity more into account. In the first approach, we define a back-

off model to shorten towards important words inside the original phrase pairs following the idea



Dirichlet Smoothed

Source Target Freq M S DL DR

a 中国政府 chinese government 2834 0.216 0.034 0.315 0.433

b 日本政府 japanese government 580 0.157 0.039 0.299 0.503

c 尼泊尔政府 nepalese government 11 0.525 0.001 0.101 0.370

Recursive Map Smoothed

Source Target Freq M S DL DR

a 中国政府 chinese government 2834 0.216 0.034 0.315 0.432

b 日本政府 japanese government 580 0.158 0.039 0.300 0.501

c 尼泊尔政府 nepalese government 11 0.400 0.009 0.202 0.388

Table 1: Examples of similar phrase pairs and their orientation probabilities using Dirich-

let (Equation 1) and Recursive MAP (Equation 2) smoothing. M=monotone, S=swap,

DL=discontinous left, and DR=discontinous right.

of back-off models in language model smoothing. This is, to some extent, complementary to

the HRM in the sense of using smaller phrase pairs to make better prediction. The difference is

that within HRMs smaller phrase pairs are merged into longer blocks when possible, while we

propose to use shorter forms of phrase pairs when possible. In the second approach, we propose

to produce generalized forms of original, fully lexicalized phrase pairs by including important

words and marginalizing others allowing for smoothed distributions that better capture the true

distributions of orientations. Here, we use syntactic dependencies from the original phrase pair

to generalize and shorten in a more linguistically informed way.

The main contribution of this paper includes new methods to use shortened and general-

ized forms of a phrase pair to smooth the original phrase orientation distributions. We show

that our smoothing approaches result in improvements in a phrase-based machine translation

system, even when compared against a strong baseline using both LRM and HRM together.

These methods do not require any changes to the decoder and do not lead to any additional

computations during the decoding.

Our second contribution is a deeper analysis showing that orientation distributions con-

ditioned on long phrase pairs typically depend on a few words within phrase pairs and not the

whole lexicalized form. This supports and adds to the sparse reordering features (Cherry, 2013).

2 Problem Definition

In order to smooth the original maximum likelihood estimation, LRMs originally back off to

the general distribution over orientations:

P po | f̄ , ēq “ Cpo, f̄ , ēq ` σP poqř
o1 Cpo1, f̄ , ēq ` σ

(1)

which is also known as Dirichlet smoothing, where σP poq denotes the parameters of the Dirich-

let prior that maximizes the likelihood of the observed data, Cpo, f̄ , ēq refers to the number of

times a phrase pair cooccurs with orientation o, and σ is the equivalent sample size, i.e., the

number of samples required from P poq to reflect the observed data (Smucker and Allan, 2005).

Cherry (2013) and Chen et al. (2013) introduce recursive MAP smoothing, which makes use of

more specific priors by recursively backing off to orientation priors, see Equation 2. While re-

cursive MAP smoothing factorizes phrase pairs into source and target phrases, it still considers

the phrases themselves as fixed units.



P po | f̄ , ēq “ Cpo, ē, f̄q ` αsPspo | f̄q ` αtPtpo | ēqř
o1 Cpo1, ē, f̄q ` αs ` αt

Pspo | f̄q “
ř

ē Cpo, f̄ , ēq ` αgPgpoqř
o1,ē Cpo1, f̄ , ēq ` αg

Ptpo | ēq “
ř

f̄ Cpo, f̄ , ēq ` αgPgpoqř
o1,f̄ Cpo1, f̄ , ēq ` αg

Pgpoq “
ř

f̄ ,ē Cpo, f̄ , ēq ` αu{3ř
o1,f̄ ,ē Cpo1, f̄ , ēq ` αu

(2)

To better understand what kind of information is ignored by both of the aforementioned

smoothing methods, consider the phrase pairs and their corresponding distributions given in

Table 1, for which we would expect similar distributions. The phrase pairs in rows (a) and (b)

are frequently observed during training, resulting in reliable estimates. On the other hand, the

phrase pair in row (c) is infrequent, leading to a very different distribution, due to the smoothing

prior, while being semantically and syntactically close to (a) and (b). In Table 1, we can also

observe that recursive MAP smoothing results in slightly more similar distributions compared

to plain Dirichlet smoothing but the overall differences remain noticeable.

