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Abstract 

A reinterpretation of Head-Driven Phrase Structure Grammar {HPSG) in a proof-theoretic context is presented. This approach yields a decision procedure which can be used to establish whether certain strings are generated by a given HPSG grammar. It is possible to view HPSG 
as a fragment of linear logic (Girard, 1987) , subject to partiality and side conditions on inference rules. This relates HPSG to several categorial logics (Morrill, 1990) . Specifically, HPSG signs are mapped onto quantified formulae, which can be interpreted as second-order types given the Curry-Howard is.omorphism. The logic behind type inference will, aside from the usual quantifier introduction and elimination rules, consist of a partial logic for the undirected implication connective. It will be shown how this logical perspective can be turned into a parsing perspective. The enterprise takes the standard HPSG of Pollard - Sag {1987) as a starting point, since this version of HPSG is well-documented and has been around long enough to have displayed both . merits and shortcomings; the approach is directly applicable to more recent versions of HPSG, however. In order to make the proof-theoretic recasting smooth, standard HPSG is reformulated in a binary format. 
Introduction • The parser should have reasonable time/space complexity. The main concern of this paper lies in building a parser for HPSG. The result of the enterprise should meet the following desiderata: Existing parsers for HPSG do not obey these demands; e.g., the Popowich/Vogel parser (Popowich - Vogel, 1990) violates the second, fourth and fifth demand; the LiLog STUF environment (Dorre - Raasch, 1991) violates - the first, third, and fifth. For a full comparison, see Raaijmakers (forthcoming). 

• The parser should interpret the original grammatical theory, or as close a dialect as possible. 
• The parser should separate grammatical theory from parsing issues. 
• The parser should make an operationalisation of the grammatical theory explicit, as declaratively as possible. 
• It should be easy to alter the grammatical theory. 

In the parsing-as-deduction field, several parsing routines have arisen from proof-theoretic investigations (Moortgat, 1988; Konig, 1989). While these routines are not all among the most efficient, once a proof-theoretic formulation of HPSG has been made, one can benefit from these results. *This research was carried out within the framework of the research programme 'Human-Computer Communication using natural language' (MMC). The MMC programme is sponsored by Senter, Digital Equipment B.V., SUN Microsystems Nederland B.V. and AND Software. 
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Some terminological remarks: we refer to 
HPSG of Pollard - Sag (1987) with '( classi
cal) HPSG', and to its type-theoretic (deductive) 
equivalent with 'V-HPSG'. 

2 An overview of HPSG 
HPSG is a lexicalist , feature-based formalism ror 
syntactic and semantic analysis of natural lan
guage. HPSG puts all relevant linguistic infor
mation in the lexicon, and has general rules and 
principles governing the construction of phrases 
from subphrases. 

As a syntactic formalism, HPSG divides the 
labour of tree construction into separate processes 
of mobile construction and mobile ordering. A 
mobile is a tree-like structure with unordered 
trees; actually, a mobile can be interpreted as a 
description of a set of trees. 

Socalled immediate dominance (ID) rules 
build these mobiles, which are then turned into 
trees by linear precedence (LP) principles. HPSG 
is a feature-based formalism, employing various 
feature mechanisms transporting feature informa
tion through feature structures. In HPSG, lex
emes are bundles of so-called attribute-value pairs 

where Aj is a certain linguistic (phonologi
cal/syntactic/semantic) property taking its speci
fication from a set of values containing l7i.  These 
bundles are called signs. The reader is referred 
to Pollard - Sag (1987,1992) for a full overview 
of the various attributes and their values. The 
generic structure of main signs in HPSG is 

[ 

phon . .  · i 
syn . .  . 
sem . .  . 
dtrs . .  . 

where the phon, syn, sem and dtrs values de
scribe respectively the phonological, syntactic, se
mantic and configurational properties of the sign. 

Attributes take either atomic or complex val
ues; an attribute like person ranges over the 
set {f irst, second, third} , whereas an attribute 
like dtrs ( describing daughters of phrases) takes 
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full signs as values. The notion of head is a central 
concept in HPSG. Basically, a head of a phrase is 
a subphrase determining the relevant combinato
rial properties of the sign . . Heads can be phrasal 
or lexical; lexical heads are simply signs having 
no daughters. For instance, the head of a VP sees 
Mary is the verb sees; The grammatical proper
ties of sees determine the properties ( viz. agree
ment) · of the VP as a whole, and not those of 
the direct object Mary. The head of the sentence 
John sees Mary is the VP sees Mary. 

HPSG heavily leans on the notion of unifica
tion (Shieber, 1986) . Simplifying matters some
what, two signs S1 and S2 are unifiable with each 
other, written S1 U S2 , if for any attribute they are 
both specified for, they bear non-conflicting val
ues. Further, any fully disjunct parts of two signs 
(consisting of different attribute-value pairs) of 
the two signs can be combined directly. So, 

[ number 
person 

sg l u f irst [ 

gender fem l 
case dative = 

[ 

number 
person 
gender 
case 

Likewise, 

sg l f irst 
fem 

dative 

[ 

syn l loc I head I maj n 

] 

. 

a r [ gender fem l U g number sg 
[ gender fem l = person 2 

[ 

syn l loc I head I maj 

agr [ ::::: !;
m 

] 
person 2 

But of course the following Jails: 

[ 

number sg l U [ b . num er person first plur ] 

2 .1  Immediate dominance 
rules 

(ID} 

ID rules describe admissible dominance struc
tures, which can be interpreted as mobiles: tree
like structures with unordered branches. The 
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rules themselves take the form of (partially specified) signs (just like HPSG's principles), applying as felicity constraints to signs to be combined. 
Rule 1 (Rl) 
[ 

syn j loc I subcat () 

] 
dtrs 

[ headdtr I syn I loc I lex - 1  
compdtrs (-d) 

Rule 2 (R2) 

[ 

syn I loc I subcat (..s) . · 
[ [ head I inv - 1  

dtrs headdtr I syn I loc 
lex + . 

Rule 3 (R3) 
· 

head inv + [ 
syn I loc I subcat () 

dtrs [ beaddtr I syn I loc [ lex 1 l 
l ] 
l ] 

Rule 1 licenses signs having a non-lexical (i.e. phrasal) head daughter and being fully saturated, that is, signs having a subcat(egorisation) list of length zero ( written as ()). There is one complement daughter (indicated with the variable ' _d'); an example would be an S having a VP as head daughter and a subject as only complement daughter. The loc attribute is used to describe "local" properties of a sign, such as lexicality and subcategorisation demands; this contrasts with the bind attribute, describing anaphoric links . over signs. Rule 2 caters for instance for VP 's, which have a lexical head daughter (the verb), and are one short of becoming saturated: they subcategorise for a subject. Rule 3 admits of saturated signs with a lexical, inverted head daughter, like in Is John sleeping?, the head daughter of which is the finite auxiliary Is, which subcategorises for both an infinitival VP and a nominative NP. 
2 .2 Linear Precedence (LP) princi-

ples 

LP principles turn mobiles into genuine trees by imposing order on sister nodes. 
Constituent Order Principle 
[ 

phon order - constituents([]) 
], ·· 

dtrs [I 
Linear Precedence Constraint 1 (LPl) 
head [lex +] < [ ]  

Linear Precedence Constraint 2 (LP2) 
complement < < complement [lex -] 

The operation order-constituents gives the disjunction of all permutations of the phonology of the daughters. · At least one of these permutations will have to be consistent with the constraints of order expressed by the LP principles, which are specific for English (and related lan-guages): · · 
LP l says that lexical heads precede all their sisters (the empty sign O acts _like a ''�ildc�rd" symbol here, unifying with every sig�). _ LP2 says that less oblique complements precede more oblique phrasal sisters; < < is precedence between oblique elements, where obliqueness corresponds · inversely to degree of obligatoriness. Subjects, for instance, are in Germanic languages less oblique than direct objects, which means they ·are more obligatory: they cannot be omitted, in general. 

