
(Pictorial) LR Parsing from an Arbitrary Starting Point

Gennaro Costagliola

Dipartimento di Informatica ed Applicazioni,University of Salerno
I-84081 Baronissi, Salerno, Italy

email: gencos©udsab . dia . unisa . it

Abstract In pictorial LR parsing it is always difficult to establish from which point of a picture the parsing process has to start. This paper introduces an algorithm that allows any element of the input to be considered as the starting one and, at the same time, assures that the parsing process is not compromised. The algorithm is first described on string grammars seen as a subclass of pictorial grammars and then adapted to the two-dimensional case. The extensions to generalized LR parsing and pictorial generalized LR parsing are immediate.
1 Introduction

This paper introduces an LR algorithm for the
parsing of input whose starting point is not de
fined. The main motivation behind this comes
from the area of the two-dimensional LR parsing.
Given a two-dimensional pattern it is not always
obvious how to determine the starting point from
which the parsing process should begin. The pro
posed algorithm avoids this problem allowing any
element of the pattern to be considered as the
starting one and, at the same time, it assures that
the parsing process is not compromised.

The main idea is to create two su bstring LR
parsers, one for the given language and the other
for the "reverse" version of the language. The two
parsers proceed in parallel, scanning the input in
opposite directions, from the designated starting
element . Neither of the two is allowed to reduce
beyond their parser stack. When this is required,
a rendezvous with the other parser must occur
and both must perform the same reduction. The
two parser stacks can be considered as an only
graph stack expanding to the right and to the
left of a starting point.

This paper describes the algorithm on string
grarrimars and then shows an extension to the
case of positional (two-dimensional) grammars.
The algorithm can be easily extended to treat lan
guages whose LR parsing tables present conflicts.

49

In fact, the use of the graph stack is the same as
the one adopted in Tomita's generalized parser.

Section 2 contains comments on the work re
lated to this paper; in Section 3, the preliminary
definitions of reverse grammar and of joint graph
are given; Section 4 presents the data structures
and the description of the algorithm; in Section 5
the algorithm is adapted to the two-dimensional
LR parsing after the description of the positional
grammars and positional parsing tables. Section
5 contains the Conclusions.

2 Related work

This section contains two parts: one relates to
the pictorial parsing that is the main motivation
behind this paper and the other relates to island
driven parsing, since the algorithm presented in
this paper can be considered as a bidirectional LR
parser.

2 . 1 Pictorial parsing

With the introduction of more and more powerful
graphical interfaces, the interest in the study of
pictorial parsing is increasing. At the moment,
many parsers have been designed, each of them
having advantages and disadvantages with rispect
to one another.

50

A recently proposed classification, (Witten
burg, 1992) , considers two major classes: bottom
up order-free pictorial parsers (Crimi et al. , 1991 ;
Golin, 1991 ; Helm, 1991 ; Wittenburg, 1991)
and predictive pictorial parsers (Costagliola -
Chang, 1991 ; Wittenburg, 1991) .

The main advantage of an order-free parser
over a predictive one is that it can compose the
input objects in any order and it is not bound to
a mandatory pre-ordered navigation of the input.
This gives great expressive power to the underly
ing grammar formalisms.

The input data structure for an order-free
parser is made by two sets: a set of objects and
the set of all the relations among them. The
relations must be the same used in the parser.
The parser then proceeds with a purely bottom
up enumeration.

The predictive pictorial parsers direct the or
der in which the objects in the input space are
processed by the parser. This limits the expres
sive power of the underlying grammar formalisms
but still retain expressive power enough to de
scribe many interesting 2D languages like arith
metic expressions, lines, document layouts, some
class of graphs, etc.

The input data structure only contains the
set of the objects with their attributes and does
not need to keep information about the rela
tions among the objects. The relations are em
bedded in the parser that use them to predict
the attribute values of the next object to parse.
This representation is more space efficient than
the other and does not depend on the particular
parser relations. Moreover, it refers to a relation
only when necessary.

