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Abstract
The web is the largest available corpus, which could be enormously valuable to many natural language processing applications. However
it is becoming very difficult to identify relevant information from the web. We present a system for querying dependency tree collocations
from the web. We show its usefulness in identifying relevant information by evaluating its accuracy in the task of extracting classes of
named entities. The task achieved a general accuracy of 70%.

1. Introduction

(McEnery and Wilson, 2001) has described corpus linguis-
tics as the study of language based on examples of ‘real
life’ language use. And where can we find more examples
of ‘real life’ language use than the web? With the growth
of the World Wide Web, more and more researchers have
been used it in their study of language. Collocations are a
rich source of information that could be very useful in many
natural language processing tasks. The richness of colloca-
tions is attributed to its relationship with meaning. This re-
lationship has been noticed by many researchers, and prob-
ably two of the most quoted ones are (Firth, 1957) “you
shall know the word by the company it keeps” and (Har-
ris, 1968) distributional hypothesis that “words with sim-
ilar meaning tend to appear together”. The term colloca-
tion by itself has more than one definitions in the literature:
(Firth, 1957) described it as “habitual” word combinations,
(Manning and Sch‘eutze, 1999) as some conventional way
of saying things, (Bartsch, 2004) as a frequently recurrent,
relatively fixed syntagmatic, combinations of two or more
words, and (Evert, 2005) as word combination whose se-
mantic and/or syntactic properties cannot be fully predicted
from those of its components, and which therefore has to be
listed in a lexicon.
Although the importance of collocation is obvious, it is not
always easy to collect collocation information for words
that are usually unavailable in a typical corpus; for example
collocations of a specific proper noun. As the web contains
the largest repository of text, it is seen as a solution of such
a problem. However, using the web as a corpus poses its
own set of challenges. In this paper we describe a system
for extracting, representing, and querying collocations from
the web, and we attempt to respond to some of those chal-
lenges posed by the web.
In the remainder of this paper, we first review related work,
then describe a system for extracting collocations online ti-
tled RoDEO: for Reasoning over Dependencies Extracted
Online. And then we evaluate it on the task of extracting
classes of named entities.

2. Related Work

In this section we will present some of the related work in
the literature that extract, represent, and query collocation
information from the web.
(Kilgarriff et al., 2004)’s sketch engine, is a corpus tool
that creates ”Word sketches”, or one-page summaries of a
word’s grammatical and collocational behavior, from a cor-
pus, in addition to other functionalities. The corpus query
language and search is based on regular expression. The
tool also makes uses of a web service that produces corpora
from the web, but the time needed to build a corpus from
the web could varies between minutes and hours.
(Resnik and Elkiss, 2005) described the Linguist’s Search
Engine (LSE), a system that enables language researchers
to query the web for examples based on syntactic and lex-
ical criteria. The system allows users to create queries by
example: by supplying a sample sentence the system parse
the sentence, and find similar structure in the user selected
corpus. To use the web as a corpus the user must supply
a web query to a search engine from within the system,
the system will extract, parse and index sentences from the
web search results and the result can be used by the user as
a new corpus. The user has to wait between minutes and
hours for this process to be completed, however the user
can begin querying the results as soon as they are collected.
The indexing and search of the collected data is based on a
method for querying XML Data by tree structures. It should
be noted that parse trees data are not similar to the typical
semi-structured data that is usually stored and queried in
XML, as phrases structure are usually highly recursive.
(Renouf et al., 2007) presented WebCorp as a tool that helps
corpus linguists in retrieving linguistic output from the web.
The request for linguistic information is translated and feed
to web search engine, the returned documents will be pro-
cessed, and the concordance results are returned to the user.
The author presented some of the current WebCorp prob-
lems, such as the performance issues, the need of a gram-
matical and better collocational analysis, in addition to a
more sophisticated pattern matching.
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Most of these systems are similar to the system we are pre-
senting in this paper; however the differences and the ad-
vantage of our system will be evident in the following sec-
tions.

