
Term Encoding of Typed Feature Structures

Dale Gerdemann Seminar fiir Sprachwissenschaft , Universitat Tiibingen Kl. Wilhelmstr. 1 13 72074 Tiibingen, Germany Email: dg@sfs.nphil.uni-tuebingen.de
1 Introduction I explore in this paper a variety of approaches to Prolog term encoding typed feature structure grammars. As in Carpenter [3] , the signature for such grammars consists of a bounded complete partial order of types under subsumption (;J) along with a partial function Approp : Type x Feat _._ Type. The appropriateness specification is subject to the constraint that feature-value specifications for subtypes are at least as specific as those for supertypes: if Approp(t , F) = s and t subsumes t' , then Approp(t' , F) = s' for-<some s' subsumed by s . 1 Previous approaches to term encoding of typed feature structures ([1] , [2] , [7]) , have assumed a similar signature plus additional restrictio�s such as: limitations on multiple inheritance , or exclusion of more specific feature-value declarations on subtypes. The encoding presented here is subject to no such restrictions. The encoding will ensure that every feature structure is welltyped (Carpenter [3]) , i .e . , for every feature F on a node with type t, the value of this feature must be subsumed by Approp(t , F) . And furthermore, the encoding will ensure, as required by HPSG , that every feature structure is extendible to a maximally specific well-type feature structure. 2 Previous approaches, discussed in §2 , have adopted a technique from Mellish [18] [19] in which each type is encoded as an open-ended data structure representing the path taken through the type hierarchy to reach that type. Or, in other words, a type t is represented as a sequence of types, starting at the most general type bele>w T and ending at t, in which each consecutive pair consists of supertype followed by immediate subtype. By bundling features together with the types that introduce them, it is then possible to allow the number of features on a type to increase as the type is further instantiated. The disadvantage of this representation, though, is that there is no unique path leading to a multiply-inherited type or any of its subtypes . While a grammar with multiple-inheritance cannot generally be represented in this approach, it is still possible , as explained in §2 . 1 , to compile the multiple inheritance out of the type hierarchy and then term-encode a semantically equivalent g:,ammar. In this approach, multiple inheritance exists as a convenience to the grammar writer, but is not actually used at run time.

1 Other more complex constraints can be compiled out [13) . So a system that only uses appropriateness
conditions is more general than it might first appear.

2 See Pollard & Sag [20], p. 21

. . . a feature structure can be taken as a partial description of any of the well-typed (or totally
well-typed, or totally well-typed and sort-resolved) feature structures that it subsumes. We choose
to eliminate this possible source of confusion bymsing only totally well-typed sort-resolved feature
structures as (total) models of linguistic entities and AVM diagrams (not feature structures) as
descriptions.

It follows from this, that for an AVM to describe something, it must be extendible to a totally well-typed sort
resolved (or type-re30/ved) feature structure. As is standard in computational linguistics, I use the term feature
3tructure to mean what Pollard and Sag mean by AVM. It turns out that for computational purposes, we will
never be interested in Pollard & Sag's notion of a feature structure. For computational purposes, we want more
compact feature structures, which can provably be e:ictended to (totally) well-typed and type-resolved feature
structures. See [1 1] [16] for details.

89

The encoding presented here will in some instances require the introduction of disjunctions
in order to ensure satisfiability of feature structures , i . e . , to ensure that feature structures are ex
tendible to maximally specific well-typed feature structures .3 This introduction of disjunctions
may, in the worst case , exponentially increase the size of the grammar. Practical experience
with HPSG grammars on the Troll system ((9] , (15)) has shown, however , that feature structure
compaction techniques can be used to keep this increase reasonably small . In §3 , I discuss
how these techniques can be incorporated into a term unification approach . In §3 . 1 , I discuss
the technique of unextension, which involves replacing disjunctions of feature structures with
maximally specific types on their nodes by smaller disjunctions of feature structures in which
the nodes are labelled by more general types . In §3 .2 , I discuss the use of unfilling to remove
uninformative feature-value pairs . I show how this technique can be used not only to make
feature structures smaller , but also to eliminate disjunctions. Then , in §3 .3 , I show how the
remaining disjunctions can sometimes be efficiently encoded as distributed (or named) disjunc
tion . Distributed disjunctions have been discussed elsewhere in the literature , but not in the
context of term encoded feature structures . Finally in §4, I summarize the approach taken in
this paper and discuss directions of future research .