The predictive nature of the parser makes it
more efficient than an order-free bottom-up picto
rial parser. In particular, for pictorial LR parsing
it is even possible to use tools from string-based
formal language theory like Yacc for the auto
matic parser generation of a pictorial language
(Costagliola et al. , . 1993) .

However the prediction of the next object in
duces an order on the visit of the input. The
order can be linear (Costagliola - Chang 1991)
or partial (Wittenburg, 1992) and, in any case,
it forces the parser to begin its processing from
one (linear case) Oi:' multiple (partial case) spe
cific starting points. If the input is made of a
set of objects with no indication on the starting

COSTAGLIOLA

point, like a scanned document layout , then pre
dictive parsing becomes inefficient . This paper
attempts to solve this problem by constructing a
bidirectional LR parser that does not need spe
cific starting points in the input .

2 . 2 Island-driven parsing

Island-driven parsers are generally used for gener
ating partial interpretations of a spoken sentence
(Stock et al. , 1989; Woods, 1982) . The parsing
starts from words that have higher acoustic evi
dence and then extends to both directions in the
sentence. Each partial interpretation forms an
"island" . Occasionally, two islands may 'collide'
by proposing and discovering the same word in
the gap among them and may then be combined
into a single larger island.

This can be effectively used in · pictorial par
sing whenever there are objects of particular se
mantic relevance, or objects particularly complex
to be combined only when each of them has been
recognized, or, in our case, the starting point is
not easy to find.

Other approaches to bidirectional parsing in
clude bidirectional chart parsing (Stock et al. ,
1989; Steel - De Roeck, 1987) and some form of
bidirectionality within a tabular approach, such
as Earley's or Kasami-Cocke-Younger's (Bossi et al. , 1983).

3 Some definitions

This section contains two definitions that will be
useful for the presentation of the final algorithm.

Definition 1 (reverse grammar) Given a context-free grammar G = (N, T, S, P), a reverse grammar with respect to G is a new grammar G'
= (N, T, S, P), where P is defined as follows: whenever A := u is in P then A := uR is in P, where uR is the reverse version of u.

In general, the reverse of an LR context-free
grammar is not LR.

For sake of simplicity, this paper considers
only LR context-free grammars whose reverse is
LR, too. The extension to general context free
grammars can be easily done.

(PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 51
Example 3 . 1 .
The grammar G: (1) S := CC (2) C := cC (3) C := d
The reverse grammar G': (1) S := CC (2) C := Cc (3) C := d

It is assumed that corresponding productions have the same ordering number. Note that if the C 's in the production S := CC are indexed, then the grammar G contains the production S := C1 C2 and the grammar G' contains S := C2C1. To formalize this concept, let us index all the occurrences of symbols on the right side of the productions of G such that an into correspondence between occurrences of symbols and indices is created . After indexing, the grammar G becomes:

(l) S := C1 C2 (2) C := C3C4 (3) C := ds
C1 , an occurrence of C, is now different from the occurrence C2 but

name(C1) = name(C2) = C.
Given an LR grammar G such that its reverse grammar G' is LR, it is always possible to construct for each of them the canonical LR(0) collection of sets of items through the algorithms

Closure, Goto and Set-of-Items Construction as defined in (Aho et al.,1985). The goto graphs for G and G' are shown in F igure 3 . 1 .
Let us define C 1 = lo', . . . , In the collection of sets of items for G and CR = Ro, . . . , Rm the collection of sets of items for G'. In the following, the relation between elements of C 1 and CR is analyzed. It is assumed that no useless symbols or epsilon-productions are in G.

Figure 3.1 Goto Graphs for G and G'
Given a production "A := u Xi v" ' in G with u, v E (N U T)* and Xi E (N U T), there must be a set-of-items Ik reachable after the occurrence Xi has been processed, i .e ., a set-of-items Ik containing the item "A := u Xi . v" . If the corresponding production in G' "A := vR Xi uR" is considered, there must exists a setof-items Rt reachable after the occurrence Xi has been processed, i.e., a set-of-items R1 containing the item "A := vR Xi . uR" . Here vR and uR are again the reverse versions of v and u, respectively
In other words, if Ik is the state reachable after a forward scanning of Xi in the context of u Xi v, then there must exists Rt , the state reachable after a backward scanning of Xi still in the

-Context Of U Xi V. As an example, the goto graphs above show that l3 and Rs are both reachable through c3 .
Definition 2 (joint graph) Let us consider a
grammar G = (N, T, S, P) with indexing, its
reverse grammar G' = (N, T, S, P) and their
canonical LR{O) sets-of-items · collections C1 =
lo , . . . , In and CR = Ro , . . . , Rm , respectively.

