
1

A Proof-Theoretic Reconstruction of HPSG *

Stephan Raaijmakers

Institute for Language Technology and Artificial Intelligence ITK
· P.O.Box 90153, 5000 LE Tilburg, The Netherlands

email: stephan©kub . nl

Abstract

A reinterpretation of Head-Driven Phrase Structure Grammar {HPSG) in a proof-theoretic context is presented. This approach yields a decision procedure which can be used to establish whether certain strings are generated by a given HPSG grammar. It is possible to view HPSG
as a fragment of linear logic (Girard, 1987) , subject to partiality and side conditions on inference rules. This relates HPSG to several categorial logics (Morrill, 1990) . Specifically, HPSG signs are mapped onto quantified formulae, which can be interpreted as second-order types given the Curry-Howard is.omorphism. The logic behind type inference will, aside from the usual quantifier introduction and elimination rules, consist of a partial logic for the undirected implication connective. It will be shown how this logical perspective can be turned into a parsing perspective. The enterprise takes the standard HPSG of Pollard - Sag {1987) as a starting point, since this version of HPSG is well-documented and has been around long enough to have displayed both . merits and shortcomings; the approach is directly applicable to more recent versions of HPSG, however. In order to make the proof-theoretic recasting smooth, standard HPSG is reformulated in a binary format.
Introduction • The parser should have reasonable time/space complexity. The main concern of this paper lies in building a parser for HPSG. The result of the enterprise should meet the following desiderata: Existing parsers for HPSG do not obey these demands; e.g., the Popowich/Vogel parser (Popowich - Vogel, 1990) violates the second, fourth and fifth demand; the LiLog STUF environment (Dorre - Raasch, 1991) violates - the first, third, and fifth. For a full comparison, see Raaijmakers (forthcoming).

• The parser should interpret the original grammatical theory, or as close a dialect as possible.
• The parser should separate grammatical theory from parsing issues.
• The parser should make an operationalisation of the grammatical theory explicit, as declaratively as possible.
• It should be easy to alter the grammatical theory.

In the parsing-as-deduction field, several parsing routines have arisen from proof-theoretic investigations (Moortgat, 1988; Konig, 1989). While these routines are not all among the most efficient, once a proof-theoretic formulation of HPSG has been made, one can benefit from these results. *This research was carried out within the framework of the research programme 'Human-Computer Communication using natural language' (MMC). The MMC programme is sponsored by Senter, Digital Equipment B.V., SUN Microsystems Nederland B.V. and AND Software.
235

236

Some terminological remarks: we refer to
HPSG of Pollard - Sag (1987) with '(classi
cal) HPSG', and to its type-theoretic (deductive)
equivalent with 'V-HPSG'.

2 An overview of HPSG
HPSG is a lexicalist , feature-based formalism ror
syntactic and semantic analysis of natural lan
guage. HPSG puts all relevant linguistic infor
mation in the lexicon, and has general rules and
principles governing the construction of phrases
from subphrases.

As a syntactic formalism, HPSG divides the
labour of tree construction into separate processes
of mobile construction and mobile ordering. A
mobile is a tree-like structure with unordered
trees; actually, a mobile can be interpreted as a
description of a set of trees.

Socalled immediate dominance (ID) rules
build these mobiles, which are then turned into
trees by linear precedence (LP) principles. HPSG
is a feature-based formalism, employing various
feature mechanisms transporting feature informa
tion through feature structures. In HPSG, lex
emes are bundles of so-called attribute-value pairs

where Aj is a certain linguistic (phonologi
cal/syntactic/semantic) property taking its speci
fication from a set of values containing l7i. These
bundles are called signs. The reader is referred
to Pollard - Sag (1987,1992) for a full overview
of the various attributes and their values. The
generic structure of main signs in HPSG is

[

phon . . · i
syn . . .
sem . . .
dtrs . . .

where the phon, syn, sem and dtrs values de
scribe respectively the phonological, syntactic, se
mantic and configurational properties of the sign.

Attributes take either atomic or complex val
ues; an attribute like person ranges over the
set {f irst, second, third} , whereas an attribute
like dtrs (describing daughters of phrases) takes

RAAIJMAKERS

full signs as values. The notion of head is a central
concept in HPSG. Basically, a head of a phrase is
a subphrase determining the relevant combinato
rial properties of the sign . . Heads can be phrasal
or lexical; lexical heads are simply signs having
no daughters. For instance, the head of a VP sees
Mary is the verb sees; The grammatical proper
ties of sees determine the properties (viz. agree
ment) · of the VP as a whole, and not those of
the direct object Mary. The head of the sentence
John sees Mary is the VP sees Mary.

HPSG heavily leans on the notion of unifica
tion (Shieber, 1986) . Simplifying matters some
what, two signs S1 and S2 are unifiable with each
other, written S1 U S2 , if for any attribute they are
both specified for, they bear non-conflicting val
ues. Further, any fully disjunct parts of two signs
(consisting of different attribute-value pairs) of
the two signs can be combined directly. So,

[number
person

sg l u f irst [

gender fem l
case dative =

[

number
person
gender
case

Likewise,

sg l f irst
fem

dative

[

syn l loc I head I maj n

]

.

a r [gender fem l U g number sg
[gender fem l = person 2

[

syn l loc I head I maj

agr [::::: !;
m

]
person 2

But of course the following Jails:

[

number sg l U [b . num er person first plur]

2 .1 Immediate dominance
rules

(ID}

ID rules describe admissible dominance struc
tures, which can be interpreted as mobiles: tree
like structures with unordered branches. The

A P ROOF-THEORETIC RECONSTRUCTION OF HP SG 237

rules themselves take the form of (partially specified) signs (just like HPSG's principles), applying as felicity constraints to signs to be combined.
Rule 1 (Rl)
[

syn j loc I subcat ()

]
dtrs

[headdtr I syn I loc I lex - 1
compdtrs (-d)

Rule 2 (R2)

[

syn I loc I subcat (..s) . ·
[[head I inv - 1

dtrs headdtr I syn I loc
lex + .

Rule 3 (R3)
·

head inv + [
syn I loc I subcat ()

dtrs [beaddtr I syn I loc [lex 1 l
l]
l]

Rule 1 licenses signs having a non-lexical (i.e. phrasal) head daughter and being fully saturated, that is, signs having a subcat(egorisation) list of length zero (written as ()). There is one complement daughter (indicated with the variable ' _d'); an example would be an S having a VP as head daughter and a subject as only complement daughter. The loc attribute is used to describe "local" properties of a sign, such as lexicality and subcategorisation demands; this contrasts with the bind attribute, describing anaphoric links . over signs. Rule 2 caters for instance for VP 's, which have a lexical head daughter (the verb), and are one short of becoming saturated: they subcategorise for a subject. Rule 3 admits of saturated signs with a lexical, inverted head daughter, like in Is John sleeping?, the head daughter of which is the finite auxiliary Is, which subcategorises for both an infinitival VP and a nominative NP.
2 .2 Linear Precedence (LP) princi-

ples

LP principles turn mobiles into genuine trees by imposing order on sister nodes.
Constituent Order Principle
[

phon order - constituents([])
], ··

dtrs [I
Linear Precedence Constraint 1 (LPl)
head [lex +] < []

Linear Precedence Constraint 2 (LP2)
complement < < complement [lex -]

The operation order-constituents gives the disjunction of all permutations of the phonology of the daughters. · At least one of these permutations will have to be consistent with the constraints of order expressed by the LP principles, which are specific for English (and related lan-guages): · ·
LP l says that lexical heads precede all their sisters (the empty sign O acts _like a ''�ildc�rd" symbol here, unifying with every sig�). _ LP2 says that less oblique complements precede more oblique phrasal sisters; < < is precedence between oblique elements, where obliqueness corresponds · inversely to degree of obligatoriness. Subjects, for instance, are in Germanic languages less oblique than direct objects, which means they ·are more obligatory: they cannot be omitted, in general.