In this paper, we argue that in order to obtain smoother reordering distributions for phrase-

pairs such as the ones in Table 1, one has to take phrase-internal information into account.

3 Related Work

The problem of data sparsity of training LRMs has first been addressed by Nagata et al. (2006)

who propose to use POS tags and word clustering methods and distinguish the first or last word

of a phrase, based on the language, as the head of a phrase.

Somewhat complementary to our work, Galley and Manning (2008) introduced hierar-

chical reordering models that group phrases occurring next to the current phrase into blocks,

ignoring the internal derivation within a block, which biases orientations more towards mono-

tone and swap. At the same time, orientations are still conditioned on entire phrase pairs, which

means that their approach suffers from the same sparsity problems as LRMs. This problem

has been more directly addressed by Cherry (2013) who uses unsupervised word classes for

infrequent words of the phrase pairs in the form of sparse features. Like (Nagata et al., 2006),

the first and last words of phrase pair are used as features in his model. Unfortunately, this

approach also introduces thousands of additional sparse features, many of which have to be

extracted during decoding, requiring changes to the decoder as well as a sizable tuning set.

Durrani et al. (2014) investigate the effect of generalized word forms on reordering in an

n-gram-based operation sequence model, where they use different generalized representations

including POS tags and unsupervised word classes to generalize reordering rules to similar

cases with unobserved lexical operations.

While the approaches above use discrete representations, (Li et al., 2014) propose a dis-

criminative model using continuous space representations of phrase pairs to address data spar-

sity problems. They train a neural network classifier based on recursive auto-encoders to gen-

erate vector space representations of phrase pairs and base reordering decision on those rep-

resentations. They apply their model as an additional hypergraph reranking step since direct

integration into the decoder would make hypothesis recombination more complex and substan-

tially increase the size of the search space.

In addition to reordering models, several approaches have used word classes to improve

other models within a statistical machine translation system, including translation (Wuebker



et al., 2013) and language models, where the problem of data sparsity is particularly exacerbated

for morphologically rich target languages (Chahuneau et al., 2013; Bisazza and Monz, 2014).

4 Model Definition

In this section, we propose two different models which use different words as source of infor-

mation to better estimate reordering distributions of sparse phrase pairs. Each model uses a

different generalization scheme to obtain less sparse but still informative representations.

4.1 Interpolated Back-off Sub-phrases
In n-gram language modeling shorter n-grams have been used to smooth the probability distri-

butions of higher order sparse n-grams. Lower order n-grams form the basis of Jelinek-Mercer,

Katz, Witten-Bell and absolute discount smoothing methods (Chen and Goodman, 1999). For

instance, Jelinek-Mercer smoothing linearly interpolates distributions of lower orders to smooth

the distributions of higher order n-grams.

We use this as a motivation that shorter phrase pairs in lexicalized reordering models could

play the role of lower-order n-grams in language model smoothing. But while backing off is

obvious in language modeling, it is not straightforward in the context of lexicalized reordering

models as there are several plausible ways to shorten a phrase pair, which is further complicated

by the internal word alignments of the phrase pairs.

(a) Original phrase pair (b) Eligible shortening

(c) Ineligible shortening (d) Hierarchical reordering situation

Figure 1: Backing off to shorter phrase pairs using eligible sub-phrase pairs (b). For compari-

son, we also include an example of a grouping of phrases as done in HRM (d).

