
PARSING 2-D LANGUAGES WITH POSITIONAL GRAMMARS

Gennaro Costagliola and Shi-Kuo Chang

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

gencos@speedy .cs. pitt.edu
Phone: (4 1 2) 624-8836
FAX: (41 2) 624-8465

ABSTRACT

In this paper we will present a way 10 parse two-dimensional
languages using LR parsing tables. To do this we describe
two-dimensional (positional) grammars as a generalization of
the context-free string grammars. The main idea behind this is
to allow a traditional LR parser to choose the next symbol to
parse from a two-dimensional space. Cases of ambiguity are
analyzed and some ways to avoid them are presented. Finally,
we consrruct a parser for the two-dimensional arithmetic
expression language and implement it by using the tool Yacc.

INTRODUCTION
One of the latest approaches in parsing 2-D languages has

been presented by Tomita in [37), where he introduces a 2-D
Chomsky Normal Form grammar and constructs extensions to
the two-dimensional case of Earley• s and LR parsing algo
rithms.

In this paper, we present an extension of a context-free
grammar by explicitly describing the positional relations
between the elements (terminals and non-terminals) in the right
hand-side of each production rule of the grammar. As these
relations can be very general, the resulting grammar can be
seen as a generalization of Tomita's 2-D Chomsky Normal
Form grammar where only horizontal and vertical relations are
allowed.

The resulting parser for such a positional grammar is con
structed by simply adding a column to the LR parsing table.
This column contains the position of the next symbol to be
shifted, for each state. Unlikely from the 2-D LR parsing algo
rithms given in [37] , our parser slightly modifies the original
LR parsing algorithm, so that the tool Y ace can be easily used
to construct a two-dimensional parser for a positional gram
mar.

Furthermore, we analyze cases of ambiguity, give some
ways to avoid them and then present a general methodology to
parse two-dimensional patterns applying it to the case of the
two-dimensional arithmetic expressions.

Many other approaches have been proposed till now in
high dimensional syntactic pattern representation and recogni-

tion. Each of them is based on the particular data structure used
for representing the pictures: a string,- an array, a tree, a graph,
and a plex.

One of the first approaches is given by a traditional string
grammar in which more general relations (HOR, VER,
ABOVE, LEFT, etc.), other than concatenation, are allowed
among primitives in the pattern [2, 8, 16] . Shaw, by attaching a
"head" and a "tail" to each primitive, has used four binary
operators for defining binary concatenation relations between
primitives. A context-free string grammar is used to generate
the resulting Picture Description Language (POL) [16, 3 1] .

Another interesting approach using a string grammar, has
been given in [5] where each primitive has associated spatial
attributes.

A simple two-dimensional generalization of string gram
mars is to extend grammars for one-dimensional strings to
two-dimensional arrays [23, 28, 35, 38]. The primitives arc the
array elements and the relation between primitives is the two
dimensional concatenation.

Pf alz and Rosenberg have extended the concept of string
grammar to grammars for labeled graphs called webs
[1 6, 17, 26, 27, 29] . These grammars were originally suggested
as a syntactical formalism for data structure useful in image
analysis. An application of graph languages for describing
scenes is of frequent occurrence in the literature dealing with
image processing, whereas the use of graph grammars for pat
tern recognition is rare (for this purpose tree grammars are
applied inste� [3, 17, 18 , 22, 30, 32]). Difficulties concerning
building a syntax analyzcr for graph grammars are causes of
�is situation. Recently, however, parsing methods_ for a par
ocular kind of graph grammar have been proposed, and an
efficient parsing, close to the parsing efficiency of tree
languages, has been obtained [1 5, 2 1 , 33).

Based on an idea in the work of Narasimhan [24] , Feder
[14) has formalized a "plex" grammar which generates
languages with terminals having an arbitrary number of attach
ing points in order to connect to other primitives or sub
patterns. The primitives of the plex grammar are called N
Attaching Point Entities (NAPEs). Plex structures defined by a
plex grammar may be viewed as a hypergraph, with each
NAPE corresponding to a hypcredge. Therefore this kind of
plex grammar is a more general model than that of graph gram-

235

mar. Until recently, however, very little was known about the
parsing method for plex grammars. Recently, a parsing method
has been developed (25] to achieve more efficient parsing of
plex grammars, by adapting Earley parsing algorithm, (1 3] .

