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Abstract. This paper presents an exhaustive study on the generation of graph input to unsupervised graph-based
non-contextual single document keyword extraction systems. A concrete hypothesis on concept coordination for docu-
ments that are scientific articles is put forward, consistent with two separate graph models : one which is based on word
adjacency in the linear text–an approach forming the foundation of all previous graph-based keyword extraction methods,
and a novel one that is based on word adjacency modulo their modifiers. In doing so, we achieve a best reported NDCG
score to date of 0.431 for any system on the same data. In terms of a best parameter f-score, we achieve the highest re-
ported to date (0.714) at a reasonable ranked list cut-off of n = 6, which is also the best reported f-score for any keyword
extraction or generation system in the literature on the same data. The best-parameter f-score corresponds to a reduction
in error of 12.6% conservatively.

1 Introduction

Recent and state-of-the-art approaches to unsupervised non-contextual single document keyword extraction typically
work on some sort of graph of the input text, formed with respect to word order. The graphs generally pose word-forms
as nodes and place edges between words so long as their proximity in the linear text is within some threshold d ; however
the characteristics of the edges, and the deletion or association of certain nodes (in both pre- and post-processing) vary
from one approach to the other and no exhaustive study of these choices has been motivated or exhaustively tested using
a single relevant measure. Similarly, the use of the linear order of words in the text as the basis for the edge relations in
text graphs has been loosely associated with a linguistic syntax motivation, however no more sophisticated accounting of
syntactic relations has been attempted to date. The work presented in this paper partially bridges this gap.

We present an exhaustive study on the generation of graph input to unsupervised graph-based non-contextual single docu-
ment keyword extraction systems. We consider the question of graph motivation, and put forward a concrete hypothesis
on concept coordination for documents that are scientific articles. Corresponding to the requirements of the graph model,
we consider two types of relations between words for such a graph, one which is based on word adjacency in the linear
text–an approach forming the foundation of all previous graph-based keyword extraction methods, and a novel one that is
based on word adjacency modulo their modifiers. In doing so, we achieve a best reported NDCG score to date of 0.431
for any system on the same data. In terms of a best parameter f-score, we achieve the highest reported to date (0.714) at
a reasonable ranked list cut-off of n = 6, which is also the best reported f-score for any keyword extraction or generation
system in the literature on the same data. The f-score corresponds to a reduction in error of 12.6%, or even more if we set
both systems to a ranked list cut-off of n = 6 (since the previous best f-score was achieved at a best parameter of n = 9).
(This latter score is also reproduced in Table 1.)

Following some preliminaries on the definition of the task, we discuss previous work in unsupervised non-contextual
single document keyword extraction (Section 2). We present the graph models we investigate, in Section 3, which is the
main contribution of this paper. Section 4 reviews the centrality measures used. Finally, we present the evaluation of the
resulting systems (Section 5), followed by a brief discussion of conclusions and open problems (Section 6).

2 Preliminaries

We identify two broad types of single document keyword extraction (SDKE). Contextual SDKE makes use of the document
set to which the relevant document belongs, and in which there are similar documents ; other information outside of the
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document set may also be used in some types of contextual SDKE. Non-contextual SDKE makes use of only the relevant
document with no other information. The latter does not necessarily make the assumption of independence of documents
in general. In fact, non-contextual SDKE is important for the case of isolated documents (not part of a document set), as
well as for documents for which relevant supplementary information may be non-existent or unreliable.

Undirected Graphs A simple graphG is a pair (V,E), where V is the set of vertices andE ⊆ V ×V is the set of edges
(where the pairs of vertices are unordered). The edge uv is said to be incident with the vertices u and v. A multi-graph
is a graph where there may be more than one edge between two vertices (the edge set is a multi-set). The degree deg(v)
of a vertex v is then the number of distinct edges with which it is incident. A walk of length k from vertex u to vertex v
is a sequence of k edges, v1v2, v2v3, . . . , vk−1vk, vkvk+1 and a path from u to v is a walk from u to v where no edge is
repeated. Finally, a complete graph is a graph with all |V |(|V | − 1)/2 possible edges, and a clique is a subgraph that is
complete.