John eats.
sJteats an apple.

The degree of obliqueness is mirrored (in reverse) by the order of complements on the subcat list of signs: the less oblique elements follow the more oblique elements.
2.3 Feature transport principles

Various principles take care of the distribution of feature information in a feature structure, defining the paths along which information percolates upwards. The concept of reentrancy expresses the sharing of information by several attributes across a sign, using· boxed integers to identify attributes.
Head Feature Principle
[syn I loc I head IT] l dtrs I headdtr I syn I loc I head [I]

Subcat(egorisation) Principle
[

, syn I loc I subcat [!]
] dtrs [headdtr I syn I loc I subcat IT]+[!] l compdtrs IT] · (Ll+L2 is the concatenation of the two lists LI. and L2.)

238
Semantics principle (simplified)
[

sem [cont s - c - s ([I], [II
�

] [headdtr I sem I cont 1 l dtrs compdtrs I sem I cont 2
The HFP enforces identity between the head features of the head daughter and the mother sign. The subcat principle decomposes the subcat list of a head daughter in two parts of arbitrary •· (non-empty) length: the first part should correspond to the value of compdtrs, the second part becomes the value of the subcat attribute of the mother sign. The semantics principle states that the semantics of a mother sign must consist of the combination of the semantics of the head daughter and the complement daughters (the operation successively-combine-semantics, abbreviated as s-c-s, does just this.)

J s

(maj n] [maj v n] , (maj n])] subcat ((maj
t

det

RAAIJMAKERS

2 .4 Sample derivation

The derivation in figure 1 shows the operation of the various principles and rules. Notice that HPSG as presented in Pollard - Sag (1987) assumes that nouns are heads selecting for determiners. Also, Pollard and Sag assume that heads themselves participate in the obliqueness hierarchy : they are more oblique than all their complements. Thus, LP2, once formulated as
complement < < complement [lex -]

Pollard - Sag (1987: 176) orders phrasal heads after their complements (for instance VP 's after subjects). In order to derive the order 'the cat' rather than 'cat the', Pollard and Sag assume that the head noun 'cat ' becomes phrasal by the fact that Rule 2 is applicable to it as a lexical sign (cf. op.cit. p.153); so, rule application turns [lex +] into [lex -] .
C

[
maj n] lex + subcat (det) [R2]

[
maj n] lex -subcat (det)

[maj n] Subcat,Rl,LP2]
subcat () Subcat,R2,LP1]

[maj v subcat ((maj n])] [Subcat,Rl,LP2]
[

maj v] subcat ()
F igure 1 : John sees the cat.

2 .5 Tree arity

Classical HPSG is not strictly binary-branching: the Subcat principle allows for the combination of an n-ary functor with n-1 arguments at once; e.g. the combination of a ditransitive verb taking three NPs (two complements and one subject) with two of its complements. Classical HPSG is non-monotonous: as men-

tioned in the previous section, Rule 2 is able to change the lexicality of a sign by vacuously applying to that sign. This underdocumented feature of HPSG has several drawbacks, most significantly, the fact that the operation is not structure preserving: usually, signs evolve from subsigns under unification; here, a + value becomes a -value, which unification cannot possibly account

A PROOF-THEORETIC RECONSTRUCTION OF HPSG 239

for. Conceptually, the lexicality feature seems
to be derivable, since, oniy those signs are non
lexical (phrasal) which carry at _least .one daugh
ter.

The HPSG theory as originally put forward by
Pollard - Sag (1987) does not lend itself directly
to a proof-theoretic reconstruction. The theory,
being declarative in a strong sense, has obscure
operational aspects. Also, mainly for practical
(but possibly also for theoretical) reasons, it ap
pears to be desirable to have a version of HPSG
building binary branching syntax trees. So, as a
first step we present a binary version of HPSG.

3 Binary-Branching HPSG

We start off by presenting a binary version of
HPSG which removes some of the unattractive
features of classical HPSG. Most significantly,
this version makes no use of vacuous application
of rules to signs, and thus allows for signs to
monotonously evolve from lexical to non-lexical
status . The theory remains very close to classical
HPSG in all other aspects. The binarity is mainly
motivated from practical reasons; it facilitates the
linking of HPSG to a logical type calculus. Bina
rity is by no means a, strong c9mm.itment, how
ever. Focus is on the desire to analyse a fragment
of Dutch declarative main-clauses, although some
examples illustrate the applicability of the binary
apparatus on fragments of English as well.

First, we . qefine lexic,ajity, in terms of daugh
ters, using; common predkate notation.

• lexical(Sign) · if dtrs(Sign)= () ,
parafrased as : Sign is lexical if Sign has
zero daughters.

We then define:

• argsn(Sign) if length(subcat(Sign))=
n , n � l, parafrased as: Sign wants n argu
ments if the subcat list of Sign has length n (an empty list has length zero) .

We refer to a functor :F with argsn as :Fn .

The crucial observation for languages like
Dutch and English is that the aniourit of satu
ration together with the lexicality of a functor (a
sign with non-empty subcat list) determines the
position of the functor with respect to its argu
ment. A post-modifier like with pictures, mod
ifying a noun like book, follows the noun: it is
non-lexical, and has args1 . Similarly, intran
sitive verbs - assuming they are lexicalised as
VP's, i.e. non-lexical, verbal args 1 functors -
follow their subjects. Semi-saturated verbal func
tors like gives John precede their objects: they
are args2 functors. We can capture the order
determiner-noun by assuming that determiners
subcategorise for non-maximal noun projections
(like book, little bo_ok with black cover) , so they
are args1 ; they are lexical, and precede their ar
gument. This contrasts with the view of Pollard
- Sag (1987) , which analyses nouns as subcate
gorising for determiners. 1 So, the generalisation
seems to be that :

1 . Ordering effects triggered by the lexicality
of functors come into play only for :F1 func
tors: a lexical :F1 is ordered before its argu
ment; a non-lexical :F1 is ordered after its
argument .

2. A functor :Fn where n > l is ordered before
its argument.

The following LP principles mak� this precise:2

(BLPl) [
lex + l < a args1 r • � ., , •

(BLP2) a < [lex
a�gs1 - l

(BLP3) [argsn] ' < a

To i,ee how these principles work, consider the
derivation in figure 2.

. , . , · ..

1 We shall neglect the question on how to encode (non)-maximality of phrases'here; a bar-'level along the lines C�oper (1990) suggests may be necessary here. 2The signs in these principles are only partly specified.

240 RAAIJMAKERS

J g M a b w p

[Fo] [le;/] [Fo] [19;1 +] [Fo] [le;/] [:Fo]
BLP3) BLP3]

[le;2 -] [le;1 -]
BLP2]

[le;0 -]

[BLPl]

[le;0 -]

BLP3]

[le;1 -]
[BLP2]

[19;0 -] ; ��� ;

Figure 2: Sample derivation for 'John gives Macy a book with pictures' .

We also need the regular LP principle for inverted
phrases:

(BLP4) [inv +] < er I

This all works fine for concatenative phenom
ena, i.e. the combination of two phrases under
adjacency. Certain adjuncts appear to be non
concatenative, however. In Dutch, one observes:

• Jan geeft met plezier Marie een boek.
John gi'lies eagerly Mary a book.

• Jan geeft Marie met plezier een boek.

• Jan ge�ft Marie een boek met plezier.

