
INCREMENTAL LL (l) PARSING IN LANGUAGE-BASED
EDITORS

John J . Shilling
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

shilling@cc .gatech .edu

ABSTRACT

This paper introduces an efficient incremental LL(l)
parsing algorithm for use in language-based editors that
use the structure recognition approach. It features very
fine grained analysis and a unique approach to parse
control and error recovery. It also presents incomplete
LL(l) grammars as a way of dealing with the complex
ity of full language grammars and as a mechanism for
providing structured editor support for task languages
that are only partially structured. The semantics of in
complete grammars are presented and it is shown how
incomplete LL(l) grammars can be transformed into
complete LL(l) grammars. The algorithms presented
have been implemented in the fred language-based edi
tor

INTRODUCTION

This paper introduces an efficient incremental LL(l)
parsing algorithm for use in language-based editors that
use the structure recognition approach. It is motivated
by a style of interaction that parses the user input at
intervals of very small granularity. A second motivation
for the algorithm is the problem of changes internal to
the editing buffer. Because incremental analysis can oc
cur after each keystroke, an unrestricted parser will at
tempt to include too much into its focus before a change
is complete causing the editor to detect erroneous states
that will become irrelevant as the user completes the
change. The parsing algorithms presented in this paper
use the user focus as a guide in restricting parsing. The
algorithm presented has been implemented in the fred
language-based editor [Shi83, Shi85] .

Incomplete LL(1) grammars are introduced as a way
of dealing with the complexity of full language gram
mars and as a mechanism for providing structured ed
itor support for task languages that are only partially
structured. Incomplete grammars were introduced by
Orailoglu [Ora83) for the fred editor [Shi85, Shi86) as a
method of dealing with the complexity of full language

41

grammars. Incomplete grammars allow incremental re
finement of language grammars and also allow gram
mars to be defined for languages that are not LL(l) .
Defining an incomplete grammar for a non-LL(l) lan
guage allows the editor to give structured support for
the LL(l) subset of the language rather than disallowing
the language completely. Another useful application of
incomplete grammars is in providing structured support
for tasks whose languages are only partially structured.
An example of this is a grammar that facilitates struc
tured support for editing LaTeX documents. A LaTeX
documents contains structured elements but much of
the document can be treated as unstructured text.

This paper introduces incomplete LL(l) grammars
and characterizes their parsing semantics. It then shows
how the grammars can be translated into conventional
LL(l) grammars, eliminating the need for specialized
parsing algorithms.

INCREMENTAL LL(l) PARSING

The goal of incremental parsing is to re-establish a cor
rect structuralization of the user's editing buffer after
changes have been made. The approach taken must
differ from straightforward once-only top-down parsing
because a once-only parser never needs to reverse deci
sions after they are made. In incremental parsing de
cisions are unmade and sections of the parse tree are
deleted, transformed, and grafted into new locations.
At the same time, the amount of parsing actually done
must be limited if the algorithms are going to provide
real-time response to a user. The algorithms must first
establish the scope of modifications and efficiently re
structure the parse tree within this scope.

The parsing method described in this paper is more
fine grained than previous methods. The goal is to re
structure the editing buffer after each text-modifying
keystroke of a user. The challenge is that it is often not
possible to achieve a complete, correct structuralization
because the user is in the process of making a change
that is not yet complete. On the other hand, the user

while (TRUE)
<user change>
<retokenization>
<preparation of Parse Tree (Sweep)>
<incremental parse>

_ <semantic update>

Figure 1: Change-Up date Loop

should be notified at the earliest possible moment if an
error is made. The solution to this conflict is to imple
ment what is called follow-the-cursor parsing with soft
templates. As a user makes changes the method will
parse only up to (and including) the token that con
tains the cursor. This keeps it from trying to parse past
the cursor when a user has not yet completed a change.
Unsatisfied elements of a production are indicated to
the user as soft templates. Soft templates visually show
the user what . is missing in the -parse tree. They are
templates in that they should a valid production at the
point they appear but they are soft because they do not
constrain the user in any way. Further text is brought
into consideration through cursor movement. The in
cremental LL(l) parsing algorithms presented here are
a generalization of the table driven LL(1) parsing al
gorithms presented by Lewis, Rosenkrantz , and Sterns
[PLRS76] and use Select, Nullable and Follows tables.

