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Abstract. Evaluation approaches for unsupervised rank-based keyword assignment are nearly as numerous as are
the existing systems. The prolific production of each newly used metric (or metric twist) seems to stem from general dis-
satisfaction with the previous one and the source of that dissatisfaction has not previously been discussed in the literature.
The difficulty may stem from a poor specification of the keyword assignment task in view of the rank-based approach.
With a more complete specification of this task, we aim to show why the previous evaluation metrics fail to satisfy resear-
chers’ goals to distinguish and detect good rank-based keyword assignment systems. We put forward a characterisation of
an ideal evaluation metric, and discuss the consistency of the evaluation metrics with this ideal, finding that the average
standard normalised cumulative gain metric is most consistent with this ideal.

1 Introduction

Automatic keyword assignment is concerned with assigning documents their representative keywords, either through
extracting directly from the text (keyword extraction), or some other process (keyword generation). The task plays an
important role in important approaches to, for example, document indexing (for search engines), summarisation, cluste-
ring, and classification. Research in data-driven methods for automatically finding keywords for documents has been both
classifier-based and rank-based. In recent years, the rank-based systems have come to dominate and appear to form the
state-of-the-art under all forms of the keyword assignment task. However, with the move towards rank-based systems,
there is a general sense that previously adopted techniques of system evaluation (especially set-based) are inadequate, as
testified by the fact that virtually every new publication on the topic introduces some new evaluation metric or metric twist.
In a nutshell, the problem stems from the added dimension of ranking, where the order of items in the list is meaningful,
unlike classification systems.

Following the definition of rank-based keyword assignment systems and a discussion of the specification of the keyword
assignment task in view of this definition (Section 2), we present a critical survey of the evaluation approaches to this
task adopted in the past and attempt to highlight some crucial weaknesses with respect to the rank-based system approach
(Section 3). We finish by arguing that the currently most consistent approach to evaluation in this context makes use of
the standard Normalised Discounted Cumulative Gain (NDCG) metric, which is mathematically proven to distinguish
between ranking systems where one system is substantially better than another (Section 3.3).

2 The definition of rank-based keyword assignment systems

We define rank-based keyword assignment as the following (Cf. (Wang et al., 2013)).

Definition 1. Given a set of candidate keywords X = {x1, . . . , xm} for a document D and a set Y of degrees of relevancy, a
rank-based keyword assignment system f : X → Y generates a score f(x) ∈ Y , according to which the m keywords in X can
be organised, resulting in the returned list xf
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, . . . , xf

im
(ij ∈ [m] for all j ∈ [m] and ij1 6= ij2 if j1 6= j2), which satisfies

f
(
xf
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)
≥ · · · ≥ f

(
xf
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The set Y can, for instance, be the set of real numbers or the interval [0, 1]. It can also be finite. If we set Y = {0, 1},
then we see that a classification-based system can be viewed as a simple type of rank-based keyword assignment system.
Thus any ranking-system specific evaluation metric can be used for their evaluation also (though indeed this introduces
excessive complexity if there is no specific comparison with more complex ranking-based systems).
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The original keyword assignment problem does not ask for a ranking of keyword candidates, but a set of correct keywords.
Keywords are short representations of documents ; and as a set they come in small numbers. One could think of this small
set size as part of their definition. So, researchers of rank-based systems have generally resorted to returning the top n
items of the ranked list. The question of how many keywords to return then arises, since rank-based systems have only
organised the candidate keywords into a list (in which all possibilities appear).

Cutting the returned keyword list from a rank-based system off at n, simply because n is the number of positives (correct
keyword candidates), seems to be too harsh : a cut-off at n = 5, when, say, the sixth and seventh keywords in the list are
correct is not the full story. At the same time, a cut-off at n = 78 seems far too generous (to at least the recall score) and
contrary to the definition of a keyword. Indeed, there seems to be some small upper limit on the size of a keyword set,
though it is not clear what this is ; call this observation (O1).

Moreover, we need to be conscious of how much tolerance for error a user or down-stream application receiving the
keyword set has. Perhaps precision of at least 1

3 is tolerable, but 1
5 becomes fairly useless. Obviously, the higher density

and quantity of true positives, the better, but this bound is better determined by the down-stream application. There exists
some reasonably low bound on the error tolerance of keyword assignment systems for down-stream applications, though
it is not clear what this is ; call this observation (O2).

