
RERANKING GOOGLE WITH GReG

Rodolfo Delmonte, °Marco Aldo Piccolino Boniforti

° University of Cambridge
marcoaldo.piccolinoboniforti@poste.it

Department of Language Sciences

Università Ca’ Foscari – Ca’ Bembo
30123, Venezia, Italy

delmont@unive.it

Abstract

We present an experiment evaluating the contribution of a system called GReG for reranking the snippets returned by Google’s search
engine in the 10 best links presented to the user and captured by the use of Google’s API. The evaluation aims at establishing whether
or not the introduction of deep linguistic information may improve the accuracy of Google or rather it is the opposite case as
maintained by the majority of people working in Information Retrieval and using a Bag Of Words approach. We used 900 questions
and answers taken from TREC 8 and 9 competitions and execute three different types of evaluation: one without any linguistic aid; a
second one with tagging and syntactic constituency contribution; another run with what we call Partial Logical Form. Even though
GReG is still work in progress, it is possible to draw clearcut conclusions: adding linguistic information to the evaluation process of
the best snippet that can answer a question improves enormously the performance. In another experiment we used the actual associated
to the Q/A pairs distributed by one of TREC’s participant and got even higher accuracy.

1. Introduction

We present an experiment run using Google API and a
fully scaled version of GETARUNS, a system for text
understanding [1;2], together with a modified algorithm
for semantic evaluation presented in RTE3 under the
acronym of VENSES [3]. The aim of the experiment and
of the new system that we called GReG (GETARUNS
ReRANKS Google), is that of producing a reranking of
the 10 best candidates presented by Google in the first
page of a web search. Reranking is produced solely on the
basis of the snippets associated to each link – two per link.
GReG uses a very “shallow” linguistic analysis which
nonetheless ends up with a fully instantiated sentence level
syntactic constituency representation, where grammatical
functions have been marked on a totally bottom-up
analysis and the subcategorization information associated
to each governing predicate – verb, noun, adjective. More
on this process in the sections below.
At the end of the parsing process, GReG produces a
translation into a flat minimally recursive Partial Logical
Form (hence PLF) where besides governing predicates –
which are translated into corresponding lemmata – we use
the actual words of the input text for all linguistic relations
encoded in the syntactic structure.
The idea behind the experiment was this:
- given the recurrent criticisms raised against the
possibility to improve web searches by means of
information derived from linguistic representations we
intended to test the hypothesis to the contrary;
- to this aim we wanted to address different levels
of representations – syntactic and (quasi) logical/semantic,
and measure their contribution if any in comparison to a
simple (key) word-based computation;

- together with linguistic representation, we also
wanted to use semantic similarity evaluation techniques
already introduced in RTE challenges which seem
particularly adequate to measure the degree of semantic
similarity and also semantic consistency or non-
contradictoriness of the two linguistic descriptions to
compare.

The evaluation will focus on a subset of the questions used
in TREC [4] made up of 900 question/answers pairs and
produces the following data:
- how many times the answer is contained in the 10
best candidates retrieved by Google;
- how many times the answer is ranked by Google
in the first two links – actually we will be using only
snippets (first two half links);
- as a side-effect, we also know how many times
the answer is not contained in the 10 best candidates and is
not ranked in the first two links;
- how many times GReG finds the answer and
reranks it in the first two snippets;
- how much contribution is obtained by the use of
syntactic information;
- how much contribution is obtained by means of
LF, which works on top of syntactic representation;
- how much contribution is obtained by modeling
the possible answer from the question, also introducing
some Meta operator – se use OR and the *.
Eventually, we compute accuracy measures by means of
the usual Recall/Precision formula.