The joint graph for an occurrence Xi of X in N U T is given by:
Jgraph{Xi) = { {Ik , Rt) / there exist A E N,

and u, v occurrences of strings E (N U T) * such
that "A := u Xi . v" E h AND "A := vR Xi .
uR " E Rz }

52
The joint graph for the symbol X in N U T is:

Jgraph(X) = u Jgraph(Xi)
i:name(Xi)=X

Example 3.2.
Considering the grammars in Example 3.1 and looking at the goto graphs above:

Jgraph(c) = Jgraph(c3) = {(l3, Rs) } Jgraph(d) = Jgraph{ds) = {(l4, R3) } Jgraph(S) = Jgraph(So) = {(l1 , R1) } Jgraph(C) = Jgraph(C1) U Jgraph(C2) U U Jgraph(C4) = {(l2, �) } U {(Is, R2) } U U {(la, R2), (la, �) } = = {(l2, R4), (Is, R2), (la, R2), (la, �) }
To parse the string "d' cd" starting from the. symbol "c" , a substring parser based on G will parse "cd" and a substring parser based ·on G' will parse "cd'" . As J graph{ c) = { (l3, Rs) } , the first parser will start from state 13, while the second one will start from ·Rs. To parse the whole string the completion of the substring parser based on G will have to match the parsed part of the reverse substring parser, and vice versa. After reducing the non-terminal C, the states of G to be considered are 12, Is and la while the states of G' are R2 and R4. Note that if the parsing process starting in � fails, then that starting in h must fail, too, because it has no corresponding state � left in Jgraph(C).

4 The Algorithm

The algorithm is based on the concepts of substring parsing as presented in (Rekers - Koorn, 1991). In this paper, an algorithm for substring parsing for arbitrary context-free grammars is presented. It is based on the pseudo-parallel par- · sing algorithm of Tomita (Tomita, 1985, 1991), which runs a dynamically varying number of LR parsers in parallel and accepts general contextfree grammars. Even though the algorithm can be easily extended to the general case, in this paper it will be limited to accept only LR context-free grammars

C OSTAGLIOLA

whose reverse is still an LR grammar. Informally the algorithm can be described as follow. The input is given by a grammar G and its reverse grammar G', the Jgraph for each symbol of the grammars, the two parsing tables and an input sentence ao . . . an with an index O ::s; i ::s; n from where the parsing process is supposed to start. Jgraph(�) provides the initial states. As seen · before, a J graph contains states (set-ofitems) from both the grammar G and its reverse. In the following, a / orward parser is an LR parser for G and a backward parser is an LR parser for G'. Moreover, the opposite parser of a forward parser is meant to be a backward parser and vice versa. Every state Ik in Jgraph(�) (with i being the starting position) becomes the initial state for a forward parser and every state Rz in Jgraph(ai) an initial state for a backward parser. The forward parsers interact only with forward parsers in the same way as a generalized LR parser. The same is true for the backward parsers. The exception occurs when a parser tries to reduce a production "A := u" requiring the stack to pop its initial state. That parser is then blocked waiting for an opposite parser to try the corresponding reduction "A := uR" on the same symbols. If the distance between the two parser stack tops is I u I and the initial states of the two parsers form an edge in Jgraph(ai), then a rendezvous occurs and Jgraph(A) is generated. Jgraph(A) will produce a new set of forward and backward parsers and the process will continue till when either two opposite parsers have a rendezvous on the action "accept" or no rendezvous is possible and the input has all been consumed.
4.1 Data Structures

The algorithm is based on a graph-structured stack with two types of nodes: joint stack nodes and simple stack nodes and it is able to construct a packed shared parse forest, (Tomita, 1985, 1991). A joint stack node is a 5-tuple (Jgraph, X, blast, flast, sLptr) where Jgraph is as defined above; X is either a terminal or a non-terminal; blast and flast point to the last elements visited during the backward and forward parsing of the input, respectively; sLptr is a pointer to a node labeled X in the packed shared parse forest.

{PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 53

A simple stack node is a 4-tuple (state, X,
last, sLptr) where state is the state reached by
the parser and corresponds to a set of items; last
is the last terminal parsed; X and sLptr are as
above.

Note that a joint node ({ . . . , (I, R) , . . . } , X,
blast ,flast, sLptr) represents a graph whose ele
ments are simple stack nodes of the type (I, X,
£last , sLptr) and (R, X, blast, sLptr) and the
edges are defined in the Jgraph component.

The operations on the graph stack are the
Splitting, Combining and Local Ambiguity Pack
ing operations, (Tomita, 1985, 1991) , as used in
the definition of the Generalized LR Parser. The
only difference regards the updating of the node
fields £last and blast. The following are the defi
nitions of two new operations that must be added
to the previous.

BEFORE:

Stack graph Parse forest

----- a ---�

Z .. X .. Y

/ A \
aq •• ab .. ar .. ap

N 1 N2 N3

AFTER:
Stack graph Parse forest

q, A, p

�
n .

/i"'-
z .. X . . Y

/ A \
J ra h(A) aq ap

Figure 4 .1 The Rendezvous Operation

The Rendezvous Operation
A graphical description of the rendezvous op

eration is given in Figure 4 .1 (pointers from the
stack graph to the parse forest are not shown) .

If there is a joint node:
N2 = ({ . . . (Ik , Rz) . . . } , X, b, f, X_ptr)
and two simple nodes:
N1 = (Rj , Z, q, Z_ptr) and
N3 = (Ii , Y, p, Y_ptr) such that

• N 1 is the active stack top of a backward
parser with initial state Rz in N2

• N3 is the active stack top of a forward parser
with initial state Ik in N2

• the edge (Ik , Rz) is in the J graph of the node
N2 .

• action(Ii , ap+i) = "reduce A:= a:" where
o: = Z . . . X . . . Y

• action(Rj , aq_i) = "reduce A:= o:R"

• pathJength(N2 . . . Ni) + pathJength{N2

· · · N3) - 1 = I O: I

then N1 and N3 are made non-active and a
new active joint stack node (Jgraph(A) , A, q, p,
A_ptr) is created, where A is the left-hand of the
reduced production, q is the pointer to the last
visited token in N 1 , p is the pointer to the last
visited token in N3 and A_ptr is the pointer to a
new shared forest vertex whose children are ver
tices pointed by stack nodes contained in the path
N1 . . . N2 . . . N3 .

Note that the path N2 . . . N1 represents the
stack nodes of the backward parser while N 2 . . .
N 3 are the stack nodes for the forward parser.

The Accept Operation
If there is a joint node: N = ({ . . . (Ik , Rz) . . .

S , 0, n, S_ptr)
where S is the starting non-terminal, 0 and n are
the positions of the first and last elements of the
input, and

• action(Ik , $) = accept

• action(Rl , $) = accept

then accept the input and return the pointer to
the parse forest, S_ptr.

4.2 The LR parser with an arbi-
trary starting point

Input: An LR grammar G = (N, T, S, P) and its
reverse G' , the Jgraph for every symbol in N U T,
a sentence w = aoa1 • • • an and a starting position
i, with i E {O, .. , n} . Output: The parse forest for w if accepted. Method:

1 . Create the LR parsing tables for G and G'