This suggests- that the phonological operation as
sociated with certain adverbial modifiers sh�uld
not be concatenation but jn�f.#ion. '};�pe
(1990) has made similar remarks concer�ing-'semi
free word order phenoinena. We then arrive a:t the
following LP principf� ·· _ _ �; _

··

(BLP5) [ADVHOD] .JJ. a

where A .JJ. B says that (the phonology of) A
is infixed into (the phonology of) B. The non
concatenative connective ! was introduced in cat
egorial grammar by Moortgat (Moortgat, 1988)
for similar purposes; an expression of type A ! B
infixes into expressions of type B to form an
expression of type A (see section 4.4.2 below).
ADVHOD describes the ·sign for a VP-level adver
bial modifier, which is a sign subcategorising for
a VP to yield a VP: it inherits the NP argument
{the subject) its argument VP is still incomplete
for. There is a little snag here: mere infixation of
the adverbial phonology into the VP phonology
:w,gq.ld result in ill-formed strings where the ad
v�r�1 penetrates into one of the verbal arguments.
Fo� �n�tance,

*Jan geeft de graag man een boek
John gives the with-pleasure man a book

·This problem cannot be fixed ·by letting

A P ROOF-THEORETIC RECONSTRUCTION OF HPSG 241
phonology-values be - nested lists (lists of lists) rather than fiat lists, for instance

[Jan, [[geeft , [de,man]] , [een,boek]]]
The infixation of graag into the VP _ phonology [[geeft , [de,man]] , [een,boek]] will be possible only for

• graag geeft de man een boek
• geeft de man graag een boek
• geeft de man een boek graag

Deriving the well-formed
• Jan geeft graag de man een boek

now becomes hard: a rebracketing of
[[geeft , [de,man]] , [een,boek]]

to
[[geeft] , [[de,man] , [een,boek]]]

will be necessary. So, it is not entirely clear whether . the phonological operation of adverbial modifiers is not beyond simple infixation. For the moment , we leave the topic. Complement order needs no longer be stipulated as a separate LP principle: functors now combine with one argument at a time, and the order of arguments is expressed by the order on the Su beat - list. The ID rules of original HPSG must be adapted as well; while Rules 1 and 3 can be kept, Rule 2 must now be altered to cater for generalised incompleteness: a sign having more than one item on its subcategorisation list is a wellformed sign as well.
4 Deduction for HPSG
With the binary version of HPSG we are set to give HPSG a deductive basis. First, we show that it is possible to reinterpret signs as types. Then we introduce a deductive apparatus performing type-deduction with these derived types. This calculus builds binary proof trees (proof terms) , which are orthogonal to (binary-) · HPSG derivation trees.

4.1 Signs as Formulae

We propose to view signs as types, or, with the Curry-Howard isomorphism in mind, . as formul�e of a certain logic. Ideas in this spirit can already be found in work of Blackburn (interpreting signs as modal formulae) , Morrill and others. The concept of types has many interpretations, but one particularly apt for linguistics is that a type is a set of expressions, or, in more traditional terms, a category. Together with a set of combinatorial principles, types form an algebra of expressions over a certain domain: a type system. Essentially, these combinatorial principles constitute a derivabzlity relation between sequences of types '-+' : A -+ B saying that from the type sequence A the type sequence B can be derived. An example of a type system would be any syntactic algebra consisting of a set of type formation rules (e.g. the prod uctio� ' rules in a rewrite system) and a set of syntactic - categories (types) containing expressions over some alphabet of strings. More fine-grained type systems ·. make a distinction · between atomic and complex types: atomic types being . monadic 09jects and corn plex types being made up from . (atomic or complex) subtypes with the rise of so-ca:Ifod typeforming connectives which serve to expre�s combinatorial properties. Typ�-forming connectives are relations over the set of type_ symbols; a familiar example are the slashes from categorial grammar /, \ : a functor type X/Y combines with a type Y to its right to form a �ype X; a fandor type Y\X combines ·with a t'ype Y_ to _ its l�1t io form an X. There is a nice interpretation . of lin� guistic types as propositional formul� ill a lo.gic: atomic types T correspond to formulae T; complex types like A\B correspond to A =}l B, with =?l a left-oriented version of the implication arrow =? of propositional logic. The combination of a type A with a type A =} B to a type B then becomes an instance of Modus Ponens, of which we now have two versions: A, A =}1 B -+ B and A =}r B, A -+ B. This, in fact, is an operationalisation of the slogan parsing as deduction, and is basically the central theme of categorial deduction as in Lambek calculus (Moortgat, 1988) .
The intuition that signs can be interpreted as types arises from the functionality expressed by the subcat feature: essentially, this feature

242

e�a�esses fha:.t a certain sign is functionally {in
Jt9�pl:ete for one or more other signs. This im
medfu;t'el� suggests a functional type equivalent (a
functor) for these signs. Saturated signs then can
be interpreted to correspond to saturated func
tors, or atomic types, i.e. types not being made
up from a type-forming connective and one or
more subtypes. HPSG's Subcat principle, which
allows for the combination of a non-saturated sign
with a subset o(the signs it subcategorises for
should then correspond to a combinatorial rule of
type formation, i.e. an inference rule in a type
calculus.

When we want to make a correspondence be
tween the signs of HPSG and types of a certain
kind, we immediately notice that HPSG signs en
code much more information than the monadic
categories of simple type systems like produc
tion grammars. A category like S, for instance,
is represented· in lIPSG as a fine-grained spec
ification of a verbal projection having various
properties among which is an empty subcate
gorisation frame. Clearly, we need a more so
phisticated type language than can be offered
by monadic· cat�gpxi�s alone. Suppose then we
switch from mop_a<;lk�_types to types with inter
nal structure: predic�tional types in stead of
propositional types. The value of the category
determining maj (or) ?,ttribute should become
the top-level predicat� con.stant. As in predicate
logic, types (propo�itions)"are made up from such
. a ·predicate constant and terms as arguments of
t'he :-p*�aica,te. , ��i�i\'. �avjng variable values, i.e.
being under$peciµe� J9,'l�certain attributes, corre-
spond to (univer's�ly) ·quantified formulae. E.g. ,
a partial sign like

[
maj or
gender
person

with ..x a variable should correspond to the type

\/(..x). (n(gender(neuter) , persan(_x))] .
The choice between universal and existential

quantification is mainly motivated from consid
erations regarding the proof terms for quantified
formulae, which will be discussed in the next sec
tion. A related motivaton is the fact that uni
versally quantified types have a straightforward
connection with Prolog literals, facilitating imple
mentation. It is important to notice that there is

RAAIJMAKERS

no deep, 'predicate-lik�' meaning ·behind such a
formula: it is just a description of a certain kind
of category, in the case above having a variable
spot for the person value. Sign-valued attributes,
i.e. attributes taking a full sign as value, or a list
of signs, are treated the same: whenever such an
attribute takes a variable sign as value, univer
sal quantification over this variable occurs. This
is responsible for the second-order nature of the

. type language we use.

Under the logical interpretation of types as
formulae, types have proof terms associated with
them; these proof terms are the justification for
assuming the formula is true: they correspond
to proofs for the propositions the types express.
These proofs are constructed in a calculus of in
ference rules, the inference rules constituting a
derivability relation over type sequences (like the
combinatorial rules of production systems) , where
this derivability relation now gets a logical inter
pretation as well. An alternative, quite common
point of view is that proof terms are a kind of
procedures (or programs) and types are the spec
ification of what these programs do. For instance,
the formula

\/(_x).(n(gender(masc), number(_x.)-)).
would be a specification of the program recognis
ing singular and plural ;masculine. µoun phrases
(this basically is what parsing is aboJJ,t}:.;

A concept like reentrancy can easily be en
coded by means of variab!e sha�ing, for example

'v'(_x). [P1 (Pi (..x)\ . . _ :, . , Pn:(.:t)}]

where each Pi is a predicate symbol.