2. The Parser

The architecture of the parser is shown in Fig. 1 below and
will be commented in this section. It is a quite common

1

pipeline and all the code runs in Prolog and is made up of
manually built symbolic rules.
We defined our parser “mildly bottom-up” because the
structure building process cycles on a procedure that
collects constituents. This is done in three stages: at first
chumks are built around semantic heads – verb, noun,
adjective. Then prepositions and verb particles are lumped
together. In this phase, also adjectives are joined to the
nominal head they modify. In a third phase, sentential
structure information is added at all levels – main, relative
clauses, complement clauses. In presence of conjunction
different strategies are applied according to whether they
are coordinating or subordinating conjunctions.
An important linguistic step is carried out during this pass:
subcategorization information is used to tell complements
– which will become arguments in the PLF – and adjuncts
apart. Some piece of information is also offered by linear
order: SUBJect NPs will usually occur before the verb and
OBJect NP after. Constituent labels are then substituted by
Grammatical Function labels. The recursive procedure has
access to calls collecting constituents that identify
preverbal Arguments and Adjuncts including the Subject if
any: when the finite verb is found the parser is hampered
from accessing the same preverbal portion of the
algorithm and switches to the second half of it where
Object NPs, Clauses and other complements and adjuncts
may be parsed. Punctuation marks are also collected
during the process and are used to organize the list of
arguments and adjuncts into tentative clauses.
The clause builder looks for two elements in the input list:
the presence of the verb-complex and punctuation marks,
starting from the idea that clauses must contain a finite
verb complex: dangling constituents will be adjoined to
their left adjacent clause, by the clause interpreter after
failure while trying to interpret each clause separately.
The clause-level interpretation procedure interprets clauses
on the basis of lexical properties of the governing verb.
This is often non available in snippets. So in many cases,
sentence fragments are built.
If the parser does not detect any of the previous structures,
control is passed to the bottom-up/top-down parser, where
the recursive call simulates the subdivision of structural
levels in a grammar: all sentential fronted constituents are
taken at the CP level and the IP (now TP) level is where
the SUBJect NP must be computed or else the SUBJect

NP may be in postverbal position with Locative Inversion
structures, or again it might be a subjectless coordinate
clause. Then again a number of ADJuncts may be present
between SUBJect and verb, such as adverbials and
parentheticals. When this level is left, the parser is
expecting a verb in the input string. This can be a finite
verb complex with a number of internal constituents, but
the first item must be definitely a verb. After the
(complex) verb has been successfully built, the parser
looks for complements: the search is restricted by lexical
information. If a copulative verb has been taken, the
constituent built will be labelled accordingly as XCOMP
where X may be one of the lexical heads, P,N,A,Adv.
The clause-level parser simulates the sentence typology
where we may have verbal clauses as SUBJect, Inverted
postverbal NPs, fronted that-clauses, and also fully
inverted OBJect NPs in preverbal position.

2.1 Parsing and Robust Techniques
The grammar is equipped with a lexicon containing

a list of fully specified inflected word forms where each
entry is followed by its lemma and a list of morphological
features, organized in the form of attribute-value pairs.
However, morphological analysis for English has also been
implemented and used for Out of Vocabulary (hence
OOV) words. The system uses a core fully specified
lexicon, which contains approximately 10,000 most
frequent entries of English. Subcategorization is derived
from FrameNet, VerbNet, PropBank and NomBank. These
are all consulted at runtime. Eventually the semantics from
the WordNet and other sources derived from the web make
up the encyclopaedia. In addition to that, there are all
lexical forms provided by a fully revised version of
COMLEX. In order to take into account phrasal and
adverbial verbal compound forms, we also use lexical
entries made available by UPenn and TAG encoding. Their
grammatical verbal syntactic codes have then been adapted
to our formalism and is used to generate an approximate
subcategorization scheme with an approximate aspectual
and semantic class associated to it. Semantic inherent
features for OOV words , be they nouns, verbs, adjectives
or adverbs, are provided by a fully revised version of
WordNet – 270,000 lexical entries - in which we used 75
semantic classes similar to those provided by CoreLex.

