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Abstract
In this paper, we propose an effective way for biasing the attention mechanism of a sequence-

to-sequence neural machine translation (NMT) model towards the well-studied statistical word

alignment models. We show that our novel guided alignment training approach improves trans-

lation quality on real-life e-commerce texts consisting of product titles and descriptions, over-

coming the problems posed by many unknown words and a large type/token ratio. We also

show that meta-data associated with input texts such as topic or category information can sig-

nificantly improve translation quality when used as an additional signal to the decoder part of

the network. With both novel features, the BLEU score of the NMT system on a product title

set improves from 18.6 to 21.3%. Even larger MT quality gains are obtained through domain

adaptation of a general domain NMT system to e-commerce data. The developed NMT system

also performs well on the IWSLT speech translation task, where an ensemble of four variant

systems outperforms the phrase-based baseline by 2.1% BLEU absolute.

1 Introduction

NMT systems were shown to reach state-of-the-art translation quality on tasks established in

MT research community such as IWSLT speech translation task Cettolo et al. (2012). In this

paper, we also apply NMT approach to e-commerce data: user-generated product titles and

descriptions for items put on sale. Such data are very different from newswire and other texts

typically considered in the MT research community. Titles in particular are short (usually fewer

than 15 words), contain many brand names which often do not have to be translated, but also

product feature values and specific abbreviations and jargon. Also, the vocabulary size is very

large due to the large variety of product types, and many words are observed in the training data

only once. At the same time, these data are provided with additional meta-information about

the item (e.g. product category such as clothing or electronics), which can be used as context

to perform topic/domain adaptation for improved translation quality.

At first glance, established phrase-based statistical MT approaches are well-suited for e-

commerce data translation. In a phrase-based approach, singleton, but unambiguous words

and phrases are usually translated correctly. Also, since the alignment between source and



target words is available, it is possible to transfer certain entities from the source sentence to

the generated target sentence “in-context” without translating them. Such entities can include

numbers, product specifications such as “5S” or brand names such as “Samsung” or “Lenovo”.

In training, these entities can be replaced with placeholders to reduce the vocabulary size.

However, NMT approaches are more powerful at capturing context beyond phrase bound-

aries and were shown to better exploit available training data. They also successfully adapt

themselves to a domain, for which only a limited amount of parallel training data is avail-

able Luong and Manning (2015). Also, previous research Mathur et al. (2015) has shown that

it is difficult to obtain translation quality improvements with topic adaptation in phrase-based

SMT because of data sparseness and a large number of topics (e. g. corresponding to product

categories), which may or may not be relevant for disambiguating between alternative trans-

lations or solving other known MT problems. In contrast, we expected NMT to better solve

the topic adaptation problem by using the additional meta-information as an extra signal in the

neural network. To the best of our knowledge, this is the first work where the additional in-

formation about the text topic is embedded into the vector space and used to directly influence

NMT decisions.

In an NMT system, the attention mechanism introduced in Luong et al. (2014) is impor-

tant both for decoding as well as for restoration of placeholder content and insertion of unknown

words in the right positions in the target sentence. To improve the estimation of the soft align-

ment, we propose to use the Viterbi alignments of the IBM model 4 Brown et al. (1993) as an

additional source of knowledge during NMT training. The additional alignment information

helps the current system to bias the attention mechanism towards the Viterbi alignment.

This paper is structured as follows. After an overview of related NMT work in Section 2,

we propose a novel approach in Section 3 on using statistical word alignemt to bias the training

of neural MT attention mechanism, we call it guided alignment training. In Section 4, we de-

scribe in more detail how topic information can benefit NMT. Section 5 and Section 6 describes

our domain adaptation approach. Experimental results are presented in Section 7. The paper is

concluded with a discussion and outlook in Section 8.

2 Related Work

Neural machine translation is mainly based on using recurrent neural networks to grasp long

term dependencies in natural language. An NMT system is trained on end-to-end basis to maxi-

mize the conditional probability of a correct translation given a source sentence Sutskever et al.