THE CHANGE-UPDATE LOOP

As a user changes a program the editor executes the
loop illustrated in figure 1 to achieve a correct restruc
turalization. The localized region of change must be
retokenized , the tree prepared, and the new tree state
incrementally parsed. The data structures of the non
incremental algorithm are extended to facilitate incre
mental parsing. The parsing queue is modified to handle
both tokens and non-terminals so that subtrees from the
parse tree do not always have to be broken down into to
kens as they are moved to the parse queue. This means
that the parsing tables must be expanded to take ac
count of non-terminals. We now assume that both the
Select table and the Follows table cross reference non
terminals with both tokens and non-terminals.-

TOKENIZATION

We will regard the tokenization phase as a black box
process that produces a series of tokens from the local
ized region of change. It is assumed that incremental
tokenization produces a queue of tokens and two mark
ers in the parse tree denoted the Lexical Left Boundary
and the Lexical Right Boundary. These markers point
out the region along the frontier of the parse tree (in
clusive) that has become invalid as a result of the new

42

tokenization.

TREE PREPARATION • SWEEP

The next step in the change-update loop is the tree
preparation process called Sweep. This is the process
that breaks down the affected region of the parse tree
and prepares the tree for the parsing algorithm. Two
nodes of the parse tree have special meaning in this
process. They are called the Common Ancestor and the
Royal Node and are defined as follows:

• The Common Ancestor is the lowest node in the
parse tree that is an ancestor of both the Lexical
Left Boundary and the Lexical Right Boundary.

• The Royal Node is the highest node in the parse
tree such that the Lexical Left Boundary is the first
token of the production1 • If there is no such node
then the Royal Node is the Lexical Left Boundary.

Two basic ideas drive the tree preparation. The first
is that the region of the tree defined by Lexical Left ·
Boundary, Lexical Right Boundary and Common An
cestor is invalidated because the tokens along its frontier
have been recalculated. The second is that the subtree
of the parse tree rooted at Royal Node is suspect be
cause it was instantiated on the basis of a token that
has been altered.

Figure 2 shows the Sweep algorithm. It begins by
identifying the Common Ancestor and the Royal Node
and then cleans the region modified by the lexical to
kenization. This is a wedge in the parse tree that is
bounded by the path from the Lexical Left Boundary
to the Common Ancestor to the Lexical Right Bound
ary. All nodes on the interior of the modified region are
deleted except the direct sons of the nodes along the
boundary.

The algorithm must now decide what to do about the
Royal Node. We distinguish two cases in dealing with
the Royal Node based on the relationship between the
Royal Node and the Common Ancestor. If the Royal
Node is a descendent of the Common Ancestor then
there is no conflict because there are no tokens in the
subtree rooted at Royal Node. If Royal Node is the
same as, or an ancestor of the Common Ancestor then
the subtree rooted at the leftmost son of Common An
cestor is clipped. This will in general leave parts of the
parse tree intact that may not be valid with the new
tokenization .

Before exiting, the the Sweep algorithm pushes the
current parse pointer back to the left in the parse tree

1 We will ignore non-significant nodes such as error nodes and
(usually) white space in this presentation

Sweep(LexLeftBound, LexRightBound):

CommonAncestor = CommonAncestor(LexLeftBound, LexRightBound) ;
Royallode = Royallode (LexLeftBound) ;

CleanRegion(LexLeftBound, LexRightBound , CommonAncestor) ;

if (Royallode in subtree of CommonAnceator)
DeleteSubtree(Royallode) ;

else
DeleteSubtree(LeftmostSon(CommonAncestor)) ;

endif

BackUp(Parse Position) ;

Figure 2: Sweep

as far as it can until it hits a token. The first non
terminal to the right of that token becomes the location
of the current parsing position.

INCREMENTAL PARSING

We now enter the actual incremental parsing algo
rithm. The idea of the algorithm is similar to straight
forward LL(l) parsing with several major differences.
The incremental algorithm must decide how to handle
the situations when it advances to a satisfied token ele
ment but has a non-empty parsing queue and conversely
when it empties the parsing · queue but has unsatisfied
productions in the parse tree. The second situation is
handled in follow-the-cursor parsing by essentially doing
nothing. We do not want to remove any further tokens
from the parse tree so the algorithm simply leaves unsat
isfied productions in the tree and displays them to the
user as soft templates. In the first situation the algo
rithm needs to open up space in the parse tree to accom
modate the elements of the parsing queue. This is done
by invoking a conflict resolution algorithm described be
low. Following the description of the conflict resolution
algorithm we will present two algorithms that together
accomplish the incremental parsing desired. The first
is the inner parsing algorithm that does most of the
work and the second is the outer parsing algorithm that
provides high level control.

CONFLICT RESOLUTION

In our parsing algorithm we will need to resolve a con
flict if the element at the front of the parse queue cannot
be parsed at the current parse position. The conflict can
exist because there is already a token at Parse Position
as described above or it can exist simply because the
Queue Element does not fit into the terminal or non
terminal symbol at the Parse Position. The general al-

gorithm would have grafted such an element as an error.
That is not satisfactory here for two reasons. The first is
that there are now non-terminal rooted subtrees on the
Parse Queue as well as tokens. A subtree may not be
parsable at this point but the tokens along its frontier
may be. The second reason is that the algorithm does .
not have the guarantee that the subtree rooted at _Parse .
Position is properly prepared to be parsed because it
may not have deleted the entire subtree rooted at Royal
Node in the Sweep algorithm.

