Potential scope of a fully-integrated architecture for speech translation

Francisco Casascuberta
Instituto Tecnoldgico de Informatica

Alicia Pérez and M. Inés Torres
Dep. de Electricidad y Electrénica

Universidad del Pais Vasco
manes. torres@ehu .eS

Abstract

The classical approach to tackle speech
translation assembles a text-to-text trans-
lation system placed after a speech recog-
niser, yielding the so-called decoupled ar-
chitecture. In this regard, there are two is-
sues to bear in mind: first, what is trans-
lated in the decoupled architecture is the
most likely transcription of the spoken ut-
terance; second, translation systems are
sensitive to errors in the source string,
and speech recognition systems are still far
from being flawless.

In this paper we promote the use of an
architecture to carry out speech transla-
tion that allows to build up the most likely
translation relying upon both acoustic and
translation models in a cooperative man-
ner, that is the so-called integrated archi-
tecture. The integrated architecture is im-
plemented in the finite-state framework by
virtue of the composition of finite-state
acoustic models of the source language
within a stochastic finite-state transducer
that would encompass source and target
languages.

The potential performance of the inte-
grated architecture is assessed quantita-
tively in relation to the decoupled one.
We conclude that while the single-best ap-
proach for both decoupled and integrated
architectures show similar performance, an
oracle evaluation reveals that the potential
scope of the integrated architecture would
offer statistically significant differences.
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1 Statistical speech translation

The goal of statistical speech translation is to seek
the most likely string in the target language, t,
given the acoustic representation of a speech sig-
nal in the source language, x.

t = argmax P(t|x) (1)
t

The source string, s, that is the transcription of the
speech utterance x, can be introduced as a hid-
den variable the Bayes’ decision rule applied (Ney,
1999).

t= argmgngr(t,s) Pr(x|t,s) (2)

Assuming that the target string t does not affect the
probability of the source acoustic representation x
and applying the maximum approach, previous ex-
pression turns into:

t A~ argmax max P(t,s) P(x|s) 3)

t S
Note the parallelism of this expression with re-
spect to that used in automatic speech recognition:

S ~ argmax max P(s)P(x|s) 4)
t S

Where P(s) and P(x|s) are approached by the
language model and the acoustic model respec-
tively.

1.1 Related work

A simple approach to tackle speech translation
consists of an automatic speech recognition (ASR)
system followed by a text to text translation system
leading the so-called decoupled architecture. What
is translated in this approach is the most likely
source string derived from the ASR system. On



this account there are two issues to bear in mind:
on the one hand, the ASR systems are still far
from being ideal, and thus might produce errors in
the output; on the other hand, the translation sys-
tems are usually very sensitive to input errors. On
the contrary, it might also happen that for certain
spoken utterances (such as spontaneous or gram-
matically ill-formed ones) the exact transcription
would yield a worse translation than it would do
a less accurate transcription with the same mean-
ing and following the grammar expected for the
source-language. The underlying reason is that
the text translation system is typically trained with
grammatically correct pair of sentences, while the
conventional syntactic structure of speech might
differ from that in text. The arising question is how
to take advantage of both acoustic and translation
knowledge sources in order to produce translations
that convey as well as possible the meaning of the
spoken utterance. It seems as though the series of
individual decisions made within the decoupled ar-
chitecture should be avoided in favour of joint de-
cision schemes. Indeed, recent efforts in speech
translation aim at making both acoustic and trans-
lation knowledge sources cooperate (Casacuberta
et al., 2008).

Taking a step forward to the decoupled (or cas-
cade) architecture, the n-best hypotheses can be
explored, instead of simply exploring the single-
best hypothesis, and next, by re-ranking recog-
nition and translation scores one of the hypothe-
ses selected (Quan et al., 2005). In (Hasan et al.,
2007) an efficient method to extract large amount
of n-best lists is proposed, nevertheless, it is also
claimed that there is no significant gain in trans-
lation quality on the use of very large n-best lists.
The drawback of making use of large n-best lists
is the fact that they usually entail highly redundant
hypotheses resulting in high computational cost.