2 Types-as-Paths Encoding

The types-as-paths encoding, introduced by Mel_lish (18] , uses an open-ended data structure
representing the path taken through the type hierarchy to reach that type . For simplicity,
let us first consider how to represent types that do not take any features , such as the types
subsumed by a in fig . 1 .

type
, a
a l
a2 a3
a4

a
�

a l a2

� a3 a4

b [F : a]

/----_
d [F: a l] e [::

:

C

Figure 1 : A Simple Type Hierarchy and Appropriateness Specification

encoding
a (_)
a (a1 (_))
a(a2 (_))
a (a2 (a3))
a (a2 (a4 (_)))

It is clear that the encodings for a, a2 and a4 will all unify, whereas the encodings for a2 and
al will not unify.4 While, in general , the encoding employs open data structures , the example 31 am simplifying here for the sake of exposition. The notion of "satisfiable feature structure" is treated in full in King [16) . 4The encoding used in ALE [4) i s similar except that the paths may be gappy. Thus, a4 could b e encoded as any of the f�llowirig: _-a4-a2-a, _-a4-a, _-a4-a2 or _-a4. _ In this example, the path reflects the derivational history of how the a4 got to be an a4. This same principle is used in the implementation of updateable arrays in the Quintus Prolog library. Since the encoding is not unique, a special purpose unifier must be used, which dereferences each type before unifying. Thus this gappy representation is not applicable for the goal of this paper, which is to use ordinary (Prolog-style) term unification.

90

shows that a3 , since it is maximally specific, can be encoded as a ground term. If, however,
we wish to be able to distinguish in a feature structure between reentrant and non-reentrant
instances of a3 , then we would need encode a3 also as an open term: a (a2 (a3 (_))) .5

This encoding allows a particularly convenient encoding of feature information . If a type
introduces n features , then we simply add n additional argument slots to that type in each
path. For example, consider the encodings of b and e: .

type encoding b b (_, ...F))
e b (e (_, _G) , ...F))

As can be seen from this example, there is essentially no difference between the encoding
of a simple type t and the encoding of a feature structure of type t. The encoding of each
type has slots in it where all of the feature value information can be included . The encoding
for e is particularly instructive . As can be seen , e takes two features, which are introduced <;1,t
two different points along the path. Furthermore, e is a subtype of b , which has only a single
argument position for the feature F. It is clear then that the number of slots for features can
increase as a type is further instantiated .

The idea of bundling feature information along with the type that introduces that feature is
certainly elegant . However, there is a drawback when not all of the information about a feature
is located on a single type. For example, the type d inherits a feature F from the supertype
b, but then adds a more specific value specification for this feature. Consider what happens
when the feature structure b [F : a] (encoded : b (_, a (_)))) unifies with the feature structure d
(encoded: b (d , ...F))) . The unification of these two encodings is b (d , a(_))) , i .e . , d[F : a] , which
is not well-typed. This , however, is not really a problem specific to the types-as-paths encoding .
Any typed feature structure approach with appropriateness specifications needs to incorporate
type inferencing. As discussed in §2 .2 (see also [1 1]) , one way to maintain appropriateness is
to multiply out disjunctive possibilities . For example , b [F : a] should be multiplied out to:
{ d[F : a l] , e [F : a] } . As seen in the next section , handling multiple inheritance will also involve
introducing disjunctions . So the problem of efficiently representing such disjunction (discussed
in §3) will be of crucial importance .

2 . 1 Compiling Out Multiple Inheritance

Multiple inheritance is a genuine problem for the types-as-paths representation . The problem
is that if a type can be reached by multiple paths through the type hierarchy, then there is no
longer a unique representation for that type. A partial solution to this to use multi-dimensional inheritance as in Erbach [7] and Mellish [18] . This idea involves encoding types as a set of
paths rather than as a single path. The intuition is supposed to be that each path in this set
represents a different dimension in the inheritance hierarchy.

