
Synthetic logic

Alex J. Djalali1

The role of inference as it relates to natural language (NL) semantics
has often been neglected. Recently, there has been a move away by
some NL semanticists from the heavy machinery of, say, Montagovian-
style semantics to a more proof-based approach.
Although researchers tend to study each type of system independently,
MacCartney (2009) and MacCartney and Manning (2009) (henceforth
M&M) recently developed an algorithmic approach to natural logic
that attempts to combine insights from both monotonicity calculi and
various syllogistic fragments to derive compositionally the relation be-
tween two NL sentences from the relations of their parts.
At the heart of their system, M&M begin with seven intuitive lexical-
semantic relations that NL expressions can stand in, e.g., synonymy
and antonymy, and then ask the question: if ' stands in some lexical-
semantic relation to  ; and  stands in (a possibly di↵erent) lexical-
semantic relation to ✓; what lexical-semantic relation (if any) can be
concluded about the relation between ' and ✓? This type of reasoning
has the familiar shape of a logical inference rule.
However, the logical properties of their join table have not been ex-
plored in any real detail. The purpose of this paper is to give M&M’s
table a proper logical treatment. As I will show, the table has the
underlying form of a syllogistic fragment and relies on a sort of gen-
eralized transitive reasoning.

1 Introduction

The role of inference as it relates to natural language (NL) semantics
has oft been neglected. Recently, there has been a move away by some
NL semanticists from the heavy machinery of, say, Montagovian-style
semantics to a more proof-based approach. This represents a belief
that the notion of derivability plays as central a role in NL semantics
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as that of entailment. Beginning with van Benthem (1986), and contin-
uing on with Valencia (1991), Dowty (1994), Gilad and Francez (2005),
Moss (2008), Moss (2010), van Benthem (2008), Moss (2009) and Moss
(2012) among others, the study of various natural logics has become
commonplace.

Natural logicians place an emphasis on the development and study
of proof theories that capture the sort of inferences speakers of a par-
ticular NL like English make in practice. It should be said, though,
that ‘natural logic’ is a catchall term that refers to either the study of
various monotonicity calculi à la van Benthem or Aristotelean-style syl-
logistic fragments à la Moss. Although researchers tend to study each
type of system independently, MacCartney (2009) and MacCartney and
Manning (2009) (henceforth M&M) recently developed an algorithmic
approach to natural logic that attempts to combine insights from both
monotonicity calculi and various syllogistic fragments to derive compo-
sitionally the relation between two NL sentences from the relations of
their parts.

At the heart of their system, M&M begin with seven intuitive lexical-
semantic relations that NL expressions can stand in, e.g., synonymy
and antonymy, and then ask the question: if ' stands in some lexical-
semantic relation to  ; and  stands in (a possibly di↵erent) lexical-
semantic relation to #; what lexical-semantic relation (if any) can be
concluded about the relation between ' and #? This type of reasoning
has the familiar shape of a logical inference rule, a schema of which is
given in (1):

(1)
'R  S#

'T#

Drawing from their stock of lexical-semantic relations, for every in-
stance of R and S, M&M reason semantically to calculate T , and
present their results in what they call a join table. However, to my
knowledge at least, the logical properties of their join table have not
been explored in any real detail. The purpose of this paper is to give
M&M’s table a proper logical treatment. As I will show, the table has
the underlying form of a syllogistic fragment and relies on a sort of gen-
eralized transitive reasoning. Here, I define a basic set-theoretic seman-
tics and proof calculus for M&M’s join table and prove a completeness
theorem for it.

2 Synthetic Logic

I begin first by defining the syntax of a synthetic language SYN .

Definition 2.1 (Syntax of SYN ). Let p1, . . . pn be atoms for n < !,



Synthetic logic / 153

which themselves are all elements of � the set of proper terms. Then

1. If ' is a proper term, then so is '. Nothing else is a proper term.

2. If ' and  are proper terms, then

' ⌘  , ' <  , ' =  ,
' ^  , ' ⇡�  , '^  

are synthetic terms.