The example in Figure 1 illustrates how sub-phrase pairs (Figure 1b and 1c) of the longer



phrase pair (Figure 1a) can be used to estimate the discontinuous left orientation for a longer,

infrequent phrase pair. Following the strategy within language modeling to back off to shorter

n-grams, we back off to the sub-phrase pairs that are consistent with the inside alignment of the

longer phrase pair and provide a shorter and less sparse history. In this example, the number

of times that sub-phrase pair (政府, government), see Figure 1b, appears with a discontinuous
left jump of the length of the previous phrase pair for the next translation is considered when

estimating the discontinuous left orientation for the longer phrase pair. On the other hand, the

sub-phrase pair (尼泊尔, nepalese), see Figure 1c, cannot be used to predict a future discontinu-
ous left of the long phrase pair, as there is no direct way to connect it to (f0, e4). The difference

between this model and HRM can be seen in Figure 1d. HRM groups small phrase pairs from

the context into longer blocks and determines the orientation with respect to grouped block,

while our model looks into the phrase pair itself and uses possible shortenings to better estimate

the orientation distribution conditioned on the original phrase pair. Our model can be applied

to HRMs as well as LRMs to estimate a better distribution for long infrequent phrase pairs.

In order to provide a formal definition which sub-phrase pairs to consider when backing

off, let us assume that A is the set of alignment connections between the source f̄ and target ē
side of a longer phrase pair. The set of eligible sub-phrase pairs, Ef̄ ,ē, is defined as follows:

Ef̄ ,ē “ tpf̄ rl,ks, ērl1,nsq| 1 ď k ď m, 0 ď l ď k, 0 ď l1 ď n and

pf̄ rl,ks, ērl1,nsq consistent with A if l ą 0 ^ l1 ą 0 u
(3)

where f̄ rl,ks is a sub-phrase of f̄ with length l which ends at the kth word of f̄ , m and n are

the lengths of f̄ and ē respectively and the consistency with the alignment is ensured by the

following three conditions (Koehn et al., 2005):

1. Dei P ērl1,ns, fj P f̄ rl,ks : pi, jq P A

2. @ei P ērl1,ns : pi, jq P A ñ fj P f̄ rl,ks

3. @fi P f̄ rl,ks : pi, jq P A ñ ei P ērl1,ns

Figure 2: The distributions needed to estimate the conditional probability p̂pM |
f1f2f3, e1e2e3q include ppDR | f2, e3q and ppM | f2f3, e2e3q

Considering Figure 2, it is clear why (f̄ r1,2s, ēr1,3s) and (f̄ r2,3s, ēr2,3s) are considered

eligible shortenings. Other possible shortenings such as (f̄ r2,2s, ēr3,3s) and (f̄ r1,3s, ēr1,2s) either

violate the consistency conditions or do not run up to the end of the target side of the original

phrase pair as in the definition above. Note that n is a constant here and ērl1,ns means that all

sub-phrase pairs must finish at the end of the target side of the original phrase pair. Otherwise

one cannot directly determine the orientation with respect to the next phrase pair.



In our model, we compute the smoothed orientation distribution conditioned on a phrase

pair by linearly interpolating the distribution of all eligible sub-phrases:

P̂ po | f̄ , ēq “
ÿ

pf̄ rl,ks,ērl1,nsqPEf̄,ē

λl,l1P pΩpf̄ rl,ks, f̄ , oq | f̄ rl,ks, ērl1,nsq (4)

where Ef̄ ,ē is the set of eligible sub-phrase pairs and f̄ rl,ks indicates a sub-phrase of f̄ with

length l ending at the kth word of f̄ , ērl1,ns is a sub phrase of ē with the length of l1 which ends

at the last word of ē and the function Ωpf̄ rl,ks, f̄ , oq returns the correct orientation considering

the position of source sub-phrase f̄ rl,ks with respect to either end of the source phrase f̄ and

orientation o.

In order to compute the linear interpolation over the conditional distributions of the sub-

phrase pairs, we have to determine the weight of each term in the linear interpolation (Equation

4). Here, we use expectation-maximization (EM) over a held-out data set, which is word-

aligned using GIZA++ (Och and Ney, 2003). We extract phrase pairs using a common phrase

extraction algorithm (Koehn et al., 2005) and count the number of occurrences of orientations

for each phrase pair. These counts are used with unsmoothed reordering probabilities learned

over the training data to compute the likelihood over the held-out data. We designed the EM

algorithm to learn a set of lambda parameters for each length combination of the original phrase

pairs. To reduce the number of parameters, we assume that all sub-phrases with the same length

on source and target side share the same weight. This model is referred to as the BackOff model

in the remainder of this paper.