We now turn to the translation from signs to
types, where we let t(S) yield the formula (type)
e.9-uivalent of the sign S. A few words on notation:
Q denotes a sequence 'v'(_xi) . . . \/(_xn) of quanti
fiers. The empty quantifier sequence is written as
Qo ; Qo .:F = :F. Further, QQo = Qo Q = Q. We
use the notation

to refer to some sign l: with the sign

A PROOF-THEORETIC RECONSTRUCTION OF HPSG 243

[

ai bi
] an bn

as a subsign. Likewise,

E _ [

ai bi
] an bn

refers to some sign E with the sign

deleted from it . Furthermore, var(X) , atom(X) , number(X) express respectively that X is a vari
able, an atom or a number.

• t(X) := Qo .X
if var(X) or atom(X) or number(X) or X =
0

• t (E [:r: 0 l)
== Q.M(F)

if t (E _ [::r: 0 l) == Q.F

• t (E [
su�cat (X1 , . . . , Xn) l) := maJ M

Q1 Q2 .A1 => . . . An => M(F)
if t (E - [::r;; (X, , . . . , Xn) l) := Q, .F and t((X1 , . . . , Xn)) := Q2 . (A1 , . . . , An)

• t ([A V]) := \l(V).A(V) if var(V)
• t ([A V]) := Q.A(X1 , . . . , Xn) if t (V) := Q. {X1 , . . . , Xn)
• t((X1 , • • · , Xn)) := Q1 Q2 . (F1 , F2 , . . . , Fn)

if t (X1) := Q1 .Fl and
t((X2 , . . . , Xn)) := Q2 . (F2 , · · · , Fn)

The crucial thing to note is that the subcat
information of a sign is reformulated as the func
tional demands of a functor type: a subcat list of
length n yields a functor with functional degree n,
where n now indicates the number of arguments
the functor is incomplete for.

The following example illustrates the mapping
from signs to formulae. Variables are prefixed
with a don't care ' _, .

[syn , [[loc , [[head , [[maj , n] , [case , _c] , [nf orm , _n] , [aux , nil] , [inv , nil] , [prd , nil]]] ,

then becomes

[subcat , []] , _ [lex , 1]]] , [bind , _b]]]

\I(_c)\l(_n)\I(_b). [n(syn(loc(head(case(_c) , nform(_n) , aux(nil) , inv(nil) , prd(nil)) , lex(l)) , bind(..b)))]
4.2 Type deduction

Now that we have types, the question arises : what
do we do with these types? In this section we
show how we can interpret the HPSG apparatus
of ID rules and various principles as an inference
mechanism for type deduction. Before we do so,
a few words on type deduction are necessary.

As mentioned in section 4 . 1 , types have a
truth-conditional interpretation: they correspond
to propositions (formulae) . This logical point of
view makes it possible to identify type derivability
relations with logical derivability relations from
proof theory. A statement A � B expressing
the derivability of type sequence B from type se
quence A is then called a sequent (Gallier, 1986) .
A sequent A1 , . . . , An � B can be interpreted_ as:
the validity of the formulae A1 , . . . , An implies the
validity of B; i.e. , there is no model for the formu
lae A1 , . . . , An that is not also a model for B. The
sequence A1 , . . . , An is called the antecedent of the
sequent ; the sequence B (in the present case of
length 1) is called the succedent of the sequent.

Th fi . Pi . . . Pn .- d - h e con gurat10n C
1s rea as: t e

conclusion sequent C is valid iff the premise sequents P1 , . . . , Pn are valid . As an example, here
is a fragment of so-called linear non-commutative propositional logic. 'Linear' (Girard, 1987) means
here that this logic forces 'honest' bookkeeping:
we are not allowed to duplicate nor delete types
during derivation. From a linguistic point of view,
linearity can be used to express the fact that

244
the meaning of an utterance depends· on the linear order of its words. Every r i is a (possibly empty) type sequence; A is a non-empty type sequence, and X, Y, A are types. The comma ' ,' denotes non-commutative concatenation : I'1 , r2 is the concatenation of the type sequences r 1 and
r 2 • This entails that antecedents are essentially lists of types.

I X -+ X

The £, rules are referred to as the left rules; the n rules as the right rules of the calculus. Here is a proof of the theorem A -+ (A => B) => B.
---I---I A -+ A B -+ B ------£ => A, A => B -+ B --------n => A -+ (A => B) => B

As we alluded to in section 4. 1 , it is possible to associate with deductions proof terms encoding the proofs performed; these terms are A-terms made up from the terms associated with the types in the sequents. The A-terms come in various kinds; the ones we discuss are either application terms t(t') , saying that the functional term t is applied to the term t'; or abstraction terms Av.t, a functional term taking a term v to a term t. Terms are in either normal form or non-normal form; in the latter case, terms contain subterms (Av.t) (t') , so-called redexes. The relation called ,B-reduction allows the simplification of such a redex to t [t' /v], which means that in term t, every occurrence of v is replaced by t' . The A-terms for these deductions have the so-called single-bind property : every A-hound variable v su:ch that Av.t

RAAIJMAKERS

occurs exactly once in t; so we do not have terms Av.w where v does not occur in ·w , nor terms like Av. (t (v) (v)) . We then end up with the following rules:
I-t-: X

_-+_t_:_X_
n => r, v : X -+ t : Y

r -+ Av.t : x => Y
n => v : x, r -+ t = Y

r -+ Av.t : x => Y
A -+ t' : X r1 , t(t') : Y, r2 -+ A £, ==>>-----------------------...:,-,:_____;_----,----r 1 , t : � => Y, A, r2 -+ A
A -+ t' : X r1 , t(t') : Y, r2 -+ A £, =>=-------------------r1 , A, t : X => Y, r2 -+ A

The term for �he proof above would be AP.P(t) giving the term t as a proof for A. Once one adds the so-called Cut rule to the calculus:
C r2 -+ A r1 , A, r3 -+ A ut · ·

r1 , r2 , r3 -+ A
A-terms in non-normal - form occur as proof terms. The Cut rule expresses the transitivity of the derivability relation -+. Cut-free sequent calculus for the linear fragment of propositional logic has the so-called subformula property: premise sequents contain all and only subformulae of the conclusion sequent. Premise sequents have lower degree ih - terms of type-forming connectives: they contain one c_onnective less than the conclusion ·sequents. From a top-down theorem proving regime, this means a steady reduction of complexity . during deduction: one starts with a 'complex' sequent containing a lot of connectives, breaking this sequent down into sequents of smaller degree , until one reaches the axiom sequents of type A -+ A, thus settling the conjecture of the conclusion sequent. In calculi with Cut, the subformula property no longer holds, since A can be any type, possibly increasing the degree of the premise sequent r1 , A, r3 -+ A. Fortunately, the Cut elimination theorem (Gentzen's Hauptsatz (Gentzen, 1934)) says that Cut is a derivable rule: every proof with Cut can ·be transformed into a Cutfree proof. Cut-elimination leads to normal-form proof terms.

A PROOF-THEORETIC RECONSTRUCTION OF HPSG 245
Here are the sequent rules for second-order quantifier types (Morrill, 1990) .