The paper is organized as follows. In Section 2 the posi
tional grammar is defined, and some examples are given. In
Section 3 the extension of the LR parser, named positional LR
(pLR) parser, is prescnte.d along with a description of the pLR
parsing tables and of the parsing algorithm. In Section 4 con
siderations of ambiguity are given along with the construction
of a pLR parser for the arithmetic expression grammar. In Sec
tion 5 we present the general methodology for parsing 2-D
languages generate.d by a positional grammar. The conclusions
are in Section 6.

POSITIONAL GRAMMARS
The parser we are .going to present recognizes pictorial

languages generate.d by positional grammars.

Definition 2.1
A context-free positional grammar PG can be represente.d

by a six-tuple (N, T, S, P, POS, PE) where:

. N is a finite non-empty set of non-terminal symbols,
T is a finite non-empty set of terminal symbols,
N n T = 0,
S e N is the staning symbol,
P is a finite set of productions
POS is a finite set of positional relation identifiers
POS n (N u T) = 0,
PE is an evaluation rule

Each production in P has the following form:

m � 1

where A e N, each ai is in N u T and each RElj is in POS. I

Each positional relation REli gives infonnation about the
relative position of ai + 1 with respect to a; . In the following,
the words "positional grammar" will always refer to a context
free positional grammar.

While in a string grammar the only possible positional
relation_ is the string concatenation, in a positional grammar
other positional relations can be define.d and then use.d for
describing high dimensional languages. When parsing, this
positional information will be useful for letting the scanner
know where the next symbol to parse is.

Some simple examples of positional relations on a Carte
sian plane:

String concatenation or adjacent horizontal concatenation
AHOR = ((p 1 , pi) : p 1 and p 2 are pictures horizontally con-

catenate.d with alignment of their centroids }

Adjacent vertical concatenation
A VER = ((p 1 , pi) : p 1 and p 2 are pictures vertically con-

catenate.d with alignment of their centroids }

Upper horizontal concatenation
UHOR = { (p 1 , p i) : p 1 and p 2 are pictures horizontally con

catenate.d with alignment of the centroid of p 1 and
the up-most element of p 2 }

Horizontal concatenation
HOR = { (p 1 , p 2) : p 1 and p 2 are pictures and location(p 1) =

(x , y) and location' (pi) = (x' , y') and the position
(x' , y') is feasible and x' > x }

Vertical concatenation
VER = { (p 1 , p 2) : p 1 and p 2 are pictures and location(p 1) =

(x , y) and location' (p 2) = (x' , y') and the position
(x' , y') is feasible and y' < y and x' s x }

where a picture is a spatial arrangement of one or more
. symbols, location(p) is a function returning the position of a
symbol of the picture p and a feasible location is a location that
has not been made unfeasible by another symbol or by the side
effect of an evaluation rule, as it will be seen in the following.

Definition 2.2
An evaluation rule PE is a function whose input is a

string

P 1 REL 1 P2 REL2 · · · REL,,.-1 Pm m � 1

where each Pi is a picture and each REli is a positional rela
tion; its output is a picture whose elements p 1 , p 2. . . . , Pm are
dispose.d in the space such that

<Pi , p·i +l) e REli 1 � i � m - 1 .

The evaluation of the positional relations is meant to be
sequential from left to right. As side effects can be generated
for any evaluation, an evaluation rule is simple if no side
effects are involved. I

A possible side effect of the evaluation of a relation is co
make certain positions in the space unfeasible. As the evalua
tion is sequential, each evaluation inherites the side effects
generate.d by the previous evaluations.

Some examples of applications of the simple evaluation
rule follow:

PE("a . b . c . d") = a b e d

a
PE("a VER b HOR c") = b C

a
PE("a AVER b") = b

where the positional relations ' . ' , VER , HOR and AVER are
defined as above.

The following definitions are understood to be with respect to a
particular positional grammar G.

236

We write TT => l: if there exist �. r, A, 11 such that TT =
r M, A ➔ 11 is a production and l: = r11�.

We write n =>* l: (l: is derived from TT) if there exist
strings flo, Il 1 · · · n,,. (m 2: 0) such that

n = no => n1 => • . . => n,,. = 1:
The sequence flo , n,,. is called a derivation of l: from

n. A positional sentential form is a string n such that S =>*
n. A positional sentence is a positional sentential fonn with
only terminal symbols. A pictorial f onn is the evaluation of a
positional sentential fonn. A picture is a pictorial fonn with
only terminal symbols. The pictorial language defined by a
positional grammar L(G) is the set of its pictures.

Some examples of positional grammars:

2. 1) The following grammar generates the strings of the fonn
a · · · ab · · · b with equal number of a's and b's.