3. Extracting Collocations Online
Annotated corpora contain linguistic information that en-
ables linguists to accurately search for the specific occur-
rences of linguistic information. The usefulness of the cor-
pus is increased with the level of annotation or linguistic in-
formation explicitly present in it, and with the expressive-
ness of the search query formalism utilized to investigate
these data.
Most of the related work presented in the previous sec-
tion annotates the utilized corpus, or its extracted part, with
syntactic structure. The syntactic structure used follows a
certain syntactic theory, nevertheless most researches, jus-
tifiably, try not to select a theory specific structure. Two
main categories of syntactic structure are usually described:
phrase structure and dependency structure. Phrase struc-
ture combines words or phrases into syntactic categories or
constituent parts. Dependency structure, on the other hand,
is a representation of relationships between words. (Hays,
1964) define a dependency relationship as a binary relation-
ship between a word called head and another called mod-
ifier. For example the sentence: “Tom drives a car” can
be represented by the following set of dependency relation-
ships: (Tom—subject—drives), (a—determiner—car),
and (car—object—drives). Figure 1 shows a graphical

Figure 1: An Example Dependency Tree

representation of this dependency tree. The expressiveness
of the dependency formalism is usually related to the dif-
ferent types of syntactic relations used to characterize the
words relationships.
We prefer the use of dependency structure over phrasal
structure since they represent syntactic relations explicitly;
however these relationships are more implicit in a phrasal
structure. For example, the actuality that “Tom” is the sub-
ject of “drives” in the above example can only be uttered
in the phrasal structure as a sentence having noun phrase
headed by the noun “Tom”, and related to a verb phrases
headed by the verb “drives”. As such using a dependency
structure allows us to directly represent and query syntactic
relations. However selecting the syntactic structure is not
the main issue in querying or representing syntactic collo-
cations. The main issue is related to how to represent the
created structure and how to query it. In the next section we
are going to present the preferred annotation representation

structure that will allows us, in addition to the incorporation
of syntactic structure, the inclusion of semantic informa-
tion. The selected representation is a scalable and tractable
structure that will enable expressive query formalism in ad-
dition to an advanced reasoning capabilities based on the
availability of syntactic and semantic information.

3.1. Corpora Representation
Before describing the preferred corpora representation, we
will revisit the collocation definition in order to specify
our preference, which correspond to our syntactic structure
preference that we have described in the previous section.
(Lin, 1998b) defines a collocation as a dependency rela-
tionship between two words that occurs significantly more
frequently than by chance. He also proposed a method for
extracting dependency collocations from text corpora. His
method involves the parsing of a corpus using the Mini-
par (Lin, 1998a) parser, and storing the resulted dependen-
cies into a database. By using dependency frequencies and
mutual information he separated collocations from depen-
dency triples that occurred by coincidence. We would like
to extend (Lin, 1998a)’s collocation definition to a depen-
dency relationship between a word and one or more depen-
dency trees. We refer to this type of collocations as Depen-
dency Tree Collocation or (DTC). This extension of collo-
cation would allow us to filter the extracted dependencies
into very specific ones. This restriction is required as the
most frequent collocations vary by context, and in a given
context we are not usually talking about all the possibili-
ties of a word collocating with another, but to a restricted
subset that the context is related to. As such, this extension
will allow us the restriction of the returned collocations to
a selected context.
A dependency collocation between two words could be
represented in the following linear form: [Word1] Depen-
dency1—[Word2]; where Word1 collocates with Word2
via the dependency relationship Dependency1. On the
other hand, a dependency collocation between a word
and a dependency tree could be represented in the fol-
lowing form [Word1] Dependency1—[Word2] Depen-
dency2—[Word3] Dependency3—[Word4]... or graph-
ically as in Figure 2.