54·
2. Cre�te the joint node (Jgraph(B.i), 8.i, i, i, ai_ptr) and make it active.
3. For every element I in the Jgraph field of an active joint node N = (Jgraph(X), X, b, f, X_ptr) start a forward generalized LR parf>er with initial node (1, X, f, X_ptr) on inpµt a1+1 • • • an; for every element R ii,. the J gqtph field of N start a backward generalirz;ed LR parser with initial node (It, X, b, �-ptr) on input ab-1 . . . ao. Wheneyer a parser has a reduce action involving its initial node, or has an accept action to perform, make it wait. All the others will keep processing the input.
4. When all the parsers, both forward and backward, are in the wait state, apply the rendezvous operation wherever p�ssible and go to step 3. If an accept operation is possible then return the corresponding potnter to the parse forest. If no rendezvous or accept operations are possible then the parsing process halts.
If no parse forest pointer has been returned then the sentence has not been accepted.

Example 4.1

COSTAGLIOLA

On the lookahead symbol ·$, the state R4 of the backward parser built on G', requires the reduction "(1) S := CC". R2 and 15 have no action, on $ and 'd', respectively. At this point, no action is possible without involving the joint node. Note that the nodes with states 15 and � meet the rendezvous operation requirements: both of them are active stack tops requiring the same redqce action, the sum of the depths of the stack of the two parsers - 1 = I QC
I = 2 and (h, R4) is an edge in the J graph of the joint node. By applying the rendezvous operation on production "S := CC" and recalling that Jgraph(S) = { (l1 , Rt)} the foUowing configuration is reached:

Stack graph

O, S, 2

[acc. , $] (�) c$, acc.]

Parse forest
c .,.......

s

\ I '-c C I I
c d d

with the joint node ({ (l1 , Rt)}, S, 0, 2, S_ptr) and 11 and R1 requiring both an accept action. The execution of the �ccept operation will then return the pointer to the final parse.
Given the grammars G and G' of Example 3.1, 5 the �nput string "cdd" with positions 0, 1 and 2 resp�ctively and the starting index 1� after two rendezvous operations the following situation is presented:

Two-dimensional LR par
sing frolD: an arbitrary
starting point

Stack graph Parse forest

I f
C d

C
I
d

with the joint node ({(I2, R4), (l5, R2), (16, R2), (16 , R4) } , C, 0, 1, C_ptr), the simple node (15', C, 2, C_ptr) and the corresponding (lookahead, action] pairs. The two nodes point to th� first and the second tree in the parse forest, respectively. On lookahead symbol $, the state 15 in the simple node of the forward parser l?uilt on G, requires a reduce action with production "(1) S := CC" while 16 , on lookahead d in :Rosition 2, r�quires a reduction with "(2) C:= cC".

An LR parser takes in i�put a sequence of tokens and returns a parse tree if the sequence is in the language accepted by the parser. The sequence of tokens are usually extracted from the string data structure. A first generalizatim1, of this model toward 2-D parsing regards the · possibility to have other input data structures different from the string. After all a string can be seen as a set of elem�nts each having an attribute whose value is given by the position of the element in the string. As an
• I example, the strmg "a b c" can be seen as the set {(b 2), (a 1), (c 3)} where each pair represents the element and its attrjbute value. With this new data structure, the LR parser cannot simply require r1 "next" token to the lexical analyzer but has also to give indication$ on the position of the token. When this is done, the

(PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 55
input sequence of tokens to an LR parser can be extracted from any set of tokens with attributes. In the case of two-dimensional symbolic languages these attributes will correspond to Cartesian coordinates but other types of attributes can be thought of. In the case of diagrammatic languages, for example, size, shape, colour, etc. can be considered as attributes. But how is it possible to make an LR parser give indications on the attribute values of the next token to parse? This can only be done by inserting appropriate information in the productions of the grammar from which the LR parser is built. In the case of 2-D symbolic parsing this information is given by spatial operators that take in input the position of the last visited symbol and return the position of the next symbols to parse. Examples of spatial operators are:

"String Concatenation" : i => i + 1 "Up" : (i, j) => (i, j+l) "Left" : (i, j) => (i- 1 , j) "Right" : (i, j) => (i+ 1 , j)
5 .1 Positional grammars

While in the traditional case there is an implicit use of the only string concatenation spatial relation, in the 2-D case many other spatial relations can be used and must made explicit in the grammar formalism. In the following, some definitions are re-called, (Costagliola - Chang, 1991) , to define a 2-D grammar formalism and the languages generated by it:

where m � 1, A E N, each Xi is in N U T and each Re� is in POS.
In the following, the words "positional grammar" will also refer to a context-free positional . grammar.