Consider, for example, the commonly used type hierarchy for lists in fig. 2. The types

list
--------r----._

ne_list

neJist...sign ne_lisLquant eJist

Figure 2: Multiple inheritance in type hierarchy for lists ne-1ist, list..sign and lisLquant are not mutually exclusive, so it seems reasonable to represent 5This idea is used, for example, in the ProFIT system [7] in order to distinguish between intensional and extensional types (see Carpenter [3] for this distinction). This distinction is certainly important. However, as it is a side issue for this paper, 'i will ignore it.
9 1

these types by a set of paths . ne-1ist, for example, could be represented as list (ne...list , _, _) and ne-1isLquant as list (ne...list , -, list_quant) . This seems to work fine except that there would be no way to rule out the unification of the encodings for ne-1ist:_quant and ne-1ist....sign. These two types unify to give the non-existent type list (ne...list , list_s ign , list....quant) . So the restriction on this encoding is the following: if types t and t' have a subtype in common , then every subtype of t must be subsumed by t' . In the list example, ne-1ist and list....sign have a subtype in common (ne.Jist....sign) . However , list....sign also subsumes e-1ist , which is not subsumed by ne.Jist. So while this approach may work for some special cases of multiple inheritance, it is not a general solution to the problem.6 Given the problems with representing multiple inheritance , it is reasonable to ask how important multiple inheritance is. In fact , given some reasonable closed world assumptions as discussed in the next section , it is possible to compile out all multiple inheritance. To see this , consider what happens when we remove from the list hierarchy the types list....sign and lisLquant . As seen in fig. 3 , removing these two types is sufficient to eliminate all multiple list ne_list
� neJisLsign . neJisLquant e_list Figure :3 : Type hierarchy for lists with multiple inheritance compiled out inheritance. In order to legitimize removing types from the type hierarchy, two further steps are needed . First , some disjunctive appropriateness specifications must be introduced. For example, for any type t and feature F with Approp(t , F) = listsign, the new appropriateness conditions should include the disjunctive specification Approp(t , F) = {ne.Jistsign, e-1ist} .7 And second , any feature structure containing the type list....sign on a node must be compiled into two feature structures: one with ne-1ist....sign and one with e-1ist. So some lexical entries or rules may have to be compiled out into multiple instances . The question of how to deal with this introduced disjunction is treated in §3 .

2.2 Closed World Assumptions So far , we have seen that a closed world interpretation of the type hierarchy will allow us to compile out multiple inheritance at the cost of introducing some disjunctions into the grammar . But the closed world assumption is not a condition that is imposed solely for the purpose of term encoding . As shown in Gerdemann & King [10] [1 1] , the closed world assumption is needed if types are to be used to encode any kind of feature cooccurrence restrictions . As noted by Copestake et al . [5] this deficiency of open-world type systems leads to serious problems for expressing any kind of linguistic constraints . While the closed world assumption is clearly needed , it is also the case that there is a price to be paid for maintaining this condition . In particular , Gerdemann & King [10] [1 1] showed that maintaining this condition will sometimes involve multiplying out disjunctive possibilities . For example, consider the type hierarchy in fig . 4. Every feature structure of type a must ultimately be resolved to either a feature structure of type a' or of type a" . So the feature structure a [F : bool , G : boo/] really represents the set of resolvants {a' [F : + , a : -] , a" [F : - , G : +] } and the feature structure a [F : [D, G : [D] really represents the empty set of feature structures .8 To make our terminology precise , let us call feature structures such as a' [F : +] , a' [F : -] , a" [F : +] 6 A second problem with the approach is that it provides no way to attach features to multiply inherited types. So if ne-1ist_quant has some features which are not inherited from either ne-1ist or lisLquant, then there is no position in either path of types to which these features can be attached . 7 Such disjunctive appropriateness specifications are allowed, at least internally, in the Troll system [9] . 8 Note that this last feature structure would be considered "well-typed" in ALE. For ALE, one must assume
92

Figure 4 : Type hierarchy requiring type resolution

and a" [F : -] extensions of the feature structure a [F : boo/] . So a feature structure a can be
extended by replacing the type on each node by a species subsumed by that type. The set of
resolvants is then the set of extensions which also satisfy the appropriateness conditions : in
this case { a' (F : +] , a"[F : -] } . Note that the resol�ants of a feature structure need not be
totally well typed in the sense of Carptenter [3] , i .e . , there can be appropriate features such
as G which are not in the resolvant .9 This fact will .be of great importance when we consider
efficient representations for sets of resolvants in the next section .