John eats. 
sJteats an apple. 

The degree of obliqueness is mirrored (in reverse) by the order of complements on the subcat list of signs: the less oblique elements follow the more oblique elements. 
2.3 Feature transport principles 

Various principles take care of the distribution of feature information in a feature structure, defining the paths along which information percolates upwards. The concept of reentrancy expresses the sharing of information by several attributes across a sign, using· boxed integers to identify attributes. 
Head Feature Principle 
[ syn I loc I head IT] l dtrs I headdtr I syn I loc I head [I] 

Subcat(egorisation) Principle 
[ 

, syn I loc I subcat [!] 
] dtrs [ headdtr I syn I loc I subcat IT]+[!] l compdtrs IT] · (Ll+L2 is the concatenation of the two lists LI. and L2.) 
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Semantics principle (simplified) 
[ 

sem [ cont s - c - s ([I], [II
� 

] [ headdtr I sem I cont 1 l dtrs compdtrs I sem I cont 2 
The HFP enforces identity between the head features of the head daughter and the mother sign. The subcat principle decomposes the subcat list of a head daughter in two parts of arbitrary •· (non-empty) length: the first part should correspond to the value of compdtrs, the second part becomes the value of the subcat attribute of the mother sign. The semantics principle states that the semantics of a mother sign must consist of the combination of the semantics of the head daughter and the complement daughters (the operation successively-combine-semantics, abbreviated as s-c-s, does just this.) 

J s 

(maj n] [ maj v n] , (maj n]) ] subcat ( (maj 
t 

det 
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2 .4 Sample derivation 

The derivation in figure 1 shows the operation of the various principles and rules. Notice that HPSG as presented in Pollard - Sag (1987) assumes that nouns are heads selecting for determiners. Also, Pollard and Sag assume that heads themselves participate in the obliqueness hierarchy : they are more oblique than all their complements. Thus, LP2, once formulated as 
complement < < complement [lex -] 

Pollard - Sag (1987: 176) orders phrasal heads after their complements (for instance VP 's after subjects). In order to derive the order 'the cat' rather than 'cat the', Pollard and Sag assume that the head noun 'cat ' becomes phrasal by the fact that Rule 2 is applicable to it as a lexical sign ( cf. op.cit. p.153); so, rule application turns [lex +] into [lex -] . 
C 

[ 
maj n ] lex + subcat (det) [R2] 

[ 
maj n ] lex -subcat (det) 

[ maj n ] Subcat,Rl,LP2] 
subcat () Subcat,R2,LP1] 

[ maj v subcat ( (maj n]) ] [Subcat,Rl,LP2] 
[ 

maj v ] subcat () 
F igure 1 :  John sees the cat. 

2 .5  Tree arity 

Classical HPSG is not strictly binary-branching: the Subcat principle allows for the combination of an n-ary functor with n-1 arguments at once; e.g. the combination of a ditransitive verb taking three NPs (two complements and one subject) with two of its complements. Classical HPSG is non-monotonous: as men-

tioned in the previous section, Rule 2 is able to change the lexicality of a sign by vacuously applying to that sign. This underdocumented feature of HPSG has several drawbacks, most significantly, the fact that the operation is not structure preserving: usually, signs evolve from subsigns under unification; here, a + value becomes a -value, which unification cannot possibly account 
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for. Conceptually, the lexicality feature seems 
to be derivable, since, oniy those signs are non
lexical (phrasal) which carry at _least .one daugh
ter. 

The HPSG theory as originally put forward by 
Pollard - Sag (1987) does not lend itself directly 
to a proof-theoretic reconstruction. The theory, 
being declarative in a strong sense, has obscure 
operational aspects. Also, mainly for practical 
(but possibly also for theoretical) reasons, it ap
pears to be desirable to have a version of HPSG 
building binary branching syntax trees. So, as a 
first step we present a binary version of HPSG. 

3 Binary-Branching HPSG 

We start off by presenting a binary version of 
HPSG which removes some of the unattractive 
features of classical HPSG. Most significantly, 
this version makes no use of vacuous application 
of rules to signs, and thus allows for signs to 
monotonously evolve from lexical to non-lexical 
status . The theory remains very close to classical 
HPSG in all other aspects. The binarity is mainly 
motivated from practical reasons; it facilitates the 
linking of HPSG to a logical type calculus. Bina
rity is by no means a, strong c9mm.itment, how
ever. Focus is on the desire to analyse a fragment 
of Dutch declarative main-clauses, although some 
examples illustrate the applicability of the binary 
apparatus on fragments of English as well. 

First, we . qefine lexic,ajity, in terms of daugh
ters, using; common predkate notation. 

• lexical(Sign) · if dtrs(Sign)= () ,  
parafrased as :  Sign is lexical if Sign has 
zero daughters. 

We then define: 

• argsn(Sign) if length(subcat(Sign))= 
n ,  n � l, parafrased as: Sign wants n argu
ments if the subcat list of Sign has length n (an empty list has length zero) . 

We refer to a functor :F with argsn as :Fn . 

The crucial observation for languages like 
Dutch and English is that the aniourit of satu
ration together with the lexicality of a functor ( a 
sign with non-empty subcat list) determines the 
position of the functor with respect to its argu
ment. A post-modifier like with pictures, mod
ifying a noun like book, follows the noun: it is 
non-lexical, and has args1 . Similarly, intran
sitive verbs - assuming they are lexicalised as 
VP's, i.e. non-lexical, verbal args 1 functors -
follow their subjects. Semi-saturated verbal func
tors like gives John precede their objects: they 
are args2 functors. We can capture the order 
determiner-noun by assuming that determiners 
subcategorise for non-maximal noun projections 
(like book, little bo_ok with black cover) , so they 
are args1 ; they are lexical, and precede their ar
gument. This contrasts with the view of Pollard 
- Sag ( 1987) , which analyses nouns as subcate
gorising for determiners. 1 So, the generalisation 
seems to be that : 

1 .  Ordering effects triggered by the lexicality 
of functors come into play only for :F1 func
tors: a lexical :F1 is ordered before its argu
ment; a non-lexical :F1 is ordered after its 
argument . 

2. A functor :Fn where n > l is ordered before 
its argument. 

The following LP principles mak� this precise:2 

(BLPl) [ 
lex + l < a args1 r • � ., , • 

(BLP2) a < [ lex 
a�gs1 - l 

(BLP3) [ argsn ] ' <  a 

To i,ee how these principles work, consider the 
derivation in figure 2.  

. , . , · .. 

1 We shall neglect the question on how to encode (non)-maximality of phrases'here; a bar-'level along the lines C�oper ( 1990) suggests may be necessary here. 2The signs in these principles are only partly specified. 
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J g M a b w p 

[ Fo ] [ le;/ ] [ Fo ] [ 19;1 + ] [ Fo ] [ le;/ ] [ :Fo ] 
BLP3) BLP3] 

[ le;2 - ] [ le;1 - ] 
BLP2] 

[ le;0 - ] 

[BLPl] 

[ le;0 - ] 

BLP3] 

[ le;1 - ] 
[BLP2] 

[ 19;0 - ] ; ��� ; 

Figure 2: Sample derivation for 'John gives Macy a book with pictures' .  

We also need the regular LP principle for inverted 
phrases: 

(BLP4) [ inv + ] < er I 

This all works fine for concatenative phenom
ena, i.e. the combination of two phrases under 
adjacency. Certain adjuncts appear to be non
concatenative, however. In Dutch, one observes: 

• Jan geeft met plezier Marie een boek. 
John gi'lies eagerly Mary a book. 