£\:/ r1 , t(t') : A[t' / ...x] , r2 � a : X r1 , t : \:/(...x) .A, r2 � a : X
£3 r 1 , 1r2 (t) : A[1r1 (t)/ ...x] , r2 � a : X r1 , t : 3(...x) .A, r2 � a : X

'R\:/ r � t : A r � >....x.t : \:/(...x).A
'R,3 r � t2 : A[t1 / ...x] r � (t1 , t2) : 3(...x).A

For {'R\:/, £3} , the condition is that ...x is not free in r, r1 , r2 ; t[a/ ,B] is the substitution of a for ,B in t and 1ri (t) is the i-th projection of the pairterm t: 1r1 ((a, ,B)) = a; 1r2 ((a, ,B)) = ,B. The functional proof terms for \I-types reflect the intuitionistic idea that a proof for a proposition \:/(...x) .A consists of a method for proving the proposition expressed by A. This gives a more plausible interpretation of proofs for universal quantification once this quantification ranges over infinite domains: a mere truth-value then seems impossible to arrive at. The pair terms for 3-types say that a proof for such a formula consists of an individual (a witness) and a term in which this individual is substituted for the bound variable. As noted earlier. · the intuitionistic quantifier terms have a nice interpretation in our syntactic type calculus: a type V(...x) .II then becomes a specification of a method (proof) recognising all expressions of type II on the basis of any (instantiation of) ...x.
We shall be silent about proof terms from now on, as they do not play an evident role in parsing HPSG. They could be of use in proving metaresults about HPSG parsing, however.
Given the calculus presented above, let us establish the fragment needed to perform deduction for HPSG.

4.3 ID rules as axiom schemata.
HPSG rules describe admissible, i.e. well-formed signs. In a type-theoretic setting, they can be interpreted as type definitions, since here, , signs

become types. A simple way to implement these definitions, is to formulate them as axiom schemata in a type calculus. That is, every rule R defining the sign :E becomes an axiom scheme:
R t (:E) � t(:E)

Every axiom sequent thus becomes an instance of an ID rule. This assures that , whenever an axiom schema is used during deduction, the type check is effective. For binary HPSG, this results in the following axiom schemata, where � schematises over types
Q....xi => • • • =>xn, 1 � i � n.

\:/(_cat)\:/(_phan)V(_syn)V(_sem)\:/(_dtr s) [_cat(_phqn , _syn, _sem, _dtrs)] � \:/(_cat)\:/(_phan)\:/(_syn)\:/(_sem)V(_dtrs) [_cat(_phan, _syn, _sem, _dtrs)]
\:/(_cat)\:/(_phan)\:/(_syn)\:/(_sem)V(_dtrs) -� . [_cat(_phan, _syn, _sem, _dtrs)] � \:/(_cat)\:/(_phan)\:/(_syn)\:/(_sem)V(_dtrs) � . [_cat(_phan, _syn, _sem, _dtrs)]
It is not too hard to recognise equivalents of the HPSG rules Rl and R2 in these axiom schemata, once one remembers that functors now combine with their arguments one at a time: in classical HPSG, there were only two kinds of functional configurations: a functor having consumed all of its arguments (treated by Rl) and a functor having consumed all of its arguments but one (R2) . In 'D-HPSG, many more configurations arise, generally speaking: n - 1 for any n-placed functor. So, where the first axiom schema restores Rl , the second can be seen to be a generalisation of R2 to cover any kind of functional, incompleteness. The lexicality demand on the head daughter Rule 2 makes vanishes here; functors consume one argument at a time, and once they have consumed one, they are no longer lexical. 3 There is another option here: the ID-rules could be compiled away by ensuring they are consequently applied to every sign and its phrasal subsigns when the lexicon is created. Although this idea entirely hides the important concept of ID rules in the process of lexicon creation, it allows for using the regular axiom scheme 3The demand that Rule 2 makes on the non-invertedness of the head daughter is left unexpressed here.

246

I-t-: X_---+_t_: X-
4.4· Principles as inference rules

and conditions

The various principles of HPSG appear to be easily reconciliable with the logical setting proposed. In HPSG, they do not form a homogenous class; some principles govern the flow of information in a feature structure, others create new information (like the LP principles) . This is reflected in their proof-theoretic reconstruction.
4.4.1 Head Feature Principle

The Head Feature Principle of HPSG instantiates the head features of a fresh 'mother sign' to the head features of the head daughter. The necessity for doing so vanishes in the type-theoretic HPSG equivalent . To see this, notice that in the latter, all necessary feature transport is encoded by means of variable sharing in the type assignments for the lexical entries. Where HPSG uses the Subcat Principle to create new sign projections, with new compdtrs and subcat values, V-HPSG never creates new sign projections during analysis: types only become gradually more developed in the sense that more and more variable subtypes become instantiated. Therefore, the Head Feature Principle becomes totally redundant: the head features of a functor (a verb, or whatever) are preserved and developed all the way. This makes V-HPSG in a way more lexical than orig-: inal HPSG. The distinction among head daughters and their superordinating signs vanishes as well; one reasonable thing to say is that the head feature principle is 'compiled away' in the lexicon, making this distinction irrelevant . So, we · can suppress the headdtr attribute in our signs. Another option is to keep the attribute, letting it have as value a sign which has a nil value for
headdtr.

4.4.2 Subcat Principle

The Subcat Principle is the motor behind syntactic combination in HPSG. Basically, what it

RAAIJMAKERS

does in original HPSG is to decompose the subcat list of a non-saturated sign, transferring a (non-fixed) number of entries on the list to the
compdtrs attribute of a fresh mother sign, thus allowing the combination of the sign with suitable complements matching the compdtrs value. Unification takes care of making this match by recursively descending into the mother sign. In V-HPSG, the Subcat Principle has a binary shape: it secures the combination of a functor A ⇒ B and a (single) argument expression A to a result type B. As A ⇒ B is an undirected functor, combining with an A either to its left or right to form a B, we will need two versions (left and right) of the Subcat Principle. These can be interpreted as in/ ere nee rules, i.e. the left rules for the propositional connective ⇒ for undirected implication we saw earlier. The (type) variable sharing in these rules must now be understood as demands . for unification on type level:

The Subcat principle covers concatenative functors only, i.e. functors which either follow or precede their arguments. For non-concatenative functors, such as the adverbial modifiers of section 3, we cannot use the concatenative connective ⇒. Borrowing the connective ! from categorial grammar (Moortgat , 1988) , then, A ! B is a expression wanting to penetrate in an expression of type B to form an A. The adverbial adjuncts are typed vp ! vp, where vp is an abbreviation of a formula n(. . .) ⇒ v(. . .) . It turns out to be technically impossible to establish a full logic for this connective under the perspective of antecedents as lists; only the rule £ ! can be formulated.4 See Moortgat (1988, 1990) for discussion resp. a solution. For our purposes, this is enough, however: HPSG displays partial logics (left rules only) for functional connectives. The rule becomes:
£ ! r2 , r3 ---+ t' : B r1 , t(t') : A, r4 ---+ A r1 , r2 , t : A ! B, r3 , r4 ---+ �

· r' - 1::i,. • (r) r' 4 A full logic for this connective would make the structural rule of Permutation: r _ f:l. permutation = derivable. This means that antecedents now become treated as multisets (sets with repetition) rather than lists, w,hich is not desirable for linguistic purposes.

A P ROOF-THEORETIC RECONSTRUCTION OF HPSG 255
9 References

Cooper, R. (1990): "Specifiers, Complements and Adjuncts in HPSG". Unpubl. ms.
Dorre, J., I. Raasch (1991): The Stuttgart Type Unification Formalism- User Manual. IBM, Stuttgart.
Duffy, D.A. (1991): Principles of automated theorem proving. Wiley, Chichester.
Gabbay, D. (1991): Labelled Deductive Systems, Oxford University Press, to appear.
Gallier, J. (1986): Logic for Computer Science, Foundations of Automatic Theorem Proving. Harper and Row, New York.
Gentzen, G. (1934): "Untersuchungen iiber das logische Schliessen". In: Math. Z.,39: 176-210, 405-431.
Girard, J .-Y. (1987): "Linear Logic" . In: Theoretical Computer Science,50:l-102.
Konig, E. (1989): "Parsing as natural deduction". In: Proc. ACL, Vancouver.
Moortgat, M. (1988): Categorial Investigations, logic and linguistic aspects of the Lambek calculus. Foris, Dordrecht.
Moortgat, M. (1990): "Discontinuous Type Constructors" . Paper presented at the workshop Categorial Grammar and Linear Logic, 2nd European Summerschool on Language, Logic and Information.
Morrill, G. (1990): "Grammar and logical types". Unpubl. ms., Edingburgh.