(2014), Bahdanau et al. (2014), Cho et al. (2014b). When using attention mechanism, large

vocabularies Jean et al. (2014), and some other techniques, NMT is reported to achieve compa-

rable translation quality to state-of-art phrase-based translation systems. Most NMT approaches

are based on the encoder-decoder architecture Cho et al. (2014a), in which the input sentence

is first encoded into a fixed-length representation, from which the recurrent neural network de-

coder generates the sequence of target words. Since fixed-length representation cannot give

enough information for decoding, a more sophisticated approach using attention mechanism is

proposed by Bahdanau et al. (2014). In this approach, the neural network learns to attend to

different parts of source sentence to improve translation quality. Since the source and target lan-

guage vocabularies for a neural network have to be limited, the rare words problem deteriorates

translation quality significantly. The rare word replacement technique using soft alignment pro-

posed by Luong et al. (2014) gives a promising solution for the problem. Both encoder-decoder

architecture and insertion of unknown words into NMT output highly rely on the quality of the

attention mechanism, thus it becomes the crucial part of NMT. Some research has been done

to refine it by Luong et al. (2015), who proposed global and local attention-based models, and

Cohn et al. (2016), who used biases, fertility and symmetric bilingual structure to improve the



attention model mechanism. The most recent work done by Mi et al. (2016) is highly paral-

lel with our guided alignment training, Section 3. They use statistical alignment to supervise

the NMT in a similar fashion as we do, the difference is that they smooth the statistical align-

ment and apply Euclidean distance directly to the objective function, while we try with different

divergence function and also re-weight it before adding to the overall objective function.

Research on topic adaptation most closely related to our work was performed by Hasler

et al. (2014), but the features proposed there were added to the log-linear model of a phrase-

based system. Here, we use the topic information as part of the input to the NMT system.

Another difference is that we primarily work with human-labeled topics, whereas in Hasler

et al. (2014) the topic distribution is inferred automatically from data.

When translating e-commerce content, we are faced with a situation when only a few

product titles and descriptions were manually translated, resulting in a small in-domain parallel

corpus, but a large general-domain parallel corpus is available. In such situations, domain

adaption techniques have been used both in phrase-based systems Koehn and Schroeder (2007)

and NMT Luong and Manning (2015). In addition, while diverse NMT models using different

features and techniques are trained, an ensemble decoder can be used to combine them together

to make a more robust model. This approach was used by Luong et al. (2015) to outperform the

state-of-art phrase-based system with their NMT approach in the WMT 2015 evaluation.

3 Guided Alignment Training

When using the attention-based NMT Bahdanau et al. (2014), we observed that the attention

mechanism sometimes fails to yield appropriate soft alignments, especially with increasing

length of the input sentence and many out-of-vocabulary words or placeholders. In translation,

this can lead to disordered output and word repetition.

In contrast to a statistical phrase-based system, the NMT decoder does not have explicit

information about the candidates of the current word, so at each recurrent step, the attention

weights only rely on the previously generated word and decoder/encoder state, as depicted in

Figure 1. The target word itself is not used to compute its attention weights. If the previous word

is an out-of-vocabulary (OOV) or a placeholder, then the information it provides for calculating

the attention weights for the current word is neither sufficient nor reliable anymore. This leads

to incorrect target word prediction, and the error propagates to the future steps due to feedback

loop. The problem is even larger in the case of e-commerce data where the number of OOVs

and placeholders is considerably higher.

To improve the estimation of the soft alignment, we propose to use the Viterbi alignments

of the IBM model 4 as an additional source of knowledge during the NMT training. Therefore,

we first extract Viterbi alignments using GIZA++ toolkit Och and Ney (2003), then we use them

to bias the attention mechanism. Our approach is to optimize on both the decoder cost and the

divergence between the attention weights and the alignment connections generated by statistical

alignments. The multi-objective optimization task is then expressed as a single-objective func-

tion, which is a linear combination of two loss functions: original and new guided-alignment.