N = { S }
T = { a, b }
POS= { . }
PE is the simple evaluation rule
p = {

S := a . S . b I a . b
}

The positional operator . is defined as above. A posi
tional sentence of this grammar is: a . a . a . b . b . b and
the corresponding picture is: aaabbb.

This example shows that every context-free string
language can be represented by a positional grammar.

2.2) The following grammar generates an upper-right corner
with variable length of the edges.

N = { Comer, IIl.,ine, VLine }
T = (dot}
S = Comer
POS= (UHOR , AHOR , AVER }
PE is the simple evaluation rule
p = {

Comer := fil.,ine UHOR VLine
IIl.,ine := fil.,ine AHOR dot I dot
VLine := VLine A VER dot I dot
}

where UHOR , AHOR and AVER are defined as above.
A positional sentence of this grammar is:

dot AHOR dot AHOR dot AHOR dot UHOR dot AVER
dot AVER dot AVER dot

Replacing dot with the character '. ' , the corresponding
picture is:

2.3) The following grammar generates two-dimensional
arithmetic expressions using the binary operations addi
tion and division:

237

N = {E, T, F}
S = E
T = { +, hbar , (,), id }
POS= (HOR , VER }
PE is the evaluation rule defined below
p = {

E := E HOR + HOR T I T
T := T VER hbar VER F I F
F := ·c HOR E HOR) I id
}

The evaluation rule is so defined (see Figure 2. 1):
PE(p 1 HOR p i.):

The evaluation of HOR will give coordinates (x, y)
to location(p 1) and (x', y ') to location(p 2) such that
(p 1 , p2) e HOR . Moreover it will make unfeasible
each position belonging to any of the following
sets:
{ (x, y1) : y S y1 S m}
{ (x 1 , yi) : x < x 1 < x' and O S y2 S m}
{ (x ' , y3) : y' S y3 S m}
where m �1 is an upper bound on the y-coordinate
in the two-dimensional space.

PE(p 1 VER p 2) :
The evaluation of VER will give coordinates (x, y)
to location(p 1) and (x ' , y ') to location(p 2) such that
(p 1 , p 2) e VER . Moreover it will make unfeasible
each position belonging to any of the following
sets:
{ (x 1 , y) : 0 S x 1 S x }
{ (x2, y 1) : 0 S x2S x and y ' < y 1 < y }
{ (x3, y') : 0 S x3 S x ' }

y ________ __,
y' t----+------t---1

X x' x' X

Figure 2. 1 . {p 1 HOR P2 l and {p 1 VER P 2 l

A positional sentence of this grammar is:
id HOR + HOR (HOR id HOR + HOR id HOR) VER hbar
VER id HOR + HOR id Replacing hbar with an horizontal bar, according to the definitions of HOR , VER and PE, there are many possible pictures corresponding to the evaluation of this positional sentence, but all of them can be mapped into the following one:

.d (id + id) .d l + ...;......-� + l
id

that is still a picture of this language.
POSITIONAL LR PARSERS Positional LR parsers (pLR parsers) are nothing else but a generalization of the .LR parsers. The model of a pLR parser is given by:

1) Input 2) Positional operators 3) pLR Parsing Table 4) pLR Parsing Program 5) Stack 6) Output as shown in Figure 3. 1 .
Input $

Stack

positional operators

pLR
Parsing Program

Figure 3 . 1 . The model of a pLR Parser
The input

Ouput

The input to a pLR parser is a spatial arrangement of tokens, or, in other words, a symbolic picture where each symbol is a token. Such an input is represented by an array w (the input tape) where each token is stored, a list Q of couples (pos , i) where pos is the spatial position of the token w[i] , and a staning index that points to the first token to parse. The association between a position and a token allows us to reach a token in w each time its spatial position has been given and viceversa. The input tape is, then, no longer required to be accessed sequentially but rather, according to the positional requirements given by the parser. In this context, the definition of the sequential end-ofstring marker must be extented. In fact, the end-of-string

marker hides an operational aspect: when parsed, it signals that no symbols to parse are left. While in a sequential scanning nothing must be done other than recognizing the '$ ' character, in a non-sequential scanning such operational aspect must be made explicit Before returning an end-of-input symbol, the scanner has to check whether all the symbols have been parsed. In a pLR parser, the end-of-input marking is implemented by storing the symbol '$' in location O of the input tape, and defining the end-of-iripur operator ANY as a function whose return value is O if all the symbols in the input tape have been parsed and 'error' otherwise.
The positional operators For each positional relation we define a positional operator with the same name. Such an operator is a function that takes in input the index in the tape of the last token parsed, calculates a new position and then returns the index of the next token to parse, by consulting the list Q.
Definition 3.1 Given a positional grammar PG = (N, T, S, P, POS, PE) and a relation REL e POS, then for all a, � e ·N u T such that "a REL �" occurs on the ·right hand-side of a production rule in PG, the corresponding positional operator REL is defined as follows: REL(i) = j iff i is the index in w of 'a• , the last token parsed to reduce a, and j is the index in w of 'b ' , the first token to parse to reduce �- I