• Jan geeft Marie met plezier een boek. 

• Jan ge�ft Marie een boek met plezier. 

This suggests- that the phonological operation as
sociated with certain adverbial modifiers sh�uld 
not be concatenation but jn�f.#ion. '};�pe 
(1990) has made similar remarks concer�ing-'semi
free word order phenoinena. We then arrive a:t the 
following LP principf� ·· _ _ �; _ 

·· 

(BLP5) [ ADVHOD ] .JJ. a 

where A .JJ. B says that ( the phonology of) A 
is infixed into ( the phonology of) B. The non
concatenative connective ! was introduced in cat
egorial grammar by Moortgat (Moortgat, 1988) 
for similar purposes; an expression of type A ! B 
infixes into expressions of type B to form an 
expression of type A (see section 4.4.2 below). 
ADVHOD describes the ·sign for a VP-level adver
bial modifier, which is a sign subcategorising for 
a VP to yield a VP: it inherits the NP argument 
{the subject) its argument VP is still incomplete 
for. There is a little snag here: mere infixation of 
the adverbial phonology into the VP phonology 
:w,gq.ld result in ill-formed strings where the ad
v�r�1 penetrates into one of the verbal arguments. 
Fo� �n�tance, 

*Jan geeft de graag man een boek 
John gives the with-pleasure man a book 

·This problem cannot be fixed ·by letting 
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phonology-values be - nested lists (lists of lists) rather than fiat lists, for instance 

[Jan, [ [geeft , [de,man]] , [een,boek]]] 
The infixation of graag into the VP _ phonology [[geeft , [de,man]] , [een,boek]] will be possible only for 

• graag geeft de man een boek 
• geeft de man graag een boek 
• geeft de man een boek graag 

Deriving the well-formed 
• Jan geeft graag de man een boek 

now becomes hard: a rebracketing of 
[[geeft , [de,man]] , [een,boek]] 

to 
[ [geeft] , [ [de,man] , [een,boek]]] 

will be necessary. So, it is not entirely clear whether . the phonological operation of adverbial modifiers is not beyond simple infixation. For the moment , we leave the topic. Complement order needs no longer be stipulated as a separate LP principle: functors now combine with one argument at a time, and the order of arguments is expressed by the order on the Su beat - list. The ID rules of original HPSG must be adapted as well; while Rules 1 and 3 can be kept, Rule 2 must now be altered to cater for generalised incompleteness: a sign having more than one item on its subcategorisation list is a wellformed sign as well. 
4 Deduction for HPSG 
With the binary version of HPSG we are set to give HPSG a deductive basis. First, we show that it is possible to reinterpret signs as types. Then we introduce a deductive apparatus performing type-deduction with these derived types. This calculus builds binary proof trees (proof terms) , which are orthogonal to (binary-) · HPSG derivation trees. 

4.1 Signs as Formulae 

We propose to view signs as types, or, with the Curry-Howard isomorphism in mind, . as formul�e of a certain logic. Ideas in this spirit can already be found in work of Blackburn (interpreting signs as modal formulae) ,  Morrill and others. The concept of types has many interpretations, but one particularly apt for linguistics is that a type is a set of expressions, or, in more traditional terms, a category. Together with a set of combinatorial principles, types form an algebra of expressions over a certain domain: a type system. Essentially, these combinatorial principles constitute a derivabzlity relation between sequences of types '-+' :  A -+ B saying that from the type sequence A the type sequence B can be derived. An example of a type system would be any syntactic algebra consisting of a set of type formation rules ( e.g. the prod uctio� ' rules in a rewrite system) and a set of syntactic - categories (types) containing expressions over some alphabet of strings. More fine-grained type systems ·. make a distinction · between atomic and complex types: atomic types being . monadic 09jects and corn plex types being made up from . (atomic or complex) subtypes with the rise of so-ca:Ifod typeforming connectives which serve to expre�s combinatorial properties. Typ�-forming connectives are relations over the set of type_ symbols; a familiar example are the slashes from categorial grammar /, \ :  a functor type X/Y combines with a type Y to its right to form a �ype X; a fandor type Y\X combines ·with a t'ype Y_ to _ its l�1t io form an X. There is a nice interpretation . of lin� guistic types as propositional formul� ill a lo.gic: atomic types T correspond to formulae T; complex types like A\B correspond to A =}l B, with =?l a left-oriented version of the implication arrow =? of propositional logic. The combination of a type A with a type A =} B to a type B then becomes an instance of Modus Ponens, of which we now have two versions: A, A =}1 B -+ B and A =}r B, A -+ B. This, in fact, is an operationalisation of the slogan parsing as deduction, and is basically the central theme of categorial deduction as in Lambek calculus (Moortgat, 1988) . 
The intuition that signs can be interpreted as types arises from the functionality expressed by the subcat feature: essentially, this feature 
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e�a�esses fha:.t a certain sign is functionally {in
Jt9�pl:ete for one or more other signs. This im
medfu;t'el� suggests a functional type equivalent ( a 
functor) for these signs. Saturated signs then can 
be interpreted to correspond to saturated func
tors, or atomic types, i.e. types not being made 
up from a type-forming connective and one or 
more subtypes. HPSG's Subcat principle, which 
allows for the combination of a non-saturated sign 
with a subset o( the signs it subcategorises for 
should then correspond to a combinatorial rule of 
type formation, i.e. an inference rule in a type 
calculus. 

When we want to make a correspondence be
tween the signs of HPSG and types of a certain 
kind, we immediately notice that HPSG signs en
code much more information than the monadic 
categories of simple type systems like produc
tion grammars. A category like S, for instance, 
is represented· in lIPSG as a fine-grained spec
ification of a verbal projection having various 
properties among which is an empty subcate
gorisation frame. Clearly, we need a more so
phisticated type language than can be offered 
by monadic· cat�gpxi�s alone. Suppose then we 
switch from mop_a<;lk�_types to types with inter
nal structure: predic�tional types in stead of 
propositional types. The value of the category
determining maj (or) ?,ttribute should become 
the top-level predicat� con.stant. As in predicate 
logic, types (propo�itions)"are made up from such 
. a ·predicate constant and terms as arguments of 
t'he :-p*�aica,te. , ��i�i\'. �avjng variable values, i.e. 
being under$peciµe� J9,'l�certain attributes, corre-
spond to (univer's�ly) ·quantified formulae. E.g. , 
a partial sign like 

[ 
maj or 
gender 
person 

with ..x a variable should correspond to the type 

\/(..x ). (n(gender(neuter ) ,  persan(_x) )] . 
The choice between universal and existential 

quantification is mainly motivated from consid
erations regarding the proof terms for quantified 
formulae, which will be discussed in the next sec
tion. A related motivaton is the fact that uni
versally quantified types have a straightforward 
connection with Prolog literals, facilitating imple
mentation. It is important to notice that there is 

RAAIJMAKERS 

no deep, 'predicate-lik�' meaning ·behind such a 
formula: it is just a description of a certain kind 
of category, in the case above having a variable 
spot for the person value. Sign-valued attributes, 
i.e. attributes taking a full sign as value, or a list 
of signs, are treated the same: whenever such an 
attribute takes a variable sign as value, univer
sal quantification over this variable occurs. This 
is responsible for the second-order nature of the 

. type language we use. 