3.1 Decoder Cost
NMT proposed by Bahdanau et al. (2014) maximizes the conditional log-likelihood of target

sentence y1, . . . , yT given the source sentence x1, . . . , x
′
T :

HD(y, x) = − 1

N

N∑
n=1

log pθ(yn|xn) (1)

where (yn, xn) refers to nth training sentence pair, and N denotes the total number of sentence

pairs in the training corpus. In the paper, we name the negative log-likelihood as decoder cost



to distinguish from alignment cost. When using encoder-decoder architecture by Cho et al.

(2014b), the conditional probability can be written as:

p(y1 . . . yT |x1 . . . xT ′) =
T∏

t=1

p(yt|yt−1 · · · y1, c) (2)

with p(yt|yt−1 · · · y1, c) = g(st, yt−1, c), where T is the length of the target sentence and T ′ is

the length of source sentence, c is a fixed-length vector to encode source sentence, st is a hidden

state of RNN at time step t, and g(·) is a non-linear function to approximate word probability.

If attention mechanism is used, the vector c in each sentence is replaced by time-variant rep-

resentation ct that is a weighted summary over a sequence of annotations (h1, · · · , hT ′), and

hi contains information about the whole input sentence, but with a strong focus on the parts

surrounding the ith word Bahdanau et al. (2014). Then, the context vector can be defined as:

ct =
T ′∑
i

αtihi where αti =
exp(eti)∑T ′

k=1 exp(etk)
. (3)

This means, αti for each annotation hi is computed by normalizing the score function with

the softmax. Also, eti = a(st−1, hi) is the function to calculate the score of t-th target word

aligning to i-th word in the source sentence. The alignment model a(·, ·) is used to calculate

similarity between previous state st−1 and bi-directional state hi. In our experiments, we took

the idea of the dot global attention model of Luong et al. (2015), but we still keep the order

ht−1 → at → ct → ht as proposed by Bahdanau et al. (2014). We calculate the dot product of

encoder state hi with the last decoder state st−1 instead of the current decoder state. We observe

that this dot attention model (Equation 4) works better than concatenation in our experiments.

a(st−1, hi) = (Wsst−1)
T (Whhi) (4)

3.2 Alignment Cost
We introduce alignment cost to penalize attention mechanism when it is not consistent with

statistical word alignment. We represent the pre-trained statistical alignments by a matrix A,

where Ati refers to the probability of the tth word in the target sentence of being aligned to the

ith word in the source sentence. In case of multiple source words aligning to the same target

word, we normalize to make sure
∑

i Ati = 1, in the case of non-aligned target words, we do not

add any penalty. In attention-based NMT, the matrix of attention weights α has the same shape

and semantics as A. We propose to penalize NMT based on the divergence of the two matrices

during the training, the divergence function can e. g. be cross entropy Gce or mean square error

Gmse as in Equation 5. As shown in Figure 1, A comes from statistical alignment and is fed

into our guided-alignment NMT as an additional input to penalize the attention mechanism.

Gce(A,α) = − 1

T

T∑
t=1

T ′∑
i=1

Ati logαti Gmse(A,α) =
1

T

T∑
t=1

T ′∑
i=1

(Ati − αti)
2 (5)

We combine decoder cost and alignment cost to build the new loss function H(y, x,A, α):

H(y, x,A, α) = w1G(A,α) + w2HD(y, x) (6)

During training, we optimize the new compound loss function H(y, x,A, α) with regard to the

same parameters as before. The guided-alignment training influences the attention mechanism

to generate alignment closer to Viterbi alignment and has the advantage of unchanged parameter



space and model complexity. When training is done, we assume that NMT can generate robust

alignment by itself, so there is no need to feed an alignment matrix as input during evaluation.

As indicated in Equation 6, we set w1 and w2 for weights of decoder cost and alignment cost

to balance their weight ratio. We performed further experiments (see section 7) to analyze the

impact of different weight settings on translation quality.