Confusion networks offer an efficient means of
storing information that help to overcome the re-
dundancy issue. It was in (Bertoldi and Federico,
2005) that the hypotheses from the ASR system
were represented by means of confusion networks
for further translation. While it is true that due to
their inner structure they allow for efficient decod-
ing strategies (Bertoldi et al., 2007), it is also true
that confusion networks generalise on the hypothe-
ses originally provided by the ASR system and it
is not clear whether this is a shortcoming or not as
far as translation accuracy is concerned.

In (Saon and Picheny, 2007; Mathias and Byrne,
2006) it was proposed to translate the original lat-
tice derived from the ASR system. In lattice-based
decoding reordering represents a problem that was
not present in confusion networks and methods
to tackle it are proposed in (Saon and Picheny,
2007). In (Matusov et al., 2008b) a methodology
to deal with lattices that allow for efficient decod-
ing strategies was presented yielding reduced run-
time cost.

In short, the aforementioned strategies are built
in a two-pass strategy (as the decoupled archi-
tecture was) however, they extract translation hy-
potheses by combining information from both
ASR and translation systems more efficiently than
decoupled architecture does. For the sake of nota-
tion we shall refer to the two-pass decoding strate-
gies as semi-decoupled architectures.

By contrast to either decoupled or semi-
decoupled architectures, in (Vidal, 1997) it was
presented an integrated architecture involving both
the acoustic and the translation models within a
single finite-state network. At decoding stage
the searching network was a stochastic finite-
state transducer (SFST). While an SFST used for
text-to-text translation encompasses source strings
along with target strings, for speech translation
source strings were replaced by their acoustic rep-
resentation. By virtue of this integrated architec-
ture both the translation is produced together with
the transcription of the speech (in the source lan-

guage).

1.2 Contributions

In this paper the potential of the integrated archi-
tecture built with phrase-based SFSTs (instead of
those presented in (Vidal, 1997)) is assessed by an
oracle-like evaluation metric. The performance is
compare to either decoupled or semi-decoupled ar-
chitectures. Note that it is far from the range of
this article to tackle re-scoring strategies. Our aim
is simply to focus on the architectures themselves
regardless of additional functions that might blur
the assessment.

Admittedly, the ability of the transducers has
evolved since (Vidal, 1997) towards the phrase-
based framework, as it is our case, however, simi-
lar algorithms can be applied (Pérez et al., 2007).
Thus, we are apparently using a similar technique
to that in (Vidal, 1997) but within recent frame-
work for SFSTs and we would like to asses its



potential with respect to semi-decoupled architec-
tures.

As a second contribution, we would like to
add the materialisation of speech translation from
Spanish-into-Basque. It must be noted that speech
translation between these two languages entails a
range of challenges. To begin with, the training
material is limited due to the fact that Basque is a
minority language, and on the other hand, it must
be noted that Basque is a highly inflected language
that shows little resemblance with Spanish or En-
glish in either syntax or morphology (Pérez et al.,
2008).

2 Decoupled architecture

If we express the joint probability P(t,s) in terms
of posterior and prior probabilities, equation (3)
can be rewritten as:

t A argmax max P(t|s) P(s) P(x|s) (5)
t S
Decoupled architecture implements previous ex-
pression in a sub-optimal way involving two inde-
pendent stages as follows:

1. Given the acoustic representation of the utter-
ance in the source language, x, its expected
text transcription is first obtained by an ASR
system:

§ = argmax P(s) P(x]s) (6)

2. Next, the translation of S is obtained using
SESTs. Thus:

t ~ argmax P(t8) = argmax P(t,8) (7)
t t

The decoupled architecture, depicted in Figure 1,
is the most widely used approach due to the fact
that it is independent of the sort of translation
paradigm used, as both the speech recognition and
the translation systems are decoupled. Figure 1
shows a joint probability translation model instead
of a posterior probability model since the object of
our work is the former.

