
Preprocessing and lexicon design for
parsing technical -text1

Robert P. Futrelle, Christopher E. Dunn, Debra S. Ellis and Maurice J. Pescitelli, Jr.

Biological Knowledge Laboratory
College of Computer Science 161CN

Northeastem University
360 Huntington Avenue

Boston, MA 02115

Internet: futrelle, chris, ellisds and mjp
all @corwin.ccs.northeastern.edu

Phone: (617) 437-2076 FAX: (617) 437-5121

ABSTRACT

Technical documents with complex structures
and orthography present special difficulties for
current parsing technology. These include
technical notation such as subscripts,
superscripts and numeric and algebraic
expressions as well as Greek letters, italics,
small capitals, brackets and punctuation
marks. Structural elements such as
references to figures, tables and bibliographic
items also cause problems. We first hand-code
documents in Standard Generalized Markup
Language (SGML) to specify the document's
logical structure (paragraphs, sentences, etc.)
and capture significant orthography. Next, a
regular expression analyzer produced by LEX
is used to tokenize the SGML text. Then a
token-based phrasal lexicon is used to identify
the lon_gest token sequences in the input that
represent single lexical items. This lookup is
efficient because limits on lookahead are
precomputed for every item. After this, the
Alvey Tools parser with specialized
subgrammars is used to discover items such as
floating-point numbers. The product of these

1 This work was supported by the Division of
Instrumentation and Resources of the
National Science Foundation, grant number
DIR-88-14522.

31

preprocessing stages i s a text that is
acceptable to a full natural language parser.
This work is directed towards automating the
building of knowledge bases from research
articles in the field of bacterial chemotaxis, but
the techniques should be of wide applicability.

1. INTRODUCTION

The Biological Knowledge Laboratory focuses
on the analysis of research articles in the field
of bacterial chemotaxis (Futrelle, 1989, 1990b).
We are building a corpus consisting of the 1000
or so articles that make up the published
record of the field since its inception in 1965.
As the corpus is built we are attempting to use
syntactic and semantic analysis to convert the
corpus to a knowledge base. But the texts are
complex -- they have a superstructure that
includes title, authors, abstract, sections,
paragraphs, bibliography, etc . They also
contain sub- and superscripts, italics, Greek
letters, formulas, and references to figures,
tables, and bibliographic items. Another major
component of technical documents that has
been ignored is graphics, which requires its
own analysis ; we have a separate project
devoted to graphical analysi s and
understanding (Futrelle, 1990a).

In this paper we describe procedures we have
implemented and resources we have developed
for preprocessing these complex documents.
The preprocessing produces text which retains
all important details of the- original but is in a
form ·that a conventional natural language
parser can use without major modifications.

The preprocessing software runs in part under
Unix (for LEX) and in part under Symbolics
Genera 8.0 using their Statice database system
for the lexicon. · The Alvey Natural Language
Toolkit (Briscoe, et al, 1'987) is used for the
subgrammar analysis. We have used Alvey on
the Symbolics, Suns and on Mac II' s. The
systems described here are sentence-oriented,
leaving to other software the task of organizing
the structures above the sentence level.

Most research on natural language processing
is restricted to text which does not contain
complex orthography or has had it stripped
away. This has prevented the application of
computational linguistics to most technical
documents and technical documents are a_
huge and important repository of knowledge.
Though our contribution is primarily a
technical one, 'it is one that is sorely needed if
progress is to be made.

2. THE PROBLEMS AND THEIR
SOLUTION

To appreciate the type of problems that arise
in text analysis, consider the various uses of a
punctuation mark, the period. In the sentence,
"Bacteria swim." · the item "swim." that
includes the period is not a word, it is the word
"swim" followed by end-sentence punctuation.
On the other hand, the period in "etc." is not
(necessarily) a sentence end marker. The
period in "7 .3", however, is an integral part of
the number. The comma is normally used to
mark phrases and clauses, but it is used as an
integral part of the number "32,768" or the
chemical name "2,6-diaminohexanoic acid" (the
essential amino acid, lysine). Superscripts can
play the role of an isotopic indicator, "3H" for
tritium, or a footnote2 .