Pollard, C, I.Sag (1987): Information-based syntax and semantics, vol.1, CSLI Lecture Notes 13, Stanford.
Pollard, C, I.Sag (1992): Information-based syntax and semantics, vol.2, CSLI Lecture Notes, Stanford (forthcoming)
Popowich, F., C.Vogel (1990): "'A LogicBased Implementation of Head-Driven Phrase Structure Grammar". In: Proc. of the Third International Workshop on Natural Language Understanding and Logic Programming. Lidinogo,Stockholm.

Raaijmakers, S. (forthcoming): Parsing HPSG. An evaluation of several parsing strategies . . Ms. , ITK.
Reape, M. (1990): "Getting things in order". Paper presented at the Symposium on Discontinuous Constituency, Tilburg University, January 25-27th 1990.
Roorda, D. (1991): Resource Logics. Dissertation, University of Amsterdam.
Shieber, S. (1986): An introduction to unification-based approaches to grammar, CSLI Lecture Notes 4, Stanford.

van Benthem, J . (1991) : Language in action, Categories, Lambdas, and Dynamic Logic. Studies in logic and the foundations of mathematics, vol. 130. North-Holland, Amsterdam.
Wallen, L.A. (1990): Automated proof-search in non-classical logics. MIT Press, Cambridge, Mass.

256 RAAIJMAKERS

A P R0OF.-THEORE'IlIG RECONSTRUCTION OF HPSG; 247

where ri is a type sequence of length � 0, with
the exception that at least one of r 2 , r 3 is non
em pty. Notice that this rule generalizes over in
completeness in the following way: if r2 is empty,
! is an instance 9f /; if r3 is empty, ! is an in
stance of \.

4.4.3 Semantics Principle

The Semantics Principle can be 'compiled away'
as well, by putting in the lexicon the semantics of
a sign as a product of the semantics of its daugh
ter signs. This makes it possible to incorporate
various kinds of semantics into lexical signs, for
instance, a simple application semantics:

[[phon , . . .]
[syn , . . .

[subcat , [[. . . [sem , X]]]]
. . .]

[sem , f (X)] ,
[dtrs , . . .]]

4.4.4 LP principles

Once a functor combines with one of its argu
ments to form a mobile the LP principles apply
to order the functor and argument branches by
ordering the respective phon values to arrive at
the phon value of the mother node. LP principles
can address both aspects of argument and func
tor, . so they must be functions of a pair of types
T to sets of types:

T x T � POW(T)

In case a concatenative functor combines with
its arguments, the string ordering functions
· yield a singleton set of result types; for non
concatenative functors, this result set often has
an arity greater than one, since there is gener
ally more than one string position for a non
concatenative functor, and each separate string
position determines a new sign.

The operationalisation of LP principles in V
HPSG is as follows. Once a functor has applied to
its arguments, both functor and argument types
are fed to the LP principles, which figure out the
phon value of the range subtype of the functor.
This entails that LP principles in V-HPSG should

operate as side-conditions on inference rules:5

Pi F. ___ C _____ n_if LP i V . . . V LP n

LP principles operate on an argument type and a
functor type. Here are the type-theoretic equiv
alents of the LP principles of binary HPSG. The
notation (BLPn)A ® B = C says that the result
of applying the LP principle n to argument A and

�
functor B is C. As before, � Y schematises over
types

and
�
X
l Z = X => Z.

Further, inverted(X) says that X is inverted,
ADVM0D(X) that X is an adverbial modifier, and
infix(S2, SI) = S3 that S3 is the infixation
of S2 into SL Uninteresting variables are sup
pressed with an underscore, and quantifiers · are
omitted. Anticipating on the implementation, we
use (Prolog) difference list notation for list con
struction: the difference list [a, b, c) - [c) is equiva
lent to the list [a, b) . This is done to optimise the
expression of list construction: concatenation of
two lists can now be expressed via variable shar
ing with one unit clause:

conc_dl(A-B ,B-C,A-C) .

For example,

conc_dl([a, blC) - C, [c) - 0 , [a, b, c) - □) .

(BLPl)
�
X n.Y(phon(S2 - S3) , -, -, -)

®
�
X
1 .Z(phon(S1 - S2) , syn(loc(..h, lex(+)) , _b) , _u, _w)

= �
X . .
1 .Z(phon(S1 - S3) , syn(loc(..h, lex(+)) , _b) , _u, _w)

(BLP2)
�
X n.Y(phon(S1 - S2) , -, -, -)

®
�
X
1 .Z(phon(S2 - S3) , syn(loc(..h, lex(-)) , _b) , _u, _w) 5This relates the current enterprise to Gabbay's (Gabbay, 1991) labelled deductive systems, where side-conditions on inference rules occur aa well.

248

= � 1.Z(phon(S1 - S3), syn(loc(..h, lex(-)), -b), _u, _w)

�

(BLP3)
�
f Y(phon(S2 - S3), -, -, -) ®

X 2 � n .Z(phon(S1 - S2), _s, _t, _d)
= �

X 2 � n .Z(phon(S1 - S3), _s, _t, _d

�

(BLP4)
� �.Y(phon(S2 - S3), -, -, -) ®

fh.Z(phon(S1 - S2), _s, _t, _d)
= � rh.Z(phon(S1 - S3), _s, _t, _d) if inverted(Z(phon(S1 - S2), _s, _t, _d))

�

(BLP5)
� fY(phon(S1), -, -, -) ®

rh.Z(phon(S2), _v, _u, _w) =
� rh.Z(phon(S3), _v, _u, _w) if �

X ADVM0D(m.Z(phon(S2), _v, _u, _w)) and infix(S2,Sl)=S3

4.5 Calculus

To summarize, here is the full calculus V-HPSG. LP principles apply as discussed earlier to each inference rule as side-condition; they are suppressed below.

RAAIJMAKERS

V(_cat)V(_phan)V(_syn)V(..sem)V(..dtr s) [_cat(_phan, _syn, ..sem, ..dtrs)] __. \/(..cat)\/(_phan)V(_syn)V(..sem)V(..dtr s) [_cat(_phan, _syn, ..sem, ..dtrs)]
=> \/(_cat)\/(_phan)V(..syn)V(..sem)V(..dtrs) .:x . [-cat(_phan, _syn, _sem, ..dtrs)] __. 't/(_cat)\/(_phan)V(..syn)V(..sem)'t/(..dtrs) � . [_cat(_phan, ..syn, ..sem, ..dtrs)]

.cv r1, y : A[t' / .:x], r2 __. a : x r1, t : V(.:x).A, r2 __. a[t(t')/y] : X
RV r __. t : A r __. A.:x.t : V(.:x).A

£ ! r2, r3 __. t' : B r1, t(t') : A, r4 __. A r1, r2, t : A ! B, r3, r4 __. tJ.
5 Implementation

5 .1 Design

I Signs->Formulae
i

�\�t\f����t1�:���\\I
�'::::«::� .. ��..::.� ❖::: �:=::».v.�¾»:=»""�

Screen
The lexicon - in the overall design of the implementation pictured above - consists of lexemesign pairs. When a sentence _s is entered to