2

Figure 1: Pipeline of parsing modules for hybrid (bottomup-topdown) version of GReG

3. The Experiment
As said above, the idea is to try to verify whether
deep/shallow linguistic processing can contribute to
question answering. As will be shown in the following
tables, Google’s search on the web has high accuracy in
general: almost 90% of the answers are present in the
first ten results presented to the user. However, we
wanted to assume a much stricter scenario closer in a
sense to TREC’s tasks. To simulate a TREC task as close

as possible we decided that only the first two snippets –
not links - can be regarded a positive result for the user.
Thus, everything that is contained in any of the following
snippets will be computed as a negative result.
The decision to regard the first two snippets as distinctive
for the experiment is twofold. On the one side we would
like to simulate as close as possible a TREC Q/A task,
where however rather than presenting precise answers,
the system is required to present the sentence/snippet
containing it. The other reason is practical or empirical

3

and is to keep the experiment user centered: user’s
attention should not be forced to spend energy in a
tentative search for the right link. Focussing attention to
only two snippets and two links will greatly facilitate the
user. In this way, GReG could be regarded as an attempt
at improving Google’s search strategies and tools.
In order to evaluate the contribution of different levels of
computation and thus get empirical evidence that a
linguistically-based approach is better than a bag-of-
words approach we organized the experiment into a set
of concentric layers of computation and evaluation as
follows:
- at the bottom level of computation we situated what we
call the “default semantic matching procedure”. This
procedure is used by all the remaining higher level of
computation and thus it is easy to separate its
contribution to the overall evaluation;
- the default evaluation takes input from the first two
processes, tokenization & multiword creation plus
sentence splitting. Again these procedures are quite
standard and straightforward to compute. So we want to
assume that the results are easily reproducible as well as
the experiment itself;
- the following higher level of computation may be
regarded more system dependent but again it also can be
easily reproduced using off-the-shelf algorithms made
available for English by research centers all over the
world. It regards tagging and context-free PennTreebank-
like phrase-structure syntactic representation. Here we
consider not only words, but word-tag pairs and word-as-
head of constituent N pairs.
- the highest level is constituted by what we call Partial
Logical Form, which builds a structure containing a
Predicate and a set of Arguments and Adjuncts each
headed by a different functor. In turn each such structure
can contain Modifiers. Each PLF can contain other PLFs
recursively embedded with the same structure. More on
this below.
We now present three examples taken from TREC8
question/answer set, no. 3, 193, 195, corresponding
respectively to ours 1,2,3. For each question we add the
answer and then we show the output of tagging in
PennTreebank format, then follows our enriched tagset
and then the syntactic constituency structure produced by
the parser. Eventually, we show the Partial Logical Form
where the question word has been omitted. It can be
reinserted in the analysis when the matching takes place
and may appear in the other level of representation we
present which is constituted by the Query in answer form
passed to Google. Question words are always computed
as argument or adjunct of the main predicate, so GReG
will add a further match with the input snippets
constituted by the conceptual substitutes of the wh-
words. One substitute is visible in question no.3 when the
concept “AUTHOR” is automatically added by GReG in
front of the verb and after the star.

(1) What does Peugeot company manufacture? – Cars
(2) Who was the 16th President of the United States? –
Lincoln
(3) Who wrote “Dubliners”? – James Joyce

Here below are the analysis where we highlight the
various levels of linguistic representation relevant for our
experiment only – except for the default word level:

(1) Tagging and Syntactic Constituency
what-wp, does-md, the-dt, Peugeot-nnp, company-nn,
manufacture-vin, ? – pun
 [what-int, does-vsup, the-art, Peugeot-n, company-n,
manufacture-vin, ? - puntint]

cp-[cp-[what], f-[subj-[the, company, mod-[Peugeot]],
ibar-[does, manufacture]], fint-[?]]

Partial Logical Form
pred(manufacture) arg([company, mod([Peugeot])])
adj([[], mod([[]])])

Query launched to Google API
Peugeot company manufacture *

(2) Tagging and Syntactic Constituency
who-wp, was-vbd, the-dt, 16th-cd, President-nnp, of-in,
the-dt, United_States-nnp, ? – pun
 [who-int, was-vc, the-art, 16th-num, President-n, of-p,
the-art, United_States-n, ? - puntint]

fint-[cp-[who], ibar-[was], sn-[the, 16th, President, mod-
[of, the, United_States]], fint-[?]]

Partial Logical Form
 [pred(be) arg([President, mod([united, States, 16th])])
adj([])]

Query launched to Google API
United States 16th President was *

(3) Tagging and Syntactic Constituency
who-wp, wrote-vbd_vbn, "-pun, Dubliners-nns, "-pun, ? -
pun
 [who-int, wrote-vt, "-par, Dubliners-n, "-par, ? - puntint]

cp-[cp-[who], ibar-[wrote], fp-["], sn-[Dubliners], fp-["],
fint-[?]]