2 . . . or a bibliographic reference, as in, "Smith
found this effect earlier7."

32

We have found a way to deal with all of these
problems. The documents are first encoded
(marked up) as they are entered by a trained
editor/typist using an editor which supports
the Standard Generalized Markup Language
(SGML) (Bryan, 1988; van Herwijnen, 1990).
The complex items in the marked-up text are
then broken into their constituent tokens and
selectively reassembled so that every token or
contiguous sequence of tokens is resolved in
some way. The resolution of a token sequence
is done by first looking for the sequence in a
phrasal lexicon. If found, the sequence is
replaced by its lexical item. If a token
sequence is not in the lexicon, an attempt is
made to parse it using spe cialized
subgrammars. If this fails, the item is flagged
for analysis by a human editor or
lexicographer to see if it is an error or a new
lexical item.

The word "salt" is a single token entry in the
lexicon. The sequence, "sodium chloride" is a
two token entry. The item "CO2" which is
represented by seven tokens is found as a
single item-in the lexicon. But it is not
appropriate to represent most numbers in the
lexicon , because they form an essentially
unbounded class3. For example, the number
"3.4x10-8 " (made up of 17 tokens) is not in the
lexicon. It is analyzed by a subgrammar and
found to be a legally formed number in
scientific notation. The number is replaced by
a structure which includes the lexical_ item
"$nurn$", a noun which the natural language
parser can deal with. Mer pr_eprocessing, the
text is passed on to a full natural language
parser for syntactic and semantic (logical form)
analysis. Currently, we use the GPSG-based
parser from the Alvey toolkit for both
subgrammar analysis and full natural
language parsing (Briscoe, et al, 1987; Ritchie,
et al, 1987).

3. THE PROCESSING SEQUENCE

The processing sequence is outlined in
Figure 1. Each stage can produce a file as
output that can be the input to the next stage,
so the analyses do not have to be synchronous.
The preprocessing stages are stages 1-6.

3 Certain numbers such as cell strain
designators or the familiar "Boeing 7 4 7" would
be in the lexicon.

Stage 0: Obtain selected articles from primary biological literature, 1960-1990
Form 0: word complex-orthographic-item word word floating-point-number punctuation
Stage 1 : SGML encoding (tagging) while typing in article using SGML-based editor
Form 1: sentence-start-tag word tagged-complex-item word word tagged-number
Stage 2: Tokenization using regular-expression analyzer generated by LEX
Form 2: SGML-symbol string complex-item-token . . . tokens-for-number SGML-symbol ·
Stage 3: Lexicon lookup in token-based phrasal lexicon
Form 3: found-item found-item found-item not-founds found-item not-founds
Stage 4: Subgrammar analysis using Alvey syntactic and semantic tools
Form 4: found-item found-item found-item analyzed-structure not-found
Stage 5: Editor and lexicographer at the workbench resolve any remaining unknowns
Form 5: found-item found-item found�item analyzed-structure added-to-lexicon
Stage 6: Natural language parsing using Alvey GPSG-based tools
Form 6: Parse trees and logical form structures
Stage 7: Building knowledge frames

Figure 1. Schematic view of the successive stages of corpus processing. "Form n" lists typical items
in the stream of text which result from the processing in Stage n and are the input to Stage n+ 1 .
There i s not an absolutely tight correspondence between the items in successive forms in ·this figure,
due to the complexity of the analysis. The underlined stages denote the preprocessing stages which
are currently implemented and explained in some detail in this paper.

STAGE 0: Obtaining Selected Articles -
In many cases, these articles are only available
in bound journals. The originals are scanned
for diagram entry, but the typing (with
simultaneous markup) i s done from
photocopies when necessary.