Figure 2: A Graphical Representation of a Dependency
Tree Collocation

One of (Lin, 1998b)’s example of a collocation as
a dependency relationship between two words is
[Word]Object—[Drink], or finding the word that col-
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locates with the word “Drink” through an object depen-
dency relationship. We can extend this example to find
[Word]Object—(Drink)—Subject(Child) or the word that
collocates through an object dependency relationship with
the dependency tree consisting of the verb “Drink” having
a subject dependency relationship with the word “Child”.
Although the top ranked collocation of (Lin, 1998b)’s
example is “Tap Water” the top words for our DTC is
“Milk”. In this sense we have restricted the retrieved
collocations to the instances of the verb that collocate with
a specific object. We could have different restriction types
depending on the formulated DTC query.
Multiple method have been proposed in the literature to
represent and query corpora annotated information, from
a simple regular expression match such as the sketch
engine of (Kilgarriff et al., 2004), to a more complex
semi-structured way as in the linguistic Search Engine case
of (Resnik and Elkiss, 2005). Nevertheless, what we are
presenting here is our preferred annotation representation
structure that will allows us, not only to represent syntactic
structure, but also to include semantic information in a
scalable, tractable structure. This structure will enable
expressive query formalism, in addition to an advanced
reasoning capabilities based on the availability of syntactic
and semantic information. Our representation is based on a
decidable logic representation of the DTC structure. Since
dependency trees could be seen as a semantic network,
using description logic that is equipped with a formal
logic-based semantics fits exactly our needs. Especially
when such a logic is a tractable, decidable subset of
predicate logic, and has several well studied theorem
provers to query it.
Description logic (DL) is a logical formalism for defining
concepts and their relations (Terminologies) specifying
properties of individuals (Assertions). Lately, description
logics became the foundation of the semantic web. The
Semantic web is a collaborative effort led by World Wide
Web consortium (W3C) that provides a framework for
making World Wide Web content processable by machines
(Berners-Lee, 1998). W3C endorsed the web ontology
language (OWL) as the language for the semantic web
(Dean et al., 2004). OWL is a semantic markup language
for defining and instantiating web ontologies, and it is
based on description logic. It is a vocabulary extension
of RDF (the Resource Description Framework), derived
from the DAML+OIL (DARPA Agent Markup Language
and Ontology Interchange Language), and based on XML
(Extensible Markup Language). An OWL ontology may
include descriptions of classes (or concepts), properties
(relations between a main class called domain and another
called range), and the classes instances (or individuals).
We have selected OWL-DL as the structure for represent-
ing corpora annotation, it is the subset of OWL supporting
a decidable (SHOIN(D)) description logic (Horrocks
and Patel-Schneider, 2004). The intuition behind this
selection is the effortless mapping between a dependency
relation and an OWL-DL property between two classes
(the head of dependency relation and its modifier). In
addition the lemma and part of speech information of
each word are mapped to classes. For example, the DTC:

(Drinks Verb)—Subject(Child Noun) will be mapped to
the following OWL descriptions:

• “Subject” as an OWL property having as domain the
class “Drink” and as range the class “Child” (note that
the lemma of the word is used to describe the class) .

• “Drink” is subclass of the class “Verb” and “Child” is
a subclass of the class “Noun”.

• In addition to indexed instance of the class “Drink”,
such as: “Drinks 1”, and an indexed instance of the
class “Child” such as “Child 1”.

The indexing is needed to relate sentence instances. The
end result could be illustrated graphically as in figure
3.In this graph rectangles represent classes, ovals represent
properties, and double brackets represent instances.

Figure 3: A Graphical Representation of a Dependency
Tree Collocation ontology

This representation has a lot of advantages, some of these
advantages:

1. Availability of well studied, powerful query formal-
ism.

2. Possibility of applying rules to the created knowledge
base using backward or forward chaining.

3. Ability to integrate multiple knowledge bases, some
of which might include general semantic information.

4. The existence of well studied reasoners that can be
used to answer queries over the created knowledge
base schema and instances.

5. OWL is a standard meant to be used for the semantic
web, in which semantics of information and services
on the web are defined to be used and exchanged. As
such, most of the available reasoner services are built
for large scalability.

Investigating in details all of these advantages are beyond
the scope of this paper. Nevertheless we are going to fo-
cus on the first advantage: a powerful query formalism and
related answering mechanism, which will be introduced in
the next section.

