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Abstract 

We present an experiment evaluating the contribution of a system called GReG for reranking the snippets returned by Google’s search 
engine in the 10 best links presented to the user and captured by the use of Google’s API. The evaluation aims at establishing whether 
or not the introduction of deep linguistic information may improve the accuracy of Google or rather it is the opposite case as 
maintained by the majority of people working in Information Retrieval and using a Bag Of Words approach. We used 900 questions 
and answers taken from TREC 8 and 9 competitions and execute three different types of evaluation: one without any linguistic aid; a 
second one with tagging and syntactic constituency contribution; another run with what we call Partial Logical Form. Even though 
GReG is still work in progress, it is possible to draw clearcut conclusions: adding linguistic information to the evaluation process of 
the best snippet that can answer a question improves enormously the performance. In another experiment we used the actual associated 
to the Q/A pairs distributed by one of TREC’s participant and got even higher accuracy. 

 
 

1. Introduction 
 
We present an experiment run using Google API and a 
fully scaled version of GETARUNS, a system for text 
understanding [1;2], together with a modified algorithm 
for semantic evaluation presented in RTE3 under the 
acronym of VENSES [3]. The aim of the experiment and 
of the new system that we called GReG (GETARUNS 
ReRANKS Google), is that of producing a reranking of 
the 10 best candidates presented by Google in the first 
page of a web search. Reranking is produced solely on the 
basis of the snippets associated to each link – two per link. 
GReG uses a very “shallow” linguistic analysis which 
nonetheless ends up with a fully instantiated sentence level 
syntactic constituency representation, where grammatical 
functions have been marked on a totally bottom-up 
analysis and the subcategorization information associated 
to each governing predicate – verb, noun, adjective. More 
on this process in the sections below.  
At the end of the parsing process, GReG produces a 
translation into a flat minimally recursive Partial Logical 
Form (hence PLF) where besides governing predicates – 
which are translated into corresponding lemmata – we use 
the actual words of the input text for all linguistic relations 
encoded in the syntactic structure. 
The idea behind the experiment was this: 
- given the recurrent criticisms raised against the 
possibility to improve web searches by means of 
information derived from linguistic representations we 
intended to test the hypothesis to the contrary; 
- to this aim we wanted to address different levels 
of representations – syntactic and (quasi) logical/semantic, 
and measure their contribution if any in comparison to a 
simple (key) word-based computation; 

- together with linguistic representation, we also 
wanted to use semantic similarity evaluation techniques 
already introduced in RTE challenges which seem 
particularly adequate to measure the degree of semantic 
similarity and also semantic consistency or non-
contradictoriness of the two linguistic descriptions to 
compare. 
 
The evaluation will focus on a subset of the questions used 
in TREC [4] made up of 900 question/answers pairs and 
produces the following data: 
- how many times the answer is contained in the 10 
best candidates retrieved by Google; 
- how many times the answer is ranked by Google 
in the first two links – actually we will be using only 
snippets (first two half links); 
- as a side-effect, we also know how many times 
the answer is not contained in the 10 best candidates and is 
not ranked in the first two links; 
- how many times GReG finds the answer and 
reranks it in the first two snippets; 
- how much contribution is obtained by the use of 
syntactic information; 
- how much contribution is obtained by means of 
LF, which works on top of syntactic representation; 
- how much contribution is obtained by modeling 
the possible answer from the question, also introducing 
some Meta operator – se use OR and the *. 
Eventually, we compute accuracy measures by means of 
the usual Recall/Precision formula. 