Definition 4 (pictorial language) Let PG = (N, T, S, P, POS, PE). A positional sentential form is a string IT such that S =>* II, where =>* has the conventional meaning. A positional sentence is a positional sentential form not containing non-terminal symbols. A picture is the evaluation of a positional sentence. The pictorial language defined by a positional grammar L(PG) is the set of its pictures.
Note that if POS contains the only "string concatenation" spatial relation the positional grammar formalism reduces to the traditional context-free grammar formalism.

Example 5 . 1 The following positional grammar generates a simple subset of the arithmetic expressions:
N = {E, S , T, F} T = {+, 1:, (,) , id, num} E is the starting symbol POS = { >, _ } p = { E := E > + > T I T T := s > T I F

s := L - id F := id _ id I num I (> E >) }

Definition 3 (positional grammar) A context- where the characters '> ' and '-' stand for "hor-free positional grammar PG is a six-tuple (N, T, izontal concatenation" and "under concatena-S, P, POS, PE) where: tion" , respectively. A positional sentence is:
N is a finite non-empty set of non-terminal symbols T is a finite non-empty set of terminal symbols N n T = </J S E N is the starting symbol P is a finite set of productions POS is a finite set of spatial relation identifiers PE is a positional evaluator

Each production in P has the fallowing form:

"5 > + > L - i > (> x - i > + > y - i >) "

From its evaluation the particular positional evaluator PE for this grammar produces the following picture: 5 + 1:/xi + Yi) -A more detailed definition of PE for this type of grammars can be found in (Costagliola et al. , 1992) .
Example 5.2 . The following• positional grammar PG will be used in the following to illustrate the execution of the algorithm.

56

0) S := A Down S (2) S := A
(3) A:= a Right a
A positional sentential form for thts grammar is "A Down a Right a" ; a positional sentence is "a :flight a Down a Right a" ; the corresponding picture is given by the evaluation of the spatial relations in the positional sentence, from left to right:

a a . a a
Very similarly to Definition 1 , the correspond-ing reverse positional grammar PG' i�:

(1) S := S Up A (2) S := A (3) A := a Left a
The positional sentence becomes now "a Left a Up a Left a" and produces the sam� picture as abovestarting from the 'a' in the lower right. Note that to reverse a positional g;rammar, it is not enough to reverse the right side· of the prod uctions. Every spatial relation must �so be substituted with a semantically opposite spatial re-lation. In this example, "Down" becpmes "Up" and "Right" becomes "Left" .

5 .2 Pictorial LR parsing

The generalization of LR parsing tp the twodimensional case has already been tre,ted in (Costagliola et al. , 1991 , 1992, 1993) , where classes of pSLR, pLALR and pictorial generali�ed LR lan-guages have been characterized. The parser generation methodology from posi-
1 tio11al grammars is very similar to the traditional LR technique. The only difference regards the handling of the spatial relations. As an example, the item "A:= a .Left a" means now that a new 'a' is expected tp the left. of the just seen 'a'. The containing set-of-items will then be associated to the spatial rela�ion Left . To handle the positional informatiqn, the final LR parsing table for . a positional grarpmar has a new column named "pos" , besides the traditional "action" and "goto" parts. The underlying automaton will then have a spatial func�ion as�ociated to each state in order to predict �he position

of the next symbol to parse.
Example 5.3

COSTAGLIOLA

The parsing table$ for PG and PG' of Example 5.2 are shown in Figure 5 . 1 and 5.2 , respectively.
state action goto pos a $ A s lo s4 2 1 l1 acc. Any 12 s4 r� 2 3 Down l3 rl Any l4 s5 Right Is r3 r3 Down