Under the logical interpretation of types as 
formulae, types have proof terms associated with 
them; these proof terms are the justification for 
assuming the formula is true: they correspond 
to proofs for the propositions the types express. 
These proofs are constructed in a calculus of in
ference rules, the inference rules constituting a 
derivability relation over type sequences (like the 
combinatorial rules of production systems) ,  where 
this derivability relation now gets a logical inter
pretation as well. An alternative, quite common 
point of view is that proof terms are a kind of 
procedures (or programs) and types are the spec
ification of what these programs do. For instance, 
the formula 

\/(_x).(n(gender(masc), number(_x.)-)). 
would be a specification of the program recognis
ing singular and plural ;masculine. µoun phrases 
( this basically is what parsing is aboJJ,t}:.; 

A concept like reentrancy can easily be en
coded by means of variab!e sha�ing, for example 

'v'(_x). [P1 (Pi (..x)\ . .  _ :, . , Pn:(.:t)}] 

where each Pi is a predicate symbol. 

We now turn to the translation from signs to 
types, where we let t(S) yield the formula (type) 
e.9-uivalent of the sign S. A few words on notation: 
Q denotes a sequence 'v'(_xi) . . .  \/(_xn ) of quanti
fiers. The empty quantifier sequence is written as 
Qo ; Qo .:F = :F. Further, QQo = Qo Q = Q. We 
use the notation 

to refer to some sign l: with the sign 
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[ 

ai bi 
] an bn 

as a subsign. Likewise, 

E _ [ 

ai bi 
] an bn 

refers to some sign E with the sign 

deleted from it . Furthermore, var(X) ,  atom(X) , number(X) express respectively that X is a vari
able, an atom or a number. 

• t(X) := Qo .X 
if var(X) or atom(X) or number(X) or X = 
0 

• t (E [ :r: 0 l )  
== Q.M(F) 

if t (E _ [ ::r: 0 l ) == Q.F 

• t (E [ 
su�cat (X1 , . . . , Xn) l )  := maJ M 

Q1 Q2 .A1 => . . . An => M(F) 
if t (E - [ ::r;; (X, , . . .  , Xn) l )  := Q, .F and t( (X1 , . . .  , Xn) ) := Q2 . (A1 , . . .  , An ) 

• t (  [ A V ] ) := \l(V).A(V) if var(V) 
• t ( [ A V  ] )  := Q.A(X1 , . . .  , Xn) if t (V) := Q. {X1 , . . . , Xn) 
• t( (X1 , • • · , Xn) ) := Q1 Q2 . (F1 , F2 , . . .  , Fn) 

if t (X1 ) := Q1 .Fl and 
t( (X2 , . . .  , Xn ) ) := Q2 . (F2 , · · · , Fn) 

The crucial thing to note is that the subcat 
information of a sign is reformulated as the func
tional demands of a functor type: a subcat list of 
length n yields a functor with functional degree n, 
where n now indicates the number of arguments 
the functor is incomplete for. 

The following example illustrates the mapping 
from signs to formulae. Variables are prefixed 
with a don't care ' _, . 

[syn , [ [loc , [ [head , [ [maj , n] , [case , _c] , [nf orm , _n] , [aux , nil] , [inv , nil] , [prd , nil] ] ] , 

then becomes 

[subcat , [] ] , _ [lex , 1] ] ] , [bind , _b] ] ]  

\I( _c)\l( _n )\I( _b). [n(syn(loc(head(case(_c) , nform(_n) ,  aux(nil) , inv(nil) , prd(nil) ) ,  lex(l) ) , bind(..b ) ) )] 
4.2 Type deduction 

Now that we have types, the question arises : what 
do we do with these types? In this section we 
show how we can interpret the HPSG apparatus 
of ID rules and various principles as an inference 
mechanism for type deduction. Before we do so, 
a few words on type deduction are necessary. 

As mentioned in section 4 . 1 ,  types have a 
truth-conditional interpretation: they correspond 
to propositions (formulae) . This logical point of 
view makes it possible to identify type derivability 
relations with logical derivability relations from 
proof theory. A statement A � B expressing 
the derivability of type sequence B from type se
quence A is then called a sequent (Gallier, 1986) . 
A sequent A1 , . . .  , An � B can be interpreted_ as: 
the validity of the formulae A1 , . . .  , An implies the 
validity of B; i.e. , there is no model for the formu
lae A1 , . . .  , An that is not also a model for B. The 
sequence A1 , . . .  , An is called the antecedent of the 
sequent ; the sequence B (in the present case of 
length 1) is called the succedent of the sequent. 

Th fi . Pi . . . Pn .- d - h e con gurat10n C 
1s rea as: t e 

conclusion sequent C is valid iff the premise sequents P1 , . . .  , Pn are valid . As an example, here 
is a fragment of so-called linear non-commutative propositional logic. 'Linear' (Girard, 1987) means 
here that this logic forces 'honest' bookkeeping: 
we are not allowed to duplicate nor delete types 
during derivation. From a linguistic point of view, 
linearity can be used to express the fact that 
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the meaning of an utterance depends· on the linear order of its words. Every r i is a (possibly empty) type sequence; A is a non-empty type sequence, and X, Y, A are types. The comma ' ,' denotes non-commutative concatenation :  I'1 , r2 is the concatenation of the type sequences r 1 and 
r 2 • This entails that antecedents are essentially lists of types. 

I X -+ X 

The £, rules are referred to as the left rules; the n rules as the right rules of the calculus. Here is a proof of the theorem A -+  (A => B) => B. 
---I---I A -+ A  B -+ B  ------£ => A, A => B -+  B --------n => A -+ (A => B) => B 

As we alluded to in section 4. 1 ,  it is possible to associate with deductions proof terms encoding the proofs performed; these terms are A-terms made up from the terms associated with the types in the sequents. The A-terms come in various kinds; the ones we discuss are either application terms t( t' ) ,  saying that the functional term t is applied to the term t'; or abstraction terms Av.t, a functional term taking a term v to a term t. Terms are in either normal form or non-normal form; in the latter case, terms contain subterms (Av.t) ( t' ) ,  so-called redexes. The relation called ,B-reduction allows the simplification of such a redex to t [t' /v], which means that in term t, every occurrence of v is replaced by t' . The A-terms for these deductions have the so-called single-bind property : every A-hound variable v su:ch that Av.t  
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occurs exactly once in t; so we do not have terms Av.w where v does not occur in ·w ,  nor terms like Av. (t (v) (v)) .  We then end up with the following rules: 
I-t-: X

_-+_t_:_X_ 
n => r, v : X -+ t :  Y 

r -+ Av.t : x => Y 
n => v :  x, r -+ t = Y 

r -+ Av.t  : x => Y 
A -+  t' : X r1 , t(t') : Y, r2 -+ A £, ==>>-----------------------...:,-,:_____;_----,----r 1 , t :  � => Y, A, r2 -+ A 
A -+  t' : X r1 , t(t') : Y, r2 -+ A £, =>=-------------------r1 , A, t :  X => Y, r2 -+ A 

The term for �he proof above would be AP.P(t) giving the term t as a proof for A. Once one adds the so-called Cut rule to the calculus: 
C r2 -+ A r1 , A, r3 -+  A ut · · 

r1 , r2 , r3 -+  A 
A-terms in non-normal - form occur as proof terms. The Cut rule expresses the transitivity of the derivability relation -+. Cut-free sequent calculus for the linear fragment of propositional logic has the so-called subformula property: premise sequents contain all and only subformulae of the conclusion sequent. Premise sequents have lower degree ih - terms of type-forming connectives: they contain one c_onnective less than the conclusion ·sequents. From a top-down theorem proving regime, this means a steady reduction of complexity . during deduction: one starts with a 'complex' sequent containing a lot of connectives, breaking this sequent down into sequents of smaller degree , until one reaches the axiom sequents of type A -+ A, thus settling the conjecture of the conclusion sequent. In calculi with Cut, the subformula property no longer holds, since A can be any type, possibly increasing the degree of the premise sequent r1 , A, r3 -+ A. Fortunately, the Cut elimination theorem (Gentzen's Hauptsatz (Gentzen, 1934)) says that Cut is a derivable rule: every proof with Cut can ·be transformed into a Cutfree proof. Cut-elimination leads to normal-form proof terms. 
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Here are the sequent rules for second-order quantifier types (Morrill, 1990) .  

