
DISCRIMINANT REVERSE LR PARSING OF

CONTEXT-FREE GRAMMARS

Jacques Farre
Laboratoire 13S - CNRS and Universite de Nice - Sophia Antipolis jf@essi.fr

1 Introduction

In Discriminant Reverse LR{k) parsing[l], actions are determined by scanning a stack suffix, thanks to a small deterministic finite automaton (dfa) . Thus, opposite to (direct) LR parsers, DRLR parsers do not need the whole content of the stack in order to determine actions. DRLR parsers can, in few cases, deeply explore the stack, but it has been proven they are linear in time. When the grammar is not of the required class, this feature of DRLR parsers allows to defer actions in conflict and to push a conflict mark onto the stack. The DRLR parser can keep on parsing the input right of the conflict, that is to say it can perform shifts and reductions as long as these actions are determined by a stack suffix above the mark. Otherwise, the action cannot be chosen and an induced conflict occurs; a new mark is pushed, and parsing of the remaining input can resume. For most grammars, the stack configurations in which marks resolve the LR conflict, and how to resolve it, are computed at construction. For other grammars, the conflict is resolved at parsing time by comparing the stack content with the candidate derivations (which are given by the marks), but the stack configurations in which marks trigger these comparisons are computed at construction. One can argue that conflict marks are an implementation of multiple stacks. But the stack is not explored below a conflict mark, and Extended DRLR needs a single stack and a single parser. Thus, it is not comparable to GLR. In particular, Extended DRLR parsers for which conflicts resolution can be computed at construction are linear in time and size.
2 Principles of (Extended) DRLR construction

This presentation will rely on a DRLR(O) parser. In a DRLR(O) item [i, A ➔ a.,B] , i is a parsing action (shift if i =3D 0, reduce according tH' iproduction if i > O) ; the core A ➔ a.,B means that a stack suffix u has been scanned, and ,B =;{ ux. The states of the DRLR automaton are the states of the dfa which recognizes these u's by reading them from right to left . If [i, A ➔ aX .,B] belongs to a state q and if no [i', A' ➔ a' X .,B'] , i' =p3D i, belongs to q, the suffix Xu determines action i; else more stack must be read, and a transition by X to q' , which will contain [i, A ➔ a.X ,B] , is done; [i, A ➔ .a] infers (closure computation) [i, B ➔ a' .A,B'] , that is a step back in a rightmost derivation chain. A LR(O) conflict occurs when distinct rigthmost derivations produce a same prefix <p. These deriva-
303

tions (or proto-derivations when <p belongs to a language a/3*,) can be computed from the states of
the DRLR{0) automaton. Each step of these derivations defines mark positions. For example, let S ⇒ 1rAx => 1raB/3x ⇒ 1raByx => 1ra,C8yx ⇒ 1ra,Czyx => </;zyx

rm rm rm rm rm rm

S =} 1r' A' x' => 1r' a' B' /3' x' =} 1r' a' B' y' x' => 1r' a',' C' 8' y' x' =} 1r' a',' C' z' y' x' => <p z' y' x'
rm rm rm rm rm rm

be two derivations in conflict: a mark is pushed onto stack after </;, and it will be found instead of C
i i 1

or C' , but only the C and C' of B ➔ ,CJ and B' ➔ ,'C'8' . The cores B ➔ ,C.8 and B' ➔ ,'C'.8'
will be the mark positions.

If the languages of 8 and 8' are disjoint and not prefix, z and z' can be reduced respectively to 8 and 8' without scanning the stack until the mark. As, in this case, 8 #30, 4:i , B ➔ ,C.8] and
[i' , B' ➔ ,'C'.8'] cannot be in the same state, and the mark can determine action i or action i' .
Choosing i or i' means the LR{0) conflict must be resolved by reducing respectively to C or to C' .

But, if for example 8 =3f>, qi, B ➔ ,C.8] and [i' , B' ➔ ,'C' .8'] will be in a same state. The mark
cannot decide between i and i' . T he new mark for this induced conflict can be found in stack instead
of B or B' , but only in positions A ➔ aB./3 for reduction to C and A' ➔ a' B' ./31 for reduction to C'.
The LR conflict can be resolved if the languages of /3 and /3' are discriminant.

Conflicts cannot be resolved at construction if a mark has the positions A ➔ aB./3 and A ➔ a' B' ./3,
which mean that 1raB ⇒ w, 1r'a' B' ⇒ w. This does not mean that the grammar is ambiguous, as
shown by the example below.

3 A working example

• 2 3 4 5 6 7

The example will rely on the grammar S ➔ aAb, S ➔ aBbb, A ➔ aAb, A ➔ c, B --+ aBbb, B ➔ c,
which produces the non deterministic language ancbn U ancb2n , n > 0. DRLR{0) augments the initial
grammar with S' ➔ I- S -L

Reductions 5 and 7 are in conflict. A mark mo with positions S ➔ aA.b and A ➔ aA.b for 5 , with
positions S --+ aB.bb and B ➔ aB.bb for 7, is pushed onto the stack. It decides a shift for any of its
position in q0 , but it produces an induced conflict between [2, S ➔ aA.b] , [4, A ➔ aA.b] , [0, S --+ aB.bb]
and (0, B ➔ aB.bb] in some qi for the stack suffix mob.

The new mark m1 has positions S' -+I- S. -l for action 2, S --+ aA.b and A ➔ aA.b for 4, S --+ aBb.b
and B ➔ aBb.b for 0. It resolves the LR conflict in favor of 5 with the stack suffix m1 -1, and it produces
another induced conflict between [2, S ➔ aA.b] , (4, A ➔ aA.b] , [3 , S ➔ aBb.b] and (6, B ➔ aBb.b] .

The mark m2 has positions S' ➔I- S. -I for actions 2 and 3, S ➔ aA.b and A ➔ aA.b for 4 , S ➔ aB.bb and B --+ aB.bb for 6 . When the stack suffix i s m2 -1, the conflict cannot be resolved
at construction. Otherwise (suffix =3D2b), m2 has the same positions as m0 , and pushes m1 .

The mark m2 means that an even number of b has been read, while m1 means that an odd number
of b has been read. The suffix m2 -I decides a conflict resolution at parsing time, while m1 -I can decide
at construction to resolve the conflict in favor of 5. But if we have S ➔ aAba instead of S ➔ aAb,
the conflict resolution can be decided at construction in any case : the position S' ➔I- S. -I of m2 is
no more compatible with the reduction in conflict 5, and it can decide the reduction 7 .

References

[1] Fortes-Galvez, J. 1996. A practical small LR parser with action decision through minimal stack
suffix scanning. in Developments in Language Theory II, World Scientific .

304