STAGE 1: SGML Markup - M arkup
languages such as SGML allow us to add
markup to a text of a document to specify its
logical structure. Thus, in SGML, one would
specify, using tags, that certain words formed
a section heading without committing to
stylistic details such as font, font size, or the
positioning of the heading with respect to the
margin. For example, the text that begins the
subsection you are reading would be encoded
in SGML as:

(1) <SSl><ST> STAGE 1 : SGML
Markup <IST> <P>< U.S>Markup
languages such as SGML add
<El>markup<IEl> to a text of a
document to specify its structure.
<IU.S>

33

In (1) the SGML tags enclosed by braces have
the following meanings:

(la) <SSl> = subsection start-tag
<ST> = section title start-tag
<IST> = end of section title
<P> = paragraph start tag
<El> = emphasis start tag
<!El> = emphasis end
<U.S> = sentence start tag
<IU.S> = sentence end tag

The SGML encoding of (l) is, in turn,

(2) <SSl><ST>STAGEl:
SGML Markup - . . .
</ U .S>

which shows that we can satisfy Becker 's
Criterion (Becker, 1975) that states that any
technique that claims to be useful and
generally applicable should be able to analyze
the very text which explains the technique!

In (2) items such as "&It;" are SGML entities ;
this one denoting the reserved character, "<"
(less than). The tags used here are drawn

from the American Association of Publishers'
(AAP) set, the Electronic Manuscript Standard
(EMS): with the addition of our own. user
defined tags such as the sentence tags, <U.S>
and <IU.S>. SGML is an ISO standard
(#8879). SGML specifies a system in which
tags and entities can be defined and used so
that an arbitrarily complex text can be
translated to a standard form which uses only
the ASCII character set so it can be
disseminated widely and dealt with uniformly
by a variety of systems.

The encoding (markup) of the text is . done
using an SGML editor that makes the process
efficient and checks that the text complies with
our SGML syntax specifications, e .g. , no
sentence-start tag can be entered until the
previous sentence-end tag has been entered.
The particular system we use is Author/Editor
(Softquad, Toronto, Canada) running on Mac
II's .

The example sentence - Here is the example
sentence we will use to illustrate our
preprocessing strategy. It is first presented as
it might appear in a research article source,
but laid out for easy comparison with the
SGML form which follows:

(3a)

(3b)

(3c)

(3d)

Cells were suspended in medium
containing

3.05x10-2 µM

L-[methyl _3HJ-methionine,

a-methylaspartate

(3e) and AIBU8.

Here is the SGML encoding of the example
sentence:

(4a) <U.S>Cells were suspended in medium
containing

(4b) 3.05×10<SUP>
−2<1SUP>µM

(4c) <SCP>L<ISCP>-[<IT>methyl<IIT>-
<SUP>3<ISUP>H]-methionine,

(4d) <GK>a<IGK>-methylaspartate

(4e) and AIBU <RB>8<1RB>.<IU.S>

The "µ ;" entity stands for the Greek
letter mu. "<SCP>" indicates small caps,
"<IT>" indicates italics and "<RB>" is a
bibliographic reference tag. Note that small
caps and italics are encoded because they are
standard typographical conventions used in
chemical names; otherwise the appearance of
items is not encoded.

STAGE 2: Tokenization - We use an
analyzer generated by LEX (Aho, Sethi and
Ullman 1986) to tokenize the input. It uses a
regular expression grammar to identify the
primitive elements of the SGML encoded text.
The six classes of tokens produced by this
stage are shown in Table 1. Note that "token"
as we use it here includes a parenthesized pair
(for numbers), not just a contiguous sequence
of non-blank characters.

Table 1. The input and output forms for the tokenization stage, Stage 2.