2.1 Previous Work

Published work including some discussion of text graph representations for non-contextual SDKE has considered only (1)
the directed-/undirected-ness of edges on stop-word filtered graphs and (2) different proximity thresholds d for placing
these edges between word nodes (Mihalcea & Tarau, 2004; Litvak & Last, 2008; Litvak et al., 2013; Rose et al., 2010;
Schluter, 2014; Boudin, 2013). 1 The proximity threshold of d = 1 was found by (Mihalcea & Tarau, 2004) to perform
best, and all other research on the task has consistently maintained this threshold ; the present work follows suit in that
respect.

In terms of the unsupervised non-contextual single document keyword extraction task itself, (Mihalcea & Tarau, 2004)
had the pioneering work, also introducing graph-based techniques for this task with the application of PageRank (Page
et al., 1999). (Litvak & Last, 2008) follow this approach, but apply HITS instead (on a different dataset). Finally, (Rose
et al., 2010) observed that using the simple degree of a vertex in the network produced what were at the time state-of-
the-art results (with precision 0.337, recall 0.415 and f-score 0.372, at a ranked list cut-off of n = 1

3N , where N is the
number of words in the document, on the Inspec corpus) ; the technique was later re-discovered by (Litvak et al., 2013)
and (Boudin, 2013).

3 Graph generation and other pre-processing

In this section we present the graph model of the document text as well as two consistent instances of this model :
adjacency graphs and parse graphs.

3.1 Graph Model

We follow the document model proposed in (Schluter, 2014) for keyword extraction, which proposes a graph model from
the point of view of document synthesis (as opposed to the document analysis model proposed by (Mihalcea & Tarau,
2004)). In generating scientific text on a given topic (or given related topics), the “author” may require other concepts to re-
gularly support the discussion (for example, definitions or explanations) ; this is a sort of concept coordination. Two basic
assumptions are adopted about this concept coordination in the model. The first assumption is that the author is communi-
cating in the most efficient manner possible, and that supporting concepts are named only when absolutely necessary. The
second assumption is that in supporting or defining a concept, textual mention of a topic concept and supporting concepts
should occur rather “close” to each other, in terms of the linear order of concepts (words) in the texts. These concept sup-
port relations are approximated therefore by co-occurrence relations–relations that are essentially symmetric (undirected) :
there is no clear order that should be observed between topic concepts and supporting concepts within a single sentence
(or over several sentences for that matter). We note that the network is not the meaning of the documentation ; rather it is
a representation of its construction. Flow through the concept network is seen as communicative–concept-building on the
part of the author for the reader.

1. (Litvak & Last, 2008) motivate their choice of directed graphs by the extensive clustering and classification results-driven graph study presented
in (Schenker et al., 2005), but do not motivate the choice with respect to the keyword extraction task they undertake.



EFFECTS OF GRAPH GENERATION FOR UNSUPERVISED NON-CONTEXTUAL SINGLE DOCUMENT KEYWORD
EXTRACTION

As such, we model text as an undirected graph, where vertices are words appearing in the text and edges model the concept
coordination relationships discussed above. There are many methods of producing (undirected) edges for our graph that
are compatible with the model described above. We consider two plausible ones for this paper. In Section 3.3 we describe
a graph model similar to that of (Mihalcea & Tarau, 2004; Litvak & Last, 2008; Rose et al., 2010; Litvak et al., 2013) and
in Section 3.4 we propose a novel graph model created out of parse graphs of document sentences. First we discuss the
pre-processing of the text carried out prior to graph construction, as well as graph parameters that common to both types
of graphs.

3.2 Pre-processing and common graph parameters

Preprocessing. For both main types of models, we first carry out sentence detection, tokenisation and part-of-speech
tagging on the corpus, using the Stanford POS Tagger (Toutanova et al., 2003). We remove all punctuation from individual
sentences.

Filtering out stop-words. For both main models, we construct reduced and full graphs. Their exact manner of construc-
tion is specific to the graph type (adjacency or parse) (Cf. Sections 3.3 and 3.4).

1. The reduced graph contains the text stripped of stop-words, in order to have edges reflect relationships between
semantically full words more directly, resulting in a denser graph. For the remaining non-stop-words, words of the
same form and part-of-speech are merged into a single node.