The goal is to parse the elements of the parse· queue by
disrupting as small a region of the parse tree as possible.
There is a conflict here because we want to parse the
tokens in the parsing queue but we would like to keep
the tokens that are on the tree intact if possible. Our
solution to this is to give priority to the parsing of tokens
before the cursor. This may mean dislocating tokens on
the parse tree. If tokens are displaced, they are grafted
to the tree as error nodes rather than moving them to
the parsing queue.

43

We first present some definitions.

• As a generalization of the previous definition we
define Royal Node is defined to be the highest
node in the tree that has Parse Position as the first
leaf of its frontier. If no such node exists then Royal
Node is defined to be the node at Parse Position.

• Decision Node is defined to be the lowest node on
the path from Parse Position to Royal Node that
has the element at the front of the Parse Queue in
its first set. If no such node exists then Decision
Node is defined to be NULL.

• List Node is defined to be a node on the path from·
the Decision Node to the Royal Node (inclusive)

that is a list structured production. If no such node
exists then List Node is defined to be NULL.

• Nullable Node is defined to be a node along the
path from the Parse Position to the Royal Node
that is nullable and has the element at the front of
the Parse Queue in its follow set. If no such node
exists then Nullable Node is defined to be NULL.

The Royal Node is the highest point in the parse tree
where the token at Parse Position (or the token that
previously was the first token of Parse Position) caused
a decision to be made. The Decision Node, if it exists ,
is the lowest production along the path from Parse Po
sition to Royal Node that the front of the Parse Queue
can belong to. If the Decision Node exists then we can
try to find a List Node. List Node is a place in the
parse tree where a list production can be found. This
makes it a place where we can wedge in a new produc
tion without tearing down any existing parse tree. At
most one list node can be found because if there were
two or more _ then there would be an ambiguous parse.
Finally, Nullable Node is a node that can be nulled while
still allowing the element at the front of the Parse Queue
to be correctly parsed.

The algorithm for resolving the conflict is presented in
figure 3. It first finds the four nodes described ·above. If
List Node exists then the list production is expanded by
an additional element using the GraftNewList subrou
tine. In the StealProduction subroutine the tokens in
the subtree rooted at the node of the first parameter
are grafted to the right as error nodes. The (tokenless)
subtree rooted at the node is then deleted leaving an
open non-terminal that is either nullable or has the el
ement at the front of the parse queue in its first set .
The final chance to avoid grafting an error token is if
there is a non-terminal subtree at the front of the parse
queue. In this case the nonterminal is removed and
replaced with its children in the Reduce subroutine.
This process continues until the algorithm has freed up
a non-terminal in the parse tree or has emptied the parse
queue.

INNER PARSING ALGORITHM

Figure 4 shows the inner parsing algorithm. This al
gorithm iterates through its parsing decisions until it
runs out of tokens and/or runs out of open parse tree.

If the front of the parse queue and the predicted parse
tree element at the current parsing position agree then
the queue element is simply grafted onto the tree at the
current position. The parse queue is then popped and
the parse position advanced. It may be that there is
not an exact match but that the queue element is in the
select set of Parse Position. In that case the production

44

Outer Parse

while (IOT Empty(ParseQueue)) do
InnerPar1e (Par1eP01ition , ParseQueue) ;

if ((Satisfied(ParsePosition))
AID (IOT Empty(ParseQueue))) then

ResolveConflict (ParsePosition) ;
endif

endwhile

BrrorRecovery() ;

Figure 5: Outer Parse for Follow-the-Cursor Parsing

indicated is instantiated (there can be only one by LL(l)
restrictions) and the Parse Position is advanced to the
first element of the new production.

If neither of the above cases hold then the element at
the front of the parse queue does not fit at the current
position. The algorithm checks to see if there is a non
terminal subtree at the front of the parse queue that
can be reduced. If this is not the case then it checks
to see if Parse Position is nullable with Queue Element
as a correct follow. If this is the case then the non
terminal at Parse Position is nulled and Parse Position
advances. If none of the above cases holds then the
conflict resolution algorithm is invoked.

OUTER PARSING ALGORITHM

The outer parsing algorithm provides high level con
trol over the inner parsing algorithm. It resolves con
flicts when Parse Position is advanced to a token and
Parse Queue is not empty or Parse Queue is empty but
Parse Position is a non-satisfied production element.
The former case is handled by the conflict resolution
algorithm. The latter case is allowed as a legal state in
follow-the-cursor parsing because tokens to the right of
the cursor are not taken to satisfy the parse position.