3.2. Query Formalism
The reasoner that we have selected for the query answer-
ing is the RACER reasoner (Haarslev and Moller, 2003).
RACER (an acronym for Renamed ABox and Concept Ex-
pression Reasoner) is a reasoner that implements tableau
calculus for description logic (DL) and supports the web
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ontology languages DAML+OIL, RDF, and OWL. nRQL
(new RACER Query language) is an expressive DL-query
language. An nRQL query consists of a query head and
a query body. For example, the query (retrieve (?x) (?x
Noun)) has the head (?x) and the body (?x Noun). It re-
turns all “Nouns” from the ontology which is queried. A
detailed description of nRQL is given in (Haarslev et al.,
2004). Although nRQL is closely related to Horn logic
query languages such as Datalog, it has been argued (Wes-
sel and Moller, 2006) that nRQL is a more general query
language framework that provides more flexibility and op-
tions for extensions than Datalog. In addition, it provides
an optimized implementation by bounding the variables in
a query to explicitly mentioned instances in the knowledge
base.
The DTC query could be represented in nRQL, which en-
ables us to formulate complex conjunctive queries in order
to retrieve a specific DTC from the created dependency on-
tology structure. Then we can use the RACER conjunctive
query answering to prove the nRQL, over the created DT
ontology, and return the corresponding results.
For example, if we are looking for the dependency tree
collocation [Noun]Subject—[Drive]—Object[Ball], that
is the nouns that are subjects of the verb ”Drive” and hav-
ing “Ball” as its object, we can formulate it as the following
nRQL query: (Retrieve (?x)(AND(?y ?x Subject)(?y ?z
Object)(?y Drive)(?x Noun)(?z Ball)).
Although we are using nRQL as the query formalism of
choice, other query languages could be easily used such as
the OWL-QL (Fikes et al., 2004) query language of the se-
mantic web.
Using RACER we can then run an nRQL query and re-
turn related Dependency Tree Collocations from the web
corpora that would be presented as an OWL-DL ontology.
Representing the whole World Wide Web as a well struc-
tured description-logic knowledge representation would be
the ideal solution to query DTCs, however as it is not fea-
sible for us to do so, we are going provide an alternative:
a method to generate sentences from a DTC query, which
will enable us to created related web queries and retrieve
very specific and related documents that will represent a
corpus related to the DTC in question. This method will be
described in details in the next section.

3.3. From DTC to Sentences

Most web search engines provide an unstructured query
language to query the web. Transforming a DTC conjunc-
tive query to a web search query puts forward its own set
of challenges. Using the DTC conjunctive query content
words as web query keywords may return millions of docu-
ments. However, not all the returned documents are related
to the dependencies collocation that we are looking for,
but barely documents containing the supplied keywords.
To narrow down the returned results to the dependency
relationship that we are looking for, we formulate the web
query as a specific search phrase. A search phrase is a
sequence of words that must co-occur together.
For the DTC example query above: (Retrieve
(?x)(AND(?y ?x Subject)(?y ?z Object)(?y Drive)(?x
Noun)(?z Ball)). The content words of this DTC query