2. The Parser 
 
The architecture of the parser is shown in Fig. 1 below and 
will be commented in this section. It is a quite common 
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pipeline and all the code runs in Prolog and is made up of 
manually built symbolic rules.  
We defined our parser “mildly bottom-up” because the 
structure building process cycles on a procedure that 
collects constituents. This is done in three stages: at first 
chumks are built around semantic heads – verb, noun, 
adjective. Then prepositions and verb particles are lumped 
together. In this phase, also adjectives are joined to the 
nominal head they modify. In a third phase, sentential 
structure information is added at all levels – main, relative 
clauses, complement clauses. In presence of conjunction 
different strategies are applied according to whether they 
are coordinating or subordinating conjunctions.  
An important linguistic step is carried out during this pass: 
subcategorization information is used to tell complements 
– which will become arguments in the PLF – and adjuncts 
apart. Some piece of information is also offered by linear 
order: SUBJect NPs will usually occur before the verb and 
OBJect NP after. Constituent labels are then substituted by 
Grammatical Function labels. The recursive procedure has 
access to calls collecting constituents that identify 
preverbal Arguments and Adjuncts including the Subject if 
any: when the finite verb is found the parser is hampered 
from accessing the same preverbal portion of the 
algorithm and switches to the second half of it where 
Object NPs, Clauses and other complements and adjuncts 
may be parsed. Punctuation marks are also collected 
during the process and are used to organize the list of 
arguments and adjuncts into tentative clauses.  
The clause builder looks for two elements in the input list: 
the presence of the verb-complex and punctuation marks, 
starting from the idea that clauses must contain a finite 
verb complex: dangling constituents will be adjoined to 
their left adjacent clause, by the clause interpreter after 
failure while trying to interpret each clause separately.  
The clause-level interpretation procedure interprets clauses 
on the basis of lexical properties of the governing verb. 
This is often non available in snippets. So in many cases, 
sentence fragments are built. 
If the parser does not detect any of the previous structures, 
control is passed to the bottom-up/top-down parser, where 
the recursive call simulates the subdivision of structural 
levels in a grammar: all sentential fronted constituents are 
taken at the CP level and the IP (now TP) level is where 
the SUBJect NP must be computed or else the SUBJect 

NP may be in postverbal position with Locative Inversion 
structures, or again it might be a subjectless coordinate 
clause. Then again a number of ADJuncts may be present 
between SUBJect and verb, such as adverbials and 
parentheticals. When this level is left, the parser is 
expecting a verb in the input string. This can be a finite 
verb complex with a number of internal constituents, but 
the first item must be definitely a verb. After the 
(complex) verb has been successfully built, the parser 
looks for complements: the search is restricted by lexical 
information. If a copulative verb has been taken, the 
constituent built will be labelled accordingly as XCOMP 
where X may be one of the lexical heads, P,N,A,Adv.  
The clause-level parser simulates the sentence typology 
where we may have verbal clauses as SUBJect, Inverted 
postverbal NPs, fronted that-clauses, and also fully 
inverted OBJect NPs in preverbal position. 

2.1 Parsing and Robust Techniques 
The grammar is equipped with a lexicon containing 

a list of fully specified inflected word forms where each 
entry is followed by its lemma and a list of morphological 
features, organized in the form of attribute-value pairs. 
However, morphological analysis for English has also been 
implemented and used for Out of Vocabulary (hence 
OOV) words. The system uses a core fully specified 
lexicon, which contains approximately 10,000 most 
frequent entries of English. Subcategorization is derived 
from FrameNet, VerbNet, PropBank and NomBank. These 
are all consulted at runtime. Eventually the semantics from 
the WordNet and other sources derived from the web make 
up the encyclopaedia. In addition to that, there are all 
lexical forms provided by a fully revised version of 
COMLEX. In order to take into account phrasal and 
adverbial verbal compound forms, we also use lexical 
entries made available by UPenn and TAG encoding. Their 
grammatical verbal syntactic codes have then been adapted 
to our formalism and is used to generate an approximate 
subcategorization scheme with an approximate aspectual 
and semantic class associated to it. Semantic inherent 
features for OOV words , be they nouns, verbs, adjectives 
or adverbs, are provided by a fully revised version of 
WordNet – 270,000 lexical entries - in which we used 75 
semantic classes similar to those provided by CoreLex. 
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Figure 1: Pipeline of parsing modules for hybrid (bottomup-topdown) version of GReG 

 
 

3. The Experiment 
As said above, the idea is to try to verify whether 
deep/shallow linguistic processing can contribute to 
question answering. As will be shown in the following 
tables, Google’s search on the web has high accuracy in 
general: almost 90% of the answers are present in the 
first ten results presented to the user. However, we 
wanted to assume a much stricter scenario closer in a 
sense to TREC’s tasks. To simulate a TREC task as close 

as possible we decided that only the first two snippets – 
not links - can be regarded a positive result for the user. 
Thus, everything that is contained in any of the following 
snippets will be computed as a negative result.  
The decision to regard the first two snippets as distinctive 
for the experiment is twofold. On the one side we would 
like to simulate as close as possible a TREC Q/A task, 
where however rather than presenting precise answers, 
the system is required to present the sentence/snippet 
containing it. The other reason is practical or empirical 