I let SYN be the smallest set containing both sets of proper and syn-
thetic terms given by definition 2.1. I say ' is the complement of '
and refer to the set M = {⌘,<,=, ^, ⇡�,^} as the set of MaCcartney
relations, as they are taken from MacCartney (2009) and MacCartney
and Manning (2009). The relations themselves can be read as equality,
strict forward and reverse entailment, negation, alternation and cover
respectively. I use R,S and T as meta-logical variables ranging over ele-
ments of M; and I will use ', and # as meta-logical variables ranging
over proper terms. Finally, I assume that ' ⌘ ' for all '.

In definition 2.1, I use the term ‘atoms’ as opposed to, say, ‘propo-
sition letters’. This is purposeful. Intuitively, there is nothing that pre-
vents the atoms of a synthetic language SYN from being NL expres-
sions of any type, assuming some sort of syntactic typing. From a formal
perspective, this would simply amount to considering a family of syn-
thetic languages {SYN↵ | ↵ 2 Types}, where Types is the set of, say,
Montagovian types. To better understand this, suppose

(2) run < move

is a member of some intransitive verb synthetic language SYN IV. Intu-
itively, (2) makes the meta-semantic statement, “The intransitive verb
run strictly forward entails the intransitive verb move”. In this way,
synthetic languages are quite general – they just are languages of the
lexicon.

No doubt synthetic languages are impoverished, as they lack the
classical boolean connectives. This is not to say that a synthetic lan-
guage could not be extended. I refer the reader to Moss (2010) for a
natural logic with boolean connectives both inside and out. In our set-
ting, the addition of ‘inside’ boolean connectives would be to augment
the class of proper terms by, say, the elements of the set {¬,^}. This
would result in terms like the following:

(3) ' ^  
where ' and  are proper terms.

To have ‘outside’ boolean connectives would be to augment the class
of synthetic terms by a functionally complete set of connectives like the
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one above. Examples of such terms would be

(4) (' <  ) ^ (# = �)

where ', ,# and � are proper terms. Given both outside and inside
boolean connectives, the following would be a valid expression exhibit-
ing both types of coordination:

(5) ((' ^  ) < ') _ ((' ^  ) = ')

Without relying on semantic intuitions, it may be di�cult to intuit
the di↵erence between inside and outside Boolean connectives. From
a syntactic perspective, the analogy, here, is between entity level, or
more generally, non-sentential level, coordination in a NL language like
English, e.g., John and Mary, versus sentential level coordination, e.g.,
John went to the store and Mary went to the store. The former would be
an instance of inside Boolean coordination, and the latter would be an
instance of outside Booelean coordination. As it turns out, augmenting
definition 2.1 in this way would be productive for reasons which will
become clearer. However, I leave this extension for future work.

Turning now to the semantics of SYN , I begin first by defining the
sorts of models I will be working with.

Definition 2.2 (Synthetic Models). Let a synthetic model M be the
pair hD,AAA ·BBBi, where D is a non-empty set and AAA ·BBB is
an interpretation function such that AAA'BBB ✓ D and

1. AAA'BBB = D �AAA'BBB;

2. AAA'BBB = AAA'BBB;

3. AAA'BBB 6= AAA'BBB; and

4. AAA'BBB 6=
⇢

?
D

or

for all proper terms '

The first three conditions on the interpretation function AAA ·BBB
force the standard semantics of set-theoretic complementation. The
fourth condition restricts the possible model space to just those models
which interpret each proper term non-vacuously, where a ‘non-vacuous’
term is a term which denotes neither the domain in its entirety nor the
empty-set. In fact, I call the logic ‘synthetic’ after Popper (1968) who
argues that “synthetic statements in general are placed, by the en-
tailment relation, in the open interval between self-contradiction and
tautology”.2

2Instead of reanalyzing non-vacuous terms, such as the square circle as a pred-
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FIGURE 1: A graphical representation of the M-relations

The semantics of the various synthetic terms can be naturally defined
set-theoretically, as in definition 2.3. A pictorial representation of the
semantics of each relation is shown in figure 1.