At the end of the normal parsing loop an error recov
ery algorithm is called. The Error Recovery algorithm
is the only algorithm that is allowed to parse past the
cursor. In follow-the-cursor parsing it is sometimes nec
essary to invoke the Steal Production process that grafts
tokens as errors to the right of the current parse posi
tion. It is also possible that a token has been inserted
which will resolve an error in the syntax of the user
buffer if they were included in the parse. The idea of
the Error Recovery algorithm is to probe into the error
tokens directly past the cursor to see if these tokens can
be parsed correctly.

An outline of the error recovery algorithm is presented

ResolveConfilct(ParsePosition)

while ((IDT Empty(ParaeQueue)) AID IsToken(ParsePosition)) do
Royallode = FindRoyal(ParsePosition) ;
Deciaionlode = FindDecision(ParsePosition , Royallode , QueueElement)
Listlode = FindList(Decisionlode , Royallode) ;
lullablelode = Findlullable (ParsePosition , Royallode , QueueElement) ;

if (Liatlode ! = IULL) then
ParsePosition = GraftlevList (Listlode , ParsePosition) ;

elseif (Decisionlode ! = IULL) then
ParsePosition = StealProduction(Decisionlode , ParsePosition) ;

elseif (lullablelode ! = IULL) then
ParsePosition = StealProduction(lullablelode , ParsePosition) ;

elaeif (Islonterm(QueueElement)) then
Reduce (ParseQueue) ;

else
GraftError(ParsePoaition) ;

endif
endwhile

Figure 3: Conflict Resolution Algorithm

Inner Parse(ParsePosition, ParseQueue)

while ((IDT Empty(ParseQueue)) AID (IDT Satisfied(ParsePosition))) do
QueueElement = Front (ParseQueue) ;
if (QueueElement matches ParsePosition) then

Graft (QueueElement , ParsePosition) ;
Pop(ParseQueue) ;
Advance (ParaePoaition) ;

elaeif (Select [ParsePoaition, QueueElement] ! = ERROR) then
Instantiate (ParaePosition , Select [ParsePosition, QueueElement]) ;
Advance(ParsePosition) ;

elseit (QueueElement not a terminal) then
Reduce (ParseQueue) ;

elseif (lullable (ParsePosition) AID (Follows (ParsePosition , QueueElement)) then
lullProduction(ParsePosition) ;
Advance (ParsePosition) ;

else
ResolveConflict (ParsePosition , ParseQueue) ;

endif
endwhile

Figure 4: Inner Parsing Algorithm

45

Error Recovery

< Set Consistent Parse >
while (we have an error token) do

it (token is parsable) then

else

< Parse Token >
it (Completed Structure)

< Update Consistent Parse >
endit

break ;
endit

endwhile

<Back up to last Consistent Parse>

Figure 6: Error Recovery

in 6. The algorithm begins by saving the current parse
tree status, called the initial consistent parse. Each er
ror token is then considered in turn. If the error token
can be parsed correctly then that is done. If parsing
the token completes a production in the parse tree then
the consistent parse is updated to be the current parse
state. The loop terminates when it runs out of error
tokens or it encounters an error token that cannot be
parsed correctly. It then backs up the state of the parse
tree to the last consistent parse and exits.

INCOMPLETE GRAMMARS

Incomplete grammars presented here introduce two new
non-terminal classes, unstructuretP and pre/erred non
terminals , into language description grammars. Pre
ferred non-terminals are the left-hand-sides of a spe
cial production class called preferred productions. In
tuitively, the unstructured non-terminal class allows the
language designer to have a production that escapes the
structuralization process. A preferred production is a
way of finding structure within the lack of structure of
the unstructured non-terminal.

A conventional LL(1) grammar can be described as a
tuple [PLRS76]

G = (S, T, N, P)

where

S is the start symbol of G, S E N .

T is a finite set of terminal symbols.

2 Qrailoglu refers to this non-tenninal class as Unknown,.

46

N is a finite set of non-terminal symbols.

P is a set of production rules.

An incomplete LL(l) grammar is described as a tuple

G = (S, T, N, U , P, .Pu)

where S, T, N, and P have their conventional meaning
and

U is a distinguished set of non-terminal symbols de
noted unstn1ctured, U e N.