£\:/ r1 , t(t' )  : A[t' / ...x] , r2 � a :  X r1 , t :  \:/(...x) .A, r2 � a :  X 
£3 r 1 ,  1r2 (t) : A[1r1 (t)/ ...x] , r2 � a : X r1 , t :  3(...x) .A, r2 � a :  X 

'R\:/ r �  t :  A r � >....x.t : \:/(...x).A 
'R,3 r � t2 : A[t1 / ...x] r � (t1 , t2 ) : 3(...x).A 

For {'R\:/, £3} ,  the condition is that ...x is not free in r, r1 , r2 ; t[a/ ,B] is the substitution of a for ,B in t and 1ri (t) is the i-th projection of the pairterm t: 1r1 ( (a, ,B)) = a; 1r2 ( (a, ,B)) = ,B. The functional proof terms for \I-types reflect the intuitionistic idea that a proof for a proposition \:/(...x) .A consists of a method for proving the proposition expressed by A. This gives a more plausible interpretation of proofs for universal quantification once this quantification ranges over infinite domains: a mere truth-value then seems impossible to arrive at. The pair terms for 3-types say that a proof for such a formula consists of an individual (a witness) and a term in which this individual is substituted for the bound variable. As noted earlier. · the intuitionistic quantifier terms have a nice interpretation in our syntactic type calculus: a type V(...x) .II then becomes a specification of a method (proof) recognising all expressions of type II on the basis of any (instantiation of) ...x. 
We shall be silent about proof terms from now on, as they do not play an evident role in parsing HPSG. They could be of use in proving metaresults about HPSG parsing, however. 
Given the calculus presented above, let us establish the fragment needed to perform deduction for HPSG.  

4.3 ID rules as axiom schemata. 
HPSG rules describe admissible, i.e. well-formed signs. In a type-theoretic setting, they can be interpreted as type definitions, since here, , signs 

become types. A simple way to implement these definitions, is to formulate them as axiom schemata in a type calculus. That is, every rule R defining the sign :E becomes an axiom scheme: 
R t (:E) � t(:E) 

Every axiom sequent thus becomes an instance of an ID rule. This assures that , whenever an axiom schema is used during deduction, the type check is effective. For binary HPSG, this results in the following axiom schemata, where � schematises over types 
Q....xi => • • • => ....xn, 1 � i � n. 

\:/( _cat)\:/( _phan )V( _syn )V( _sem )\:/( _dtr s) [_cat(_phqn , _syn, _sem, _dtrs)] � \:/( _cat)\:/(_phan )\:/(_syn )\:/( _sem )V( _dtrs) [_cat(_phan, _syn, _sem, _dtrs)] 
\:/(_cat)\:/(_phan)\:/(_syn)\:/(_sem)V(_dtrs) -� . [_cat(_phan, _syn, _sem, _dtrs)] � \:/(_cat)\:/(_phan)\:/(_syn)\:/(_sem)V(_dtrs) � . [_cat(_phan, _syn, _sem, _dtrs)] 
It is not too hard to recognise equivalents of the HPSG rules Rl and R2 in these axiom schemata, once one remembers that functors now combine with their arguments one at a time: in classical HPSG, there were only two kinds of functional configurations: a functor having consumed all of its arguments ( treated by Rl) and a functor having consumed all of its arguments but one (R2) .  In 'D-HPSG, many more configurations arise, generally speaking: n - 1 for any n-placed functor. So, where the first axiom schema restores Rl , the second can be seen to be a generalisation of R2 to cover any kind of functional, incompleteness. The lexicality demand on the head daughter Rule 2 makes vanishes here; functors consume one argument at a time, and once they have consumed one, they are no longer lexical. 3 There is another option here: the ID-rules could be compiled away by ensuring they are consequently applied to every sign and its phrasal subsigns when the lexicon is created. Although this idea entirely hides the important concept of ID rules in the process of lexicon creation, it allows for using the regular axiom scheme 3The demand that Rule 2 makes on the non-invertedness of the head daughter is left unexpressed here. 
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I-t-: X_---+_t_: X-
4.4· Principles as inference rules 

and conditions 

The various principles of HPSG appear to be easily reconciliable with the logical setting proposed. In HPSG, they do not form a homogenous class; some principles govern the flow of information in a feature structure, others create new information (like the LP principles) .  This is reflected in their proof-theoretic reconstruction. 
4.4.1 Head Feature Principle 

The Head Feature Principle of HPSG instantiates the head features of a fresh 'mother sign' to the head features of the head daughter. The necessity for doing so vanishes in the type-theoretic HPSG equivalent . To see this, notice that in the latter, all necessary feature transport is encoded by means of variable sharing in the type assignments for the lexical entries. Where HPSG uses the Subcat Principle to create new sign projections, with new compdtrs and subcat values, V-HPSG never creates new sign projections during analysis: types only become gradually more developed in the sense that more and more variable subtypes become instantiated. Therefore, the Head Feature Principle becomes totally redundant: the head features of a functor (a verb, or whatever) are preserved and developed all the way. This makes V-HPSG in a way more lexical than orig-: inal HPSG.  The distinction among head daughters and their superordinating signs vanishes as well; one reasonable thing to say is that the head feature principle is 'compiled away' in the lexicon, making this distinction irrelevant . So, we · can suppress the headdtr attribute in our signs. Another option is to keep the attribute, letting it have as value a sign which has a nil value for 
headdtr. 

4.4.2 Subcat Principle 

The Subcat Principle is the motor behind syntactic combination in HPSG. Basically, what it 
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does in original HPSG is to decompose the subcat list of a non-saturated sign, transferring a (non-fixed) number of entries on the list to the 
compdtrs attribute of a fresh mother sign, thus allowing the combination of the sign with suitable complements matching the compdtrs value. Unification takes care of making this match by recursively descending into the mother sign. In V-HPSG, the Subcat Principle has a binary shape: it secures the combination of a functor A ⇒ B and a (single) argument expression A to a result type B. As A ⇒ B is an undirected functor, combining with an A either to its left or right to form a B, we will need two versions (left and right) of the Subcat Principle. These can be interpreted as in/ ere nee rules, i.e. the left rules for the propositional connective ⇒ for undirected implication we saw earlier. The (type) variable sharing in these rules must now be understood as demands . for unification on type level: 

The Subcat principle covers concatenative functors only, i.e. functors which either follow or precede their arguments. For non-concatenative functors, such as the adverbial modifiers of section 3, we cannot use the concatenative connective ⇒. Borrowing the connective ! from categorial grammar (Moortgat , 1988) , then, A ! B is a expression wanting to penetrate in an expression of type B to form an A. The adverbial adjuncts are typed vp ! vp, where vp is an abbreviation of a formula n( . . . ) ⇒ v( . . . ) .  It turns out to be technically impossible to establish a full logic for this connective under the perspective of antecedents as lists; only the rule £ ! can be formulated.4 See Moortgat (1988, 1990) for discussion resp. a solution. For our purposes, this is enough, however: HPSG displays partial logics (left rules only) for functional connectives. The rule becomes: 
£ ! r2 , r3 ---+ t' : B r1 , t(t' ) : A, r4 ---+ A r1 , r2 , t : A ! B, r3 , r4 ---+ � 

· r' - 1::i,. • (r) r' 4 A full logic for this connective would make the structural rule of Permutation: r _ f:l. permutation = derivable. This means that antecedents now become treated as multisets (sets with repetition) rather than lists, w,hich is not desirable for linguistic purposes. 
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where ri is a type sequence of length � 0, with 
the exception that at least one of r 2 , r 3 is non
em pty. Notice that this rule generalizes over in
completeness in the following way: if r2 is empty, 
! is an instance 9f /; if r3 is empty, ! is an in
stance of \. 