Figure 5 .1
state action goto pos a $ A s
� s4 . I 5 . 1 R1 s4 a.cc. 2 Up R2 r1 r1 Up R3 r3 r3 Up R4 s3 Left Rs r2 r2 Up

Figure 5 .2
Every spatial relation name in the column "pos" indicates a spatial function that takes in . input a position and returns a terminal, if found, or the end-of-input marker $, otherwise. The only exception is 'Any' that always returns $. The action "accept" is actually a conditional "accept" : if all the symbols of the picture have been processed then accept, otherwise reject . This can be done by marking each visited symbol and looking for unmarked ones. Looking at Figure p. l , if state Is is reached by shifting a terminal 'a' whose position is (i, j) , then the next symbol to process i s the terminal Down(i, j) in positioQ (i, j- 1) . Note that Down is the spatial function associated to Is . In the following, for sake of simplicity, each Cartesian coordinate (i, j) will be associated with a unique index k.

(PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 57

5 .3 The 2-D extension
Definition 2 of "joint graph" applies with no mod
ification to the case of pictorial LR parsing. In
particular, for the grammars PG and PG' of Ex
ample 5.2, the Jgraph sets are so defined:

Jgraph(S) = Jgraph(So) U Jgraph(S2) =
={(I1 , R1) , (I3 , Ri) }
Jgraph(A) = Jgraph(A1) U Jgraph(A3) =
= { (I2 , R2) , (I2 , Rs)}
Jgraph(a) = Jgraph(a4) U Jgraph(as) =
= { (I4 , R3) , (Is , R4)}

The LR parser with an arbitrary starting point
algorithm can also be easily adapted to the case
of pictorial languages. The only difference is that
the forward and backward parsers are not gene
ralized LR parsers as defined in (Tomita, 1991)
but pictorial generalized LR parsers, (Costagliola et al. , 1992) .

Example 5.4.
Let us consider the grammars PG and PG' of

Example 4.2, the input picture
ao a1

a2 a3
a4 a5

where each terminal 'a' has been indexed with its
position, and i = 2 as the starting position; from
the initial stack graph it is possible to reach the
following configuration:

[Up(2)=a. r3)

Stack graph
2, a, 2

[Down(3)==a, r3)

©---@ (Down(2)=$, r3)

Parse forest

with the joint node ({ (I4 , R3) , (Is , R4)} , a, 2 ,
2 , a2_ptr) , the simple node (Is , a, 3, a3_ptr) and
the corresponding [lookahead, action] pairs. The
simple stack node with state Is has just seen the
terminal 'a' in position 3; to take the next action
the associated spatial function Down must be ap
plied to the position 3. The returned terminal
is 'a' in position 4 and only now the parser can
decide a reduction with "(3) A := a Right a" .
The same explanation can be given for the ac
tions taken by the parsers in the remaining states
Is and R3 .

The parser with initial state R4 has no action
to take and fails, making the forward parser start
ing in Is fail, too. The only rendezvous operation
can then be performed between the parsers start
ing in R3 and Is on production "A:= a Right a" :

Stack graph 2, A, 3
�

Parse forest

where the stack graph reduces to the joint
node ({(I2 , R2) , (I2 , Rs)} , A, 2, 3, A_ptr) . In
two other rendezvous operations the picture will
be eventually accepted with parse tree:

6 Conclusions

This paper has presented an algorithm to allow
LR parsing from an arbitrary starting point of the
input . The algorithm is based on Tomita's algo
rithm and refers to substring parsing as defined
in (Rekers - Koorn, 1991) . It makes use of two
LR parsing tables, one for the original grammar
and another for its reverse version.

It can be shown that there is a moderate
overhead with respect to the normal parser and
that sentences starting with a token that can ap
pear in many different context take more time to
parse than sentences starting with a disambiguat
ing token. With respect to substring parsing,
no overhead is necessary for the completion of
the sentence by any backward or forward parser,
as the completion is always determined by the
rendezvous operation. Further the Jgraph data
structure allows only appropriate reductions cut
ting on the overhead due to unfeasible reductions.