3



and is to keep the experiment user centered:  user’s 
attention should not be forced to spend energy in a 
tentative search for the right link. Focussing attention to 
only two snippets and two links will greatly facilitate the 
user. In this way, GReG could be regarded as an attempt 
at improving Google’s search strategies and tools. 
In order to evaluate the contribution of different levels of 
computation and thus get empirical evidence that a 
linguistically-based approach is better than a bag-of-
words approach we organized the experiment into a set 
of concentric layers of computation and evaluation as 
follows: 
- at the bottom level of computation we situated what we 
call the “default semantic matching procedure”. This 
procedure is used by all the remaining higher level of 
computation and thus it is easy to separate its 
contribution to the overall evaluation; 
- the default evaluation takes input from the first two 
processes, tokenization & multiword creation plus 
sentence splitting. Again these procedures are quite 
standard and straightforward to compute. So we want to 
assume that the results are easily reproducible as well as 
the experiment itself; 
- the following higher level of computation may be 
regarded more system dependent but again it also can be 
easily reproduced using off-the-shelf algorithms made 
available for English by research centers all over the 
world. It regards tagging and context-free PennTreebank-
like phrase-structure syntactic representation. Here we 
consider not only words, but word-tag pairs and word-as-
head of constituent N pairs. 
- the highest level is constituted by what we call Partial 
Logical Form, which builds a structure containing a 
Predicate and a set of Arguments and Adjuncts each 
headed by a different functor. In turn each such structure 
can contain Modifiers. Each PLF can contain other PLFs 
recursively embedded with the same structure. More on 
this below. 
We now present three examples taken from TREC8 
question/answer set, no. 3, 193, 195, corresponding 
respectively to ours 1,2,3. For each question we add the 
answer and then we show the output of tagging in 
PennTreebank format, then follows our enriched tagset 
and then the syntactic constituency structure produced by 
the parser. Eventually, we show the Partial Logical Form 
where the question word has been omitted. It can be 
reinserted in the analysis when the matching takes place 
and may appear in the other level of representation we 
present which is constituted by the Query in answer form 
passed to Google. Question words are always computed 
as argument or adjunct of the main predicate, so GReG 
will add a further match with the input snippets 
constituted by the conceptual substitutes of the wh- 
words. One substitute is visible in question no.3 when the 
concept “AUTHOR” is automatically added by GReG in 
front of the verb and after the star. 

 
(1) What does Peugeot company manufacture? – Cars 
(2) Who was the 16th President of the United States? – 
Lincoln 
(3) Who wrote “Dubliners”? – James Joyce 
 
Here below are the analysis where we highlight the 
various levels of linguistic representation relevant for our 
experiment only – except for the default word level: 
 
(1) Tagging and Syntactic Constituency 
what-wp, does-md, the-dt, Peugeot-nnp, company-nn, 
manufacture-vin, ? – pun 
 [what-int, does-vsup, the-art, Peugeot-n, company-n, 
manufacture-vin, ? - puntint] 
 
cp-[cp-[what], f-[subj-[the, company, mod-[Peugeot]], 
ibar-[does, manufacture]], fint-[?]]  
 
Partial Logical Form 
pred(manufacture) arg([company, mod([Peugeot])]) 
adj([[], mod([[]])])  
 
Query launched to Google API 
Peugeot company manufacture * 
 
(2) Tagging and Syntactic Constituency 
who-wp, was-vbd, the-dt, 16th-cd, President-nnp, of-in, 
the-dt, United_States-nnp, ? – pun 
 [who-int, was-vc, the-art, 16th-num, President-n, of-p, 
the-art, United_States-n, ? - puntint] 
 
fint-[ cp-[who], ibar-[was], sn-[the, 16th, President, mod-
[of, the, United_States]], fint-[?]]  
 