are: “Drive” and “Ball”. When we used the Google API
to search for documents having the keywords “Drive” and
“Ball”, we obtained about 39 million documents. When
we searched for the search phrase ”Drive.Ball”, we found
167,000 documents. Still this search phrase is not the
search phrase that returns the narrowed down documents
to the DTC above. In addition, concatenating the content
words from the DTC does not always match what we are
looking for. So we need a way to know how we usually
write sentences that match the dependency tree we are
looking for.
Our solution to this problem is the creation of a dependency
tree corpus from a subset of the open American National
Corpus (ANC), which would act as a representation of the
grammatical structure of the sentences in terms of depen-
dency trees. The corpus is represented as an OWL-DL
knowledge base in the same way described in section 3.1.
We then use the reasoner over the create knowledge base
to query for the subclasses of the DTC conjunctive query.
For the example above the subclasses of DTC query is
(Retrieve (?x)(AND(?y ?x Subject)(?y ?z Object)(?y
Verb)(?x Noun)(?z Noun)). Running this query over the
created tree ontology will help in the creation of search
phrases that correspond to the DTC conjunctive query. The
dependency tree corpus only contains dependency trees of
grammatical categories and their relationships, but does
not contain the actual words of sentences. This knowledge
base is meant to be a representation of various grammatical
phenomena, where each dependency tree represents a
typical sentence in a text, and is ranked by its length and
by the number of non-content words it contains. The
reasoning behind the ranking is that the more non-content
words in a search phrase the more specific the documents
that will be returned from the search engine.
For example, one of the search phrases that
matched the DTC query above in the created de-
pendency tree knowledge base, and ranked high
as having a length of 6 words, where 3 of them
are non-content words, is [Determiner.Noun-
Subject.Pronoun.Verb.Determiner.Noun-Object].
This search phrase contains a set of related grammatical
categories, such as determiner, verb, noun.., which act as
placeholders. Non-Content categories are then replaced
by a non-content word, for example “determiner” could
be replaced by “a”, and ”pronoun” with “that”. Content
words (Noun, Verb) are replaced by the content words of
the DTC query; so “Verb” would be replaced by “Drive”
in this example. The rest of the categories will be replaced
by search query wildcards. So one of the resulted web
search phrase from this example that is specific to the
Google API is: [a.*.that.drive.*.ball]. This query with
Google returned only 69 documents.
For each DTC conjunctive query we could automatically
generate hundreds of similar search phrase queries. Then
using a search engine we run the created search phrase
queries. The resulted top 10 documents of each search
query are downloaded, stripped from HTML, and a regular
expression match is performed in order to extract the
complete sentences that conform to the search phrase
query. For the example query above some of top returned
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sentences are:
“A golfer that drives a golf ball that...” —Rank = 8
“He has a swing that drives the ball...” —Rank = 6
“A batter that drives a ball forward...” —Rank = 4
“a force that drives your ball back...” —Rank = 2
...
The above ranks are the rank of the document returned by
the search engine.

3.4. From Sentences to DTCs
In order to be able to execute the DTC conjunctive query
over the extracted web sentences from the previous section,
we need first to transform the extracted sentence to a de-
pendency tree. To do so we use the Minipar dependency
parser. But before transforming the extracted sentences to
dependency trees, we first filter out interrogative, negated,
and conditional sentences, in order to represent only fac-
tual and positive sentences. Minipar represents the gram-
mar as a network of nodes representing grammatical cate-
gories and the links representing grammatical relationships.
Minipar’s lexicon is derived from WordNet. In addition to
proper names, it contains about 130k entries in base forms.
Lexical ambiguities are handled by the parser. Minipar con-
structs all possible parses for an input sentence, and out-
puts a single parse tree with the highest ranking. Parsing
is based on a manually constructed grammar and is guided
by statistical information obtained by parsing a 1GB corpus
with Minipar. The resulted dependency trees will then be
mapped into OWL-DL as we showed in the section 3.1. All
the resulted sentences will be mapped into one knowledge
base. Figure 4 shows a graphical representation of a part

Figure 4: RoDEO Ontology Example

of the dependency ontology created by RoDEO for some of
the returned sentences of the example query above. In this
graph rectangles represent classes, ovals represent proper-
ties, and double brackets represent instances.

3.5. Reasoning over Dependencies Extracted Online
In order to achieve high precision is answering the DTC
nRQL query, the query and the resulted OWL-DL knowl-
edge base will be supplied to the reasoner RACER. RACER
will try to prove the query over the created knowledge base
and return any instances that conform to it.
For example, some of the nouns that were returned by
RoDEO for the nRQL query (Retrieve (?x)(AND(?y ?x
Subject)(?y ?z Object)(?y Drive)(?x Noun)(?z Ball))
are: “Golfer, swing, batter, stroke...”. Notice that introduc-
ing the object “Ball” that is modifying the verb “Drive”
returns subjects that are related to one sense of “Drive”,

that is “Hit very hard, as by swinging a bat horizontally”,
which is the only sense related to the word “Ball”.
The reasoning however is not only in nRQL answering, but
also in the possibility of reasoning over word semantic re-
lationship. Such semantic information could be easily in-
tegrating from general available ontologies. For example,
if a sports ontology has been added to the created ontology
of the previous example, the object “Ball” will also match
to instances under its subclasses, such as the subclasses:
“baseball, basketball, or even a marble...”
Inferring new information from the available one is also
possible by running rules over the created knowledge base.
For example, if we create and executed a rule saying that:
“if an object is round and is hit or thrown or kicked in games
then it is a subclass of the class ball”, we will be able to rea-
son over the new inferred information that has been added
to the ontology by this rule.
The following section will describe our results in using
RoDEO on the task of extracting classes of named entities.