Definition 2.3 (Tarski-Style Truth-Conditions). Let ' and  be
proper terms and R a M-relation. Define the denotation of the syn-
thetic term 'R , written AAA'R BBB, as follows:

M |= ' ⌘  , AAA'BBB = AAA BBB

M |= ' <  , AAA'BBB ⇢ AAA BBB

M |= ' =  , AAA'BBB � AAA BBB

M |= '^  , (AAA'BBB\AAA BBB = ?)^ (AAA'BBB[
AAA BBB = D)

M |= ' ⇡�  , (AAA'BBB\AAA BBB = ?)^(AAA'BBB[
AAA BBB 6= D)

M |= '^ ( (AAA'BBB\AAA BBB 6= ?)^(AAA'BBB[
AAA BBB = D)

icate having an empty-extension à la Russell (1905), M&M bar them from their
logic altogether, claiming that such terms fail to divide the world into meaningful
conceptual categories. This might seem odd to logicians or philosophers, however,
as M&M’s formal system is the basis for this work, I see no harm in assuming it
here.
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R,S ⌘ < = ^ ⇡� ^

⌘ ⌘ < = ^ ⇡� ^
< < < · ⇡� ⇡� ·
= = · = ^ · ^
^ ^ ^ ⇡� ⌘ = <

⇡� ⇡� · ⇡� < · <

^ ^ ^ · = = ·

FIGURE 2: M-Rules

No doubt the logic could be simplified drastically by giving the seman-
tics of forward entailment in terms of (set-theoretic) sloppy forward
containment (✓) and negation (¬) and defining the other M-relations
in terms of these connectives. However, M&M make the purposeful de-
cision to e↵ectively tease apart the ✓ relation into two di↵erent ones. I
follow suit and sacrifice formal elegance in attempt to capture a finite,
primitive stock of semantic relations that humans, at least intuitively,
seem to reason in terms of. Having said that, the meta-logical relation
of entailment will be defined in the usual way.

Definition 2.4 (Entailment). Let � be a set of synthetic terms. �
entails 'R written, � |= 'R just in case

M |= '0S 0 ) M |= 'R 

for all '0S 0 2 �.

To conclude this section, the members of M can be shown to be
mutually exclusive.

Theorem 2.1 (Mutual Exclusivity of the M-relations). If M is a syn-
thetic model then

M |= 'R ) M 6|= 'S 

for R 6= S.

The proof is trivial but tedious and relies on basic set theory and
the fact that all proper terms are interpreted non-vacuously.

2.1 The Proof Calculus

The proof system of this logic e↵ectively takes the form of a natural
deduction system. There will be two types of rules: M -rules and D-
rules, the former named after MacCartney because they are e↵ectively
the rules he works with in his dissertation; and the latter so-named to
distinguish the fact that I have added them in this paper to ultimately
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create a complete proof-calculus.
I begin with the former, a schema of which is given in definition 2.5.

Definition 2.5 (M -Rules). Let � be a set of synthetic formulas. Then,

� ` 'R � `  S#
R, S

� ` 'T#
are rules of the calculus.

This schema is instantiated by taking T to be the M-relation gotten
by intersecting the M-relations in the R-row and S-column in Figure
(2). So, for example, (6) is a valid rule in the synthetic proof calculus:

(6)
� ` ' ⌘  � `  < # ⌘,<

� ` ' < #

It reads, ‘If there are derivations from a set of premises � of ' ⌘  
and  < #, then there is a derivation of ' < # from the same set of
premises’.