Input Class Output Format Example Output

ASCII text strings string - "Cells"
numbers (num string) (num "05")
special characters (string) (".") (",") ("(")
SGML tag symbol <U.S>
SGML entity symbol l µ I
no-white-space nws nws

34

For each class , the original ASCII
representation has been preserved, either by
including the string itself or using a Lisp
symbol whose print representation is the
ASCII representation. As an example, the
outputs from tokenizing (4a) and (4b) are the 7
token sequence (5a) and the 20 token sequence
(5b):

(5a)<U.S> "Cells" "were" "suspended" "in"
"medium" "containing"

(5b) (num "3") nws (".") nws (num "05") nws
I × I nws (num "10") nws
<SUP> nws I − I nws
(num "2") nws <!SUP> I µ I
nws "M"

The white spaces in the original text have been
complemented to yield the nws symbol to
indicate that the tokenized elements were
originally abutted. This is necessary for
disambiguation of complex sequences, and it
makes normal prose easier to read at this
stage.

Stage 3: Lexicon Lookup - At this point, a
lexicon is consulted for each sequence of tokens
contained in a title, section heading, sentence,
etc. For our example, the token sequence
generated from the full sentence (4) is handed
to the lexicon lookup routine as the 73 token
list,

(6) ("Cells" "were" "suspended" . . . <GK>
nws "a" nws <IGK> nws ("-") nws
"methylaspartate" . . . (num "8") nws
<IRB> nws ("."))

(notice our ellipsis). The lexicon lookup stage
attempts to match sequences of tokens from
the input to items found in the lexicon. The
lexicon is an extended phrasal lexicon, in
which each lexical entry is a sequence of one or
more tokens. Five typical lexical items are

"cells"
"sodium chloride"
"<GK>a<IGK>-methylaspartate"
"<GK>"

35

Note that in the lexicon, the nws (no-white
space) tokens are removed by concatenation
for both storage and lookup. A lexical item L
(one or more tokens) is a prefix if there are
longer items in the lexicon (more tokens) with
the same initial items as L. The first token of
all items in the lexicon is listed as a separate
entry. But some of these and some multiple
token entries never function as independent
stand-alone items and are noted as such in the
lexicon. For example the SGML tag tokens
"<GK>" and "<lT>"indicating that Greek and
italicized characters follow never function as
separate items.

To efficiently and reliably find multi-token
items, certain information is precomputed and
stored in the lexicon. For example, the items
"sodium", "chloride" , "sodium chloride",
"sodium bromide" "sodium iodide" might all
appear in the lexicon. When "sodium chloride"
appears in the source text, it is that two-item
entry that we want identified, not the two
separate words. To assure that this happens
the prefix list ((3 2)) is computed and attached
to "sodium". This says that there are 3 items
of length 2 that begin with "sodium", so the
next item in the source, "chloride" is attached
and the two-word item is found and returned
by the lexicon lookup. Prefix lists can be
complex, forming trees rooted at the initial
item. The prefix lists prevent the search for a
single item from continuing to the end of the
sentence, because they put explicit bounds on
the lengths of all items that could possibly
match, given any prefix.

The output from the lexicon lookup stage for
(6) is the list

(7a)

(7b)

"Cells" "were" "suspended" "in"
"medium" "containing"

(?? ((num "3") nws))

(?? (nws (num "05") nws I × I
nws (num "10") nws <SUP> nws
I − I nws (num "2") nws
<!SUP>))

"µM"

(7c) "<SCP>L<ISCP>-[<IT>methyk/IT>
<SUP>3<1SUP>H]-methionine" ","

(7d) "<GK>a<IGK>-methylaspartate"

(7e) "and" "AIBU"

(?? (<RB> nws (num "8")
nws <IRB> nws))

".")

There are three unknown item sequences here,
shown broken out in (7b) and (7e) as (??)
forms. The first two are parts of the number .
3 . 05x i o- 2 . The third is a bibliographic
reference. The "." in the number in (7b) and
the "." at the end of the sentence in (7e) are
recognized since "." is a stand-alone item.
<SUP> it is a prefix for entries such as
"³H-ethanol" but it is not
stand-alone, so it is included in the unknown
in (7b). Note that the strings which are the
lexicon identifiers for complex items such as
the chemical name in (7d) retain their original
SGML markup, without the no-white-space
symbols introduced by tokenization. In an
interactive system, these items could be
presented on a screen by interpreting the
markup according to a style specification and
producing the indicated orthography, e .g. ,
a-methylaspartate.