4. Evaluation Application: Extracting
classes of Named Entities

In this section we evaluate the extracted collocations using
an application of the RoDEO system. The application that
we developed over RoDEO is the application of extracting
classes of named entities.

4.1. Named Entity Recognition
Named Entity Recognition (NER) as described by the
Message Understanding Conferences (MUC)-7 (Chinchor,
1998) is the task consisting of identifying and classify-
ing entities that are considered to belong to one of the
following classes: person, location, organization, tempo-
ral entities and numeric quantities. Different approaches
have been introduced to deal with NER, however two ap-
proaches are mainly adopted. The first uses resources, such
as gazetteers, and handcrafted rules to match the term to the
resources, and the other use machine learning techniques
on a tagged corpus in order to learn a set of patterns or to
train some sort of a supervised learning algorithm such as
the work of (Bikel et al., 1999).

4.2. Extracting classes of Named Entities with
RoDEO

Our aim is to automatically extract the most specific
class(es) of a selected named entity. For example, we need
the ability to extract the class that “Paul Krugman” belongs
to, in this case a general class would be a “person”, but a
more specific one would be a “columnist”. To accommo-
date the utmost coverage in selecting fine-grained classes
of named entities, many researchers have used the web.
Most of the techniques used rely on a set of pattern, and
the main difference between one technique and the other is
usually the type of patterns used. Some used text patterns
such as the work of (Etzioni et al., 2005), other used wrap-
per or HTML patterns such as the work of (Nadeau et al.,
2006). (Etzioni et al., 2005) KNOWITALL system aims to
automate the extraction of instances of classes such as the
names of scientist from the web by using a set of patterns.
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We will be building upon (Etzioni et al., 2005)’s work, how-
ever instead of using a set of text patterns over the web,
we will be using dependency tree conjunctive query pat-
terns, and instead of learning instances of classes, we will
be learning classes of instances. By creating the depen-
dency tree collocation patterns we can then use the RoDEO
system to extract dependencies that conform to the selected
dependency pattern from the web in order to extract classes
of named entities.
One of the dependency tree collocation patterns that we will
introduce here is the predicate noun pattern. Grammat-
ically, a predicate-noun follows a form of the verb to be,
like in the sentence: “Margaret Thatcher was the Prime
Minister”. In this example “Margaret Thatcher” is the
subject of verb to be and “Prime Minister” is its predi-
cate noun. As a result, it would be an appropriate pattern
to extract classes of named entities. The predicate-noun
DTC query pattern is of the form: (Retrieve (?x)( Verb-
toBe(?z) AND Predicate(?z ?x) AND Subject(?z ?y)
AND Named-Entity(?y))), that is a pattern that looks for
?x having a dependency relationship of type predicate with
?z an instance of verb to be that is having a subject rela-
tionship to the named entity in question.
Another pattern is the appositive pattern. Appositive is
a word that usually describes another word, as in: “Rudy
Giuliani, New York City Mayor, is...”. The noun “Mayor”
is an appositive to “Rudy Giuliani”. The corresponding
dependency tree collocation pattern would be: ((Retrieve
(?x) (Noun(?y) AND Named-Entity(?x) AND Apposi-
tive(?x ?y)))).
We have also derived other patterns from (Hearst, 1992)’s
lexico-syntactic patterns, such as:

1. NP such as NP, (or/and) NP.
Where NP stands for noun phrase. Example: Colum-
nist, such as Paul Krugman.

2. Such NP as NP, (or/and) NP.
Example: Work by such columnist as Paul Krugman,
and Paul Romer.

3. NP, or other NP.
Example: Paul Krugman, or any other columnist in
the N.Y. Times.

4. NP, and other NP.
Example: Read Paul Krugman and other economists
and healthcare experts....

The first of Hearst’s patterns, for example is translated to
the following DTC query: ((Retrieve (?x)( (?x Noun)
AND Named-Entity(?y) AND Modify(?x such-as) AND
Pcomp-n(such-as ?y)))), where Pcomp-n stands for a
nominal complement of a preposition.
Using RoDEO, a dependency tree collocation pattern will
return a list of nouns that conforms to a selected DTC query
from the web. First we replace the named entity into the
Named-Entity DTC patterns, then using RoDEO we run
the created DTC pattern that will collect related dependen-
cies and store them into an ontology. We then Match the
DTC query using the Reasoner over the created ontology
and we count the resulted dependency tree collocations. If