So if our term representation for typed feature structures is to maintain the constraints
imposed by the appropriateness specification, it looks as if we will again have to expand feature
structures out into multiple instances . In fact , as discussed in § 3 , there are methods both for
reducing the need for disjunctions and for compactly representing those disjunctions that can 't
be eliminated. But before considering these methods, let us first consider one very desirable
property of resolved feature structures , namely that the resolved feature structures are closed
under unification. If we use a specialized feature structure unifier , then there exists the possibility of building
in type inferencing as part of unification. If all unification is simply term unification , however ,
then we don't have this option . We need all type inferencing to be static, i . e . , applied at compile
time. 1 0 So when two feature structures which satisfy appropriateness conditions unify, the result
of this unification must also satisfy appropriateness conditions . As shown in Gerdemann & King
[1 1] and King [16] , this is indeed the case for resolved feature structures . Intuitively, the reason
for this is quite simple . Type inferencing in a system like ALE has the effect of increasing the
specificity of types on certain nodes in a feature structure. If all of these types are already
maximally specific, then ALE-style type inferencing could only apply vacuously.

3 Minimizing Disjunctions

We have now seen two instances in which feature structures may need to be multiplied out into
disjunctive possibilities . First , this may arise as a result of eliminating multiple inheritance
from the type hierarchy. And second, as a result of the type resolution which is needed in
order to ensure static typing . Now in this section, I discuss how the need for this disj unction
can be reduced by the technique of unextension §3 . l and by unfilling §3 .2 . And then in § 3 . 3 , I
show how the remaining disjunctions can at least sometimes be efficiently represented by using
distributed disjunctions.

3 . 1 U nextension

First , consider the disjunction that is introduced by type resolution. Most of this disj unction
can be eliminated by using the technique of unextension. Recall that in §2 .2 , I defined the an open world semantics in which an object described by a [F : [TI, G: [TI) is neither of type a' nor of type a". 9In fact , in general resolved feature structures cannot be totally well typed since total-well typing creates more nodes in a feature structure which would then need to be resolved and then total-well typed again. The result is an infinite loop [1 1] .

10 Note, for the sake of comparison, that type inferencing is not static in ALE. The unification of well-typed feature structures is not guaranteed to be well-typed. It is, in fact , not even guaranteed to be well-typable. Thus, the ALE unifier must do type inferencing at run time.
93

extension of a feature structure a to be a feature structure in which the type on each node of
a has been replaced by a species subsumed by that type. Now, let us define the extensions
of a set of feature structures S as the set of all extensions of the members of S. And then
define the unextension of a set of feature structures S as the minimal cardinality set of feature
structures S' such that extensions(S') = S. 1 1 So whenever a feature structure is resolved to a
large disjunction of feature structures S, we can normally compact this disjunction back down
to a much smaller unextended set S' . Since the extensions of S and S' are the same, it is clear
that these two sets of feature structures represent the same information .

As a simple-but extremely commonly occurring-example , consider a feature structure F,
all o f whose extensions are well-typed . In this case, the set of resolvants of F i s exactly the
set of extensions of F. So the unextended set of resolvants of F is simply { F} . 1 2 So resolving
and then unextending F appears at first to accomplish nothing. But , in fact , there is a gain .
Initially, with the feature structure F we had no guarantee that static typing would be safe.
But with the resolved-unextended set {F} , we now know that there are no non-well typed
extensions, so there will never be a need for run-time type inferencing .

As another example, consider the set of resolvants that HPSG allows for: head-struc[HEAD-DTR : sign, COMP-DTRS : elist]
Since the only subtype of head-struc for which elist is an appropriate value on comp-dtrs is
head-comp-_struc, we get the following set of resolvants:

{ head-comp-struc[HEAD-DTR : word, COMP-DTRS : elist] , head-comp-struc[HEAD-DTR : phrase, COMP-DTRS : e list] } .
This two element set corresponds exactly to the set of extensions for the following one element
unextended set :

{ head-comp-struc[HEAD-DTR : sign, COMP-DTRS : elist] }
So the combination of resolving and unextending simply has the effect of bumping the top
level _type from head-struc to head-comp-struc. This then rules out the malformed feature
structure that might have been obtained , for example, by unification with a feature structure
of type head-filler-struc.