2.1 Semi-decoupled architecture

Instead of simply translating the best output from
the ASR system, the MT system could get access
to the INV-best strings and produce, as a result, the
M-best translations for each hypothesis, as de-
picted in Figure 2, in an attempt to benefit from

1 !

X arg max P(s)P(x|s) |8

l

arg max P(t,3) ||t

Figure 1: Decoupled architecture for speech trans-
lation. The system consists of two stages one af-
ter the other: the speech decoder and the text to
text translator. The input is the speech signal, x,
in the source language, while S stands for the ex-
pected transcription of speech into text. This is
translated into a text string in the target language,
t. The overall system relies on three knowledge
sources, namely, the language model of the source
language P(s), the acoustic model P(x|s) and the
text translation model P(t,s).

both knowledge sources (Quan et al., 2005). The
re-scoring with other models, usually specialised
language models, is a common practice as well.
The drawback of N-best lists is that they tend to
be redundant.
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Figure 2: Semi-decoupled architecture based on a
list of hypotheses. The output of the ASR is a set
of N strings, for each of them M different transla-
tions are proposed.

In formal terms, instead of the single-best ar-
gument in equation (6) the N-bests are obtained.
Next, for each string in the source language, the
text-to-text translation could derive a list of the
most likely M target strings as an alternative to
the single-best proposed in equation (7). This way,
for each input utterance a set of NV x M transla-
tions could be derived, yet, some of the obtained
translations might result to be equal.

Probabilistic word graphs offer a compact
means of representing the set of hypothesis traced
from the ASR. The word graph contains the hy-
potheses in source language and could be com-
posed with the stochastic finite-state transducer.
This procedure would parse the source graph with
the translation graph, giving as a result a min-
imised transducer involving only paths that are
compatible with those in the source graph. Never-



theless, this approach has in practice a high com-
putational cost (Kolss et al., 2008). Instead, we
have tackled it in terms of translating virtually all
the strings whose probability value exceeds a given
threshold rather than a fixed amount of them, in
contrast with the N-best approach leading to the
semi-decoupled approach.

3 Integrated architecture

By virtue of classical composition techniques as-
sociated to finite-state models, acoustic and transi-
tion models in equation (3) can be efficiently com-
posed leading to an integrated network. This prob-
lem has a resemblance with statistical ASR, where
a tight integration is achieved between acous-
tic and language models (Caseiro and Trancoso,
2006). In practice, for speech translation, the same
sort of integration is obtained by replacing the lan-
guage model with the SFST as suggested in Fig-
ure 3, since P(t,s) of equation (3) could be un-
derstood as a bilingual language.

P(s,t) || P(x]s)

(s, t)

x | argmax P(s,t)P(x]|s)
(s:t)

Figure 3: Integrated architecture for speech trans-
lation. The output of the system is both the text
translation of an input speech signal and its tran-
scription. The system is supported on two knowl-
edge sources: the acoustic model and the transla-
tion model.

By means of a Viterbi-like search through the in-
tegrated network made of the SFST with the acous-
tic model (as depicted in Figure 4), the most likely
path (or translation form) is obtained. Note that
associated to each path there are both the expected
source and target strings. As a result, a Viterbi-
like searching engine with SFSTs would approach
speech translation as follows:

—_

(s,t) ~ argmax P(s,t) P(x|s) (8)
(s,t)