2. The full graph is constructed from the full text. However, it contains a special type of node for stop-words. Nodes
decorated with distinct non-stop-words of the same form and part-of-speech are still merged into a single node,
but nodes decorated with stop-words are never merged, resulting in a sparser graph. The centrality measure, rather
than the pre-processing is left with the full burden of ranking the important words. Stop-words are generally words
that occur frequently in text, so by not merging identical ones into single nodes, we hope to prevent the centrality
measure of choice from finding these units important.

Edge multiplicity. For both adjacency graphs and parse graphs we test their simple and multi-graph versions. Edges
from both graphs reflect of course relations between words, but the multi-graph versions are meant to also reflect frequency
of concept coordination.

Note however that for some centrality measures, there is no difference between multi- and simple graphs (Cf. Section 4).

3.3 Document adjacency graphs

Document adjacency graphs model text linear relationships between words (i.e., that they are beside or close to each other
in the text). As such, for full (reduced) document adjacency graphs, an edge between two words is added to the graph if
these two words are adjacent in the (stop-word filtered) text. There are therefore four different document adjacency graph
models that we investigate, considering all common graph parameters combinations.

The generated reduced and full adjacency text graphs for Ex 1 below are given in the top of Figure 1.

(Ex 1) Compatibility of systems of linear constraints over the set of natural numbers. Criteria of compatibility of a system of linear
Diophantine equations, strict inequations, and nonstrict inequations are considered. Upper bounds for components of a minimal
set of solutions and algorithms of construction of minimal generating sets of solutions for all types of systems are given. These
criteria and the corresponding algorithms for constructing a minimal supporting set of solutions can be used in solving all the
considered types systems and systems of mixed types. 2

3.4 Document parse graphs

It is straightforward that a better approximation of concepts can be achieved by first organising sub-strings of a sentence
into units observing the communicative flow between units and sub-units. For English, the dependency tree syntactic re-

2. This is abstract 1939 from the test files in the Inspec corpus, first used as an example in (Mihalcea & Tarau, 2004).
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FIGURE 1 – Simple adjacency graphs (top), basic parse graphs (bottom) for Ex 1. Reduced graphs are on the left and the
full graphs on the right.

presentation of sentences provides exactly the organisation of a sentence that we need to model this. The set of dependency
trees of a document are organised into what we refer to as the document parse graph.

Following preprocessing (and before any stop-word filtering), the text is sent through the Stanford parser to obtain the
associated dependency parses (basic dependency conversion) (de Marneffe et al., 2006). This yields two additional graph
models that we investigate (considering all other common graph parameter combinations).

The construction of full parse graphs is similar to that of adjacency graphs. The construction of reduced parse graphs
is slightly more involved. By contracting stop-word vertices some information can potentially be lost : the children of
stop-words become closer to their original grandparent than they are to each other, which is not the intended model. In an
attempt at circumventing this effect, we first create a clique out of the children of stop-words before contraction.

For Ex 1, the generated reduced and full parse are given at the bottom of Figure 1.

3.5 Post-processing.

We carry out similar post-processing to (Mihalcea & Tarau, 2004). That is, sequences of adjacent keywords from the
text are possibly collapsed into a multi-word keyword, depending on their scores. We score a multi-unit keyword by the
maximum score of words they are composed with ; we also tried the using the average score of word components, but with
worst performance and so do not report these scores here. This yields a candidate list where there may be unit overlaps
in keywords. We therefore test an extra post-processing step which keeps only the keyword with the highest score among
two overlapping keywords (this corresponds to excl (as opposed to incl) in results Tables 1-3). Ties are broken with a
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preference for longer keywords ; moreover, the proposed keywords must not start or end with a stop-word, and must be
grounded in a noun (i.e., the rightmost word of a multi-word keyword must be a noun). Keywords consisting of at most
three words are considered.

4 Centrality measures
(Schluter, 2014) investigates seven different centrality measures for ranking nodes in undirected graphs, two of which
corresponded to previously published state-of-the-art approaches to non-contextual SDKE among the centrality measure
classes of degree-like centrality, closeness centrality and betweenness centrality, outlined by (Borgatti & Everett, 2006).
This work showed that closeness centrality measures, which rank nodes according to their general (minimum) distance to
other nodes in the graph, did not perform as well as degree-like centrality measures or betweenness centrality measures.
In this paper we consider the performance of systems based on different graphs across the three betweenness centrality
measures as well as the degree-like centralities.