4 Topic-aware Machine Translation

In the e-commerce domain, the information on the product category (e.g., “mens’ clothing”,

“mobile phones“, “kitchen appliances”) often accompanies the product title and description

and can be used as an additional source of information both in the training of a MT system

and during translation. In particular, such meta-information can help to disambiguate between

alternative translations of the same word that have different meaning. The choice of the right

translation often depends on the category. For example, the word “skin” has to be translated

differently in the categories “mobile phone accessories” and “make-up”. Outside of the e-

commerce world, similar topic information is available in the form of e.g. tags and keywords

for a given document (on-line article, blog post, patent, etc.) and can also be used for word sense

disambiguation and topic adaptation. In general, a document may belong to multiple topics.

Here, we propose to feed such meta-information into the recurrent neural network to help

generate words which are appropriate given a particular category or topic.

4.1 Topic Representation
The idea is to represent topic information in a D-dimensional vector l, where D is the number

of topics. Since one sentence can belong to multiple topics (possibly with different probabili-

ties/weights), we normalize the topic vector so that the sum of its elements is 1. It is fed into the

decoder to influence the proposed target word distribution. The conditional probability given

the topic membership vector can be written as (cf. Equations 2 and 3):

p(yt|y<t−1, ct, st−1, l) = p(yt|yt−1, ct, st−1, l) ≈ g(yt−1, st−1, ct, l)

where g(·) is used to approximate the probability distribution. In our implementation, we intro-

duce an intermediate readout layer to build the function g(·), which is a feed-forward network

as depicted in Figure 2.

4.2 Topic-aware Decoder
In the NMT decoder, we feed the topic membership vector to the readout layer in each recurrent

step to enhance word selection. As shown in Figure 1 and Figure 2, topic membership vector l
is fed into the NMT decoder as an additional input besides source and target sentences:

p(yt|y<t−1, ct, st−1, l) = p(yt|rt) where rt = Wr[ct; ft−1; st−1; l] + br (7)

Here, Wr is the concatenation of original transformation matrix and l, rt is the output from

readout layer and ft is the embedding of the last target word yt−1; st−1 refers the last decoder

state. Wr and br are weights and bias for the linear transformation, respectively. We can

rearrange the formula as:

rt = [W ′
r,Wc][ct; ft−1; st−1; l] + br

= [W ′
r[ct; ft−1; st−1] + br] +Wcl

= r′t + Ec

(8)

where Wr is concatenation of original transformation matrix W ′
r and topic transformation ma-

trix Wc. Then adding topic into readout layer input is equivalent to adding an additional topic



Figure 1: Topic-aware, alignment-guided encoder-decoder model. Topic information l is added

to the decoder as an additional input, influencing every decoding step; statistical alignment A is

added to the attention layer to supervise the learning of the attention mechanism.

vector Ec into the original readout layer output. Assuming l is a one-hot category vector, then

Wcl is equivalent to retrieving a specific column from the matrix Wc. Hence, we can name this

additional vector Ec as topic embedding, regarded as a vector representation of topic informa-

tion. It is quite similar to word embedding by Mikolov et al. (2013), we will further analyze the

similarity between different topics in Figure 3.

The readout layer depicted in Figure 2 merges information from the last state st−1, previ-

ous word embedding ft−1 (coming from word index yt−1, which is sampled w.r.t. the proposed

word distribution), as well as the current context ct to generate output. It can be seen as a

shallow network, which consists of a max-out layer Goodfellow et al. (2013), a fully-connected

layer, and a softmax layer.

5 Bootstrapping

When trained on small amounts of data, the attention-based neural network approach does not

always produce reliable soft alignment. The problem gets worse when the sentence pairs avail-

able for training are getting longer. To solve this problem, we extracted bilingual sub-sentence

units from existing sentence pairs to be used as additional training data. These units are exclu-

sively aligned to each other, i. e. all words within the source sub-sentence are aligned only to

the words within the corresponding target sub-sentence and vice versa. The alignment is deter-

mined with the standard approach (IBM Model 4 alignment trained with the GIZA++ toolkit

Och and Ney (2003)). As boundaries for sub-sentence units, we used punctuation marks, in-

cluding period, comma, semicolon, colon, dash, etc. To simplify bilingual sentence splitting,

we used the standard phrase pair extraction algorithm for phrase-based SMT, but set the min-

imum/maximum source phrase length to 8 and 30 tokens, respectively. From all such long

phrase pairs extracted by the algorithm, we only kept those which are started or ended with a

punctuation mark or started/ended a sentence; both on the source and on the target side.