Figure 2 is a modified version of M&M’s join table. In their table,
the value of the cells marked here with the dot ‘·’ correspond to a
disjunction of synthetic terms. Translating these cells of their table in
terms of the calculus presented here, the pseudo-rule <,= would be
given as follows:

(7)
� ` ' <  � `  = #

<,=
� ` (' ⌘ #) _ (' < #) _ (' = #) _ (' ⇡� #)

Although M&M do not define a proper proof a calculus, in this instance,
their semantic reasoning reasoning would be as follows:

. Given that (i) the set denoted by ' is strictly contained in the set
denoted by  , and (ii) the set denoted by # is strictly contained
in the set denoted by  , what can one say about the set-theoretic
relation that holds between the sets denoted by ' and �?

. One can certainly construct a model in which the set denoted
by ' is equal to the set denoted by #; but one can construct a
model in which the set denoted by ' is strictly contained in the
set denoted by #; but one can also construct . . . and so on and so
forth for all the disjuncts in (7).

. Given (i) and (ii), at best, one can say that ' is equivalent to #
or ' strictly forward entails # or . . . and so on and so forth.3

3M&M observe that, given the assumptions in (i) and (ii), it is not possible to
construct a model in which ' and # denote complementary sets, lest a contradiction
ensue. So, they do not include the synthetic statement ' ^

# in the disjunctive
statement. (Similarly, for '^ #).
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The logic, as I have laid it out here, is not expressive enough to cap-
ture the above disjunctive reasoning. This is because it lacks ‘outside’
boolean connectives in the sense made explicit above. This being the
case, I omit the values in figure 2 marked with a ‘·’ from being possible
instantiations of the above schema.

Although not in M&M’s original system, I include the following proof
rules in the calculus:

Definition 2.6 (D-rules). Again, let � be a set of synthetic terms.
Then,

⌘1

� ` ' ⌘ '
� ` ' ⌘  

⌘2

� `  ⌘ '

^
1

� ` ' ^ '
� ` ' ^  

^
2

� `  ^ '

� ` ' <  
<1

� `  = '

� ` ' =  
=1

� `  < '

� ` ' ⇡�  ⇡�1
� `  ⇡� '

� ` '^  
^1

� `  ^ '

' 2 �
Refl

� ` '
are rules of the calculus.

The D-rules syntactically encode for the basic relational properties of
the M-relations. ⌘2, for example, allows us to prove the fact that set-
theoretic equality is symmetric.

From a logical perspective, � is nothing more than a set of premises.
However, in natural logic, it is understood as being a lexicon that en-
codes for the basic lexical semantic relations expressions of a language
stand in. A sample lexicon might look something like the following:

(8) � =
�

Dutchman ⇡� Frenchman, Dutchman < man
 

In (8), � encodes for the fact that the noun Dutchman alternates with
the noun Frenchman and the fact that the noun Dutchman strictly for-
ward entails the noun man. (In this case, I am working with a synthetic
language of common nouns).

More generally, from a lexicon, various other relations that natu-
ral language statements stand in can be proven. To see how the syn-
thetic proof calculus works in practice, consider the following deriva-
tions shown in theorem 2.2:

Theorem 2.2. Let � be a set of premises. The following theorems are
all derivable in the proof calculus:4

4I also provide natural language instances of each theorem to demonstrate that
given certain intuitive assumptions about the relations natural language expressions
stand in, other intuitive statements about those relations can be inferred.



Synthetic logic / 159

1. �0,' ⌘  ` ' ^  

Proof.
' ⌘  2 �

Refl
� ` ' ⌘  

^
1

� `  ^  
⌘,^

� ` ' ^  

(9) �0, Superman ⌘ Clark Kent ` Superman ^ Clark Kent

2. �0,' ^  ` ' ⌘  

Proof.
' ^  2 �

Refl
� ` ' ^  

^
1

� `  ^  ^,^

� ` ' ⌘  

(10) �0, hate ^ hate ` hates ⌘ hate

3. � ` ' ⌘ '

Proof.
^

1
� ` ' ^ '

^
1

� ` ' ^ '

� ` ' ⌘ '

(11) � ` human ⌘ human

4. �0,' <  `  < '

Proof.