Consider now the disjunctions that are introduced by compiling out multiple inheritance.
- Recall that this technique involves eliminating intermediate types from the hierarchy. It does not
remove any species from the hierarchy. Thus, regardless of whether or not multiple inheritance
has been compiled out , the resolvants of a feature structure F will be exactly the same. Since ,
unextension involves replacing species on nodes with intermediate types, the possibilities for
unextending a set of feature structures will be reduced when some intermediate types have been
removed , So it turns out that compiling out multiple inheritance actually introduces disjunction
in a rather indirect manner .

3 .2 Unfilling

Another operation that can be used to reduce the need for disjunction is unfilling, which is
the reverse of Carpenter's [3] fill operation . In general, the purpose of unfilling is to keep 1 1 The normal form result of Gotz [1 2] shows, albeit rather indirectly, that there is a unique unextension for the set of resolvants of a feature structure-assuming there are no unary branches in the type hierarchy. For Gotz, unextension is an implicit part of his function for resolving feature structures. I have abstracted unextension out as a separate operation purely for expository reasons. In an actual implementation (such as Troll [91) it makes more sense to follow Gotz's approach since it is not very efficient for the compiler to expand feature structures out into huge sets that then have to be collapsed back down. · 1 2There is, however, one complication, namely, if there are unary branches in the type hierarchy, then a feature structure might be resolved and then unextended back to a slightly different, but semantically identical feature structure (see Carpenter [3] , chap. 9) . For our purposes here, it doesn't matter if the unextension of a set of feature structures is not unique.

94

feature structures small . If a feature in a feature structure has a value which is no more specific
than the appropriateness specification would require, then-assuming no reentrancies would be
eliminated and no dangling parts of the feature structure would be created-that feature and
its value may be removed . So, in HPSG for example, if the AUX feature in a feature structure of
type verb has the value boolean, then this AUX feature can be removed .

Unfilling is most important , however, when i t turns out that eliminating features allows us
to further apply unextension to eliminate disjunctions. For example, given the type hierarchy
and appropriateness specification in fig. 4 above, the feature structure a[F : boo/ , G : boo/]
is resolved to {a'[F : +, G : -] , a"[F : - , G : +]} . However, both of the features F and G
have uninformative values, i .e. , values which tell us nothing more than we already know from
the appropriateness specification. In fact , this is true both in the unresolved feature structure
and in each of the resolvants . So these two features can be unfilled to give us the new set of
resolvants {a' , a"} . This new set of resolvants can now be unextended to the set {a} .

There is clearly a great deal more that can be said about unfilling and about the class
of unfilled feature structures. The issues, however, are not specific to the problem of term
encoding. So I will simply refer the reader to the discussion in Gerdemann & King [1 1] and
Gotz [12] .

3.3 Distributed Disjunctions
Unextension and unfilling can be used to eliminate quite a lot of disjunctions. Unfortunately,
not all disjunctions can be eliminated with these techniques. But still , as noted in Gerdemann
& King [10] [1 1] , the remaining disjunctions , have a rather special property. All of the resolvants
of a feature structure have the same shape. They differ only in the types labelling the nodes.
In a graph-unification based approach, this property can be used to allow the use of a relatively
simple version of distributed (or named) disjunction . This device can be used to push top level
disjunctions down to local , interacting disjunctions as in this example: 13

{ [
ne_/isLsign

] [
neJisLquant

] } [
(1 ndisLsign ndisLquant)

] HEAD : sign , HEAD : quant ⇒ H,EAD : (1 sign quant)
TAIL: lisLsign TAIL: lisLquant TAIL : (1 lisLsign lisLquant)

The idea is that if the nth alternative is chosen for a disjunction of a particular name, then
then nth alternative has to be chosen uniformly for all other instances of disjunction with the
same name.