For the bootstrapped training, we merged the original training data with the extracted sub-



Figure 2: Topic-aware readout layer. The topic information vector, l, is fed to the readout layer

in each recurrent step to influence target word selection.

sentence units and ran the neural training algorithm on this extended training set. Since the

extracted bilingual sub-sentence units generally showed good correspondence between source

and target due to the constraints described above, the expectation was that having such units

repeated in the training data as stand-alone training instances would guide the attention mecha-

nism to become more robust and make it easier for the neural training algorithm to find better

correspondences between more difficult source/target sentence parts. Also, having both short

and long training instances was expected to make neural translation quality less dependent on

the input length.

6 E-commerce Domain Adaptation

For the e-commerce English-to-French translation task, we only have a limited amount of in-

domain parallel training data (item titles and descriptions). To benefit from large amounts of

general-domain training data, we follow the method described by Luong and Manning (2015).

We first train a baseline NMT model on English-French WMT data (common-crawl, europarl

v7, and news commentary corpora) for two epochs to get the best result on a development set,

and then we continue training the same model on the in-domain training set for a few more

epochs. In contrast to Luong and Manning (2015), however, we use the vocabularies of the

most frequent 52K source/target words in the in-domain data (instead of the out-of-domain data

vocabularies). This causes NMT to focus on translation of the most relevant in-domain words.

7 Experimental Results

7.1 Data Sets and Preprocessing
We performed MT experiments on the German-to-English IWLST 2015 speech translation

task Cettolo et al. (2012) and on an in-house English-to-French e-commerce translation task.

As part of data preprocessing, we tokenized and lowercased the corpora, as well as replaced

numbers, product specifications, and other special symbols with placeholders such as $num.

We only keep these placeholders in training, but preserve their content as XML markups in the

dev/test sets, which we try to restore using attention mechanism. This content is inserted for the



generated placeholders on the target side based on the attention mechanism (see Luong et al.

(2014)). In the beam search for the best translation, we make sure that each placeholder content

is used only once. Using the same mechanism, we also pass OOV words to the target side “as

is” (without using any special unknown word symbol).

On both tasks, we evaluate all systems and system variants using case-insensitive

BLEU Papineni et al. (2002) and TER Snover et al. (2006) scores on held-out development

and test data using a single human reference translation.

Data-set IWSLT e-commerce

Language German English English French

Training

Sentences 165 201 516 000

Running words 3 873 816 3 656 038 2 592 202 2 895 089

Full vocabulary 103 390 45 068 119 607 129 848

Dev
Sentences 567 910

Running words 9 812 10 695 10 339 11 283

Test

Sentences 1100 910

Running words 19 019 22 895 10 817 11 016

Source OOV rate w.r.t. full/NMT Voc. 5.16/6.12 % 2.56/5.76 %

Table 1: Corpus statistics for the IWSLT and e-commerce translation tasks. OOV rate is calcu-

lated after preprocessing, placeholders like $num, $url, etc. largely decrease the OOV rate in

the e-commerce dev and test sets.

7.1.1 IWSLT TED Talk Data
For the IWSLT German-to-English task (translation of transcribed TED talks), we map the

topic keywords of each TED talk in the 2015 training/dev/test evaluation campaign release to

ten general topics such as politics, environment, education, and others. All sentences in the

same talk share the same topic, and one talk can belong to several topics. Instead of using the

official IWSLT dev/test data, we set aside 81/159 talks for development/test set, respectively.

Out of these talks, we used 567 dev and 1100 test sentences which have the highest probability

of relating to a particular topic (bag-of-words classification using the remaining 1365 talks as

the training data). The corpus statistics of the data sets obtained this way are given in Table 11.

7.1.2 E-commerce Data
For the e-commerce English-to-French task, we used the product category such as “fashion” or

“electronics” as topic information (a total of 80 most widely used categories plus the category

“other” that combined all the less frequent categories). The training set contained both product

titles and product descriptions, while dev and test set only contained product titles. Each title or

description sentence was assigned to only one category. The statistics of the e-commerce data

sets are given in Table 1.