Partial Logical Form 
 [pred(be) arg([President, mod([united, States, 16th])]) 
adj([])] 
 
Query launched to Google API 
United States 16th President was * 
 
(3) Tagging and Syntactic Constituency 
who-wp, wrote-vbd_vbn, "-pun, Dubliners-nns, "-pun, ? - 
pun 
 [who-int, wrote-vt, "-par, Dubliners-n, "-par, ? - puntint] 
 
cp-[cp-[who], ibar-[wrote], fp-["], sn-[Dubliners], fp-["], 
fint-[?]]  
 
Partial Logical Form 
pred(write) arg([Dubliners, mod([])]) adj([])  
 
Query launched to Google API 
* author wrote Dubliners  
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3.1 Default Semantic Matching Procedure 
This is what constitutes the closest process to the BOWs 
approach we can conceive of. We compare every word 
contained in the Question with every word contained in 
each snippet and we only compare content words. 
Stopwords are deleted.  
We match both simple words and multiwords. 
Multiwords are created on the basis of lexical 
information already available for the majority of the 
cases. The system however is allowed to guess the 
presence of a multiword from the information attached to 
the adjacent words and again made available in our 
dictionaries. If the system recognizes the current word as 
a word starting with uppercase letter and corresponding 
to one of the first names listed in one of our dictionary it 
will try to concatenate this word to the following and try 
at first a match. If the match fails the concatenated word 
is accepted as a legitimate continuation – i.e. the name – 
only in case it starts by uppercase letter. Similar checking 
procedures have been set up for other NEs like 
universities, research centers, business related institutions 
etc. In sum, the system tries to individuate all NEs on the 
basis of the information stored and some heuristic 
inferential mechanism. 
According to the type of NE we will licence a match of a 
simple word with a multiword in different ways: person 
names need to match at least the final part of the 
multiword, or the name institutions, locations etc. need to 
match as a whole. 

3.2 Tags and Syntactic Heads 

The second level of evaluation takes as input the 
information made available by the tagger and the parser. 
We decided to use the same approach reported in the 
challenges called RTE where the systems participating 
could present more than one run and use different 
techniques of evaluation. The final task was – and is – 
that of evaluating the semantic similarity between the 
question and the input snippets made available by 
Google. However, there is a marked difference to be 
taken into account and is the fact that in RTE questions 
where turned into a fully semantically complete 
assertion; on the contrary, in our case we are left with a 
question word to be transformed into the most likely 
linguistic description that can be associated with the rest 
of the utterance. As most systems participating in TREC 
challenge have done, the question has to be rephrased in 
order to predict the possible structure and words 
contained in the answer, on the basis of the question 
word and overall input utterance. Some of the questions 
contained in the TREC list do not actually constitute wh- 
questions (factoid or list), but are rather imperatives or 
iussive utterance, which tell the system – and Google – to 
“describe” or to “name” some linguistic item specified in 
the following portion of the utterance. 

As others have previously done, we classify all wh- 
words into semantic types and provide substitute words 
to be place in the appropriate sentence position in order 
to simulate as close as possible the answer. However, this 
is only done in one of the modalities in which the 
experiment has been run. In the other modality, Google 
receives the actual words contained in the question.  
As to experiment itself, and in particular to the matching 
procedure we set up, the wh- words is not used to match 
with the snippets. Rather we use possible linguistic items 
previously associated to the wh- word in a set. We also 
use the actual wh- words to evaluated negatively snippets 
containing them. In this way, we prevent similar and 
identical questions contained in a snippet and pointed by 
a link to receive a high score. We noticed that Google is 
unable to detect such mismatches. 
We decided to use tag-word pairs in order to capture part 
of the contextual meaning associated to a given word. 
Also in the case of pairs word-as-head-of-
constituent/constituent label  we wanted to capture part 
of the contextual import of a word in a structural 
representation and thus its syntactic and semantic 
relevance in the structure. As will be clear in the 
following section, this is different from what is being 
represented in a Logical Form for how partial it may be. 