Partial Logical Form
pred(write) arg([Dubliners, mod([])]) adj([])

Query launched to Google API
* author wrote Dubliners

4

3.1 Default Semantic Matching Procedure
This is what constitutes the closest process to the BOWs
approach we can conceive of. We compare every word
contained in the Question with every word contained in
each snippet and we only compare content words.
Stopwords are deleted.
We match both simple words and multiwords.
Multiwords are created on the basis of lexical
information already available for the majority of the
cases. The system however is allowed to guess the
presence of a multiword from the information attached to
the adjacent words and again made available in our
dictionaries. If the system recognizes the current word as
a word starting with uppercase letter and corresponding
to one of the first names listed in one of our dictionary it
will try to concatenate this word to the following and try
at first a match. If the match fails the concatenated word
is accepted as a legitimate continuation – i.e. the name –
only in case it starts by uppercase letter. Similar checking
procedures have been set up for other NEs like
universities, research centers, business related institutions
etc. In sum, the system tries to individuate all NEs on the
basis of the information stored and some heuristic
inferential mechanism.
According to the type of NE we will licence a match of a
simple word with a multiword in different ways: person
names need to match at least the final part of the
multiword, or the name institutions, locations etc. need to
match as a whole.

3.2 Tags and Syntactic Heads

The second level of evaluation takes as input the
information made available by the tagger and the parser.
We decided to use the same approach reported in the
challenges called RTE where the systems participating
could present more than one run and use different
techniques of evaluation. The final task was – and is –
that of evaluating the semantic similarity between the
question and the input snippets made available by
Google. However, there is a marked difference to be
taken into account and is the fact that in RTE questions
where turned into a fully semantically complete
assertion; on the contrary, in our case we are left with a
question word to be transformed into the most likely
linguistic description that can be associated with the rest
of the utterance. As most systems participating in TREC
challenge have done, the question has to be rephrased in
order to predict the possible structure and words
contained in the answer, on the basis of the question
word and overall input utterance. Some of the questions
contained in the TREC list do not actually constitute wh-
questions (factoid or list), but are rather imperatives or
iussive utterance, which tell the system – and Google – to
“describe” or to “name” some linguistic item specified in
the following portion of the utterance.

As others have previously done, we classify all wh-
words into semantic types and provide substitute words
to be place in the appropriate sentence position in order
to simulate as close as possible the answer. However, this
is only done in one of the modalities in which the
experiment has been run. In the other modality, Google
receives the actual words contained in the question.
As to experiment itself, and in particular to the matching
procedure we set up, the wh- words is not used to match
with the snippets. Rather we use possible linguistic items
previously associated to the wh- word in a set. We also
use the actual wh- words to evaluated negatively snippets
containing them. In this way, we prevent similar and
identical questions contained in a snippet and pointed by
a link to receive a high score. We noticed that Google is
unable to detect such mismatches.
We decided to use tag-word pairs in order to capture part
of the contextual meaning associated to a given word.
Also in the case of pairs word-as-head-of-
constituent/constituent label we wanted to capture part
of the contextual import of a word in a structural
representation and thus its syntactic and semantic
relevance in the structure. As will be clear in the
following section, this is different from what is being
represented in a Logical Form for how partial it may be.

3.3 Partial Logical Form and Relations

The previous match intended to compare words as part of
a structure of dependencies where heads played a more
relevant role than non-heads, and thus were privileged. In
the higher level match what we wanted to check was the
possible relations intervening between words: in this
case, matching regarded two words at a time. The first
and most relevant word was the PREDicate governing a
given piece of PLF. The PRED can be the actual
predicate governing at sentence level, with arguments
and adjuncts, or it can be just the predicate of any of the
Arguments/Adjuncts which in turn governed their
modifiers.
Matching is at first applied to two predicates and if it
succeeds, it is extended to the contents of the Argument
or the Adjunct. In other words, if it is relations that this
evaluation should measure, any such relations has to
involve at least two linguistic elements of the PLF
representation under analysis.
Another important matching procedure applied to the
snippet is constituted by a check of the verbal complex.
We regard the verbal compound as the carrier of
semantic important information to be validated at
propositional level. However, seen the subdivision of
tasks, we assume that we can be satisfied by applying a
partial match. This verbal complex match is meant to
ascertain whether the question and the answer should be
both containing a positive or a negative polarity – thus
they should not convey contradictory information. It is
also important to check whether the two verbal

5

complexes are factitive or not, in that case they can
contain opaque or modality operators. This second
possibility needs to be matched carefully.