7.2 Model Training
We implemented our neural translation model in Python using the Blocks deep learning library

van Merriënboer et al. (2015) based on the open-source MILA translation project. We com-

pared our implementation of NMT baseline system with Bahdanau et al. (2014) on the WMT

2014 English-to-French machine translation task and obtained a similar BLEU score on the of-

ficial test set as they reported in Bahdanau et al. (2014). Then we implemented the topic-aware

1This data set with topic labels is publicly available at https://github.com/wenhuchen/iwslt-2015-de-en-topics.



E-commerce En→Fr BLEU [%] TER [%]

Baseline NMT 18.6 68.5

+prefixed human-labeled categs 18.3 69.3

+readout human-labeled categs 19.7 65.3

+readout LDA topics 14.5 74.9

Table 2: Comparison of different approaches for topic-aware NMT.

algorithm (section 4), guided alignment training (section 3), and the bootstrapped training (sec-

tion 5) into the NMT model. We trained separate models with various feature combinations.

We also created an ensemble of different models to obtain the best NMT translation results.

In our experiments, we set the dimension of both source and target word embeddings to

620 and use a bi-directional GRU encoder and attention-based GRU decoder, the cell dimension

of both are set to 1000. We selected the 50k most frequent German words and top 30k English

words as vocabularies for the IWSLT task, and most frequent 52k English/French words for the

e-commerce task. The optimization of the objective function was performed by using AdaDelta

algorithm Zeiler (2012). We set the beam size to 10 for dev/test set beam search translation.

For training implementation, we use stochastic gradient descent with batch size of 100,

saving model parameters after a certain number of epochs. We saved around 30 consecutive

model parameters. We selected the best parameter set according to the sum of the established

MT evaluation measures BLEU Papineni et al. (2002) and 1-TER Snover et al. (2006) on the

development set. After model selection, we evaluated the best model on the test set. We report

the test set BLEU and TER scores in Table 5 and Table 7.

We use TITAN X GPUs with 12GB of RAM to run experiments on Ubuntu Linux 14.04.

The training converges in less than 24 hours on the IWSLT talk task and around 30 hours on the

e-commerce task. The beam search on the test set for both tasks takes around 10 minutes, the

exact time depends on the vocabulary size and beam size.

7.3 Effect of Topic-aware NMT
We tested different approaches to find out where topic information fits best into NMT, since

topic information can affect alignment, word selection, etc. The most naive approach is to

insert a pseudo topic word in the beginning of a sentence to bias the context of the sentence to a

certain topic. We also tried topic vectors of different origin in the read-out layer of the network.

We used both topics predicted automatically with the Latent Dirichlet Analysis (LDA) and

human-labeled topics to feed into the network as shown in Figure 1.

The results on the e-commerce task in Table 2 show that category information as a pseudo

topic word does not carry enough semantic and syntactic meaning in comparison to real source

words to have a positive effect on the target words predicted in the decoder. The BLEU score

of such system (18.3%) is even below the baseline (18.6%). In contrast, the human-labeled

categories are more reliable and are able to positively influence word selection in the NMT

decoder, significantly (19.7% BLEU) outperforming the baseline.

Replacing the human-labeled topic one-hot vectors of size 80 with the LDA-predicted topic

distribution vectors of the same dimension in the read-out layer of the neural network deteri-

orated the BLEU and TER scores significantly. We attribute this to data sparseness problems

when training the LDA of dimension 80 on product titles.

On the German-to-English task, we also observed MT quality improvements when using

human-labeled topic information as described in Figure 1. Here, we extracted the topic embed-

ding Ec from different experiments and show their cosine distance in Figure 3. It’s straight-

forward that in different experiments, the same topic tends to share similar representation in



SRC ich möchte Ihnen heute Morgen gerne von meinem Projekt, Kunst Aufräumen, erzählen.

NMT I want to clean you this morning, from my project, to say Art.

+topics I would like to talk to you today by my project, Art clean.