Examples: 3. 1) In the grammar of Example 2.2, the corresponding operators for POS can be defined as follows: UHOR(i) = AHOR(i) = j iff location(w[i]) = (x, y) and location(wUD = (x+o, y). A VER(i) = j iff location(w[i]) = (x, y) and location(w[j]) = (x, y-0). where o is the distance between each couple of dots.
3.2) For the arithmetic expression grammar the operators HOR and VER can be defined as follow: HOR(i) = j iff location(wU]) is the highest spatial position in the first non-empty column on the right of location(w[i]). VER(i) = j iff location(wUD is the spatial position on the left of location(w[i]) such that it is the leftmost position in the first nonempty row below location(w[i]).
The Positional LR Parsing Table Besides the "action" and "goto" · columns of . an LR parsing table, . the pLR parsing table contains an additional column called "position". The positional operators SP, ANY and the names of the positional operators are the elements of this new column. SP returns the staning index given in input with the picture and ANY is the operator defined above. All the names

238

-in · the column "position" can be considered as pointers to the code implementing the operators. As the construction of the "position" column does not affect the other entries of the original LR parsing table, we can use the traditional three techniques (with some variations) for having Simple pLR, canonical pLR and LookAhead pLR parsers.
A pLR(0) item of a positional grammar PG is a production of PG with a dot at some position of the right side. A dot. however� can never be between a positional operator identifier and either a terminal or a non terminal, in this order. Thus, a production A ➔ SP X REL 1 Y REL 2 Z yields the four items:

A ➔ .SP X REL 1 Y REL 2 Z A ➔ SP X .REL 1 Y REL 2 Z A ➔ SP X REL 1 Y .REL 2 Z A ➔ _ SP X REL .1 Y REL2 Z . Intuitively, an item indicates how much of a production we have seen at a given point in the parsing process. For example, the first item above indicates that we hope next to see a pattern derivable from XYZ starting from position SP. The second item indicates that we have just seen on the input a pattern derivable from X and that we hope next to .see a pattei:n derivable from YZ starting from the position specified by the operator associated to REL 1 . If PG is a grammar with starting symbol S, then PG', the augmented positional grammar for PG, is PG with a new starting symbol S' and production S' := SP S.
Example 3.3 Let us consider the following positional grammar generating an horizontal concatenation of a block of squares, an arrow and another block of squares

, (1) S := B I HOR '=> HOR B2 (2) B I := C HOR -C (3) C :=. square VER square (4) B2 := R VER R (5) R := square HOR square
Here the definition of PE is as in Example 2.3. The canonical collection of sets of pLR(0) items for this grammar follows next, along with the position values. The goto function for this set of items is shown as the transition diagram of a deterministic finite automaton in Figure 3.2 and the . resulting Positional LR parsing table is given in Figure 3.3.
I O : S' : = .SP S position[0] = { SP } S := .B l HOR => HOR B2 B I := .C HOR C C := .square VER square / 1 : S ' := SP S. /2 : S := BI .HOR => HOR B2 / 3 : B 1 := C .HOR C C := .square VER square
I 4 : C := square . VER square

position[l] = { ANY } position[2] = (HOR } position[3] = { HOR}
position[4] = (VER}

I 5 : S := B 1 HOR => .HOR B2 B2 := .R VER R � := .square HOR square
I 6 : B 1 := C HOR C . 1 7 : C := square VER square . / s : S := B 1 HOR => HOR B2 .
/ 9 : B2 := R . VER R R := .square HOR square / 1o : R := square _HOR square
/ 1 1 : R := square HOR square . f 12 : B2 := R VER R .

position[5] = (HOR}
position[6] = (HOR} position[?] = {HOR} position[8] = {ANY } position[9] = { VER }
position[lO] = (HOR }
position[1 1] = (VER.ANY } position[1 2] = {ANY } Note that in the construction of each closure, the positional operators HOR and VER are ignored by the dot. This information is instead caught by the position array.