3.3 Partial Logical Form and Relations 

The previous match intended to compare words as part of 
a structure of dependencies where heads played a more 
relevant role than non-heads, and thus were privileged. In 
the higher level match what we wanted to check was the 
possible relations intervening between words: in this 
case, matching regarded two words at a time. The first 
and most relevant word was the PREDicate governing a 
given piece of PLF. The PRED can be the actual 
predicate governing at sentence level, with arguments 
and adjuncts, or it can be just the predicate of any of the 
Arguments/Adjuncts which in turn governed their 
modifiers.  
Matching is at first applied to two predicates and if it 
succeeds, it is extended to the contents of the Argument 
or the Adjunct. In other words, if it is relations that this 
evaluation should measure, any such relations has to 
involve at least two linguistic elements of the PLF 
representation under analysis. 
Another important matching procedure applied to the 
snippet is constituted by a check of the verbal complex. 
We regard the verbal compound as the carrier of 
semantic important information to be validated at 
propositional level. However, seen the subdivision of 
tasks, we assume that we can be satisfied by applying a 
partial match. This verbal complex match is meant to 
ascertain whether the question and the answer should be 
both containing a positive or a negative polarity – thus 
they should not convey contradictory information. It is 
also important to check whether the two verbal 
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complexes are factitive or not, in that case they can 
contain opaque or modality operators. This second 
possibility needs to be matched carefully. 

4. Evaluation and Conclusions 
Here below we show the output of GReG in relation to 
one of the three questions presented above, question n.2 
 
**********************************************
google7 
Evaluation Score from Words and Tags : 31 
Evaluation Score from Syntactic Constituent-Heads : 62 
Evaluation Score from Partial Logical Form : 62 
62 google8 
Evaluation Score from Words and Tags : 35 
Evaluation Score from Syntactic Constituent-Heads: 70 
Evaluation Score from Partial Logical Form :  0 
google9 
Evaluation Score from Words and Tags : 33 
Evaluation Score from Syntactic Constituent-Heads : 66 
Evaluation Score from Partial Logical Form : 66 
 
Snippet No.  google9 
16th President of the United States ( March 4 , 1861 to 
April 15 , 1865 ). Nicknames : “ Honest Abe “ “ Illinois 
Rail - Splitter “. Born : February 12 , 1809 , . . .  
 
Snippet No.  google7 
Abraham Lincoln , 16th President of the United States of 
America , 1864 , Published 1901 Giclee Print by Francis 
Bicknell Carpenter - at AllPosters . com .  
 
The right answer is : Lincoln  
 
Google's best snippets containing the right answer are:   
google8 
Who was the 16th president of the united states ? 
pissaholic . . . . Abraham Lincoln was the Sixteenth 
President of the United States between 1861 - 1865 . . .  
google7 
Abraham Lincoln , 16th President of the United States of 
America , 1864 , Published 1901 Giclee Print by Francis 
Bicknell Carpenter - at AllPosters . com .  
 
Google's best answer partially coincides with GReG. 
********************************************** 
 
Passing Questions to Google  with GReG’s analysis 
produces as a result that only for 642 questions the 10 
best links contain the answer. Passing Questions to 
Google as is produces as a result that only in 737 
questions the 10 best links contain the answer. In other 
words, GReG’s analysis of the question that attempts at 
producing a model answer to use to trigger best results 
from Google, in fact lowers the ability of Google to 
search for the answer and select it in the best 10 links. 

This should be due to the difficulty in producing the 
appropriate answer form, by reordering words of the 
question and adding metasymbols in the appropriate 
positions. In fact, Google exploits also the linear order of 
the words contained in the question. So in case there is 
some mismatch the answer is not readily found or perhaps 
is available further down in the list of links. 
 
 With GReG’s 

preanalysis 
Without 
GReG’s anal. 