REF I would like to talk to you this morning about my project, Tidying Up Art.

SRC . . . unsere Kollegen an Tufts verbinden Modelle wie diese mit durch Tissue Engineering

erzeugten Knochen, um zu sehen, wie Krebs sich von einem Teil des Körpers zum nächsten

verbreiten könnte.

NMT . . . our NOAA colleagues combined models of models like this with tissue generated bones

from bones to see how cancer could spread from one part of the body, to the next

distribution.

+topics . . . our colleagues at Tufts are using models like this with tissue-based engineered bones

to see how cancer could spread from a part of the body to the next part.

REF . . . our colleagues at Tufts are mixing models like these with tissue-engineered bone to see

how cancer might spread from one part of the body to the next.

Table 3: Example of improved translation quality when topic information is used as input in the

neural MT system (German-to-English IWSLT test set).

Figure 3: Topic embedding cosine

distance.

Figure 4: Refined alignment examples us-

ing guided-alignment learning (green blocks

refer to the identical alignments from Base-

line NMT and guided-alignment NMT, blue

blocks refer to the alignment from base-

line NMT, yellow blocks refer to guided-

alignment NMT).

continuous embedding space. At the same time, closer topic pairs like “politics” and “issues”

tend to have shorter distance from each other. Examples of improved German-to-English NMT

translations when human-labeled topic information is used are shown in Table 3.

7.4 Implementation of Guided Alignment
To balance decoder cost and the attention weight cost, we experimented with different weights

for these costs. We analyzed the relation between weight ratio and the final result in Table 4.

Besides fixing the cost ratios during training, we also apply a heuristic to adjust the ratio as

the training is progressing. One approach is to set a high value for the alignment cost in the

beginning, then decay the weight to 90% after every epoch, finally eliminating the influence

of the alignment after some time. This approach helps for the IWSLT task, but not on the e-

commerce task. We assume that the alignment for the TED talk sentences seems to be easier for

NMT to learn on its own than the alignment between product titles and their translations. We

also analyzed the effect of using different loss functions for calculating alignment divergence

(see Section 3.2). The difference between the squared error and cross-entropy is not so large as



En→Fr
BLEU TER

% %

Baseline NMT 18.6 68.3

+ce (decay) 20.5 65.8

+ce (1:2) 20.6 65.5

+ce (1:1) 20.2 65.0

+ce (2:1) 20.9 65.7

+mse (1:1) 20.8 64.5

Table 4: Comparison of different

loss functions and weight ratios

for guided alignment (cf. Equa-

tion 5).

En→Fr systems
BLEU TER

% %

1. NMT in-domain (ID) 18.6 68.5

2. 1) + topic vectors 19.7 65.3

3. 1) + bootstrapping 20.1 66.2

4. 1) + guided alignment 20.9 65.7

5. NMT with 2) and 4) 21.3 64.3

6. NMT with 2) and 3) and 4) 20.7 66.2

7. NMT out-of-domain (OOD) 13.8 77.4

8. 7) + guided alignment 16.3 74.5

9. 8) + domain adaptation 25.0 60.1

Ensemble
system 4)

24.5 60.9
system 5)

NMT system 6)

ID NMT w. 3) and 4)

Ensemble system 9)

25.6 58.6NMT 9) with DW

OOD 9) w. topic vectors

Table 5: Translation results on the En→Fr e-commerce

task. (DW: decaying weight for the statistical alignment).

SRC Vintage Ollech & Wajs Early Bird Diver watch, Excellent!

SMT Vintage Ollech & Wajs début oiseau montre de plongée, excellent!

NMT Montre de plongée vintage Ollech & Wajs early bird, excellent!

REF Montre de Plongée Vintage Ollech & Wajs Early Bird, Excellent !

Table 6: Example of improved translation quality of the NMT ensemble system vs. phrase-

based baseline system (English-to-French title test set).

shown in Table 4. Since the cross-entropy function has a consistent form as decoder cost, we

decided to use it in further experiments. We extracted the NMT attention weights and marked

the connection with the highest score as hard alignment for each word. We drew the alignment

in Figure 4 to compare baseline NMT and alignment-guided NMT. It can be seen from the graph

that the guided alignment training truly improves the alignment correspondence.