the resulted collocation is less than a certain threshold t, we
run the next DTC patterns until we have enough colloca-
tions returned. The returned collocations are all ranked by
Google’s document ranking. In order to select the most ap-
propriate noun corresponding to the term in question, we
first cluster the returned collocations, and then rank the
clusters by collocation frequency. The clustering is sim-
ply based on the semantic relatedness of nouns as defined
by (Miller, 1995)’s WordNet’s hypernym relations. In ad-
dition, we filter out the nouns that belong to certain classes
that could not represent a named entity class, such as the
nouns belonging to the following hypernyms: ”feeling, psy-
chological, status...”.
Table 1 shows an example of the top 5 returned classes with
their ranks for the named entity “Al Franken”, grouped by
clusters.

Cluster Class Rank
Cluster 1 Guy, man, adult male, male... 25
Cluster 1 Author, communicator, person... 12
Cluster 1 Candidate, politician, politico... 7
Cluster 1 Comedian, performer, artist... 5
Cluster 2 Dog, canine, carnivore... 2

Table 1: Named Entity Classes Returned By RoDEO For
“Al Franken”

Only the classes of the cluster with the highest frequency
are considered as possible types of the named entity, so in
this example only cluster 1 is returned.

4.3. Evaluation Results
As we classify named entities into very specific types, we
evaluated the application of extracting classes of named
entities over a set of 1019 named entities extracted from
a shared online database of structured knowledge called
FreeBase (Bollacker et al., 2007). FreeBase contains
named entities with their general and specific types. For
example, according to FreeBase, the named entity: “Al
Franken” belongs to the following types “Person, author,
writer, and actor”. The evaluation scoring has been done
by comparing our extracted types to the FreeBase types. As
the system returned classes do not have to exactly match
the FreeBase types, we used the WordNet::Similarity (Ped-
ersen et al., 2004) Path Length method in comparing two
types. The path length method is a simple node-counting
scheme, which returns a relatedness score between two
concepts. The score is inversely proportional to the num-
ber of nodes along the shortest path between the synsets in
WordNet. The shortest possible path occurs when the two
synsets are the same, in which case the length is 1. If the
compared types had a relatedness score that is over a thresh-
old t, t=0.21, we considered that it as correct. The thresh-
old has been selected after manually comparing a set of 50
classes. For example, if the returned class is an “Actor”
for a named entity, and its FreeBase corresponding type is
an “Artist”, the WordNet::Similarity Path Length method
returns a relatedness of 0.25 for the two concepts. As such
we assume that the returned class is correct. We have eval-
uated a total of 1019 named entities. The total number of
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different FreeBase types, that these entities belong to is 69
types. The total number of classes returned by our system
for the 1019 named entity is 678 types. That shows that
our system is returning far more specific results than the
FreeBase types. For example, the “Athlete” FreeBase type
has been matched to “Blocker, bowler, boxer, cornerback,
cricketer, footballer, keeper, receiver, scorer, skater, swim-
mer, tackle...”.
To compute the accuracy of the extracted classes of a single
named entity we use the following:

Accuracy =
Number of correct types
Total number of types

The total accuracy of the system is computed as the average
of the accuracy for all the evaluated named entities.
Overall, the application achieved an accuracy of 0.7. Ta-
ble 2 shows some of the accuracy results grouped by types
and sub-types. For example, for the high level “Person”
type the accuracy achieved is up to 0.87, whereas the type
“Company” achieved an accuracy of 0.62. The person type
can be subdivided into several subtypes, for example the
“Actor” type achieved an accuracy of 0.78.

Types Accuracy Subtypes Accuracy
Person 0.87 ... ...