4.2 Recursive Back-off MAP Smoothing
Above we used linear interpolation to estimate the final distribution from the orientation dis-

tributions of shorter sub-phrase pairs. Here we investigate another method aiming to affect the

distributions of frequent phrase pairs to a lesser extent than those of non-frequent ones.

To this end, we use recursive MAP smoothing to estimate the distribution of the original

phrase pair. In linear interpolation, all phrase pairs with the same length will get the same por-

tion of their estimated distribution from their sub-phrases. On the other hand, for more frequent

phrase pairs, the maximum likelihood distribution of the phrase pair itself is more reliable than

the distributions of its sub-phrase pairs. Thus, a model relying more on the distribution of the

original phrase pairs for frequent phrase pairs would be desirable.

To achieve this, we use a formulation similar to recursive MAP smoothing (Equation 2)

with recursively backing off to the distributions of shorter sub-phrase pairs. At each recursion

step we use the distribution of the longest sub-phrase pair as the prior distribution. Taking our

definition for eligible sub-phrase pairs into account (Equation 3), all other sub-phrase pairs of

the original phrase pair are sub-phrase pairs of the longest sub-phrase pair, in the case that the

original phrase pair does not include unaligned words. For cases including unaligned words

like the example in Figure 3, there could be sub-phrases where none of them is the sub-phrase

of the other. In these cases we include the distributions of all those sub-phrases with the same

equivalent sample size as the prior distributions. The estimated probability distribution of a

phrase pair (f̄ ,ē) is defined as follows:

P̂ po | f̄ , ēq “
Cpo, f̄ , ēq ` ř

pf̄L,ēLqPLf̄,ē
αP̂ pΩpf̄L, f̄ , oq | f̄L, ēLq

ř
oPO Cpo, f̄ , ēq ` ř

pf̄L,ēLqPLf̄,ē
α

(5)

where Lf̄ ,ē refers to the set of eligible sub-phrase pairs of pf̄ , ēq that are not sub-phrase pairs of

each other and which is defined as follows:

Lf̄ ,ē “ tpf̄ 1, ē1q P Ef̄ ,ēztpf̄ , ēqu| �Dpf̄2, ē2q P Ef̄ ,ēztpf̄ , ēq, pf̄ 1, ē1qu : f̄ 1 Ď f̄2 ^ ē1 Ď ē2u
(6)



Figure 3: Illustration of sub-phrases where neither of the two pairs pf1f2f3, e2e3q and

pf2f3, e1e2e3q of the original phrase pair pf1f2f3, e1e2e3q is a sub-phrase of the other.

Here, f̄ 1 Ď f̄2 means that f̄ 1 is a sub-phrase of or equal to f̄2. As a result, Lf̄ ,ē is the set of

longest eligible sub-phrase pairs of original phrase pair where none of them is a sub-phrase of

the others. For Ef̄ ,ē see Equation 3. O is the set of possible orientations. Note that we refer to

this model shortly as RecursiveBackOff model from now on. We also refer to both this model

and the BackOff model described in the previous section as back-off models.

4.3 Dependency Based Generalization
The methods described so far generalize the original phrase pairs by shortening towards the last

aligned words as the most important words to define the reordering behavior of a phrase pair. In

the remainder of this section, we use dependency parses to define how to generalize the original

phrase pair and shorten towards important words.

Head-driven hierarchical phrase based translation (Li et al., 2012) suggests that using heads

of phrases can be beneficial for better reordering in general. In our work, we define the heads

of a phrase to be its exposed heads. Given a dependency parse, the exposed heads are all

words inside a subsequence that are modifying a word outside it. Figure 4 shows an example

of exposed heads in a phrase pair. The highlighted words are the exposed heads of the phrase

pair. Exposed heads have been used in multiple linguistically motivated approaches as strong

predictors of the next word in structured language models (Chelba and Jelinek, 2000; Garmash

and Monz, 2015) and the next rule in a hierarchical translation system (Li et al., 2012).