This process turns out the expected string in the
target language, t, and as a by-product, the ex-
pected transcription of the spoken utterance in the

source language, s, all in a single decoding step.
It has already been mentioned that the integrated
architecture, in practice, can be implemented by
replacing the language model in the ASR system

with an SEST and arranging the lexical model,
which happens to be bilingual. As far as the
lexical model is concerned, all the items having
the same source phrase would display the same
acoustic model regardless of the associated target
phrase. As illustrated in Figure 4, the search is
driven by the text-to-text phrase-based SFST. Nev-
ertheless, when an edge is being explored the de-
coder turns to the lexical model that entails the
phonetic representation of the source phrase along
with the text representation of the target phrase.
Next, each phoneme is replaced by its correspond-
ing HMM. On-the-fly integration has shown to be
an efficient technique in speech-recognition (Ca-
seiro and Trancoso, 2006) and it can also be im-
plemented similarly for speech translation. As an
outcome, in the integrated architecture finite-state
acoustic and translation models are neatly com-
posed on the fly, i.e., the integration is not static,
but it is carried out on demand at decoding time.
The main feature of the integrated architecture
is its ability to construct the hypotheses on the ba-
sis of the cooperation of acoustic and translation
model. Along with it, it is remarkable the ability
of the integrated architecture to carry out both the
transcription of source signal and its translation si-
multaneously in a single decoding stage.

3.1 Word-graph from the integrated speech
translation decoder

N-best lists can also be extracted under the inte-
grated architecture as if it were the ASR system.
Nevertheless, this procedure would provide both
the source and the target strings jointly, in a single
decoding, in contrast to the decoupled architecture,
which requires two systems.

As a natural alternative to the integrated archi-
tecture providing N-best lists, we propose the use
of probabilistic word graphs derived from the trel-
lis of the integrated speech translation search en-
gine. In the same way as an ASR can give a word
graph as an output, within the integrated architec-
ture we can do exactly the same as depicted in Fig-
ure 5.

By contrast to the ASR process, speech trans-
lation within the integrated architecture does not
rely on a language model but on an SFST. As a re-
sult, the edges of the resulting graph are labelled
with input and output substrings. In addition, they
also have an associated score, which accounts not
only for the probability in the associated SFST, but
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(b) Integration of a lexical unit consisting of phone-like units for source phrase along with text representation of target phrase.
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(c) Integration of HMMs within each phone-like unit.

Figure 4: Speech translation with integrated architecture involves the on-the-fly integration of several
knowledge sources within a single finite-state network. (a) Finite-state transducer. (b) The lexical model
consists on the phonetic transcription (SAMPA is used here) of the input substring by means of a left-
to-right topology. (c) Phone-like units are modelled by typical three-state continuous hidden Markov

models (HMMs).
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Figure 5: A word-graph from the integrated archi-
tecture.

contain, as well, the contribution of the acoustic
model. The word graph relies on information as-
sociated to acoustics, such as time segmentation
and acoustic scores, and also on scores related to
translation model. Thus, the most likely hypothe-
sis from the word graph coincides with the hypoth-
esis given by the integrated approach without word
graph layout in its single-best approach.

The big concern here is the fact that the most
likely hypothesis is not always in agreement with
the best hypothesis. That is, the most likely hy-
pothesis might report a worse accuracy with re-
spect to the reference than other hypothesis with
lower probability. Thus, it might happen that other
less likely hypotheses match better with the refer-
ence than the expected one. On this account, for
each input utterance, the word-graph entails the
entire set of successful translation forms associ-
ated to the SFST that have been derived from the
speech translation process. Measuring the qual-
ity of the resulting word-graphs would allow us to
get to know the upper threshold of the underlying
translation model. That is, by measuring the qual-

ity of the derived word-graph for each utterance,
it is being measured the best quality that can be
obtained with the integrated architecture.

Finally, it is well worth mentioning that the ob-
tained word graph can be composed with other
models, such as a specialised target language
model, that could help to filter the hypotheses in
an efficient manner. Moreover, due to the thorough
information gathered in the graph (such as acoustic
probabilities, time synchronisation between input
signal and translation model, translation probabili-
ties etc.) a wide variety of re-scoring methods can
be explored for each task. Nevertheless, re-scoring
with more accurate models is out of the scope of
this work.