Pu is a distinguished set of production rules denoted
preferred productions, Pu E P. ·

An unstructured non-terminal can occur at any point
in the right-hand-side of a production rule. For the
purpose of constructing the select sets of normal non
terminals (non-terminals that are not unstructured non
terminals) each occurrence of an unstructured non
terminal is treated as a unique, distinguished terminal
symbol 11 , 11 <t T. Thus a non-terminal's select set will
contain an entry for each terminal symbol in its first
set and an entry for any unstructured element that it
can be derived from it. This is similar to the way that
non-terminals are treated in incremental parsing. For
parsing purposes we do not construct the first set of an
unstructured element but we do construct the follow set
of an unstructured element in the .normal way. We do
not construct the first sets for unstructured elements
because their first sets vary at parse-time, depending
on the shape of the parse tree. Intuitively, the run-time
first sets vary because we want the unstructured ele
ment to act as a wild card non-terminal and accept any
token that is not otherwise accepted at the point that
the unstructured element occurs.

Consider, for example, the grammar:

A a
C

B b
C

C Unstructured

If we are currently focussed at non-ter�al A, we
want any token except "a" to lead into production C.
If we are focussed at non-terminal B , then we want any
token but ''h" to be accepted by C. Thus, the meaning
of the same unstructured element (and by side-effect ,

C) will changed at run-time depending on the current
parsing context when it is encountered.

A preferred production is a production that can find
structure within an unstructured non-terminal. Its first
set is calculated as for normal productions rules. Be
cause the preferred production can be followed by the
resumption of the unstructured non-terminal then the
follow set should be anything that does not cause con
flict with the preferred production. Thus if p E Pu , y
= left-hand-side{p) ,

Follow(y) Can-Legally-Follow(y)

where Can-Legally-Follow is a relation that generates
the set of all tokens that can follow a non-terminal with
out causing a parsing conflict with that non-terminal.

TRANSFORMATIONS

Orailoglu devised specialized algorithms to parse
based on incomplete grammars. This section will show
how to transform an incomplete grammar into a com
plete grammar that can be parsed with conventional
LL{l) algorithms. The obstacle to the traditional pars
ing of incomplete grammars has been that the first set
of an unstructured element effectively changes at run
time depending on the state of the parse tree where the
unstructured element is introduced. It will be shown
that the decisions in Orailoglu 's implementation which
are made at run-time, can be predicted at the time the
incomplete grammar is analyzed . This allows the in
complete grammar to be transformed into a complete
grammar that recognizes the same language.

A simple example is presented to show the flavor of
the material that will follow. Consider the incomplete
grammar:

A a c
b e
U (an unstructured element)

The token set of the grammar is {a, b, c , ERROR}.
The intent of the grammar writer is clearly that a lead
ing token of a will invoke the first right-hand-side, a
leading token of b will invoke the second right-hand-side,
and any other token will invoke the third right-hand-side
because of the unstructured element. Thus the first set
of the unstructured element is effectively {c , ERROR}
and as a result the first set of non-terminal A is the
entire token set.

Now consider the grammar:

47

A

C

b B
c C

C
D

B

D

b
D

d
u

The token set of this grammar is {b, c, d, ERROR} .
The intent of the unstructured element in the grammar
varies with the shape of the parse tree. If the current
non-terminal is B then any token in the set { c, ERROR}
will derive the unstructured element in D but if the non
terminal is C then any token in the set {b, ERROR} will
derive the unstructured element. The thing to note is
that this can be predicted at the time that the grammar
is analyzed.

The above grammar can be transformed into the
grammar:

A

C

u,

u,

b B
c C

C

D

u, (u,,)*

b
C

ERROR

B

D

u,,

b
D

d
u,

b
C

d
ERROR

This grammar has the same token set as the previous
grammar. The only difference is that three new produc-·
tions are introduced to represent the structure of the
incomplete element. The first production gives the con
ceptual structure of the incomplete element. The second
production represents tokens that can occur first in the
unstructured element and the third production repre-. '
sents what may follow the first element as the body of
the unstructured element. Notice that Ut contains any
token that is not otherwise in the first set of D. This
causes the grammar to be ambiguous because the token
b is in the first set of both alternatives of non-terminal B
and the token c is in the first set of both alternatives to
non-terminal C. The key to the transformation method
is to resolve the conflict in each case in favor of the al
ternative that does not derive the unstructured element.
With this method of resolving the parsing ambiguity,
the transformed grammar recognizes exactly the same
language as the untransformed grammar.

The above example illustrates the spirit of the trans
formation method on a very simple grammar. The re
mainder of this section will show that the method can
be applied to any incomplete grammar of the form de
scribed by Orailoglu [Ora83]

For parse table calculations each unstructured non
terminal is recognized as a separate production but
is treated s,9inewhat differently when checking LL(l)
grammar restrictions. Although they are technically
different elements, unstructured elements must satisfy
some restrictions as if they were the same terminal.
Two distinct unstructured elements cannot both occur
in first set of a production or in the follow set of a pro
duction. There are also restrictions to avoid ambiguity.
An incomplete element cannot be followed by another .
incomplete element, and incomplete elements can nei
ther start nor end preferred productions. If a token is
both in the first set of a preferred production and the
follow set of an unstructured element then the conflict
will be resolved in favor of the follow set. · No token may
appear in the first set of more than one preferred pro
d uction because this would cause a grammar ambiguity.