Stage 4: Sub grammar analysis - Th e
reaso.n that the three unknown items were
unrecognized in the previous step is that they
were parts of lexical items that belong to two
of the unbounded classes of lexemes. The job
of the subgrammar is to analyze this type of
unknown which can include numbers, number
ranges, simple ratios, references and page
numbers. Each class has an associated
structure for representing its instances. In our
previous example we had two unknown token
sequences and one lexical item, which when
taken together correspond to the number
3.05x10-2 :

36

(8) (?? ((num "3") nws))

(?? (nws (num "05") nws I × I
nws (num " 10") nws <SUP> nws
I − I nws (num "2") nws
<!SUP>))

We have written a context-free grammar to
recognize this token stream as a number in
scientific notation and place a structure in the
output stream of the general form

(9) ("num" SGML-string
Lisp-num-form)

For our example (8) this would result in:

(10) ("num"
"3.05×10<SUP>−
2<ISUP>" 3.05E-2)

The number structure consists of three fields.
The first, "num", is a lexical item, the noun
which represents all numbers. The parser for
doing the later syntactic analysis of this
sentence will access the feature-value list
associated this noun. The second field
contains the SGML encoding of the number.
This can be used for displaying the number on
the screen. The third field contains a Lisp
readable form of the number.

Another structure recognized by subgrammar
analysis is the bibliographic reference, (7 e).

· The structure produced by the analysis has the
form:

(11) ("$bibref$" SGML-string
List-of-contents)

When the token sequence from (7e) is
recursively analyzed, the result is

(12) ("$bibref$"
"<RB>8<1RB>"
(("num" "8" 8)))

In this example, the bibliographic reference
structure contains a number structure. In
general, any sequence of lexical items,
structures and unrecognized token streams

can be placed in the List-of-contents for
bibliographic references.

Subgrammar analysis of expressions such as
(8) involves first creating a stream without the
"??" tokens and without the actual integers
("3", "05", " 10" and "2") and with the "ordinary"
words replaced by simple placeholders, e.g. ,
"$word$". Critical elements such as nws,
<SUP> I − I , etc. are retained.

Once this simplified stream is available, the
parse is done according to the subgrammar
specialized for numbers, bibliographic
references, etc . But the output of the
subgrammar analysis must produce a new
stream which includes forms such as in (10)
and (12) as well as all of the original words. To
do this we take advantage of the compositional
semantics built into the Alvey parser. The
semantic attachment facilities in Alvey allow
references to daughter nodes by number and
the inclusion of simple lambda forms. But in
addition, arbitrary lisp forms can be included.
We define semantic rules with lisp forms
included. The Alvey semantics then works
compositionally by walking up the parse tree.
This allows the semantic interpretation to
generate the Common - Lisp source code for a
translator · of the original stream, e.g. , of
(7a-e). When this translator is applied to the
original stream, all "??" items which parse are
replaced by forms such as (10) and (12) and all
words such as "Cells" "were", etc. are simply
copied to the output. All "??II items that
remain are either ill-formed or are items not
yet in the lexicon . Note that a separate
translator is built for each sentence. But the
construction is simple and deterministic and
therefore rapid. Lisp's ability to treat code as
data is what we're exploiting here.

The syntactic role of some of the special forms
found by the subgrammar is subtle. Thus, in

(13) "This was discovered by Smith when
he was working at the MBL19."

the bibliographic reference does not act like
any familiar syntactic constituent. But in the
following form the reference functions as a
noun,

(14) "Commonsense knowledge is discussed
in (Davis, 1990)."

37

In the full natural language parsing (Stage 6)
there · will be additional categories and
grammar rules to allow such structures to be
treated properly.