^
1

� ` ' ^ '
^

2
� ` ' ^ '

' <  2 �
Refl

� ` ' <  
^

1

� `  ^  
<,^

� ` ' ⇡�  ^, ⇡�
� ` ' =  

=1

� `  < '

(12) �0, dane < dog ` dog < dane
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5. �0,' =  `  = '

Proof.

^
1

� ` ' ^ '
^

2
� ` ' ^ '

' =  2 �
Refl

� ` ' =  
^

1

� `  ^  
=,^

� ` '^  ^,^

� ` ' <  
<1

� `  = '

(13) �0, dog = dane ` dane = dog

6. �0,' ⇡�  ` ' <  

Proof.
' ⇡�  2 �

Refl
� ` ' ⇡�  

^
1

� `  ^  ^,^

� ` ' <  

(14) �0,Dutchman ⇡� Frenchman ` Dutchman < Frenchman

7. �0,'^  ` ' =  

Proof.
'^  2 �

Refl
� ` '^  

Neg

� `  ^  
^,^

� ` ' =  

(15) �0, animal^ human ` animal = human

Importantly, all of the above proofs are invertible. That is to say,
�0,'R ` '0S 0 just in case �0,'0S 0 ` 'R .

Finally, in order to capture the notion of an inconsistent premise
set, I instead add the inference rule given in definition 2.7 to the proof
calculus:

Definition 2.7 (Explosion). Let � be a set of synthetic terms. Then,

� ` 'R � ` 'S for R 6= S
Exp

� ` '0T 0 for all '0T 0

is a rule of the calculus.

This rule states that if, from an arbitrary premise set �, two synthetic
statements that claim the proper term ' stands in a M-relation with
the proper term  di↵erent from the other, then every synthetic term is
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derivable from that premise set. The principle of explosion has its roots
in the latin term ex falso quodlibet, which means ‘from a contradiction
anything follows’. In this setting, Exp is the proof-theoretic realization
of theorem 2.1. Now I can define what it is for a premise set to be
consistent:

Definition 2.8 (Consistency). � is consistent if, and only if � 6` 'R 
for some synthetic term 'R .

In classical propositional logic, for example, a consistent set of premises
is a set that does not prove falsum. From this definition, for any ar-
bitrary premise set � to prove every formula of a language is for that
premise set to be inconsistent. So, I take what is a theorem in classi-
cal logic as my definition for inconsistency here. Theorem 2.3 gives an
example of an inconsistent set:

Theorem 2.3. � = {' <  , = #,'^ #} is inconsistent.

Proof.

' <  2 �
Refl

� ` ' <  
<1

� `  = '

'^ # 2 �
Refl

� ` '^ #
=,^

� `  ^ #

 = # 2 �
Refl

� `  = #
Exp

� ` '0T 0 for all '0T 0

2.2 Completeness

Finally, the logic laid out here can be shown to be complete.

Theorem 2.4 (Completeness). Let � be a set of synthetic terms. Then

� ` 'R , � |= 'R 

As usual, soundness is trivial, but tedious, as it involves proving the
statement of the theorem for all the inference rules of the calculus. I
leave it as an exercise to the reader; and the remainder of this section
proving the adequacy of the calculus, reasoning via the contraposition.

(16) � 6` 'R ) � 6|= 'R 

The proof will proceed as normal via a model existence lemma, and
essentially follows Moss (2010). The model we construct will be a term
model.

Lemma 2.1 (Model Existence). Let � be a set of synthetic terms. If
� is consistent, then � has a model.

Model existence will be proved via a representation theorem.
I begin first by defining the necessary algebraic machinery.
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Definition 2.9 (Orthoposets). An orthoposet is a tuple (P,, 0,�)
such that

1. (P,) is a partial order;

2. 0 is a minimal element, i.e., 0  x for all x 2 P ;

3. x  y if, and only if y  x;

4. x = x

5. If x  y and x  y, then x = 0.

An orthoposet is a partial order with a minimal element. The third
clause guarantees that the contraposition holds; clause four is the law
of double negation; and the final clause guarantees that any inconsis-
tent element just is the minimal element. Importantly for me, every
consistent set of premises � induces an orthoposet on the domain of
proper terms �.