4.4.3 Semantics Principle 

The Semantics Principle can be 'compiled away' 
as well, by putting in the lexicon the semantics of 
a sign as a product of the semantics of its daugh
ter signs. This makes it possible to incorporate 
various kinds of semantics into lexical signs, for 
instance, a simple application semantics: 

[ [phon , . . .  ] 
[syn , . .  . 

[subcat , [ [  . . .  [sem , X] ] ] ]  
. . .  ] 

[sem , f (X) ] , 
[dtrs , . . .  ] ]  

4.4.4 LP principles 

Once a functor combines with one of its argu
ments to form a mobile the LP principles apply 
to order the functor and argument branches by 
ordering the respective phon values to arrive at 
the phon value of the mother node. LP principles 
can address both aspects of argument and func
tor, . so they must be functions of a pair of types 
T to sets of types: 

T x T � POW(T) 

In case a concatenative functor combines with 
its arguments, the string ordering functions 
· yield a singleton set of result types; for non
concatenative functors, this result set often has 
an arity greater than one, since there is gener
ally more than one string position for a non
concatenative functor, and each separate string 
position determines a new sign. 

The operationalisation of LP principles in V
HPSG is as follows. Once a functor has applied to 
its arguments, both functor and argument types 
are fed to the LP principles, which figure out the 
phon value of the range subtype of the functor. 
This entails that LP principles in V-HPSG should 

operate as side-conditions on inference rules:5 

Pi F. ___ C _____ n_if LP i V . . .  V LP n 

LP principles operate on an argument type and a 
functor type. Here are the type-theoretic equiv
alents of the LP principles of binary HPSG. The 
notation (BLPn)A ® B = C says that the result 
of applying the LP principle n to argument A and 

� 
functor B is C. As before, � Y schematises over 
types 

and 
� 
X 
l Z = X => Z. 

Further, inverted(X) says that X is inverted, 
ADVM0D(X) that X is an adverbial modifier, and 
infix( S2, SI) = S3 that S3 is the infixation 
of S2 into SL Uninteresting variables are sup
pressed with an underscore, and quantifiers · are 
omitted. Anticipating on the implementation, we 
use (Prolog) difference list notation for list con
struction: the difference list [a, b, c) - [c) is equiva
lent to the list [a, b) . This is done to optimise the 
expression of list construction: concatenation of 
two lists can now be expressed via variable shar
ing with one unit clause: 

conc_dl(A-B ,B-C,A-C) . 

For example, 

conc_dl( [a, blC) - C, [c) - 0 , [a, b, c) - □ ) .  

(BLPl) 
� 
X n.Y(phon(S2 - S3) , -, -, -) 

® 
� 
X 
1 .Z(phon(S1  - S2) ,  syn(loc(..h, lex( + ) ) ,  _b ) ,  _u, _w) 

= � 
X . . 
1 .Z(phon(S1  - S3) , syn(loc(..h, lex( + ) ) ,  _b ) ,  _u, _w) 

(BLP2) 
� 
X n.Y(phon(S1  - S2) , -, -, -) 

® 
� 
X 
1 .Z(phon(S2 - S3) ,  syn(loc(..h, lex(-) ) ,  _b) ,  _u, _w) 5This relates the current enterprise to Gabbay's (Gabbay, 1991) labelled deductive systems, where side-conditions on inference rules occur aa well. 
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= � 1.Z(phon(S1 - S3), syn(loc(..h, lex(-)), -b), _u, _w) 

� 

(BLP3) 
� 
f Y(phon(S2 - S3), -, -, -) ® 

X 2 � n .Z(phon(S1 - S2), _s, _t, _d) 
= � 

X 2 � n .Z(phon(S1 - S3), _s, _t, _d 

� 

(BLP4) 
� �.Y(phon(S2 - S3), -, -, -) ® 

fh.Z(phon(S1 - S2), _s, _t, _d) 
= � rh.Z(phon(S1  - S3), _s, _t, _d) if inverted(Z(phon(S1 - S2), _s, _t, _d)) 

� 

(BLP5) 
� fY(phon(S1), -, -, -) ® 

rh.Z(phon(S2), _v, _u, _w) = 
� rh.Z(phon(S3), _v, _u, _w) if � 

X ADVM0D(m.Z(phon(S2), _v, _u, _w)) and infix(S2,Sl)=S3 

4.5 Calculus 

To summarize, here is the full calculus V-HPSG. LP principles apply as discussed earlier to each inference rule as side-condition; they are suppressed below. 
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V( _cat )V( _phan )V( _syn )V( ..sem )V( ..dtr s) [_cat(_phan, _syn, ..sem, ..dtrs)] __. \/(..cat)\/( _phan )V( _syn )V( ..sem )V( ..dtr s) [_cat(_phan, _syn, ..sem, ..dtrs)] 
=> \/(_cat)\/(_phan)V(..syn)V(..sem)V(..dtrs) .:x .  [-cat(_phan, _syn, _sem, ..dtrs)] __. 't/(_cat)\/(_phan)V(..syn)V(..sem)'t/(..dtrs) � .  [_cat(_phan, ..syn, ..sem, ..dtrs)] 

.cv r1, y : A[t' / .:x], r2 __. a : x r1, t :  V(.:x).A, r2 __. a[t(t')/y] : X 
RV r __. t :  A r __. A.:x.t : V(.:x ).A 

£ ! r2, r3 __. t' : B r1, t(t') : A, r4 __. A r1, r2, t : A ! B, r3, r4 __. tJ. 
5 Implementation 

5 .1  Design 

I Signs->Formulae 
i 

�\�t\f����t1�:���\\I 
�'::::«::� .. ��..::.� ❖::: �:=::».v.�¾»:=»""� 

Screen 
The lexicon - in the overall design of the implementation pictured above - consists of lexemesign pairs. When a sentence _s is entered to 
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be analysed, first the lexemes are looked up in the lexicon. The corresponding signs are corn- · piled to a sequence II of formulae according to the map t of section 4 .1 .  Then, given the result category _c, which the user is prompted to enter, the sequent II -+ _c(phan(_s) , _syn, _sem, -<ltrs) is formed, with _syn, _sem, _dtr s variables for syntactic, semantic and daughter information. The sequent is handed to the theorem prover, which is a meta-interpreter performing sequent deduction. Output is in both Prolog and picture format: the derived type formula for an utterance is printed on screen as a Prolog term; in a separate window the sign equivalent of the formula is drawn in standard HPSG format. 
5 .2  Term unification and uniform 

signs 

Unification is a computationally expensive tool, boiling down to extensive graph inspection and merging. This cost can be saved by adopting one uniform structure for the items to be unified, i.e. signs: if we treat these signs just like rigid term structures, we could directly make use of Prolog's built-in term unification mechanism for unifying them. This idea entails that every lexeme in the lexicon has a fixed sign type, with standard slots and values. The structure of this sign is as fol-lows: 
[ [phon , _p] 
[syn , [ [loc , [ [head , [ [maj , _m] , 

[case , _c] , 
[nf orm , _n] , 
[vform , _ v] , 
[aux , _a] , 
[inv , _i] , 
[prd , _j ] ] ]  , 