When the translator generated by the
semantic interpretation of the subgrammar
parse is applied to (7a-e), the final form which
results is

(15a) ("Cells" "were" "suspended""in"
"medium" "containing"

(15b) ("num"
"3.05×10<SUP>minus;2
<!SUP>" 3.05E-2)

"µM"

(15c) "<SCP>L</SCP>-[<IT>methyk/IT>:
<SUP>3<ISUP>H]-methionine" ","

(15d) "<GK>a<IGK>-methylaspartate"

(15e) "and" "AIBU"
("$bibref$" "<RB>8<1RB>"

(("num" "8" 8))) ".")

This preserves all of the details of the original
text. Every form is an item or contains an
item that can be found in the lexicon and one
that will allow a proper screen display (cf. (16) .
below). Lisp forms of numbers and citation
information are also available.

The subgrammars are s imple and
deterministic so the parses are fast compared
to the later full natural language parses.

Stage 5: The Lexicographer's Workbench
Natural language parsing cannot be done until
all items are resolved by the lexicon, so
unknown items are passed on to the editor and
the lexicographer (humans). Errors in the
original source and errors in our own re-en try
can be caught at this stage. What remain are
items that need to be added to the lexicon.
These additions are made using the
Lexicographer's Workbench which is currently
under development. In the Workbench a
collection of analytical tools and heuristic
procedures are used to tentatively classify new
items which are then presented to the
lexicographer for simple approval or more
rarely for special treatment. Morphological

analysis is useful, e .g. , certain classes of
enzyme names have the suffixes "tasell or
"ase" as in "phosphatase" or "nuclease". This
means that new words can be analyzed and
suggestions made as to their classificati_on.
Alvey has a sophisticated morphological
analysis package which we are experimenting
with in which the rules are user . definable
(Ritchie, et al 1987).

One difficult task is the identification of new
phrasal items, a difficulty emphasized by
Amsler (Amsler, 1989). For example, consider
the case in which . "sodium", "chloride",
"bromide" and "sodium chloride" are in the
lexicon but "sodium bromide" is not. If
"sodium bromide" appeared in the input it
would not even be flagged as an unknown.
.Nevertheless, we would want the Workbench
to be provided with the heuristic that chemical
name sequences are most likely chemical
names themselves . Thus the workbench
would make the decision itself and insert
"sodium bromide" in the lexicon with the
proper feature/value specs. This decision
would, as all others, be subject to review by the
lexicographer or application field specialist.

Stage 6: Natural · language parsing -
When the lexical items are extracted from (15),
the result is

(16a) ("Cells" "w�re" '"'suspended" "in"
"medium" "containing"

(16b) "num" "µM"

(16c) "<SCP>L<ISCP>-[<IT>methyk/IT>
<SUP>3<1SUP>H]-methionine" ","

(16d) "<GK>a<IGK>-methylaspartate"

(16e) "and" "AIBU" "$bibref$" ".")

This is the input to the natural language
parser. The grammar furnished with the
Alvey tools is large and covers a wide variety
of constructions. Nevertheless, it will take
further extensions to get acceptable coverage
of the scientific prose in our corpus. This is
work in progress. A semantics for this large
grammar is under development (C. Grover,
personal communication). In addition, a more
efficient, LR(1) parser is being built to improve

38

the performance over the chart parser
currently available in the Alvey Toolkit
(J. Carroll, personal communication).

Stage 7: Building Knowledge Frames -
We have studied papers in our corpus in an
effort to identify all of the major semantic
constructions. One type deals with the
experimental details themselves such as the
techniques used and the results seen. The
other deals with scientific argumentation -
how models are used to suggest experiments
and how results reinforce or weaken various
hypotheses that might explain them. Our
goal is to design knowledge frames for the
different semantic structures we have found.
Then the logical forms produced by parsing
would be used as input to a system which
generates instances of the appropriate
knowledge frames representing the sentences.
(This is also work in progress.) Furthermore,
these knowledge frames can be connected
together into superstructures representing
coherent arguments for or against a given
proposition. Taken together, these frame
instances and their connecting frames compose
the knowledge base which would underlie our
"Scientist's Assistant" system, a system for
answering both general and specific queries
about the contents and arguments that are to
be found in our corpus.