Lemma 2.2. If � is consistent, then � induces an orthoposet on �.

Proof. For ', 2 �, define the relation � as follows:

(17) ' �  , � ` ' ⌘  or � ` ' <  

� induces an equivalence relation on �:

(18) [']=� = { | ' �  and  � '}
To prove that =� is an equivalence relation, observe that ' �  and
 � ' if, and only if � ` ' ⌘  and � `  ⌘ ', lest � be inconsistent.
So, the only interesting case is transitivity, which is guaranteed by the
M -rule ⌘,⌘.

Now, let �⇤ be the quotient �/ =� and define the relation  as
follows:

(19) [']=�  [ ]=� , 8x 2 [']=�8y 2 [ ]=�(x � y)

Observe that [']=�  [ ]=� if, and only if 8x, y such that x 2 [']=� , y 2
[ ]=� ,� ` x ⌘ y or 8x, y such that x 2 [']=� , y 2 [ ]=� ,� ` x < y.
Clearly,  is a partial order. Reflexivity and anti-symmetry are trivial.
Transitivity can be gotten from either ⌘,⌘ or <,<.

As � is assumed to be consistent, there is no '  '. Therefore, add
fresh elements 0, 1 to �⇤, setting 0 = 1 and 0 < x < 1 for all x 2 �⇤.
Finally, set [']=� = [']=�

. I claim (�⇤,, 0,�) is an orthposet. Condi-
tion 3 of definition 2.9 can be gotten by theorem 2.2.4, and condition
4 is obtained by theorem 2.2.3. The final condition holds vacuously, as
� is assumed to be consistent.

Before continuing with the proof proper, I will need a few more
algebraic notions.
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Definition 2.10 (Points). A point of an orthoposet is a subset S ✓ P
with the following properties:

1. If x 2 S and x  y, then y 2 S (S is upward-closed);

2. For all x, either x 2 S or x 2 S (S is complete), but not both (S
is consistent).

A point is similar to an ultrafilter. It is closed under upward entail-
ment and makes a decision for every element in the domain whether
that element or its complement, but not both, is a member of that
point.

The following lemma, due to Moss (2010), will prove useful in the
construction of the necessary model.

Lemma 2.3. For a subset, T , of an orthoposet P = (P,, 0,�), the
following are equivalent:

1. T is a subset of a point S in P ;

2. For all x, y 2 T, x 6 y.

As is common in algebra, the notion of a morphism will play an
essential role in proof by representation.

Definition 2.11 (Morphism). A morphism of orthoposets is a map
f such that

1. if x  y then f(x)  f(y);

2. f(x) = f(x);

3. f(0) = 0.

We say that f is strictly order-preserving if x  y if, and only if
f(x)  f(y). That is to say a strict morphism is a bi-directional order
and complementation preserving map.

At the outset, we stated our proof of completeness will proceed via
representation. The most well-known representation theorem is Stone’s,
which states that every boolean algebra can be represented as a system
of sets ordered by the inclusion relation. As Moss (2010) observes, it
has long been established in quantum logic that every orthoposet can
be represented as a system of sets also ordered by the inclusion relation
(Zierler and Schlessinger 1965; Calude et al. 1999).

Theorem 2.5 (Representation). Let P = (P,, 0,�) be an ortho-
poset. There is a set, points(P ), and a strict morphism f such that

f : P ! P(points(P ))

The proof is gotten by defining f(x) = {S 2 point(P ) | x 2 S}. I refer
the reader to Moss (2010) for the remainder of the proof.
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We are now equipped with all the algebraic machinery we need to
prove lemma 2.1.