It is also been showed that , based on the pic
torial generalized LR parser in (Costagliola et al. ,

58

1992), the extension of the algorithm to the twodimensional case is -immediate. In this paper, only the simplest form of twodiµiensional parsing, the so-called linear pictorial parsing, is referred to. In this type of pictorial parsing, the spatial relations are defined such that the position of the next symbol only depends on the last symbol processed.

COSTAGLIOLA

More complex forms include the possibility to calculate the next symbol based on the .positions of the elements of the last handle or of the whole input so far visited. 'f hese forms have been fo� vestigated in traditional pictorial generalized par� sing and are currently being investigated iµ the context of LR parsing with an arbitrary starting point.

(PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 59

References

Aho, A.V. - R. Sethi - J.D. Ullman (1985) Compilers, principles, techniques and tools .
Addison Wesley.

Bossi, A. - N. Cocco - L. Colussi (1983)
"A Divide-and-conquer Approach to General
Context-free Parsing" . in: Information Processing Letters 16, 203 - 208.

Costagliola, G. - S.-K. Chang (1991) "Parsing
2D Languages with Positional Grammars" .
in : Proceedings of Second Int. Workshop on Parsing Technologies 235 - 243. Cancun,
Mexico, February 13 - 25, 1991 .

Costagliola, G. - S.-K. Chang - M. Tomita
(1992) "Parsing 2D Languages by a Pictorial
GLR parser" . in: Catarci, T. & M.F. Costa
bile & S. Levialdi, (Eds) : Advanced Visual Interfaces . 319 - 333. Singapore: World Scien
tific Publishing.

Costagliola, G. - S. Orefice - G. Polese - M.
Tucci - G. Tortora (1993) "Automatic Parser
Generation for Pictorial Languages" . in: Proceedings of IEEE Symposium on Visual Languages Bergen, Norway, August 24 - 27, 1993,
to be published.

Crimi, C. - A. Guercio - G. Nota - G. Pacini
- G. Tortora - M. Tucci (1991) "Relational
Grammars and their Application to Multi
dimensional Languages" . in: Journal of Visual Languages and Computing 2, 333 - 346.
Londra: Academic Press.

Golin, E. J. (1991) "Parsing Visual Languages
with Picture Layout Grammars" . in: Journal of Visual Languages and Computing 2, 371 -
393. Londra: Academic Press.

Helm, R. - K. Marriot - M. Odersky (1991)
"Building Visual Language Parsers" . in:
Robertson, S.P. & G.M. Olson & G.S. Olson,
(Eds) : Human Factors in Computing Systems: CHI '91 Conference Proceedings 105 - 1 12 .
Amsterdam: Addison-Wesley.

Rekers, J. - W. Koorn (1991) "Substring Par
sing for Arbitrary Context-Free Grammars" .
in: Proceedings of Second Int. Workshop on Parsing Technologies 218 - 224. Cancun,
Mexico, February 13 - 15, 1991 .

Steel, S. - A. De Roeck (1987) "Bidirectional
Chart Parsing" . in: Proceedings of AISB-87
Edinburgh: Scotland.

Stock, 0. - R. Falcone - P. Insinnamo (1989)
"Bidirectional Charts: a Potential Technique
for Parsing Spoken Natural Language" in: Computer Speech and Language 3, 1989.

Tomita, M. (1985) Efficient Parsing for Natural Languages Boston MA: Kluwer Academic
Publishers.

Tomita, M. (1991) Generalized LR Parsing . Nor
well MA: Kluwer Academic Publishers.

Wittenburg, K. (1992) "Earley-style Parsing for
Relational Grammars" . in: Proceedings of IEEE Workshop on Visual Languages Seattle,
USA, September 15 - 18, 1992.

Wittenburg, K. - L. Weitzman - J. Tal
ley (1991) "Unification-based Grammars and
Tabular Parsing for Graphical Languages" .
in: Journal of Visual Languages and Computing 2, 34 7 - 370. Londra: Academic Press.

Woods, W. A. (1982) "Optimal search strategies
for speech understanding control" . in: Artificial Intelligence 18, 295 - 326.

60 COSTAGLIOLA