Distributed disjunctions have been discussed in a fair amount of recent literature ([1 7] , [6] ,
[8] , [14]) . This version of distributed disjunction , however, is particularly simple since only the
type labels are involved. It is not at all difficult to modify a graph unification algorithm in
order to handle such disjunctions. Such a modified unification algorithm is used, for example,
in the Troll system [9] .

For term-represented feature structures , however , it will not be possible to directly encode
such distributed disjunctions. 14 So rather than encoding distributed disjunctions in a feature

13The example is a little unrealistic since the features HEAD and TAIL could be unfilled. To make the example
more realistic, imagine the feature structures embedded in a larger feature structure and imagine that the values
of HEAD and TAIL are reentrant with other parts of this feature structure, so that these features could not be
unfilled without breaking these reentrancies.

14 Actually there is an alternative representation for types that would allow a limited amount of direct encoding
of distributed disjunctions. Following the basic idea of Mellish [18] , one could represent each type as a set of
species encoded as a vset, where a vset is a term vset(Xo , X1 , . . . , XN), with the conditions that:

• Xo = 0

• XN = 1

• Xi = Xi-1 if the i'th possible element is not in the set

With this types-as-vsets representation, some dependencies can be represented as variable sharing across vsets.
This idea is elaborated upon in an earlier (and longer) version of the present paper.

95

structure , we must encode them as definite clause attachments to the feature structure . The idea is fairly simple , to efficiently represent a set of feature structures S, we factor S into first term-represented feature structure , US, expressing the commonalities across all of the members of S, and second , a set of definite clause attachments expressing all of the allowable further extensions . There is, however, one hitch ; namely, how do we know that US will be expressible as a Prolog term? If US is well typed, then there is no problem. But if US contains a node labeled with t with a with an inappropriate feature F, then the types-as-paths representation simply provides no argument position for this inappropriate feature . A solution to this problem can be found by imposing the feature introduction condition of Carpenter [3] . Thi� condition requires that for each feature F , there is a unique most general type
Intro(F) for which this feature is appropriate. Or, the other way around , if F is appropriate for t and .t' , then it will also be appropriate for t U t" . It is straightforward to see , then , that given the feature introduction condition , if the feature structures F S and F S' contain no inappropriate features , then F S U F S' will also contain no inappropriate features . As an example, consider again the type hierarchy in fig . 1 . Suppose that we want to efficiently represent the set : 1 5 { d[F : a l) , e [F : a] } The generalization of these two feature structures is then term encodable as follows: b [F : a] = b (X , a (Y)) Suppose now, that we want to use this feature structure as the · lexical entry for the word w. For this simple example , we can encode this with just one definite clause attachment : 1 6 .

l ex (w , b (X , a (Y))) : -
p (X , Y) .

p (d , a1 (_)) .
p (e (_) ' _) . One should note here the similarity to distributed disjunctions . The term b (X , a (Y)) represents the underlying shape of the feature structure and the defining clauses for p encode dependencies between types. It is, in fact , rather surprising that this division is even possible . One of the features of the types-as-paths encoding is that the features are bundled· together with the types that introduce them. So one might not have expected to see these two types of information unbundled in this manner .

4 Conclusions Some previous approaches to term encoding of typed feature structures have enforced restrictions against multiple inheritance and against having having more specific feature-value declarations on subtypes. But such restrictions make typing virtually useless for encoding any meaningful constraints . The only restriction imposed in the present approach is the feature introduction condition , which is also imposed in ALE ([4]) . In fact , even this minor restriction could be eliminated if we were to allow somewhat less efficient definite clause attachments . We have seen that in order to enforce constraints encoded in the appropriateness specifications , it will sometimes be necessary to use definite clause attachments to encode disjunctive possibilities . Practical experience with the Troll system suggests that not many such attachments will be needed . Nevertheless, they will arise and will therefore need to be processed
15 Again, this is an unrealistic example (see footnote 13) . One would not normally need distributed disjunctions for such a simple case .

. 1 6 Multiple attachments wouid correspond to named disjunctions with different names.