An unstructured element may be legally derived at
run-time if all of the following conditions apply:

• The current parsing position is a non-terminal that
can derive the unstructured element in the gram
mar

• The current parse queue element is a token that is
not in the select set of the current non-terminal.

• The current non-terminal is not nullable with the
input token in its follow set3 •

If all of the . above conditions apply then the tree is ex
panded to derive the unstructured element and the al
gorithm enters unstructured parsing mode. While in
unstructured mode the parser accepts any token as part
of the incomplete element until it receives a member of
the follow set of the incomplete element or a member
of the first set of a preferred production. If a member
of the follow set is encountered then the incomplete ele
ment is closed. If a member of the first set of a preferred
production is encountered then the preferred production
is instantiated and parsed normally, and unstructured
parsing is resumed when it completes.

The transformation approach will be to replace each
unstructured element U by a non-terminal Ut which is
the left-hand-side of a production rule of the_ form

3This slight variation from Orailoglu's implementation is in
troduced to give a more consistent treatment of W1Structured
elements.

48

UI U, (Ub)*

where U, derives tokens and preferred non-terminals
that may start the unstructured element and Ub derives
the set of tokens and non-terminals that may be in the
body of the unstructured element.

The production rule for Ub is the easier of the two to
calculate. The first step is to calculate the follow set
of U in the normal manner. This calculation is already
performed by the existing algorithms. This tells what
not to include in the token set derivable from Ub , Let
the set of preferred non-terminals be denoted P = P1 ,

, Pn and let

F = T - follow(U) - first(p1) - . . . - first(pn)

Then the production rule for Ub is

Ub ft

Pn

where ti , . . . , .t-t are . the elements of F .

This production correctly parses the internal part of
the incomplete element because it derives all the pre
ferred productions and all tokens not in the first set · of
a preferred production or in its follow set . If there is a
conflict between the first set of some Pi and the follow
set of U then, as before, the conflict is resolved in favor
of the follow set.

The calculation of how unstructured elements can be
derived involves not only calculation of the production
rule for U, but also the rules for resolving conflicts that
arise in the select tables of the grammar. An unstruc
tured element occurs in the right-hand-side of a produc
tion of the form

A w U x
rhs2

where w and x may each be empty and where n # 1 .
Thus the simplest production rule containing an un
structured element is of the form

A U

The first step in calculating a production rule for U,
is determining whether w is nullable. Let F be the set
of tokens that can occur in the first set of U. If w is not

nullable then set F to the entire token set. Any pars
ing conflicts with w will be resolved in the parse table
construction phase. If w is nullable then F must be cal
culated so that it does not cause a parsing conflict with
w or with any other right-hand-side of the production
rule. Thus, the lead-in to U can be

F = T - first(w) - first(rhs2) - . . . - first(rhs0) .

The set F is the select set of U for parsing purposes.
This will keep members of the first set of a preferred
production that are· not in F from interfering with cal
culation of the select table. The set of tokens that can
lead directly to U is then

F - first(p1) - . . . - first(pn) = t1 ; . . . , t;

and the production rule U, is

u, t1

' ·

t;
Pt

Pn

where some of the Pi may not be derivable because
no member of their first set is a member of F. The is
allowable because the · first set of U has already been
calculated.

Using F as the first set for U, guarantees that the pro
duction Ul will not cause a parsing conflict with the first
sets of the right-hand-sides of the production in which
it occurs, but . it may still cause a conflict in produc
tions that c_an derive A. The key to the transformation
method is to . always resolve the ambiguity against the
alternative that derives the unstructured element. The
first step of this is to calculate the select table and follow
sets in the usual manner , using the designated first sets
for the transformed elements. Next comes the grammar
validity check.

If there is a first-first conflict in the grammar then
check to see if one of the alternatives derives a trans
formed unstructured element. If so, resolve the conflict
by selecting the other alternative. If there is a first
follow conflict caused by the first set of an unstructured
element in the follow set, remove the cqnflicting token
from the first set of the. following non-terminal that de
rives the unstructured element. If there is a first-follow
conflict caused by an unstructured element in the first
set of a non-terminal, then remove the token from the
first set of the non-terminal that derives the unstruc
tured element. The first-first conflicts should be re
solved before the first-follow conflicts so that the prob
lem of multiple conflicts does not arise. Note that all
of these conflicts do not occur in the parse table con-

49

struction for a parser that treats incomplete grammars
specially because the unstructured elements are treated
essentially as distinguished unique tokens in the gram
mar analysis.