In our model, besides training a regular lexicalized or hierarchical reordering model on

surface forms of phrases, we train another reordering model which keeps the exposed heads

lexicalized and replaces the remaining words in a phrase pair by a generalized representation.

Assume that RE is the set of dependency relations in the dependency parse tree of sentence S.

Figure 4: Examples of exposed heads in a Chinese-English phrase pair (between square brack-

ets). The underlined words are the exposed heads since they have an incoming dependency

originating outside of the phrase.

We consider each relation as an ordered pair pw1
l, wkq which means w at index k of sentence

S modifies w1 at index l. In addition, assuming f j
i is a phrase in S, starting from the ith and



ending with the jth word in sentence S, then the generalization wG of a word is:

wG “
$’&
’%

wk if wk P f j
i , Dpw1

l, wkq P RE :

l ă i or l ą j or w1 “ ROOT

Genpwkq otherwise

Here, k and l are indices of words w and w1 in sentence S and ROOT is the root of the

dependency parse of sentence S. The function Genpwq returns a generalization form for word

w. We define this function in three different ways to create three different models.

1. Genpwkq = POS tag(wk)

2. Genpwkq = <mod> if wk´1 is not equal to <mod> and nothing otherwise

3. Genpwkq remove wk.

The question is how to use these generalizations to improve the estimation of the reordering

distribution for each phrase pair. Our first model applies a generalization to the bilingual training

data and creates a reordering model similar to the regular lexicalized reordering model, but

based on relative frequency of generalized phrase pairs. In practice, a phrase pair may have

multiple generalizations due to different dependency parses in different contexts. Since it is

difficult to produce a dependency parse for the target side during decoding, we assume that

a phrase pair will always have one possible generalization. Under this assumption, we can

approximate the orientation distribution of a phrase pair to be:

P̂ po | f̄ , ēq “ P po | f̄G, ēGq (7)

We can use the orientation distribution of a generalization as our estimate of the distri-

bution of a phrase pair that produces the generalization. Here, f̄G and ēG are word by word

generalizations of f̄ and ē. In case of multiple generalizations we use the one maximizing

P pf̄G, ēG | f̄ , ēq. Depending on which of the three definitions for Genpwkq we use, we name

our models as PMLH (POS Modifiers Lexicalized Heads), MMLH (Merged Modifiers Lexical-

ized Heads), and LH (Lexicalized Heads) respectively.

As an alternative model, we propose to use the generalized distributions as a prior distri-

bution in Dirichlet smoothing, where the distribution of each phrase pair is smoothed with the

distribution of its generalized form. This should result in more accurate distributions since it

affects the distributions of frequent phrase pairs to a lesser extent.

5 Experiments

We evaluate our models for Chinese-to-English translation. Our training data consists of the par-

allel and monolingual data released by NIST’s OpenMT campaign, with MT04 used for tuning

and news data from MT05 and MT06 for testing, see Table 2. Case-insensitive BLEU (Papineni

et al., 2002) and translation error rate (TER) (Snover et al., 2006) are used as evaluation metrics.

5.1 Baseline
We use an in-house implementation of a phrase-based statistical machine translation system

similar to Moses (Koehn et al., 2007), including the commonly used translation, lexical weight-

ing, language, lexicalized reordering, and hierarchical reordering models. We use both lexical-

ized and hierarchical reordering models together, since this is the best model reported in (Gal-

ley and Manning, 2008) and our smoothing methods can be easily applied to the both models.