Google’s 10 Best 
links contain the 
answer 

755 
83.01% 

694 
77.12% 

Google’s 10 Best 
links do not contain 
the answer 

145 
16.9% 

206 
22.8% 

Google Rank answer 
in first 2 snippets 

216 
28.61% 

168 
24.21% 

Google Rank answer 
not in first 2 snippets 

814 
90.45% 

803 
89.23% 

 
Table 1: Google outputs with and without the intervention 

of GReG’s question analysis 
 
GReG 
reranks the 
answer in 
first 2 
snippets 

Only word 
match 

Tagging and 
Syntactic 
heads 

Partial 
Logical 
Form 

With GReG’s 
analysis 

375 
58.41% 

514 
68.08% 

543 
71.92% 

Without 
GReG’s 
analysis 

406 
55.09% 

493 
66.89% 

495  
67.16% 

 
Table 2: GReG’s outputs at different levels of linguistic 

complexity 
 

4.2 Comments 
The conclusions we may safely draw is the clear 
improvements in performance of the system when some 
linguistic information is introduced in the evaluation 
process. In particular, when comparing the contribution of 
PLF to the reranking process we see that there is a clear 
improvement: in the case of reranking without GReG’s 
question analysis there is a slight but clear improvement 
in the final accuracy. Also, when GReG is used to 
preanalyse the question to pass to Google the contribution 
of PLF is always apparent. The overall data speak in 
favour of both preanalysing the question and using more 
linguistic processing. 
If we consider Google’s behaviour to the two inputs, the 
one with actual questions and the one with prospective 
answers we see that the best results are again obtained 
when the preanalysis is used (28.6 vs. 24.2); also the 
number of candidates containing the answer increases 
remarkably when using GReG preprocessing (83 vs. 77). 

4.3 GReG and Question-Answering from Text 
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In order to verify the ability of our system to extract 
answers from real text we organized an experiment which 
used the same 900 question run this time again the texts 
made available by TREC participants. These texts have 
two indices at the beginning of each line indicating 
respectively the question number which they should be 
able to answer, and the second an abbreviation containing 
the initial letters of the newspaper name and the date. In 
fact each line has been extracted by means of automatic 
splitting algorithms which have really messed up the 
whole text. In addition, the text itself has been 
manipulated to produce tokens which however do not in 
the least correspond to actual words of current 
orthographic forms in real newspapers. So it took us quite 
a lot of work to normalize the texts (5Mb.) to make them 
as close as possible to actual orthography. 
Eventually, when we launched our system it was clear 
that the higher linguistic component could not possibly be 
used. The reason is quite simple: texts are intermingled 
with lists of items, names and also with tables. Since there 
is no principled way to tell these apart from actual texts 
with sentential structure, we decided to use only tagging 
and chunking. 
We also had to change the experimental setup we used 
with Google snippets: in this case, since we had to 
manipulate quite complex structures and the choice was 
much more noisy, we raised our candidate set from two to 
four best candidates. In particular we did the following 
changes: 
 

- we choose all the text stretches containing the 
answer/s and ranked them according to their 
semantic similarity; 

- then we compared and evaluated these best 
choices with the best candidates produced by our 
analyses; 

- we evaluated to success every time one of our 
four best candidates was contained in the set of 
best choices containing the answer; 

- otherwise we evaluated to failure. 
 

In total, we ran 882 questions because some answers did 
not have the corresponding texts. Results obtained after a 
first and only run – which took 4 days to complete on an 
HP workstation with 5GB of RAM, 4 Dual Core Intel 
processors, under Linux Ubuntu – were quite high in 
comparison with the previous ones, and are reported here 
below: 
 

GReG  finds the 
answer in first 4 text 
stretches 

Tagging and 
Syntactic heads 

Without GReG’s 
analysis 

684 / 882 
77.55% 

 

Table 3: GReG’s results with TREC8/9 texts 
 
With respect to the favourable results, we need to 
consider that using texts provides a comparatively higher 
quantity of linguistic material to evaluate and so it favours 
better results.  

5. Conclusions 
We intend to improve both the question translation into 
the appropriate format for Google, and the rules 
underlying the transduction of the Syntactic Structures 
into a Partial Logical Form. Then we will run the 
experiments again. Considering the limitations imposed 
by Google on the total number of questions to submit to 
the search engine per day, we are unable to increase the 
number of questions to be used in a single run. 
We also intend to run GReG version for text Q/A this 
time with question rephrasing. We would also like to 
attempt using PLF with all the text stretches, excluding 
manually all tables and lists. We are aware of the fact that 
this would constitute a somewhat contrived and unnatural 
way of coping of unrestricted text processing. At the same 
time we need to check whether the improvements we 
obtained with snippets are attested with complete texts. 
Overall, we believe to have shown the validity of our 
approach and the usefulness of linguistically-based 
evaluation methods when compared with BOWs 
approaches. Structural and relational information 
constitutes a very powerful addition to simple tagging or 
just word level semantic similarity measures. 
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