4 Experimental results

In this Section several sets of experiments aim-
ing to compare the speech translation architectures
proposed in previous sections are presented. The
corpus used for these experiments is the only mul-
tilingual corpus for MT in Basque that includes
speech, namely Meteus. It is a weather fore-
cast corpus (Pérez et al., 2008) consisting of daily
weather forecast reports issued over 28 consecu-
tive months. The main features of the corpus are
summarised in Table 1. A training-independent
subset made of 500 different pairs was extracted
and then recorded by at least 3 bilingual speakers
resulting in a speech evaluation set of 1, 800 utter-
ances by 36 speakers.

For the purposes of these experiments, linguis-
tic phrases that considered both syntax and se-



Spanish ~ Basque

= Sentences 14,615 14,615
E Running words | 191,156 187,195
Vocabulary 702 1,135

% Sentences 1,800 1,800
& Hours of speech 3.0 3.5

Table 1: Main features of METEUS corpus.

mantics jointly were used (Pérez et al., 2008).
They were identified by the Ametzagafa group, a
non-profit organization working on R+D regarding
with Basque language processing. A preliminary
series of experiments on text translation over a text
test yielded a BLEU of 66.1 for the phrase-based
SFST while Moses (Koehn et al., 2006) provided a
BLEU of 67.0 (being 64.0 in its monotonic decod-
ing). Moreover, on average, text translation with
Moses took 0.65 seconds per sentence, while with
SEST it only took 0.25 seconds per sentence.

4.1 Semi-decoupled architecture

The system consisted of two consecutive stages:
the speech decoder and the text-to-text translator.
A word graph representing the set of hypothesis
traced from the ASR was extracted, and from it,
the N-best lists for different values of N were de-
rived. Table 2 shows the speech translation results
obtained in these experiments as well as the tran-
scription WER derived from the ASR system. That
is, both BLEU and WER are scores associated to
the target language, while ASR-WER is associ-
ated to the errors in the source language which the
translation system has to deal with.

The results obtained with the N-best lists being
N = 10° corresponds to the single-best hypothe-
sis, in other words, these results correspond to the
fully decoupled architecture. Note that as the num-
ber of explored hypotheses grow, better accuracy is
obtained. Nevertheless, from N = 10* onwards
the improvements are not statistically significant
(Bisani and Ney, 2004; Zhang and Vogel, 2004;
Koehn, 2004). That is, the benefits obtained are
less and less important. In fact, the performance
has its upper value in the results derived with the
word-graphs.

The graph-score defined in (Zens and Ney,
2005) is the score of the optimum sequence over all
possibilities. Note that the most likely hypothesis,
the single-best (that with N = 10°), does not have
the highest quality, meaning that other less-likely

hypotheses could yield a better quality. In this re-
gard, the results reported in Table 2 show the up-
per threshold of translation quality that the models
can provide and permit us to evaluate the potential
quality of the translation system. We would like
to mention that in the literature there are efficient
algorithms to find the oracle BLEU (the hypoth-
esis with the highest attainable BLEU score) un-
der different constraints (Li and Khudanpur, 2009;
Leusch et al., 2008).

A further re-scoring criterion (Matusov et al.,
2008a) would allow to re-rank the hypotheses and,
hopefully, obtain improvements with respect to the
most likely hypothesis. Yet, it is not the aim of
this article to focus on re-scoring for either semi-
decoupled or integrated architectures.

4.2 Integrated architecture

The integrated SFSTs allowed us to obtain both
the translation of the speech utterance as well as
its transcription, in a single decoding step. Hence,
both speech transcription and translation results
are jointly derived. The speech translation results
in the target language, WER and BLEU, along
with the source WER (or transcription WER) are
summarised in Table 3. Both the quality of the N-
best lists with different values of IV are explored
and compared to the potential quality that can be
obtained with the integrated word-graph derived
from the integrated architecture (denoted as WQG).
Note that the results with the single-best hypothe-
sis (with N = 10°) correspond to the integrated ar-
chitecture proposed by (Vidal, 1997). Here, a step
forward is taken by deriving either N-best lists or
word-graphs and also thanks to the phrase-based
framework recently defined for SFSTs.