With the ranking approach to keyword assignment, as Liu et al. Liu et al. (2010) note, the ranking order of extracted
keyphrases is an important indicator for method preference. We argue that this ranking order in Definition 1 completely
specifies the task and accounts for (O1) and (O2) if we observe that producing correct keywords lower down the list in the
ranking should be not as important as producing correct keywords high up in the list, as some sort of quality control. We
are not sure what the keyword set size is, but we are aware that it should be small by (O1), therefore a decaying “reward”
for finding a correct keyword as we move down the ranked list can account for this. Moreover, by (O2), we are aware that
down-stream applications could probably afford some density of errors, but that this density should be small ; since the
set of correct (gold) keywords is small, as we move down the ranked list, the density of errors probably increases. Once
again a decaying “reward” for finding a correct keyword as we move down the ranked list can account for this. Call this
observation (O3).

3 Previous system evaluation and their adequacy for rank-based system eva-
luation

Four general categories of approaches to rank-based keyword assignment system evaluation have been adopted in the
past, each category differing in its selection of the parameter n : (1) low choice(s) of n, (2) choice of n as a function of
document length, (3) considering all values of n as equal, and (4) oracle choice of n (i.e., the choice of n which maximises
the evaluation metric). We discuss these now, in turn.

3.1 Selecting a strong list cut-off n : precision, recall and f-score

The majority of systems have been evaluated using the popular measures of precision (P ), recall (R) and f-score (F1),
where P := correctly returned keywords

returned keywords , R := correctly returned keywords
all correct keywords , and F1 := 2 · P ·R

P+R .

3.2 Keyword set size at a constant cut-off

When using these set-based evaluation measures, researchers typically choose a set size n, and true to the definition of a
keyword (keyword set), this parameter is usually chosen to be small.

(Wan & Xiao, 2008) and (Wan et al., 2007) evaluate systems using precision, recall and f-score at n = 10 explaining
that 10 is the limit, because the guidelines they set for the manual annotation of keywords of the DUC2001 documents
gave a limit of 10 keywords. Semeval 2010 task 5 organisers evaluated submitted systems using precision, recall, and
f-score, with n ∈ {5, 10, 15} (Kim et al., 2010). (Liu et al., 2010) present precision, recall and f-scores for specific n
values selected with respect to the dataset : n = 5 for the Inspec dataset and n = 10 for the DUC2001 dataset. 1 (Litvak

1. We note that the mean number of keywords in the Inspec training set documents is 9.788 with standard deviation of 4.877. Also, this number was
found to be normally distributed with high probability (K2 = 127.384, p = 0.0). Therefore, (Liu et al., 2010)’s value for n = 5 cannot be motivated



& Last, 2008) are generous with the smallness boundary (perhaps unrealistically), reporting precision, recall and f-scores
for n ∈ {10, 20, 30, 40}.

The decision of (Wan & Xiao, 2008) and (Wan et al., 2007) to evaluate with n as the number of positives may be too harsh
for a rank-based system, because it allows no error tolerance, which goes against (O2). Moreover, f-scores can be highly
chaotic when n is so low.

Consider the hypothetical systems in Table 1, which shows the ranked keyword lists of each of the systems, where 0 is
a false positive and 1 is a true positive, and there are a total of 7 positives in the data. The highest f-score is achieved at
n = 8 ; however evaluating, as in the Semeval 2010 task 5 at n ∈ {5, 10, 15} doesn’t provided any evidence of this. In
fact, at n = 5, Systems 1 and 2 are tied, and at n ∈ {10, 15}, all three systems have the same f-score. However, we can
observe some behaviour of the three systems which clearly demarcates System 2 as generally superior given these results,
since it finds the positives earlier than the two other systems. Unfortunately, f-score at arbitrary cut-offs cannot account
for this.

System 1 System 2 System 3
n kw f-score kw f-score kw f-score
1 0 0 1 0.29 0 0
2 0 0 1 0.5 0 0
3 1 0.22 1 0.67 0 0
4 1 0.4 0 0.6 0 0
5 1 0.55 0 0.55 1 0.18
6 0 0.5 1 0.67 1 0.33
7 0 0.46 1 0.77 1 0.46
8 1 0.57 1 0.85 1 0.57
9 1 0.67 0 0.8 1 0.67
10 1 0.75 0 0.75 1 0.75
11 0 0.71 1 0.82 0 0.71
12 0 0.67 0 0.78 0 0.67
13 0 0.63 0 0.74 0 0.63
14 1 0.7 0 0.7 0 0.6
15 0 0.67 0 0.67 1 0.67

TABLE 1 – F-scores of hypothetical systems at various levels of n. kw stands for keyword. A value 0 in this column
indicates a false positive at the corresponding rank level n, and a value 1 indicates a true positive. The total number of
positives is set at 7.