4. DISCUSSION

Because of the complexities of technical text
notation and the availability of a
comprehensive standard, we decided to use
SGML for text markup. Then we designed a
token-based phrasal lexicon for resolving the
complex items generated by the markup. This
lexicon is robust because it handles everything
from simple words to complex multi-word
chemical names containing Greek letters,
commas, superscripts and more. In addition,
our subgrammar analysis handles unbounded
class items that cannot be accommodated in
the lexicon such as numbers in scientific
notation and bibliographic references.

The work closest to ours is the preprocessing
done for the LOB corpus (Booth, 1987).
Unfortunately, the SGML standard was not
available to that project at the time, so they
had to invent their own orthographic coding

schemes and a pre-editing phase similar to
ours to break the text into taggable units.
There are many differences between the
projects. One of these is in the design of the
lexicon. The LOB group decided to develop a
compact lexicon which includes only the base
forms. Possessives or contracted forms such as
"Smith's" or "it's" are not included. Because
secondary storage is rapidly becoming less
expensive and because modem database and
file structure designs allow very rapid access
to large lexicons we have opted for a very "flat"
lexicon in which e v e ry variant form
encountered in the corpus is stored as a
separate entry. This includes �apitalized
words appearing at the beginning of sentences,
etc. We add the variants of the base forms to
the lexicon only when they are found in our
corpus. Our own statistical analysis of large
corpora such as the Brown Corpus show that
the inclusion of these variant forms will
probably add no more than 50% to the lexicon
size over a lexicon that has only the base
forms.

If we had only included base forms then other
difficulties would crop up in attempting to map
between found entities and the base forms.
We avoid these difficulties by including the
variant forms and flagging them to indicate
their usage restrictions. We would flag
"There" as a form only expected as a sentence
initial (and fully equivalent to "there") whereas
"DNA" would only be expected in fully
capitalized form.

Another major activity in text encoding is the
Text Encoding Initiative or TEI (Sperberg
McQueen and Burnard, 1990). They have been
focusing on text in the humanities so they have
been concerned with a different set of
problems such as encoding verse, stage
directions, foreign language quotations, etc.
Neither the TEI not the LOB groups seemed to
have directly faced the issues of how to
interface the marked up text with the
available parsing technology as we have.

SGML allows the user to design their own set
of tags, entities and rules so we had to make
some design deci �ions. Our design is
constructed pragmatically to make it usable by
an editor/typist who is not a scientist. For
instance, we have used a special tag "<RB>"
for a bibliographic reference which might be

39

represented by a superscript or by the
conventional "(Shepard, 1978)" . And we have
opted to use the simple superscript tag
"<SUP>" for both algebraic exponents as in
"3.05x10-2" and isotope indicators as in "3H".
The subgrammar and lexicon l ookup,
respectively, resolve these latter two items.
This allows the typist to encode source text
primarily on the basis of its appearance, rather
than its semantic (scientific) content.

We are constantly asked why we do not use
OCR techniques (optical character recognition)
or go directly to publishers for electronic
versions of the papers in our corpus. Again,
these are pragmatic decisions, peculiar to this
point in time. Because OCR error rates are
still relatively high, especially for technical
text, and because OCR systems do little or no
markup , we can produc e accurate
transcriptions and markup more cost
effectively by having a skilled typist/editor
rekey the text. Most of our corpus (covering 30
years) does not exist anywhere in electronic
form, and the wide variety of proprietary
schemes used by printing firms for electronic
typesetting is a nightmare to untangle.

In the future, technical word processing
systems will be developed that will allow
scientist authors to enter their text with the
proper logical tagging but without the system
obtruding on their work. The systems we are
developing will be able to take advantage of
such electronic documents as they become
available.