Word alignments are produced using GIZA++ (Och and Ney, 2003), using grow-diag-final-and

(Koehn et al., 2003). A 5-gram language model is trained on the English Gigaword corpus



Corpus Lines Tokens(ch) Tokens(en)

train 937K 22.3M 25,9M

MT04 (dev) 1,788 49.6K 59.2K

MT05 (test) 1,082 30.3K 35.8K

MT06 (test) 1,181 29.7K 33.5K

Table 2: Statistics for the Chinese-English bilingual corpora used in all experiments. Token

counts for the English side of dev and test sets are averaged across all references.

with 1.6B tokens using interpolated, modified Kneser-Ney smoothing. The lexicalized and the

hierarchical reordering models are trained with relative and smoothed frequencies using Dirich-

let smoothing (Equation 1), for both left-to-right and right-to-left directions distinguishing four

orientations: monotone (M), swap (S), discontinuous left (DL), and discontinuous right (DR).

Feature weights are tuned using PRO (Hopkins and May, 2011) and statistical differences are

computed using approximate randomization (Riezler and Maxwell, 2005).

In addition to the baseline, we reimplemented the 2POS model by Nagata et al. (2006),

which uses the POS tag of the first and last words of a phrase pair to smooth the reordering

distributions. The 2POS model is used in combination with the baseline lexicalized and hierar-

chical reordering models. Comparing our models to the 2POS model allows us to see whether

backed-off sub-phrases and exposed heads of phrase pairs yield better performance than simply

using the first and last words.

5.2 Comparison Systems and Results

We compare the baseline to the models described in Section 4. For all systems other than

the baseline, the lexicalized and the hierarchical reordering models are replaced by the corre-

sponding smoothed models. When computing the RecursiveBackOff model (Section 4.2), using

Equation 5, we set the value of α to 10, following Cherry (2013) and Chen et al. (2013).

For the dependency-based model, we use the dependency parses of the source and the

target side of the training corpus. The Stanford Neural-network dependency parser (Chen and

Manning, 2014) is used to generate parses for both sides of the training corpus. From a depen-

dency parse, we extract the smallest subtree that includes all incoming and outgoing relations of

the words of a phrase. This is done for both the source and the target side phrases. Considering

these subtrees, all words with an incoming connection from outside are exposed heads.

The experimental results for all models are shown in Table 3. As one can see, all our

models achieve improvements in terms of BLEU on the test sets. The improvements for our

back-off models are only significant for RecursiveBackOff over MT06 and MT05+MT06. The

improvements over MT05 by our dependency-based shortenings are statistically significant for

all models except PMLH. In the case of MT06, only the improvements resulting from MMLH

are not statistically significant. However, both the PMLH and the MMLH model achieve the

same improvements over MT05 and MT06 combined, and both are statistically significant. The

LH model performs better than these models and also achieves higher improvement on the

merged data. This model generalizes much more than the other models and is the only model

that changes the distributions of single word phrases which are among the most frequently used

phrase pairs. However, for frequent phrase pairs, being mapped to the same generalization

form can be potentially harmful. In order to be able to control the effect of the model on the

phrase pairs based on their frequency, we use the distributions in LH as a prior distribution with

Dirichlet smoothing (Equation 1). This results in the LHSmoothed model shown in Table 3

which achieves the best improvements over both MT05 and MT06.



Model MT05 MT06 MT05 + MT06

BLEUÒ TERÓ BLEUÒ TERÓ BLEUÒ TERÓ RIBESÒ
Lex+Hrc 32.25 60.13 33.00 57.17 32.84 58.62 79.24

Nagata’s 2POS 32.20 60.31 33.13 57.07 32.87 58.66 79.11

BackOff 32.40 60.45 33.10 57.00 33.00 58.69 79.07

RecursiveBackOff 32.37 60.29 33.34Ÿ,- 57.08 33.05Ÿ,- 58.65 79.28
PMLH 32.41 60.08 33.26Ÿ,- 57.05 33.04Ÿ,- 58.53 79.26
MMLH 32.62Ĳ,Ÿ 59.84-,Ĳ 33.18 56.91Ÿ,- 33.04Ÿ,- 58.35Ĳ,Ÿ 79.43
LH 32.64Ĳ,Ÿ 59.85Ÿ,Ĳ 33.26Ÿ,- 56.85Ĳ,- 33.11Ĳ,Ÿ 58.32Ĳ,Ĳ 79.34
LHSmoothed 32.65Ĳ,Ĳ 59.80Ÿ,Ĳ 33.38Ÿ,- 56.77Ĳ,Ÿ 33.20Ĳ,Ÿ 58.25Ĳ,Ĳ 79.35