Actor 0.78
Athlete 0.76
Author 0.75
... ...
Publisher 0.14
... ...

Company 0.62 ... ...
Airline 0.66
Employer 0.34
Owner 0.31
... ...
Chain 0.16
... ...

Table 2: Sample Of The Evaluation Results

There are many related work in the named entity recogni-
tion and classification field; however most of the available
work fall under the initially task set at the MUC confer-
ence for identifying and classifying named entities into five
classes, which is much easier than classifying named en-
tities into more fine grained classes. Most methods that
classifies named entities into five classes achieved an ac-
curacy of well above 90%. However, this has not been the
case when classifying named entities into more fine grained
classes. As such, we are going to focus our comparison
to some of the approaches that classify named entities into
more than just five classes. Table 3 shows a comparison of
some of these approaches ordered by the number of classes
they consider. (Cimiano and Staab, 2004)’s PANKOW sys-
tem is a leixco-syntactic pattern based system that uses
the web frequency to select the appropriate class from a
set of 59 classes. The PANKOW system achieved an ac-
curacy of 24.9%. (Nadeau, 2007)’s BaLIE system uses

semi-supervised machine learning and the web to classify
named entities into 100 classes. It achieved an accuracy of
57.4%. BaLIE creates large gazetteers of named entities,
using a hand crafted HTML markup in web pages and a
seed of named entities, and then uses a simple heuristic to
identify and classify named entities. (Sekine, 2004)’s sys-
tem achieved 72% by classifying named entities into 200
classes, however they used about 1,400 handcrafted rules
and a dictionary of 130,000 instances that are classified into
the 200 classes. The last system is (Alfonseca and Man-
andhar, 2002)’s system that adopted a vector space model
having syntactic dependencies as vector features, and com-
pared the named entity vector into the most similar vector.
They had considered 1200 classes and achieved an accuracy
of 17.39% using the verb/object dependencies as a feature.

Systems Types Accuracy
MUC 5 >90%
PANKOW 59 24.9%
BaLIE 100 57.4%
Sekine’s tagger 200 72%
RoDEO 678 70%
Alfonseca’s system 1200 17.39%

Table 3: Comparison Table

Although we are extracting a large number of fine grained
classes, we are not classifying the named entities into these
set of classes, but extracting the most frequent classes asso-
ciated with each named entities. We notice from this com-
parison that RoDEO’s accuracy is comparable to the system
using hand crafted rules, although we are extracting a much
larger number of classes.
While analyzing the system results, we noticed that some
of the low scores are a result of the restriction that we have
set on the RoDEO system regarding the total number of re-
turned collocations. It seems that the number is too low,
and increasing it would probably boost the overall system
accuracy. In addition, the similarity path length method that
was used for the scoring is not very adequate. For example
the “Chain” concept relatedness score to the “Company”
concept is 0.2, which is less than the threshold set. As such
a “Chain” is not a treated as of type “Company”. At the
same time, if we lower the threshold to less than 0.21, then
concepts such as a “Person and a “Set” would be related.
It should be noted that comparing the results of extract-
ing classes of named entity is also an issue by itself. As
many techniques have been proposed for the ranking of
named entity recognition and classification task, a recent
survey of named entity recognition and classification sys-
tems (Nadeau and Sekine, 2007) has showed that a score of
a simple example made of only five named entities, varied
between 20 and 40 %, using three scoring techniques that
have been used in the major conferences related to named
entity recognition and classification.

5. Conclusion and Future Work
In this paper we have presented a system for extracting
dependency tree collocations online, using a dependency
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parser, an advanced representation based on description
logic, and a reasoner. We showed the usefulness of such
a system in extracting classes of named entities, and the
usefulness of using the web as a corpus. Without the quan-
tity of the text that the web provides, such an application
would not have been possible.
In our future work, we plan to enhance the extraction of
classes of named entities, mainly by increasing the thresh-
old of returned collocations, and integrating the resulted
ontology with a named entity types ontology which will
automatically reason over these types without relying on
WordNet Similarity. In addition, we would like to show
the usefulness of the RoDEO system in other NLP applica-
tions, such as in semantic relations of noun compounds, in
commonsense rule discovery, and in other applications.
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