96

efficiently. Certainly options such as delaying these goals or otherwise treating them as constraints can be explored. In fact , one of the main advantages of having a term encoding is that so many options are available from all of the literature on efficient processing of logic programs. So the approach to term encoding presented here should really be viewed as j ust the first step in the direction of efficient processing of typed feature structure grammars.
References [1] H. Alshawi , editor. The Core Language Engine. MIT Press, Cambridge , Mass, 1 99 1 . [2] H . Alshawi, D .J . Arnold, R . Backofen, D . M . Carter, J . Lindop , K . Netter , J . Tsuj ii , and H . Uszkoreit . EurQtra 6/ 1 : Rule formalism and virtual machine design study. final report . Technical report, SRI International, Cambridge, 199 1 . The platform specification for ALEP. Typing in ALEP is explained in a variety of succeeding LRE technical reports. [3] Bob Carpenter . The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical Computer Science 32. Cambridge University Press, 1992. [4] Bob Carpenter and Gerald Penn. ALE The Attribute Logic Engine, User 's Guide, 1994. [5] Ann Copestake, Antonio Sanfilippo , Ted Briscoe, and Valeria de Paiva. The ACQUILEX LKB : An introduction. In Inheritance, Defaults, and the Lexicon, pages 148-163 . Cambridge University Press, 1993. [6] Jochen Dorre and Andreas Eisele. Feature logic with disjunctive unification . In COLING-90 vol. 2, pages 1 00-105 , 1990 . [7) Gregor Erbach. Pro FIT: Prolog with .features, inheritance and templates. In EA CL Proceedings, 7th Annual Meeting, pages 180-187 , 1995. [8] Dale Gerdemann . Parsing and Generation of Unification Grammars. PhD thesis, University of Illinois, 199 1 . Published as Beckman Institute Cognitive Science Technical Report CS-91-06 . [9] Dale Gerdemann and Thilo Gotz. Troll : Type resolution system, user 's guide , 1 994 . [10] Dale Gerdemann and Paul John King. Typed feature structures for expressing and computationally implementing feature cooccurrence restrictions. In Proceedings of 4- Fachtagung der Sektion Computerlinguistik der Deutschen Gesellschaft fiir Sprachwissenschaft, pages 33-39, 1993 . [1 1) Dale Gerdemann and Paul John King. The correct and efficient implementation of appropriateness specifications for typed feature structures. In COL/NG 94, Proceedings, pages 956---,-960, 1 994 . [12] Thilo Gotz . A normal form for typed feature structures . Master 's thesis , Universitat Tiibingen, 1 993 . [13) Thilo Gotz and Walt Detmar Meurers . Compiling hpsg type constraints into definite clause programs. In Proceedings of the Thrirty- Third Annual Meeting of the A GL, Boston, USA, 1995 . ACL . [14) John Griffith . Optimizing feature structure unification with dependent disj unctions . In John Griffith , Erhard Hinrichs, and Tsuneko Nakazawa, editors, Topics in Constraint Grammar Formalism for Computational Linguistics: Papers Presented at the Workshop on Grammar Formalism for Natural Language Processing held at ESSLLI-94, Copenhagen. , number SfS-Report-04-95 in SfS Technical Report. Seminar fiir Sprachwissenschaft : Universitat Tiibingen, 1994 .

97

[15] Erhard Hinrichs, Detmar Meurers, and Tsuneko Nakazawa. Partial-vp and split-np topicalization in german - an HPSG anaylsis and it 's implementation. Technical Report 58 , SFB 340, 1 994 . Arbeitspapiere des Sonderforschungsbereichs 340 , Sprachtheoretische Grundlagen fiir die Computerlinguistik . [16] Paul John King. Typed feature structures as descriptions . In COL/NG 94, Proceedings, pages 1 250-1254 , 1994. [17] John T . Maxwell III and Ronald M Kaplan. An overview of disjunctive constraint satisfaction. In Proceedings of International Workshop on Parsing Technologies, pages 18-27, 1989 . [18] Christopher S . Mellish . Implementing systemic classification by unification . Computational Linguistics, 14(1) :40-5 1 , 1988. [19] Christopher S . Mellish . Term-encopable description spaces . 1n · o .R. Brough, editor, Logic Programming New Frontiers, pages 189-207. Intellect , Oxford, 1992 . [20] Carl Pollard and Ivan Sag . Head Driven Phrase Structure Grammar. CLSI/University of Chicago Press, Chicago, 1994 .

98