[subcat , _s] , 
[lex , _l] ] ]  , 

[bind , _b] ] ] , 
[sem , _t] , 
[dtrs , [ [headdtr , _hd] , 

[compdtrs , _cd] ] ] ] ]  

Lexemes can be unspecified for certain attributes; these attributes then carry the atomic value nil. In Prolog, variables occurring in literals are implicitly universally quantified, which means 

that qu,antifiers are removed from t.h�m. This makes it :possible to use Prolog's t erm unification mechanism directly to instantiate· ·values to the variables; see Duffy (1991) for discussion. So, we can simply strip quantifiers from a formula: 
Q.:F � :F. It is a well-known fact from the proof-theory of predicate logic that once both kinds of quantification (universal and existential) are used, deductions are not invariant under permutation of rule application: the application of quantifier elimination rules becomes order-sensitive (Wallen, 1990) . This effect does not take place here, since we only have universal quantification. 
5 .3 Calculus in Prolog format 

In Prolog format, the axioms and rules of the calculus have the following shape: 
axiom(Name , Antecedent--->Succedent 

rule (Name , Antecedent--->Succedent ( if C)  

Given a functor type A1 ⇒ . . .  An ⇒ B ,  which is right-associative, i.e. A1 ⇒ ( . . .  (An ⇒ B) . . . ) ,  it is necessary t o  inspect the properties · of the ultimate range subtype B when applying the LP principles. This would involve descending into the functor type, until one reaches the ultimate subtype B. From a practical point of view, we would like to avoid such descent; we therefore notate such a functor as 
(A1 , . . .  , An ) ⇒  B 

where (A1 , . . .  , An ) is a list of types. For the infix types A l B we do likewise; they are usually of the form (A2 ⇒ . . .  An ⇒ B) l A1 . To distinguish the first argument from the rest of the arguments, we write 

In Prolog, we write B© (..x, . . .  , _y) for 
B(..x, . . .  , _y) . Sequents are written 

(Li , . . .  , Ln ) -+  X, 
where each Li is  a subsequence (list) of types; type sequences of length 1 are denoted as [T] , with T a type or type variable. Some examples of the· axiom and rule format are then: 
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Ii) COHSOLE 

sli,, [Pt-w, (do _, koopt _, book oot plaetJes >] 

¥ loc: 

I
�: v�ll ] 

[vfon, fin] 

[aux ·] 
[Inv ·] 

(Prd -] 
[SIA>cat l l]  
(lox -] 

[_bird nil ] 

[- r [-[-[- [Mt �= �- JJ]JJJJ 
c- cdo c- -rn 

dtra (!,oaodtr nil ]  

» Sentence : de 111an koopt een boek met plaatJes. 

» Categor11 : v .  

» Sentence parsed I 
+++++++++++++++++++++++++++++++++++++++ 

» Parsing took 0 . 683 sec. 
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» Result:  v!! (phon< Cde.man. koopt. een.boek.met.plaatJesl-Cl  > . syn< loc < head(case<nil  > 
, vform(fln)  ,aux ( O ) ,  lnv ( O )  . prd ( O ) ) ,  lex( O ) )  , bind (ni l ) )  ,se111(kopen( sem(een(se111(met(sem( 
plaatJesl . sem( boek> > > > > .se111 ( de ( se111<111an> > > > > ,dtrs( headdtr <nil > .co111pdtrs<n!! <phon< tee 
n,boek.met.plaatJesl-Cl > .  s11n< loc ( head(case(ni l) .nf'or111( f'ull  > .aux< nil  >. inv(ni l > . prd( 
1 1  > >. lex < O >  > , bind ( n i l  > > ,se111(een<sem<111et(se111 < plaatJes l . se111(boek) > > > > ,dtrs(headdtr(nl 
l) ,co111 trs(n!! ( hon( Cboek,met, laat esl - C l  >.s n(  loc(head(case(nil ) ,nfor111(norm) , aux 

Figure 3: Screendump. 

axiom(rule1 , [C© (P , S , B , D) ] ---> 
[C© (P , S , B , D) ] ) .  

rule (subcat_left , 
(T1 , T2 , [ [X I T] =>B© (S1 , 

syn (loc (Wl , lex (L) ) , 
W2) , 

S , D) ] , V) ---> Z 
if 

T2 ---> [X] 
and 

{lp (LP_Name , 
X ,  
[X I T] =>B© (S1 , syn (loc (W1 , lex (L) ) ,W2) , 

S , D) , 
[X I T] =>B© (S3 , syn (loc (W1 , lex(L) ) , W2) , 

S , D) ) }  
and 

(T1 , [T=>B© (S3 , syn (loc (W1 , lex (O) ) , W2) , 
S , D) ] , V) 

---> z 
) . 

Notice how the lexicality value is changed to 
0 here, once the functor has combined with its 
argument. Above we argued that the lexicality 
feature is a derived feature, arising from the ab
sence or presence of daughters in a tree. Since lex
ical signs already have (variable) daughters in V
HPSG, checking for lexicality could (and should) 
be implemented here by inspection of the daugh
ter specifications on the functor type: if the first 
daughter entry in the compdtrs attribute list has, 
say, a variable phon value, the sign as a whole 
can be concluded to be lexical. For reasons of ef
ficiency, we implement this view on lexicality by 
switching to non-lexicality the moment a functor 
combines with an argument . The variable L ex
presses the irrelevance of the (non-)lexicality of 
the functor symbol: no matter what value the 
functor has for lex, the range type will have the 
value - for the attribute lex. 
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5.4 Theorem prover 

Various theorem proving techniques can be imple
mented quite easily in Prolog. As theorem prover, 
we use a simple sequent-proving device, imple
mented as follows: the prover is a set of clauses for 
a predicate prove (+Goal , -Rules) , where Goal 
is either a sequence of sequents of length mini
mally 1 ,  or a structure {G1 , . . .  , Gn} with each 
Gi ( 1  ::; i ::; n) a non-sequent goal; Rules is a 
list encoding the inference rules and axioms used 
for proving Goal. Initially, Goal is the sequent 
to be proved. The predicate prove/2 calls a rou
tine matching the sequent against the database 
of inference rules, i .e. if Goal is of the form 
X1 , • • •  , Xn -+ Y, it tries to match (resolve) the 
sequent against the rules and axioms of the cal
culus, which take the shape of A -+ B (if C) . 
Once the match of X 1 , . . .  , X n against A and Y 
against B has been made, the eventual premises 
C are attempted to prove. 

prove ({Goals} , [] ) : - call (Goals) . 
prove (A--->B , [Rule l Rules] ) : 

rule (Rule , (X ---> B if Y) ) ,  
resolve (A , X) , 
prove (Y , Rules) . 

prove (A and B , Rules) : 
prove (A , R1 ) , 
prove (B , R2) , 
conc (R1 , R2 , Rules) . 

prove (A--->B , [Ax] ) : 
axiom(Ax , A1--->B) , 
resolve (A , A1 ) . 

The linear precedence principles are (as 
illustrated in section 5.3) encoded as goals 
{lpi , . . .  , lpn} ,  to be called before entering the 
eventual premise sequents. 

5 .5  Principles 

Here are some linear precedence principles. They 
are written as 

lp (Name , Arg , Funct , NewFunct) ,  

with Name the name of the principle, Arg , 
Funct , NewFunct types such that NewFunct has 
as its phonology value the ordered phonology val
ues of Arg and Funct . Uninteresting variables are 
written as underscores. 

lp (lp1 , 
X© (phon (S2-S3) , _ , _ , _) , 
[X© (_ , _ , _ , _) ] =>B© (phon (S1-S2) , 

syn (loc (W1 , lex ( 1 ) ) , W2) , 
S , D) , 

[X© (_ , _ , _ , _ ) ] =>B© (phon (S1-S3) , 

lp (lp4 , 

syn ( loc (W1 , lex ( 1 ) ) , W2) , 
S , D) ) . 