Table 3: Model comparison using BLEU, TER (lower is better), and RIBES over news data,

which is combination of newswire and broadcast news in case of MT06 and just newswire for

MT05. Scores better than the baseline are in italics. Ĳ and Ÿ indicate statistically significant

improvements at p ă 0.01 and p ă 0.05, respectively. The left hand side Ĳ or Ÿ is with

respect to Lex+Hrc and the right hand side ones with respect to Nagata’s 2POS. PMLH refers

to the model using POS tags for modifiers and keeps exposed heads lexicalized. MMLH merges

modifiers and keeps exposed heads lexicalized. LH removes modifiers. LHSmoothed uses the

LH model with Dirichlet smoothing.

In addition to BLEU, we also report results using TER. Results for TER are in line with

BLEU. BLEU and TER are general translation quality metrics, which are known to be not

very sensitive to reordering changes (Birch et al., 2010). To this end we also include RIBES

(Isozaki et al., 2010), a reordering-specific metric that is designed to directly address word-order

differences between hypothesis and reference translation in translation tasks with long distant

reordering language pairs and is highly sensitive to word-order mistakes.

5.3 Analysis

The improvements achieved by our BackOff and RecursiveBackOff methods show that these

models capture some useful generalizations by shortening the phrase pairs towards the last

aligned words in the target side as the most important words. The difference between the two

models indicates that shortening is less beneficial for frequent phrase pairs and shorter phrase

pairs which are less affected by lower-order distributions.

The improvements achieved by our generalization models support our hypothesis that not

all words inside a phrase pair have the same impact on the reordering properties of the phrase

pair as a whole. The experimental results for the PMLH model show that the lexicalized form of

modifier words inside a phrase pair may just have the negative effect of increasing data sparsity.

Observing the improvements achieved by MMLH, we can go further and say that even the

number of modifiers of an exposed head in a phrase does not influence reordering properties

of a phrase pair. The improvements achieved by our LH model show not only that the number

of modifiers but also the mere presence or absence of them does not significantly influence the

reordering properties of a phrase pair.

One thing to bear in mind is that the PMLH and MMLH models do not change the distri-

bution of single word phrase pairs which are mostly frequent phrase pairs, while the LH model

does change these distributions as well. With the LHSmoothed model we have controlled this

effect and decreased it to be negligible for frequent single word phrase pairs. However, it still

changes the distributions of infrequent single word phrase pairs. Comparing the results of LH

and LHSmoothed in Table 3, we suspect that the difference between the models for MT06 is



Target Length

1 2 3 4 5 6 7

S
o
u
rc

e
L

en
g
th

1 8232 2719 879 269 89 18 7

2 2344 1777 1055 410 158 58 18

3 316 390 376 252 100 61 29

4 42 46 97 63 29 28 14

5 2 3 11 11 10 8 12

6 0 1 1 3 3 5 2

7 0 0 0 3 1 1 1

Table 4: Number of times that phrase pairs with different lengths and a frequency of less than 10

in the training data have been used during test on MT06 by the baseline. Phrase pairs occurring

less than 10 times account for 72% of all phrases used during decoding of MT06.

Source ... 由于东京和汉城当局均寄望能于二○○五年底前签署自由贸易协

定 ...

Baseline ... tokyo and seoul authorities are to be placed in 2005 before the end of the signing

of a free trade agreement ...

LHSmoothed ... tokyo and seoul authorities both in the hope of signing a free trade agreement

before the end of 2005 ...

Ref ... tokyo and seoul both hoped to sign a fta agreement by the end of 2005 ...

Source 俄罗斯多次 指控西方插手东欧事务 ...

Baseline russia has repeatedly accused of meddling in the affairs of the western and eastern

europe ...

LHSmoothed russia has repeatedly accused western intervention in the eastern european affairs ...