Many authors -have argued cogently and at
length that multi -word items, idioms,
punctuation and other complexities of real text
require a comprehensive approach (Becker,
1975; Besemer and Jacobs, 1987; Amsler,
1989; Nunberg, 1988, 1990). The methods
described here can serve as a foundation for
any comprehensive system•that must deal with
the lexical, syntactic and semantic aspects of
real-world technical text.

ACKNOWLEDGEMENTS

We thank John Carroll and Claire Grover for
discussions of the Alvey tools, including the
semantic component.

REFERENCES

Aho, A. ; Sethi, R. and Ullman, J·. 1986.
Compilers ; Principles, Techniques, and
Tools. Addison-Wesley Publishing Company,
Inc., Reading, MA

Amsler, Robert A 1989. Research Toward the
Development of a Lexical Knowledge Base
for Natural · Language Processing. . .

Proceedings of the Twelfth Annual
International ACMSIGIR Conference on
Research and Development in Information
Retrieval. Cambridge, MA : 24�-249.

Becker, J,.D. 1975. The Phrasal Lexicon. In
Proceedi�gs Interdisciplinary Workshop on
Theoretical Issues in Natural Language
Processing. Cambridge MA : 70 - 73.

Besemer, David J. and Jacobs, Paul S. 1987.
FLUSH: A Flexible Lexicon Design. In

. Proceedings of the 25th Annual Meeting of
the Associat ion for - Computational
Linguistics . . Stanford University, Stanford,
CA : 186 - 192.

Boo.th, Barbara 1987. Text input and pre
processing: Dealing with orthographic form
of texts. In The Computational Analysis of
English. A Corpus-Based Approach.
(Longman, London).

Briscoe, E . ; Grover, C. ; Boguraev, B. and
Carroll , J. 1987 A Formalism and
Environment for the Development of a Large
Grammar of English. Proceedings of the 10th
International Joint Conference on Artificial
Intelligence,. Milan, Italy: 703-708.

Bryan, M. 1988. SGML: An Author's Guide to
the Standard Generalized Mark up
Language. Addison-Wesley Publishing
Company, Inc. , Reading, Massachusetts.

Futrelle, R. P. 1989. An Introduction to the
Biological Knowledge Laboratory. Technical

40

Report NU-CCS-89-15. CqUege of Computer
Science, Northeastern University.

Futrelle, R.P. 1990a. Strategies for Diagram
Understanding Object/Spatial Data
Structures, Animate Vision, and Generalized
Equivalence. Proceedings of the 10th
International Conference on Pattern Recognition.
Atlantic City, NJ: 403-408.

Futrelle, R. P. 1990b Current Activities in the
Biological Knowledge Laboratory (BKL).
Technical Report NU-CCS-90-20. College of
Computer Science, Northeastern University.

Nunberg, Goeffrey 1988, 1990. The Linguistics
of Punctuation. Technical Report P88-00142.
XEROX System Sciences Laboratory, Palo
Alto Research Center, Pal Alto, CA (U.
Chicago Press, 1990, to appear).

Ritchie, Graeme D. ; Pulman, Stephen G. ;
Black, Alan W. and Russell, Graham J.
1987. A Computational Framework - for
Lexical Description. Co mp u t a t i o n a l
Linguistics, Vol. 13, No. 3-4: 290-307.

Sperberg-McQueen, C. M. and Burnard, Lou,
editors. 1990. Guidelines For· th�
Encoding a n d In t erchange of
Machine-Readable Texts. Document
Number: TEI Pl . Draft: Version
1 .0. The Association for Computers
and the Humanities; The Association
for Computational Linguistics ; The
Asso c i ati on for Liter ary and
Linguistic Computing.

van Herwijnen, Eric 1990. Practical SGML.
Kl u w e r Ac a d e m i c Pub l i s h e r s ,
Dordrecht, The Netherlands.