Proof. As � is consistent, I invoke lemma 2.2 and theorem 2.5 to con-
clude � can be represented as a system of sets. In particular, define
g : � ! �=� such that ' 7! [']=� and let f be the strict morphism
defined in theorem 2.5.

Now, let M = (points(�⇤), AAA · BBB), such that AAA · BBB =
g � f , the composition of g with f . I claim that M a synthetic model.
I must check that it has the properties stipulated in definition 2.2.
The first condition on the valuation function can be shown to hold as
follows:

AAA'BBB= f(g(')) by construction of
AAA ·BBB

= f(g(')) ['] = [']
= f(g(')) f is a morphism
= points(�⇤)� f(g(')) by set theory
= points(�⇤)�AAA'BBB by construction of

AAA ·BBB

To show that no proper term is interpreted vacuously two conditions
must be shown to hold. I begin by proving no proper term is interpreted
as ?. Consider the set T = {[']=�}. [']=� 6 [']=� , else � would be
inconsistent, contradicting the initial assumption. So, [']=� 6 [']=�

,
and applying lemma 2.3, I conclude T to be a subset of some point
S 2 points(�⇤

�). By the construction of AAA·BBB, T 2 AAA'BBB =
f(g(')), a non-empty set.

To show that no proper term is interpreted as points(�⇤), observe
that, by the above, AAA'BBB is non-empty. Let S be such a witness.
Suppose that S 2 AAA'BBB. So, g(') 2 S, but so is g(') = g(')
by the construction of the function. This contradicts the fact that S
is consistent. So, S /2 AAA'BBB and we have found the necessary
point.

Lemma 2.4. Let M be the model constructed above. Then

M |= 'R , � ` 'R 

Proof. This proof relies on the fact that both g and f are monotone
functions. The most important cases, here, are where R =⌘ and R =<,
as every other case can be derived from these two, as theorem 2.2
indicates. Technically, one need consider the various possibilities where
' =  or  = ', etc. However, most of these cases contradict the fact
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that � was assumed to be consistent, and the remainder are analagous
to the following.

1. R =⌘
� ` ' ⌘  , ' �  and  � '

, g(') = g( )

, f(g(')) = f(g( ))

, AAA'BBB = AAA BBB

, � |= ' ⌘  

2. R =<

� ` ' <  , ' �  and  6� '

, g(')  g( ) and g( ) 6 g(')

, f(g(')) ⇢ f(g( ))

, AAA'BBB ⇢ AAA BBB

, � |= ' <  

The remainder of the proof of theorem 2.4 is gotten in the standard
way.

3 Conclusion

When I first began work in this area, my intention was to understand
the underlying logic of M&M’s join table. I did so by giving it a natural
set-theoretic semantics and a simple proof calculus. Having done so, I
was able to prove completeness via representation. I think, though, that
there are broader implications in this line of research.

First and foremost, the logic I have presented here can be understood
as a logic underlying a NL lexicon like that of English, if the MacCart-
ney relations are interpreted as lexical semantic relations. More specifi-
cally, a synthetic logic can be understood as being the logic of a lexical
network like that of, say, WordNet, as it allows us to (begin to) answer
the question: If an expression ↵ stands in a lexical semantic relation
with �, and � stands in a (possibly di↵erent) lexical semantic relation
with �, what lexical semantic relation does ↵ stand in with �?

Second, I conjecture that the logic here can be embedded in Moss’s
(2010) syllogistic fragment that contains complements, suggesting that
there is much work left to be done with synthetic logic itself. Third, I
have not begun to explore the complexity of a synthetic language. If
we are interested in logics that have (viable) computational reflexes, to
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determine complexity results of a synthetic logic would be an obvious
next step in this line of research.
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M. Chakraborty, B. Löwe, M. Nath Mitra, and S. Sarukki, eds., Logic,
Navya-Nyaya and Applications: Homage to Bimal Matilal .

Zierler, Neal and Michael Schlessinger. 1965. Boolean embeddings of ortho-
modular sets and quantum and logic. Duke Math Journal 32(2).