The degree centrality of a vertex v in a graph G is simply its degree deg(v). Within the context of text graphs, this is a
measure of how much of a first-hand support a text vertex (concept) is for other text vertices (concepts).

The eigenvector centrality is essentially the deterministic version of the PageRank algorithm (Page et al., 1999) for
undirected graphs, as well as the output of the HITS algorithm (for directed graphs) upon convergence (provided all
eigenvalues are distinct) (Kleinberg, 1999). The eigenvector centrality of a node vi ∈ V (G), CEI(vi) is found by calcu-
lating the principal eigenvector of the adjacency matrix for the graph. The ith entry in this vector is CEI(vi). To bypass
connectivity issues, we use the PageRank “teleportation trick”, transforming the input graph into a complete graph, simply
incrementing the weight of all possible edges by 1.

The betweenness centrality of a vertex quantifies how often a node acts as a bridge along the shortest path between two
other nodes. In the context of our text graph, the betweenness centrality can be seen as a measure of how the presentation
of a scientific subject must employ a given word (concept) as support when moving the discussion between two different
concepts. We consider three different betweenness centrality measures.

The (normalised) betweenness centrality CB(x) for vertex x is defined as CB(x) :=
∑
s∈V (G)

∑
t∈V (G)

σst(x)
σst

, where
σst is the number of shortest paths between nodes s and t. 3

CB(x) gives more weight to pairs of vertices at a larger distance from each other. If one wishes to consider all shortest
paths to contribute the same weight, one approach is to normalise by the shortest distance between s and t, which yields
length-scaled betweenness centrality, CLSB(x) : CLSB(x) :=

∑
s∈V (G)

∑
t∈V (G)

σst(x)
d(s,t)σst

.

Finally, the distance-weighted fragmentation CDWF (x) of vertex x measures the fragmentation of a graph if we took x

out of it. It is defined as CDWF (x) := CDWF (G − x) − CDWF (G), where CDWF (G) := 1 −
2
∑

i6=j
1

d(i,j)

n(n−1) . Note that
G− x (the graph obtained from G by removing vertex x and any edges incident to x) should be more fragmented than G.
(We also shift all scores, so that they are positive.)

Note that by these definitions, there will be no difference in betweenness centrality measure results on simple graphs
versus multi-graphs.

5 Experiments and Evaluation
We carry out our experiments on the test set from the Inspec abstract corpus (Hulth, 2003) consisting of 500 abstracts for
scientific articles, along with the uncontrolled corresponding keywords.

We evaluate the systems across the variety of graph inputs in terms of average standard Normalised Discounted Cumula-
tive Gain (NDCG). We also provide best parameter (for ranked list cut-off n) precision, recall and f-score, which informs
us of when a system reaches its optimality, rather than providing any general system evaluation. Document keyword sets
are relatively small, but not too small, so if n is too small or too large when it reaches a good optimal f-score, the system
cannot necessarily be considered successful. On the other hand, if for example n ∈ {5, . . . , 10} and it reaches a global
optimum among all systems, it is easier to argue this to be a success.

The results are reported in Tables 1 through 3. We observe that best scores according to both metrics are generally achieved
by parse graphs, suggesting that the parse graph model is superior to the simple adjacency graph model.

3. In fact, the normalised version of betweenness centrality normalises CB(x) by the number of pairs of nodes in the graph. However, since we are
not comparing two different graphs, but only two different nodes of the same graph, this expression of betweenness centrality has the same power as its
normalised version.
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We observe that degree centrality has the best NDCG score of 0.431, for the parse full graph. We note that these NDCG
scores differ from those of (Schluter, 2014) which were erroneous due to a bug in the evaluation software. The best f-score
of 0.714 among all models is achieved by the parse graph under the distance-weighted fragmentation measure, at a cut-off
of n = 6, which is very reasonable for this task ; however, curiously this model (and measure) achieves a relatively poor
NDCG score, which indicates that after this ideal cut-off, the ranking system fails.