Once again, as the number of explored hypothe-
ses grow, better accuracy is obtained. Neverthe-
less, the results are saturated later than in the case
of semi-decoupled architecture. By comparing Ta-
ble 2 with Table 3, it can be derived that while
for the single-best hypothesis the integrated archi-
tecture offered a slightly better performance for
speech translation than the decoupled one, as the
number of hypotheses under consideration grows,
the difference between both, in terms of perfor-
mance, increases significantly. As far as the qual-
ity of the transcribed source strings is reasonably
better with the decoupled architecture than with
the integrated one.

Thus, the integrated architecture can provide a-



Semi-decoupled architecture
N-best
10° 10! 10? 103 or | Ve
BLEU | 40.8 | 49.7 54.8 56.7 57.2 57.6
Speech
Translation WER 50.3 | 42.2 38.2 36.8 36.4 36.2
ASR-WER 791 7.0 6.3 5.0 4.6 4.5

Table 2: Speech translation results with semi-decoupled architecture using N-best lists and word graphs
(WG). Particularly, the result with N = 10° corresponds to the fully decoupled architecture. The WER

associated to the ASR is also included.

Integrated architecture
N-best
10° | 10 102 | 10° o | V¢
BLEU 40.9 | 50.3 59.4 62.9 63.5 64.0
Speech
Translation WER | 49.6 | 41.5 35.3 33.2 324 32.2
source-WER 9.6 | 8.6 7.5 6.8 6.6 6.6

Table 3: Speech translation results with integrated architecture using /N-best lists and word graphs (WG).
The WER associated to the source language (source-WER) is also included.

high quality speech translation word graph. In this
sense, higher speech translation scores can then
be expected when generating a speech translation
word graph under the integrated architecture, than
when translating the word graph generated by an
ASR system under the semidecoupled architec-
ture.

5 Conclusions

In this article both decoupled, semi-decoupled and
integrated architectures have been assessed using
the same framework and task, and with the same
underlying phrase-based SFSTs. That is, we are
focusing on the potential quality of several archi-
tectures for speech translation applications rather
than on translation models.

The use of a fully-integrated architecture made
up of word-graphs comprising acoustic models
within phrase-based SFSTs has been proposed.
The word-graph derived from an integrated archi-
tecture that was presented in (Vidal, 1997), allows
to measure the potential of the integrated architec-
ture with respect to others.

Above all, it is remarkable the fact that the inte-
grated architecture with word-graphs makes it pos-
sible a full cooperation between acoustic and trans-
lation models leading to a combination of both
knowledge sources when it comes to searching for
speech translation hypotheses. It has been shown
that the quality of the obtained word-graph is sig-

nificantly better than with either semi-decoupled
or decoupled architectures. Moreover, as opposed
to semi-decoupled architecture, a single decoding
step is involved. Given the potential performance
of the integrated architecture, it could be an ad-
equate candidate for further re-ranking or post-
processing operations with other models, such as
particular language models in the target language.
Anyway, those techniques could be of benefit re-
gardless of the architecture used.

Finally, a manual inspection suggests that the in-
tegrated architecture with word-graphs allows to
explore less likely paths that showed lower prob-
ability due to long distance alignments but have
finally result to be more successful for automatic
metrics while not always for human judgements.

Once it has been shown the ability of the inte-
grated architecture to obtain much more accurate
translations, for future work we will focus on ex-
ploring both reordering and re-ranking techniques
that would allow to select the most accurate hy-
potheses from the integrated word-graph. This
could be probably carried out by turning to another
composition, that is, to the composition of the de-
rived word-graph with a more accurate target lan-
guage model.
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