3.2.1 Keyword set size as some fraction of document size

One approach to the manner in which n is chosen for evaluation using precision, recall and f-score is to let n be some
fraction of the length of the document. (Mihalcea & Tarau, 2004) used the knowledge of the relatively short length N of
the documents (which were abstracts from the Inspec corpus), and set n := 1

3 · N . Clearly the approach of taking first
one-third of the returned ranked list does not work for longer sized documents, where n could end up in the 1000s. But,
that does not mean that N could not be used to guide the selection of n.

Abstraction made of the problem of the harsh cut-off outlined in the previous section, an additional problem remains.
This approach assumes that there is some correlation between n and document size N . We tested this assumption for the
training set of Inspec corpus. This training set consists of 1000 scientific abstracts, which form the document set, and
as in all previous uses of the corpus (to our knowledge) we considered the set of keywords for abstracts, which were
designated as uncontrolled (Hulth, 2003). We carried out the D’Agostino-Pearson test for normality on document length,
which showed that N is highly likely to be normally distributed (K2 = 114.565, p = 0.0). The number of keywords
for document n was also found to be normally distributed by the same test for normality (K2 = 127.384, p = 0.0). We
then calculated the Pearson correlation of N and n, however, to discover that there is in fact no correlation between these
variables (R = 0.060). As such, this method for choosing some appropriate n does not replace the previous one.

On a related note, (Liu et al., 2009) adopt a similar approach to “parameter n problem” in keyword assignment system,
reporting precision, recall and f-score for different top fractions of the returned keyword list size : n := r ·m, where, we
recall, m is size of the complete returned ranked list of candidate keywords, and r ∈

{
1
4 ,

1
3 ,

1
2 ,

2
3 ,

4
5

}
. It is not possible

to carry out regression and significance tests for such an approach, since different systems return different candidate lists.
However, r is also a choice.

by the Inspec data.
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3.2.2 Oracle selection of n (best parameter evaluation)

(Hasan & Ng, 2010) consider several different datasets (DUC2001, Inspec, NUS, and ICSI) comparing their re-implementations
of four previously published systems with a simple baseline, giving oracle parameter settings–n for the specific system
and dataset that maximises the f-score ; n varies widely from one system to then next (as well as from one dataset to
the next), and from n = 9 through to n = 190, to the length of the candidate list. This type of evaluation may seem
like cheating in the unsupervised setting. And though we do not advocate solely reporting results for oracle parameter
settings, we do note that such results are very informative in the following sense. They reveal how fast systems reach their
own optimality. If n is large at a systems best f-score, then this is generally a failure of the system. However, if n is fairly
small, this can be seen as a success of the system. Moreover, if a system outperforms others at a reasonably low n, it
seem fair to say that the system performs best. We believe this is what was intended to be shown by the ROC curves and
precision-recall curves of the following section (Section 3.2.3) ; though these attempts, we hope to show, are problematic.

3.2.3 Curves and summarising over all n

With arbitrary or informed selection of n becoming increasingly unsatisfactory, researchers have attempted to avoid this
selection altogether, by sketching the curve over all values of n, and drawing conclusions from this curve by means of
either taking the area under the curve (AUC) to obtain a single numerical representation, or discussing how one curve
dominates another.

We hope to show that neither of these strategies is really appropriate for the evaluation of keyword assignment systems. In
fact, the former strategy can already be refuted by use of the definition of a keyword (keyword set). The strategy of taking
the area under a curve over all values of n treats these values as equal. However, values of metrics at large n should at least
be less important than values of metrics at small n (by (O3)). Still, we discuss further faults of the two types of curves
previously adopted for rank-based keyword assignment system evaluation : ROC curves and precision-recall curves. 2

ROC curves. (Litvak & Last, 2008) calculate the AUC of the (average) ROC curve as a means of evaluation.

The ROC curve of a binary classifier plots the true positive rate (TPR) (on the y-axis) against the false positive rate (FPR)
(on the x-axis) at incremental levels of n, where TPR := R and FPR := false positives

negatives .