A P ROOF-THEORETIC RECONSTRUCTION OF HPSG 249
be analysed, first the lexemes are looked up in the lexicon. The corresponding signs are corn- · piled to a sequence II of formulae according to the map t of section 4 .1 . Then, given the result category _c, which the user is prompted to enter, the sequent II -+ _c(phan(_s) , _syn, _sem, -<ltrs) is formed, with _syn, _sem, _dtr s variables for syntactic, semantic and daughter information. The sequent is handed to the theorem prover, which is a meta-interpreter performing sequent deduction. Output is in both Prolog and picture format: the derived type formula for an utterance is printed on screen as a Prolog term; in a separate window the sign equivalent of the formula is drawn in standard HPSG format.
5 .2 Term unification and uniform

signs

Unification is a computationally expensive tool, boiling down to extensive graph inspection and merging. This cost can be saved by adopting one uniform structure for the items to be unified, i.e. signs: if we treat these signs just like rigid term structures, we could directly make use of Prolog's built-in term unification mechanism for unifying them. This idea entails that every lexeme in the lexicon has a fixed sign type, with standard slots and values. The structure of this sign is as fol-lows:
[[phon , _p]
[syn , [[loc , [[head , [[maj , _m] ,

[case , _c] ,
[nf orm , _n] ,
[vform , _ v] ,
[aux , _a] ,
[inv , _i] ,
[prd , _j]]] ,

[subcat , _s] ,
[lex , _l]]] ,

[bind , _b]]] ,
[sem , _t] ,
[dtrs , [[headdtr , _hd] ,

[compdtrs , _cd]]]]]

Lexemes can be unspecified for certain attributes; these attributes then carry the atomic value nil. In Prolog, variables occurring in literals are implicitly universally quantified, which means

that qu,antifiers are removed from t.h�m. This makes it :possible to use Prolog's t erm unification mechanism directly to instantiate· ·values to the variables; see Duffy (1991) for discussion. So, we can simply strip quantifiers from a formula:
Q.:F � :F. It is a well-known fact from the proof-theory of predicate logic that once both kinds of quantification (universal and existential) are used, deductions are not invariant under permutation of rule application: the application of quantifier elimination rules becomes order-sensitive (Wallen, 1990) . This effect does not take place here, since we only have universal quantification.
5 .3 Calculus in Prolog format

In Prolog format, the axioms and rules of the calculus have the following shape:
axiom(Name , Antecedent--->Succedent

rule (Name , Antecedent--->Succedent (if C)

Given a functor type A1 ⇒ . . . An ⇒ B , which is right-associative, i.e. A1 ⇒ (. . . (An ⇒ B) . . .) , it is necessary t o inspect the properties · of the ultimate range subtype B when applying the LP principles. This would involve descending into the functor type, until one reaches the ultimate subtype B. From a practical point of view, we would like to avoid such descent; we therefore notate such a functor as
(A1 , . . . , An) ⇒ B

where (A1 , . . . , An) is a list of types. For the infix types A l B we do likewise; they are usually of the form (A2 ⇒ . . . An ⇒ B) l A1 . To distinguish the first argument from the rest of the arguments, we write

In Prolog, we write B© (..x, . . . , _y) for
B(..x, . . . , _y) . Sequents are written

(Li , . . . , Ln) -+ X,
where each Li is a subsequence (list) of types; type sequences of length 1 are denoted as [T] , with T a type or type variable. Some examples of the· axiom and rule format are then:

250

Ii) COHSOLE

sli,, [Pt-w, (do _, koopt _, book oot plaetJes >]

¥ loc:

I
�: v�ll]

[vfon, fin]

[aux ·]
[Inv ·]

(Prd -]
[SIA>cat l l]
(lox -]

[_bird nil]

[- r [-[-[- [Mt �= �- JJ]JJJJ
c- cdo c- -rn

dtra (!,oaodtr nil]

» Sentence : de 111an koopt een boek met plaatJes.

» Categor11 : v .

» Sentence parsed I
+++++++++++++++++++++++++++++++++++++++

» Parsing took 0 . 683 sec.

RAAIJMAKERS

» Result: v!! (phon< Cde.man. koopt. een.boek.met.plaatJesl-Cl > . syn< loc < head(case<nil >
, vform(fln) ,aux (O) , lnv (O) . prd (O)) , lex(O)) , bind (ni l)) ,se111(kopen(sem(een(se111(met(sem(
plaatJesl . sem(boek> > > > > .se111 (de (se111<111an> > > > > ,dtrs(headdtr <nil > .co111pdtrs<n!! <phon< tee
n,boek.met.plaatJesl-Cl > . s11n< loc (head(case(ni l) .nf'or111(f'ull > .aux< nil >. inv(ni l > . prd(
1 1 > >. lex < O > > , bind (n i l > > ,se111(een<sem<111et(se111 < plaatJes l . se111(boek) > > > > ,dtrs(headdtr(nl
l) ,co111 trs(n!! (hon(Cboek,met, laat esl - C l >.s n(loc(head(case(nil) ,nfor111(norm) , aux

Figure 3: Screendump.

axiom(rule1 , [C© (P , S , B , D)] --->
[C© (P , S , B , D)]) .

rule (subcat_left ,
(T1 , T2 , [[X I T] =>B© (S1 ,

syn (loc (Wl , lex (L)) ,
W2) ,

S , D)] , V) ---> Z
if

T2 ---> [X]
and

{lp (LP_Name ,
X ,
[X I T] =>B© (S1 , syn (loc (W1 , lex (L)) ,W2) ,

S , D) ,
[X I T] =>B© (S3 , syn (loc (W1 , lex(L)) , W2) ,

S , D)) }
and

(T1 , [T=>B© (S3 , syn (loc (W1 , lex (O)) , W2) ,
S , D)] , V)

---> z
) .

Notice how the lexicality value is changed to
0 here, once the functor has combined with its
argument. Above we argued that the lexicality
feature is a derived feature, arising from the ab
sence or presence of daughters in a tree. Since lex
ical signs already have (variable) daughters in V
HPSG, checking for lexicality could (and should)
be implemented here by inspection of the daugh
ter specifications on the functor type: if the first
daughter entry in the compdtrs attribute list has,
say, a variable phon value, the sign as a whole
can be concluded to be lexical. For reasons of ef
ficiency, we implement this view on lexicality by
switching to non-lexicality the moment a functor
combines with an argument . The variable L ex
presses the irrelevance of the (non-)lexicality of
the functor symbol: no matter what value the
functor has for lex, the range type will have the
value - for the attribute lex.

A P ROOF-THEORETIC RECONSTRUCTION OF HPSG 251

5.4 Theorem prover

Various theorem proving techniques can be imple
mented quite easily in Prolog. As theorem prover,
we use a simple sequent-proving device, imple
mented as follows: the prover is a set of clauses for
a predicate prove (+Goal , -Rules) , where Goal
is either a sequence of sequents of length mini
mally 1 , or a structure {G1 , . . . , Gn} with each
Gi (1 ::; i ::; n) a non-sequent goal; Rules is a
list encoding the inference rules and axioms used
for proving Goal. Initially, Goal is the sequent
to be proved. The predicate prove/2 calls a rou
tine matching the sequent against the database
of inference rules, i .e. if Goal is of the form
X1 , • • • , Xn -+ Y, it tries to match (resolve) the
sequent against the rules and axioms of the cal
culus, which take the shape of A -+ B (if C) .
Once the match of X 1 , . . . , X n against A and Y
against B has been made, the eventual premises
C are attempted to prove.

prove ({Goals} , []) : - call (Goals) .
prove (A--->B , [Rule l Rules]) :

rule (Rule , (X ---> B if Y)) ,
resolve (A , X) ,
prove (Y , Rules) .

prove (A and B , Rules) :
prove (A , R1) ,
prove (B , R2) ,
conc (R1 , R2 , Rules) .

prove (A--->B , [Ax]) :
axiom(Ax , A1--->B) ,
resolve (A , A1) .

The linear precedence principles are (as
illustrated in section 5.3) encoded as goals
{lpi , . . . , lpn} , to be called before entering the
eventual premise sequents.