Ref russia has been accusing the west of interfering in the affairs of eastern europe ...

Table 5: Examples from MT05 illustrating reordering improvements over the baseline.

due to the effect of frequent single word phrase pairs.1 However, comparing the results of

LHSmoothed with other models we can say that even infrequent single word phrase pairs have

benefited from the higher generalization level offered by this model. The statistics of infrequent

phrase pairs used during testing and their lengths are shown in Table 4, giving an indication

of why this model achieves the highest improvements. The table is showing that 41% of the

infrequent phrase pairs (frequency ă 10) used during translating MT06 have length of one in

the both sides. So our models other than LH and LHSmoothed can not have neither positive nor

negative effect on almost half of the infrequent phrase pairs. This also probably could explain

why the back-off models achieve such a little improvements when 75% of infrequent phrase

pairs have length ă 3 in both sides.

In general, our dependency based models change the distributions to a larger extent than

our back-off models, where not all long phrase pairs have eligible sub-phrase pairs, while the de-

pendency models more often result in shorter generalizations. Table 5 provides some examples

where our LHSmoothed model has improved the translations by better modeling of reorderings.

To further the understanding of how the reordering distributions of infrequent phrase pairs used

in the examples in Table 5 are affected by our models, we show some examples in Table 6, be-

fore and after applying our model. As a result of our model, the phrase pair (寄望, in the hope)

1We also used the distributions from PMLH and MMLH as priors in Dirichlet smoothing, but it did not lead to any

noticeable changes in the results.



寄望 in the hope M S DL DR

Monotone with previous

Baseline 0.10 0.01 0.11 0.78

LHSmoothed 0.28 0.01 0.01 0.70

Counts in training 0 0 0 1

能于 of

Discontinuous right with next

Baseline 0.10 0.01 0.12 0.77

LHSmoothed 0.06 0.01 0.07 0.87

Counts in training 0 0 0 1

签署自由贸易协定 signing a free trade agreement

Discontinuous right with previous

Baseline 0.10 0.02 0.68 0.20

LHSmoothed 0.21 0.03 0.30 0.46

Counts in training 0 0 1 0

Table 6: Orientation distributions shift of some infrequent phrase pairs that has been used with

the correct orientation to produce our translations using LHSmoothed model in Table 5

receives an increase in monotone orientation probability although it has frequency of zero for

this orientation. The next phrase pair (能 于, of) receives an increase in discontinuous right

probability resulting in the correct usage of this orientation during translation. The most inter-

esting case is the substantial decrease in the probability of discontinuous left and the increase in

discontinuous right for the phrase pair (签署自由贸易协定, signing a free trade agreement),

even though it has frequency 1 for the former orientation and 0 for the latter. These shifts within

the probability distributions lead to the better translation generated by LHSmoothed model for

the first example in Table 5.

6 Conclusions

We have introduced a novel method that builds on the established idea of backing off to shorter

histories, commonly used in language model smoothing, and shown that it can be successfully

applied to smoothing of lexicalized and hierarchical reordering models in statistical machine

translation. Furthermore, we have shown that not all sub-phrase pairs are influential in that

regard. The sub-phrase pair consisting of just exposed heads of a phrase pair tends to be the most

important one and most other words inside a phrase pair have negligible influence on reordering

behavior. Earlier approaches, such as (Nagata et al., 2006) and (Cherry, 2013), often assume

that the last and the first word of a phrase pair are important, but our experiments indicate that

exHGposed heads tend to be stronger predictors. We showed that generalized representations

of phrase pairs based on exposed heads can help decrease sparsity and result in more reliable

reordering distributions.

Considering the analysis of the length of infrequent phrase pairs used during translation,

we also conclude that a smoothing model that would be able to further improve the distribution

of single word phrase pairs is crucial for achieving higher improvements during translation.

For future work, we plan to investigate the effect surface word forms from outside of a

phrase pair can have on reordering. This could further help improve reordering distributions

of infrequent single word phrase pairs more effectively as they constitute a large portion of the

phrases used during decoding.
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