When using such an evaluation approach for rank-based systems, an immediate problem is therefore the question of true
negatives. It is not obvious what can be used as a true negative of a rank-based system for keyword assignment systems.
However, ignoring this fact, other problems with the AUC ROC metric persist.

There are some important weaknesses about this measure that are vital to understand for classifiers evaluation in general. 3

Specifically for the case of keyword assignment systems, in addition to the weakness mentioned above for all curve-based
metrics, a critical short-coming is the metrics proven inability to always determine the best system when ROC curves
cross (which is likely to happen when systems have performances worth comparing) (Hand, 2009; Lobo et al., 2008).

Precision-recall curves. A precision-recall curve plots recall on the x-axis and precision on the y-axis. (Hasan & Ng,
2010) and (Liu et al., 2010) plot precision-recall curves and discuss curve dominance. However, (Davis & Goadrich,
2006) mathematically prove that an algorithm dominates in precision-recall space if and only if it dominates in ROC
space. Therefore such an evaluation method is problematic for the reasons already outlined above.

3.3 Standard Normalised Discounted Cumulative Gain

The metric we propose in this paper, (standard) Normalised Discounted Cumulative Gain (NDCG), is already widely used
in information retrieval and machine learning research on ranking. It is defined as follows for the keyword assignment
task.

2. In fact there is a third curve in the literature. (Litvak & Last, 2008) provide a graph of cumulative AUC for the average precision, with respect
to n ∈ [1, 589]. But this seems simply to be a way to plot precision as a smooth curve, which can really only be used to detect an optimum precision
point. Therefore, we do not discuss this type of curve here, but refer to Section 3.1.

3. See (Hand, 2009; Lobo et al., 2008) for a complete discussion.



Definition 2. Let f be a keyword ranking function and Si = {xi,1, . . . , xi,mi} be the dataset of keyword candidates for the document
Di, with |Si| = mi. The Discounted Cumulative Gain (DCG) of f on Si (yielding the ranked list xf

j1
, . . . , xf

jmi
) is defined as

DCG(f, Si) :=

mi∑
t=1

I{xf
jt

is a correct keyword}
log(1 + t)

.

The Ideal DCG of f on Si is defined as
IDCG(f, Si) = max

f ′
DCG(f ′, Si).

The NDCG of f on Si is defined as

NDCG(f, Si) :=
DCG(f, Si)

IDCG(f, Si)
.

For system evaluation, one would present the average NDCG over all documents.

We observe from the definition that the evaluation metric is in line with (O3), having a decaying reward of success with
respect to rank : 1

log(1+rank) . Moreover, an important result on standard NDCG is that every two substantially different 4

ranking functions are consistently distinguishable 5 by standard NDCG (Wang et al., 2013). 6 This makes the metric
attractive in and of itself.

As illustration, let us consider again our hypothetical systems from Table 1, which were not always distinguishable using
the precision, recall and f-score evaluations at n ∈ {5, 10, 15}. Their NDCG scores are given in Table 2. We see that the
NDCG metric is reflective of our observations on the system performance : System 2 is best, followed by System 1, and
last System 3. For further analysis, we can look at the best-parameter f-scores. We see that System 2 achieves its optimal
with n = 8 (and precision 6/8 and recall 6/7), which further assures us that the system is also preforming at its optimal
with a good size n. We admit that this is a toy example, but it is only meant for illustration of the concepts and discussion
of this paper and not as their proof. For a proof, the reader is referred to, for example, (Wang et al., 2013).

System 1 System 2 System 3
0.681 0.939 0.613

TABLE 2 – NDCG scores for the three hypothetical systems.

On a side note, Liu et al. (Liu et al., 2010) also introduce two new metrics for keyword evaluations : mean reciprocal
rank and binary preference measure. These latter two metrics are meant to account for the ranking order of extracted
keyphrases. Unfortunately, for the binary preference measure, the same n parameter must be chosen by the evaluator and
for the mean reciprocal rank, only the rank of the first positive keyword in the ranked lists is accounted for. Therefore, we
do not consider these as appropriate measures for keyword assignment.

4 Conclusion

Evaluation metrics should fit the task at hand. We hope to have shed some light on how the keyword assignment task
should be re-specified under the rank-based approach. In doing so, we have been able explain some important weaknesses
of the numerous pre-existing approaches to keyword assignment system evaluation, and motivate (and illustrate) an ideal
evaluation metric : average standard NDCG.
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