4. Evaluation and Conclusions
Here below we show the output of GReG in relation to
one of the three questions presented above, question n.2

**
google7
Evaluation Score from Words and Tags : 31
Evaluation Score from Syntactic Constituent-Heads : 62
Evaluation Score from Partial Logical Form : 62
62 google8
Evaluation Score from Words and Tags : 35
Evaluation Score from Syntactic Constituent-Heads: 70
Evaluation Score from Partial Logical Form : 0
google9
Evaluation Score from Words and Tags : 33
Evaluation Score from Syntactic Constituent-Heads : 66
Evaluation Score from Partial Logical Form : 66

Snippet No. google9
16th President of the United States (March 4 , 1861 to
April 15 , 1865). Nicknames : “ Honest Abe “ “ Illinois
Rail - Splitter “. Born : February 12 , 1809 , . . .

Snippet No. google7
Abraham Lincoln , 16th President of the United States of
America , 1864 , Published 1901 Giclee Print by Francis
Bicknell Carpenter - at AllPosters . com .

The right answer is : Lincoln

Google's best snippets containing the right answer are:
google8
Who was the 16th president of the united states ?
pissaholic Abraham Lincoln was the Sixteenth
President of the United States between 1861 - 1865 . . .
google7
Abraham Lincoln , 16th President of the United States of
America , 1864 , Published 1901 Giclee Print by Francis
Bicknell Carpenter - at AllPosters . com .

Google's best answer partially coincides with GReG.
**

Passing Questions to Google with GReG’s analysis
produces as a result that only for 642 questions the 10
best links contain the answer. Passing Questions to
Google as is produces as a result that only in 737
questions the 10 best links contain the answer. In other
words, GReG’s analysis of the question that attempts at
producing a model answer to use to trigger best results
from Google, in fact lowers the ability of Google to
search for the answer and select it in the best 10 links.

This should be due to the difficulty in producing the
appropriate answer form, by reordering words of the
question and adding metasymbols in the appropriate
positions. In fact, Google exploits also the linear order of
the words contained in the question. So in case there is
some mismatch the answer is not readily found or perhaps
is available further down in the list of links.

 With GReG’s

preanalysis
Without
GReG’s anal.

Google’s 10 Best
links contain the
answer

755
83.01%

694
77.12%

Google’s 10 Best
links do not contain
the answer

145
16.9%

206
22.8%

Google Rank answer
in first 2 snippets

216
28.61%

168
24.21%

Google Rank answer
not in first 2 snippets

814
90.45%

803
89.23%

Table 1: Google outputs with and without the intervention

of GReG’s question analysis

GReG
reranks the
answer in
first 2
snippets

Only word
match

Tagging and
Syntactic
heads

Partial
Logical
Form

With GReG’s
analysis

375
58.41%

514
68.08%

543
71.92%

Without
GReG’s
analysis

406
55.09%

493
66.89%

495
67.16%

Table 2: GReG’s outputs at different levels of linguistic

complexity

4.2 Comments
The conclusions we may safely draw is the clear
improvements in performance of the system when some
linguistic information is introduced in the evaluation
process. In particular, when comparing the contribution of
PLF to the reranking process we see that there is a clear
improvement: in the case of reranking without GReG’s
question analysis there is a slight but clear improvement
in the final accuracy. Also, when GReG is used to
preanalyse the question to pass to Google the contribution
of PLF is always apparent. The overall data speak in
favour of both preanalysing the question and using more
linguistic processing.
If we consider Google’s behaviour to the two inputs, the
one with actual questions and the one with prospective
answers we see that the best results are again obtained
when the preanalysis is used (28.6 vs. 24.2); also the
number of candidates containing the answer increases
remarkably when using GReG preprocessing (83 vs. 77).