With these degree-centrality results, we can observe differences between simple and multi-graphs, and more so for reduced
graphs than for full graphs. This makes sense since we never merge stop-word nodes in full graphs and thereby account
for a type of co-occurrence frequency via stop-words. Still the differences in simple and multi-graph scores are relatively
small, perhaps contrary to intuition. We hypothesis this to be the result of the nature of the document set in question ; the
documents are very short and therefore contain less repeat co-occurrences.

graph pre-p post-p n prec rec f1 NDCG
adj reduced incl 14 0.357 0.625 0.455 0.418

excl 13 0.308 0.5 0.381 0.390
full incl 18 0.333 0.75 0.462 0.410

excl 12 0.333 0.5 0.4 0.383
parse reduced/ incl 6 0.833 0.625 0.714 0.406

full excl 5 0.6 0.375 0.462 0.374

graph pre-p post-p n prec rec f1 NDCG
adj reduced incl 8 0.5 0.5 0.5 0.399

excl 2 1.0 0.25 0.4 0.386
full incl 8 0.5 0.5 0.5 0.398

excl 2 1.0 0.25 0.4 0.385
parse reduced incl 8 0.5 0.5 0.5 0.414

excl 2 1.0 0.25 0.4 0.403
full incl 8 0.5 0.5 0.5 0.412

excl 2 1.0 0.25 0.4 0.401

TABLE 1 – Distance-weighted fragmentation results (left). Betweenness centrality results (right). The scores for multi-
graph are precisely the same.

graph pre-p post-p n prec rec f-score NDCG
adj reduced incl 14 0.429 0.75 0.545 0.397

excl 11 0.364 0.5 0.421 0.378
full incl 11 0.455 0.625 0.526 0.395

excl 2 1.0 0.25 0.4 0.375
parse reduced incl 12 0.5 0.75 0.6 0.417

excl 10 0.4 0.5 0.444 0.406
full incl 11 0.455 0.625 0.526 0.417

excl 11 0.364 0.5 0.421 0.408

graph pre-p post-p n prec rec f1 NDCG
adj reduced incl 20 0.3 0.75 0.429 0.419

excl 15 0.267 0.5 0.348 0.395
full incl 19 0.316 0.75 0.444 0.413

excl 14 0.286 0.5 0.363 0.388
parse reduced incl 13 0.385 0.625 0.476 0.426

excl 17 0.235 0.5 0.32 0.376
full incl 17 0.353 0.75 0.48 0.419

excl 14 0.286 0.5 0.364 0.367

TABLE 2 – Length scaled betweenness centrality results (left). The scores for simple and multi-graphs are precisely the
same. Eigenvector centrality results (right).

edge pre-p post-p n prec rec f1 NDCG
mult

simple reduced incl 5 0.6 0.375 0.462 0.423
excl 14 0.286 0.5 0.363 0.401

full incl 5 0.6 0.375 0.462 0.415
excl 14 0.286 0.5 0.363 0.392

multi reduced incl 19 0.316 0.75 0.444 0.423
excl 14 0.286 0.5 0.363 0.402

full incl 19 0.316 0.75 0.444 0.418
excl 14 0.286 0.5 0.363 0.396

edge pre-p post-p n prec rec f1 NDCG
mult

simple reduced incl 11 0.455 0.625 0.526 0.431
excl 9 0.333 0.375 0.353 0.381

full incl 5 0.6 0.375 0.462 0.421
excl 16 0.25 0.5 0.333 0.370

multi reduced incl 11 0.455 0.625 0.526 0.427
excl 9 0.333 0.375 0.353 0.382

full incl 5 0.6 0.375 0.462 0.419
excl 16 0.25 0.5 0.333 0.372

TABLE 3 – Degree centrality results for adjacency graphs (left) and parse graphs (right).

6 Conclusions and open questions

We have introduced a novel parse text graph for the representation of documents that is shown to perform better in
non-contextual single document keyword extraction, producing the highest reported NDCG score to date, as well as
the highest best parameter f-score. In our opinion this model is more language independent than the adjacency graph
document model, as it relies slightly less on sentential linear order ; this is an open question for future investigation. In
addition, the question as to whether the multi-graph version of document graph models helps systems when the input are
larger documents remains open ; for smaller documents the answer seems to be negative.
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