The purpose of the above conflict resolution strategy
is to make the decisions when the parse tables are built
that the parser would make at run-time in a parser for
incomplete grammars. To see that this is true, first con
sider the production U, in the case where w in the gram
mar above is non-nullable. In an unstructured parser
the incomplete element will be· encountered and instan
tiated when w completes, i.e. , when the parser encoun
ters a legal follow of w. This is exactly what ·happens
in the transformed grammar.

· · - ·

Suppose that w is .nullable. Then �he unstructured
element can be derived directly by A and indirectly by
productions that derive A. Assu�e that the current non
terminal is A. The unstructured element ,wiµ be _dii:e�t,ly
derived if the current token is not in the first set �of. w or
the first set of any other right-hand-side of A, and if A
is not nullable with the current t�ken in the .follo.w set .
The same action is taken in the transformed grammar
because Ul does not have any me�bers of the first set
of w or the other right-hand-sid�s in its first set.

Now assume that the current non-terminal is not A
but one that can derive A. In the unstructured parser,
the unstructured element in A can be derived if the
current token is not in the first set of the current non
terminal and if the· current non-terminal is not nullable
with the token in its follow sets. These are exactly the
conditions under which u, can be derived in' the trans
formed grammar. Tokens that would not derive the
unstructured element above will not do so in the trans
formed grammar because of the inanne·r in which pars
ing conflicts are resolved in the select_ table. The·tokens
that are left are those that do not cause conflfots and
they derive the unstructur_ed element.

The last point to establish is the validity of the gram
mar model in which the incomplete element was intro
duced. The model is valid because only · one unstruc
tured element needs to be concentrated oii at a time.
This is true because

• A non-terminal cannot have two separate unstruc-
tured elements in its first set .

· · ·

• An unstructured element cannot have an unstruc
tured element in its follow set.

• A preferred production cannot start or end with an
unstructured element.

It has been shown that an incomplete grammar may
be transformed into an equivalent complete grammar. Is

there any advantage in doing so? The grammar trans
formation introduces new productions and thus causes
the parsing tables to increase in size. This will in turn
cause the run-time parse tree data structured to grow
in size. The transformed grammar will introduce ap
proximately one extra parse tree node for each token
that is parsed as part of an unstructured element . The
transformation process also significantly increases the
complexity of the grammar analysis process. The real
advantage of the algorithm is that it allows the incom
plete grammar to be parsed by a conventional LL(l)
parser._ This is an advantage because it makes the gram
mars more easily adapted to other parsers and because
it reduces the complexity of the parsing algorithm.

PREVIOUS WORK

Syntax-directed editors such as the Cornell Synthesizer
[RI'84, TR81] allow phrases to be entered as text below
some level in the syntax. Textual input is parsed by a
stand alone bottom-up parser that begins with the non
terminal represented by the current placeholder. The
parsed text must be able to be grafted onto the parse
tree as a complete, correct subtree.

Carlo Ghezzi and Dino Mandrioli have developed ·a
bottom up parsing algorithm with is based on the use of
grammars that are both LR and RL [GM79b , GM79a].
The authors also have published .;an algorithm that is
more complex but operates on a more general class of
LR grammars [GM80] . The BABEL editor [Hor81] is
based on the Ghezzi and Mandrioli symmetric algo
rithm. Programs are not permitted to be incomplete ,
and it is not possible to place unexpanded placehold
ers in the tree . Kirslis [CK84, ·Kir85] has extended the
Ghezzi and Mandrioli LR(0) algorithm to LR(l) , has
modified the parsing algorithm to handle comments and
introduced explicit error handling routines.

An editor dubbed SRE for Syntax Recognizing Ed
itor' has. been developed at the University of Toronto
[BHZ85] . This editor provides flexible error handling
·by dividing the parser function into two levels . A low
level parser guarantees that the user's program consists
of a sequence of syntactically correct lines. A high-level
parser guarantees that the syntactically legal lines form
a syntactically legal program. Only low-level syntac
tic correctness is enforced while text is being entered.
Syntax errors within lines are pointed our immediately
and the user is forced to correct them before proceed
ing. Syntax errors between lines are only pointed out
when the user requests a high-level parse. Morris and
Schwartz [MS81] published a LL(l) parsing algorithm
that maintains a sequence of syntactically correct parse
trees.