7.5 Overall Results

The overall results on the e-commerce translation task and IWSLT task are shown in Table 5

and Table 7, respectively. We observed consistency on both tasks, in a sense that a feature that

improves BLEU/TER results on one task is also beneficial for the other.

For comparison, we trained phrase-based SMT models using the Moses toolkit Koehn

et al. (2007) on both translation tasks. We used the standard Moses features, including a 4-

gram LM trained on the target side of the bilingual data, word-level and phrase-level translation

probabilities, as well as the distortion model with the maximum distortion of 6. Our stronger

phrase-based baseline included additional 5 features of a 4-gram operation sequence model –

OSM Durrani et al. (2015).

On the e-commerce task, which is more challenging due to a high number of OOV words

and placeholders, we observed that NMT translation output had many errors related to incor-

rect attention weights. To improve the attention mechanism, we applied guided alignment and



# De→En systems BLEU % TER %

1 Phrase-based system 24.7 55.4

2 Phrase-based system + OSM 25.7 55.1

3 NMT 23.4 60.1

4 NMT + topic vectors 23.7 59.6

5 NMT + bootstrapping 24.1 58.6

6 NMT + guided alignment 23.8 60.8

7 NMT + topic vectors + bootstrapping 24.2 59.4

8 NMT + topic vectors + bootstrapping + guided alignment 24.6 57.7

9 Ensemble

NMT + topic vectors

27.8 55.4
NMT + topic vectors + guided alignment

NMT + topic vectors + bootstrapping

NMT + topic v. + guided alignment + bootstrapping

Table 7: Overview of the translation results on the German-to-English IWSLT task.

bootstrapping. Both boosted the translation performance. Adding topic information increased

the BLEU score to 21.3%. We selected the four best model parameters from various experi-

ments to make an ensemble system, this improved the BLEU score to 24.5%. For the following

experiment, we had pre-trained a model on WMT15 parallel data with the guided alignment

technique, and then continued training on the e-commerce data for several epochs as described

in section 6, performing domain adaptation. This approach proved to be extremely helpful, giv-

ing an increase of over 3.0% absolute in BLEU. Finally, we also applied ensemble methods on

variants of the domain-adapted models to further increase the BLEU score to 25.6, which is 7.0

BLEU higher than the NMT baseline system, and only 0.6% BLEU behind the BLEU score of

26.2% for the state-of-the-art phrase-based baseline. Table 6 shows examples where the ensem-

ble NMT system is better than the phrase-based system despite the slightly lower corpus-level

BLEU score. In fact, a more detailed analysis of the sentence-level BLEU scores showed that

the NMT translation of 386 titles out of 910 was ranked higher than the SMT translation, the

reverse was true for 460 titles. In particular, the word order of noun phrases was observed to be

better in the NMT translations.

On the IWSLT task (Table 7), the baseline NMT was not as far behind the phrase-based

system as on the e-commerce task, and thus the obtained improvements were smaller than for

product title translations. We observed that topic information is less helpful than bootstrapping

and guided alignment learning. When we combined them, we reached the same BLEU score as

the phrase-based system (see Table 7). Finally, we combined four variant systems to create an

ensemble, which resulted in the BLEU score of 27.8%, surpassing the phrase-based translation

with the OSM model by 2.1% BLEU absolute.

8 Conclusion

We have presented a novel guided alignment training for a NMT model that utilizes IBM model

4 Viterbi alignments to guide the attention mechanism. This approach was shown experimen-

tally to bring consistent improvements of translation quality on e-commerce and spoken lan-

guage translation tasks. Also on both tasks, the proposed novel way of utilizing topic meta-

information in NMT was shown to improve BLEU and TER scores. We also showed improve-

ments when using domain adaptation by continuing training of an out-of-domain NMT system

on in-domain parallel data. In the future, we would like to investigate how to effectively make

use of the abundant monolingual data with human-labeled product category information that we

have available for the envisioned e-commerce application.
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