4.3 GReG and Question-Answering from Text

6

In order to verify the ability of our system to extract
answers from real text we organized an experiment which
used the same 900 question run this time again the texts
made available by TREC participants. These texts have
two indices at the beginning of each line indicating
respectively the question number which they should be
able to answer, and the second an abbreviation containing
the initial letters of the newspaper name and the date. In
fact each line has been extracted by means of automatic
splitting algorithms which have really messed up the
whole text. In addition, the text itself has been
manipulated to produce tokens which however do not in
the least correspond to actual words of current
orthographic forms in real newspapers. So it took us quite
a lot of work to normalize the texts (5Mb.) to make them
as close as possible to actual orthography.
Eventually, when we launched our system it was clear
that the higher linguistic component could not possibly be
used. The reason is quite simple: texts are intermingled
with lists of items, names and also with tables. Since there
is no principled way to tell these apart from actual texts
with sentential structure, we decided to use only tagging
and chunking.
We also had to change the experimental setup we used
with Google snippets: in this case, since we had to
manipulate quite complex structures and the choice was
much more noisy, we raised our candidate set from two to
four best candidates. In particular we did the following
changes:

- we choose all the text stretches containing the
answer/s and ranked them according to their
semantic similarity;

- then we compared and evaluated these best
choices with the best candidates produced by our
analyses;

- we evaluated to success every time one of our
four best candidates was contained in the set of
best choices containing the answer;

- otherwise we evaluated to failure.

In total, we ran 882 questions because some answers did
not have the corresponding texts. Results obtained after a
first and only run – which took 4 days to complete on an
HP workstation with 5GB of RAM, 4 Dual Core Intel
processors, under Linux Ubuntu – were quite high in
comparison with the previous ones, and are reported here
below:

GReG finds the
answer in first 4 text
stretches

Tagging and
Syntactic heads

Without GReG’s
analysis

684 / 882
77.55%

Table 3: GReG’s results with TREC8/9 texts

With respect to the favourable results, we need to
consider that using texts provides a comparatively higher
quantity of linguistic material to evaluate and so it favours
better results.

5. Conclusions
We intend to improve both the question translation into
the appropriate format for Google, and the rules
underlying the transduction of the Syntactic Structures
into a Partial Logical Form. Then we will run the
experiments again. Considering the limitations imposed
by Google on the total number of questions to submit to
the search engine per day, we are unable to increase the
number of questions to be used in a single run.
We also intend to run GReG version for text Q/A this
time with question rephrasing. We would also like to
attempt using PLF with all the text stretches, excluding
manually all tables and lists. We are aware of the fact that
this would constitute a somewhat contrived and unnatural
way of coping of unrestricted text processing. At the same
time we need to check whether the improvements we
obtained with snippets are attested with complete texts.
Overall, we believe to have shown the validity of our
approach and the usefulness of linguistically-based
evaluation methods when compared with BOWs
approaches. Structural and relational information
constitutes a very powerful addition to simple tagging or
just word level semantic similarity measures.

6. References
 Delmonte R., (2007), Computational Linguistic Text

Processing – Logical Form, Semantic Interpretation,
Discourse Relations and Question Answering, Nova
Science Publishers, New York, ISBN: 1:60021-700-
1.

Delmonte R., (2005), Deep & Shallow Linguistically
Based Parsing, in A.M.Di Sciullo(ed), UG and
External Systems, John Benjamins,
Amsterdam/Philadelphia, pp.335-374.

Delmonte R., A. Bristot, M.A.Piccolino Boniforti,
S.Tonelli (2007), Entailment and Anaphora
Resolution in RTE3, in Proc. ACL Workshop on
Text Entailment and Paraphrasing, Prague, ACL
Madison, USA, pp. 48-53.

Litkowski, K. C. (2001). Syntactic Clues and Lexical
Resources in Question-Answering. In E. M.
Voorhees & D. K. Harman (eds.), The Ninth Text
Retrieval Conference (TREC-9). NIST Special
Publication 500-249. Gaithersburg, MD., 157-166.

7