50

Orailoglu implemented an LL(l) incremental parsing
algorithm as part of the the restructuring programmable
display editor (RPDE, now called Fred) at the Univer
sity of Illinois [Ora83, Shi85] . The algorithm maintains
a single parse tree but allows multiple errors with unre
stricted parsing by invoking a simple context (and his
tory) sensitive error recovery algorithm. The key dis
advantage of the algorithm is that it lacks an effective
means of limiting parsing and tends to parse forward
too far, recovering from errors along the way, when
changes are made to the internal structure of a program.
Orailoglu [Ora83] provided the original implementation
of incomplete grammars.

CONCLUSION

This paper presents an incremental LL(l) parsing al
gorithm that is suitable for use in language-based edi
tors and that has been implemented in Fred, structured,
screen-based editor. A keystroke intensive mode of user
interaction motivates the follow-the-cursor style of pars
ing in which parsing is normally halted at the cursor,
leaving suspensions in the parse tree that are indicated
to the user as soft-templates. Algorithms for tree prepa
ration, incremental parsing, and error recovery are pre
sented. The algorithms implement a style of user inter
action that is both efficient and convenient. It is efficient
because the editor only needs to perform limited parsing
after changes. It is convenient because the user is able
to enjoy the benefit of structuralization while retaining
complete freedom of program entry.

Incomplete LL(1) grammars are presented as a way
of dealing with the complexity of full language gram
mars and as a mechanism for providing structured editor
support for task languages that are only partially struc
tured. Orailoglu devised specialized algorithms for pars
ing based on incomplete grammars. This work shows
how the grammars can be translated into conventional
LL(l) grammars, eliminating the need for specialized
parsing algorithms.

References

[BHZ85] Frank J. Budinski, Richard C. Holt , and
Safwat B . . Zaky. Si'e - a syntax recogniz
ing editor. Software-Practice and Experience,
15(5) :489-497, May 1985.

[CK84) Roy H. Campbell and Peter A Kirslis. The
saga project: A system for software devel
opment. In Peter Henderson, editor , Pro
ceedings of the A CM SIGSOFT/SIGPLAN
Software Engineering Symposium on Prac
tical Software Development Environments,
April 1984. (Released as ACM SOFTWARE

ENGINEERING Notes 9(3) and ACM SIG
PLAN Notices 19(5) .) .

[GM79a] C. Ghezzi and D. Mandrioli. Augmenting
parsers to support incrementality. Journal
of the A CM, 27(3) :564-579, July 1979.

[GM79b] C. Ghezzi and D. Mandrioli. Incremental
parsing. A CM Transactions on Program
ming Languages and Systems, 1(1) :58-70,
July 1979.

(GM80] C. Ghezzi and D. Mandrioli. Augmenting
parsers to support incrementality. Journal
of the A CM, 27(3) , July 1980.

[Hor81] M.R. Horton. Design of a Multi-Language
$ditor with Static Error Detection Capabil
ities. PhD thesis, University of California,
Berkeley, July 1981 . ERL Technical Reprot
81/53.

[Kir85] Peter A. Kirslis. The SA GA Editor: A
Language-Oriented Editor Based on Incre
mental LR(J) Parser. PhD thesis, Depart
ment of Computer Science, University of Illi
nois at Urbana-Champaign, December 1985.

(MS81] J. Morris and M. Schwartz. The design of a
language-directed editor for block structured
languages. SIGPLAN Notices, 16(6) :28-
33, June 1981 . Proceedings of ACM SIG
PLAN /SIGOA Symposium on Text Manipu
lation, Portland.

[Ora83] A. Orailoglu. Software Design Issues in the
Implementation of Structured Editors. PhD
thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign,
1983.

[PLRS76] II P.M. Lewis, J. Rosenkrantz, and R.E.
Stearns. Compiler Design Theory. Addison
Wesley, 1976.

[RI'84] Thomas Reps and. Tim Teitelbaum. The
synthesizer· generator. In Peter Hen
derson, editor, Pro·ceedings of the A CM
SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software· Develop
ment Environments, April 1984. (Released as
ACM SOFTWARE ENGINEERING Notes
9(3) and ACM SIGPLAN Notices 19(5) .) .

[Shi83] John J . Shilling. Improvements to a struc
tured, screen oriented editor. Technical Re
port Report No. UIUCDCS-R-83-1 155, De
partment of Computer Science, University
of Illinois at Urbana-Champaign, December
1983.

51

[Shi85] John J . Shilling. Fred: A program devel
opment tool. In Proceedings of SOFTFAIR
II (San Francisco, California, December 3-51
1985}, December 1985.

(Shi86] John J . Shilling. Automated Reference Li
brarians for Program Libraries and Their In
teraction with Language Based Editors. PhD
thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign,
July 1986.

[TR81] T. Teitelbaum and T. Reps. The cornell
program synthesizer: A syntax-directed pro
gramming environment . Communications of
the A CM, 24(9) , September 1981 .