5 .5 Principles

Here are some linear precedence principles. They
are written as

lp (Name , Arg , Funct , NewFunct) ,

with Name the name of the principle, Arg ,
Funct , NewFunct types such that NewFunct has
as its phonology value the ordered phonology val
ues of Arg and Funct . Uninteresting variables are
written as underscores.

lp (lp1 ,
X© (phon (S2-S3) , _ , _ , _) ,
[X© (_ , _ , _ , _)] =>B© (phon (S1-S2) ,

syn (loc (W1 , lex (1)) , W2) ,
S , D) ,

[X© (_ , _ , _ , _)] =>B© (phon (S1-S3) ,

lp (lp4 ,

syn (loc (W1 , lex (1)) , W2) ,
S , D)) .

X© (phon (S2-S3) , _ , _ , _) ,
[X© (_ , _ , _ , _) I T] =>B© (phon (S1-S2) , P , Q , D) ,
[X© (_ , _ , _ , _) I T] =>B© (phon (S1-S3) , P , Q , D))

inverted (B© (_ , P , _ , _)) .

6 Sample lexical entries

Lexical entries are of the form

WORD : = SIGN (+- VAR_CONDITIONS)

with WORD , SIGN resp. a lexeme and its sign rep
resentation, and the optional <- VAR_CONDITIONS
encoding instantiations of variables mentioned in
SIGN (this is just done to avoid having to type
very corn plex signs) .

Some (partially specified) sample lexical en
tries are:

loopt : =

[[phon , [loopt l I] -I] ,
[syn , [[loc , [[head , [[maj , v] ,

[case ,nil] ,
[n:f orm , nil] ,
[vform , fin] ,
[aux , 0] ,
[inv , OJ ,
[prd , 0]]] ,

[subcat , [X]] ,
[lex , 0]]] ,

[bind , nil]]] ,
[sem , _] ,
[dtrs , [[headdtr , nil] ,

[compdtrs , [X]]]]])
<-

X= [[phon , _] ,
[syn , [[loc , [[head , [[maj , n] ,

[case , nil] ,
[nform , _] ,
[vform , nil] ,

252
[aux , nil] ,
[inv , nil] ,
[prd , nil]]] ,

[subcat , []] ,
[lex , 0]]] ,

[bind , _]]] ,
[sem , _] ,
[dtrs , _]] .

de : =

[[phon , [de l I] -I] ,
[syn , [[loc , [[head , [[maj , n] ,

[case , nil] ,
[nform , _] ,
[vform , nil] ,
[aux , nil] ,
[inv , nil] ,
[prd , nil]]] ,

[subcat , [X]] ,
[lex , 1]]] ,

[bind , nil]]] ,
[sem , _] ,
[dtrs , [[headdtr , nil] ,

[compdtrs , [X]]]]])
<-

X= [[phon , _] ,
[syn , [[loc , [[head , [[maj , n] ,

[case , nil] ,
[nform, _] ,
[vform , nil] ,
[aux , nil] ,
[inv , nil] ,
[prd , nil]]] ,

[subcat , []] ,
[lex , 1]]] ,

[bind , _]]] ,
[sem , _] ,
[dtrs , _]] .

man . -
[[phon , [man l I] - I] ,

[syn , [[loc , [[head , [[maj , n] ,
[case , nil] ,
[nform , norm] ,
[vform , nil] ,
[aux , nil] ,
[inv , nil] ,
[prd , nil]]] ,

[subcat , []] ,
[lex , 1]]] ,

[bind , _]]] ,

[sem , _] ,
[dtrs , [[headdtr , nil] ,

[compdtrs , []]]]]) .

7 Performance

RAAIJMAKERS

The following overview lists real-time parsing results for a small set of Dutch sentences. The results were generated by a compiled Prolog executable version of the program, running under X-windows on a SUN SPARCstation 1. The sentences and their word-by-word translations are:
1. jan loopt. john walks.
2. de man loopt. the man walks.
3. de man loopt graag. the man walks gladly.
4. jan heeft hard gelopen. john has fast walked.
5. jan slaat de man. john hits the man.
6. john slaat graag de hond. john hits gladly the dog.
7. de man koopt een boek met plaatjes. the man buys a book with pictures.
8. jan geeft marie de hond. john gives mary the dog.
9. jan geeft marie een boek met plaatjes. john gives mary a book with pictures.

10. jan geeft marie graag een boek. john gives mary gladly a book.
11. dat jan de hond slaat. that john the dog hits.

» Sentence :. j an loopt .
» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 000 sec .

>> Sentence : de man loopt .

A PROOF-THEORETIC RECONSTRUCTION OF HPSG 253

>> Category : v .
> > Sentence parsed !
++++++.+++++++++++++++++++++++++++++++++
>> Parsing took 0 . 000 sec .

>> Sentence : de man loopt graag .
» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 050 sec .

>> Sentence : j an heeft hard gelopen .
» Category : v .
>> Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 050 sec .

>> Sentence : j an slaat de man .
» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 067 sec .

>> Sentence : j an slaat graag de hond .
>> Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 450 sec .

>> Sentence : de man koopt een boek met
plaatj es .

» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 683 sec .

>> Sentence : j an geeft marie de hond .
» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 1 17 sec .

>> Sentence : j an geeft marie een boek
met plaatj es .

» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 2 . 500 sec .

>> Sentence : j an geeft marie graag een
boek .

>> Category : v .
>> Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
» Parsing took 1 . 316 s'ec .

>> Sentence : dat j an de hond slaat .
>> Category : v .
>> Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 017 sec .

As can be concluded from the output presented in the previous section, perfp:rma_:µce is relatively good. Sentences taking a lot qf time (say, over 1 second), invariably contain at least one adverbial modifier, or involve an NP closure problem. For instance, in
• John gives Mary a book with pictures

the phrase 'John gives Mary a book' can be erroneously analysed as a sentence before the PP 'with pictures ' is attached to 'a book'. Once the parser detects the remaining phrase 'with pictures', it will have to backtrack and redo a lot of work. The bad performance is a consequence of the sequent formalism: for any configuration
X1 ⇒ X2, X1, X1 ⇒ X1

where each Xi is distinct, the analysis
((X1 ⇒ X2, X1), X1 ⇒ X1)

is tried. One idea would be to employ a wellformed substring table encoding intermediate parsing results, to avoid having to reparse too much once the parser starts backtracking. Generally speaking, weak performance for long sentences is not surprising, since the various inference rules allow for blind alleys in the left premise deduction, by instantiating wrong subsequences of the antecedent to the factor reducing to an argument type. This is a direct consequence of the non-deterministic nature of the procedure decomposing the antecedent into contexts around a functional type. The problem can be fixed by introducing so-called proof invariants (van Benthem, 1991) into the theorem prover. Proof invariants are structural validities for antecedentsuccedent pairs, which serve to prune irrelevant options from the search space . The attractive feature of the current setting is that any optimalisation coming from proof theory can be used to optimise the parser.

254
8 Concluding remarks

We have shown that it is possible to give HPSG a deductive basis. The binary version of HPSG we have proposed, has been demonstrated to correspond to a fragment of second-order linear logic. The binarity of this HPSG dialect, which is faithful to classical HPSG in all other respects, is mo- . tivated from practical rather than theoretical reasons; in fact, the current approach is open to any version of HPSG. The parser we developed is, although relatively fast, in need of further optimalisation; the use of proof invariants may help to reduce the search space. Also, recently developed

RAAIJMAKERS

low-complexity theorem proving techniques such as proof nets (Roorda, 1991), may be of use here. Returning to the five desiderata of section 1, then, the last item, "The parser should have reasonable time/space complexity" has not fully been met yet.
Acknowledgements

I thank my colleagues Rene Ahn, Miriam Mulders, Gerrit Rentier and Leon Verschuur for fruitful discussion and taking an active interest in the enterprise.