X© (phon (S2-S3) , _ , _ , _) , 
[X© (_ , _ , _ , _) I T] =>B© (phon (S1-S2) , P , Q , D) , 
[X© (_ , _ , _ , _ ) I T] =>B© (phon (S1-S3) , P , Q , D) )  

inverted (B© (_ , P , _ , _) ) . 

6 Sample lexical entries 

Lexical entries are of the form 

WORD : = SIGN (+- VAR_CONDITIONS) 

with WORD , SIGN resp. a lexeme and its sign rep
resentation, and the optional <- VAR_CONDITIONS 
encoding instantiations of variables mentioned in 
SIGN ( this is just done to avoid having to type 
very corn plex signs) .  

Some (partially specified) sample lexical en
tries are: 

loopt : = 

[ [phon , [loopt l I] -I] , 
[syn , [ [loc , [ [head , [ [maj , v] , 

[case ,nil] , 
[n:f orm , nil] , 
[vform , fin] , 
[aux , 0] , 
[inv , OJ , 
[prd , 0] ] ] , 

[subcat , [X] ] , 
[lex , 0] ] ] , 

[bind , nil] ] ]  , 
[sem ,  _] , 
[dtrs , [ [headdtr , nil] , 

[compdtrs , [X] ] ] ] ] )  
<-

X= [ [phon , _] , 
[syn , [ [loc , [ [head , [ [maj , n] , 

[case , nil] , 
[nform , _] , 
[ vform , nil] , 
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[aux , nil] , 
[inv , nil] , 
[prd , nil] ] ] , 

[subcat , [] ] , 
[lex , 0] ] ] , 

[bind , _] ] ] , 
[sem , _] , 
[dtrs , _] ] . 

de : = 

[ [phon , [de l I] -I] , 
[syn , [ [loc , [ [head , [ [maj , n] , 

[case , nil] , 
[nform , _] , 
[vform , nil] , 
[aux , nil] , 
[inv , nil] , 
[prd , nil] ] ] , 

[subcat , [X] ] , 
[lex , 1] ] ]  , 

[bind , nil] ] ]  , 
[sem , _] , 
[dtrs , [ [headdtr , nil] ,  

[compdtrs , [X] ] ] ] ] )  
<-

X= [ [phon , _] , 
[syn , [ [loc , [ [head , [ [maj , n] , 

[case , nil] , 
[nform, _] , 
[vform , nil] , 
[aux , nil] , 
[inv , nil] , 
[prd , nil] ] ] , 

[subcat , [] ] , 
[lex , 1] ] ] , 

[bind , _] ] ] , 
[sem , _] , 
[dtrs , _] ] . 

man . -
[ [phon , [man l I] - I] ,  

[syn , [ [loc , [ [head , [ [maj , n] , 
[case , nil] , 
[nform , norm] , 
[vform , nil] , 
[aux , nil] , 
[inv , nil] , 
[prd , nil] ] ] , 

[subcat , [] ] , 
[lex , 1] ] ] , 

[bind , _] ] ] , 

[sem , _] , 
[dtrs , [ [headdtr , nil] , 

[compdtrs , [] ] ] ] ] ) . 

7 Performance 

RAAIJMAKERS 

The following overview lists real-time parsing results for a small set of Dutch sentences. The results were generated by a compiled Prolog executable version of the program, running under X-windows on a SUN SPARCstation 1. The sentences and their word-by-word translations are: 
1. jan loopt. john walks. 
2. de man loopt. the man walks. 
3. de man loopt graag. the man walks gladly. 
4. jan heeft hard gelopen. john has fast walked. 
5. jan slaat de man. john hits the man. 
6. john slaat graag de hond. john hits gladly the dog. 
7. de man koopt een boek met plaatjes. the man buys a book with pictures. 
8. jan geeft marie de hond. john gives mary the dog. 
9. jan geeft marie een boek met plaatjes. john gives mary a book with pictures. 

10. jan geeft marie graag een boek. john gives mary gladly a book. 
11. dat jan de hond slaat. that john the dog hits. 

» Sentence :. j an loopt . 
» Category : v .  
> >  Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 000 sec . 

>> Sentence : de man loopt . 
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>> Category : v .  
> >  Sentence parsed ! 
++++++.+++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 000 sec . 

>> Sentence : de man loopt graag . 
» Category : v .  
> >  Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 050 sec . 

>> Sentence : j an heeft hard gelopen . 
» Category : v .  
>> Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 050 sec . 

>> Sentence : j an slaat de man . 
» Category : v .  
> >  Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 067 sec . 

>> Sentence : j an slaat graag de hond . 
>> Category : v .  
> >  Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 450 sec . 

>> Sentence : de man koopt een boek met 
plaatj es . 

» Category : v .  
> >  Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 683 sec . 

>> Sentence : j an geeft marie de hond . 
» Category : v .  
> >  Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 1 17 sec . 

>> Sentence : j an geeft marie een boek 
met plaatj es . 

» Category : v .  
> >  Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 2 . 500 sec . 

>> Sentence : j an geeft marie graag een 
boek . 

>> Category : v .  
>> Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
» Parsing took 1 .  316 s'ec . 

>> Sentence : dat j an de hond slaat . 
>> Category : v .  
>> Sentence parsed ! 
+++++++++++++++++++++++++++++++++++++++ 
>> Parsing took 0 . 017 sec . 

As can be concluded from the output presented in the previous section, perfp:rma_:µce is relatively good. Sentences taking a lot qf time (say, over 1 second), invariably contain at least one adverbial modifier, or involve an NP closure problem. For instance, in 
• John gives Mary a book with pictures 

the phrase 'John gives Mary a book' can be erroneously analysed as a sentence before the PP 'with pictures ' is attached to 'a book'. Once the parser detects the remaining phrase 'with pictures', it will have to backtrack and redo a lot of work. The bad performance is a consequence of the sequent formalism: for any configuration 
X1 ⇒ X2, X1, X1 ⇒ X1 

where each Xi is distinct, the analysis 
((X1 ⇒ X2, X1 ), X1 ⇒ X1 )  

is tried. One idea would be to employ a wellformed substring table encoding intermediate parsing results, to avoid having to reparse too much once the parser starts backtracking. Generally speaking, weak performance for long sentences is not surprising, since the various inference rules allow for blind alleys in the left premise deduction, by instantiating wrong subsequences of the antecedent to the factor reducing to an argument type. This is a direct consequence of the non-deterministic nature of the procedure decomposing the antecedent into contexts around a functional type. The problem can be fixed by introducing so-called proof invariants (van Benthem, 1991)  into the theorem prover. Proof invariants are structural validities for antecedentsuccedent pairs, which serve to prune irrelevant options from the search space . The attractive feature of the current setting is that any optimalisation coming from proof theory can be used to optimise the parser. 
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8 Concluding remarks 

We have shown that it is possible to give HPSG a deductive basis. The binary version of HPSG we have proposed, has been demonstrated to correspond to a fragment of second-order linear logic. The binarity of this HPSG dialect, which is faithful to classical HPSG in all other respects, is mo- . tivated from practical rather than theoretical reasons; in fact, the current approach is open to any version of HPSG. The parser we developed is, although relatively fast, in need of further optimalisation; the use of proof invariants may help to reduce the search space. Also, recently developed 
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low-complexity theorem proving techniques such as proof nets (Roorda, 1991), may be of use here. Returning to the five desiderata of section 1, then, the last item, "The parser should have reasonable time/space complexity" has not fully been met yet. 
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