ANY

Figure 3.2. Transition diagram
action goto position

state
square => s s B l B2 C R 0 s4 l 2 3 SP l ace ANY

2 sS HOR 3 s4 6 HOR
4 s7 VER
s s10 8 9 HOR
6 r2 HOR
7 r3 r3 HOR
8 rl ANY
9 s10 12 VER 10 s1 1 HOR 1 1 r5 rS ANY VER 12 r4 ANY

Figure 3.3. A Simple pLR parsing table

239

Details on the algorithm for the construction of a Positional LR
parsing table can be found in (9, 10] .

The Positional LR Parsing Algorithm

The pLR algorithm is a simple extension of Algorithm 4.7 in
[1]; the only differences regard the form of the input and the
setting of the pointer to the next symbol.

The input is now given by a picture p represented by an
array of tokens w, a starting index in w, and a list Q of couples
(pos , i); the specification of a set of positional operators, and
the pLR parsing table with functions "action", "goto" and
"position" for a positional grammar PG.

Each time the pLr parser reaches a state in the recognition
of the pattern, .the next symbol to parse is determined by using
the positional operator associated to that state. As in LR pars
ing, a same symbol cannot be considered more than once.

Details on the Positional LR parsing algorithm can be
found in (9, 10) .

Examples

3 .4) Figure 3.4 shows the parsing action, goto and position of
a canonical pLR parsing table for the following linear
positional grammar for the vertical concatenation of two
strings both of the type "c · · · cd".

(1) S := C VER C
(2) C := c AHOR C
(3) C := d

where the evaluation rule is simple when applyed to
AHOR and defined as in Example 2.3 when applied to
VER . Using the parsing table in Figure 3.4 and applying
the pLR parsing algorithm, it can be verified that the fol
lowing picture

cccccccccccd
ccccd

is in the described language.

action
state

d $ C

0 s3 s4 1 ace
2 s6 s7
3 s3 s4
4 r3 r3
5 r l
6 s6 s7
7 r3
8 r2 r2
9 r2

goto
position s C

1 2 SP
ANY

5 VER
8 AHOR

VER
ANY

9 AHOR
ANY
VER
ANY

Figure 3 .4. A canonical pLR parsing table

3.5) Given the grammar in Example
0

3.3, using the parsing
table in Figure 3.3 and applying the pLR parsing algo
rithm, it can be verified that the following picture

□ □

n o

=>
□ □

□ □

is accepted. In particular, note that the parser drives the
scanning of the input such that the first block is visited
by columns, and the second block by rows, according to
the productions of the grammar. All the other ways of
scanning this input are not taken into consideration.

AMBIGUITY CONSIDERATIONS

In this Section we will show that conflicts in positions can
lead to conflicts in the "action" part of the parsing table even if
it has no multiple entries.

In Section 2 we gave a two-dimensional version of the
grammar given in [1] for arithmetic expressions. We will show
now that this grammar is not pLR(1) from the fact that it has
conflicts regar�ing the position of the next symbol. Let us con
sider the following pictorial form:

T 'd - + , id

assuming that T has already been reduced.

After reducing T, the parser has to decide whether to
choose 'hbar ' in vertical reading, or '+' in horizontal reading.
Both the alternatives are valid: if 'hbar ' is chosen, then the
parser has to shift, otherwise it has to reduce. One possibility
for avoiding this conflict is to assign priority to each positional
operator. In this example we could decide that the vertical
reading has always higher priority than the horizontal one. This
would respect the priority between 'hbar ' and '+' implicitly
given in the grammar. But, if this other example is considered

...... (T_+_id __) + id
id

the priority resolution will fail. In fact, in this case, after read
ing T, we want to move horizontally because of the
parenthesis, and not vertically.

Another possibility for avoiding this conflict is to give a
"smart" representation of the two-dimensional pattern deriving
it from techniques of image analysis like dominancy (4, 12] .
Last but not least, we can construct an equivalent pLR(1)
grammar as it is normally done for solving conflicts in LR
parsers. Following these ideas, the pLR(1) grammar for the
arithmetic expressions has been constructed:

(0) E' := SP E
(l) E := E HOR + HOR T

240

(2) E := T (3) T := T' VER F
(4) T := F (5) F := (HOR E HOR)
(6) F := id
(7) T' := T' VER F'
(8) T' := F'
(9) F' := {HOR E HOR l
(10) F':= kl. Figure 4. 1 shows the resulting pLR(1) parsing table for this grammar. Note that the terminals id , (, and) have been duplicated as well as the non-terminals T and F. Moreover, rules (3), (4),

(5) and (6) have been duplicated in rules (7), (8), (9) and (10). The new grammar, then, has a particular section dedicated to the generation of the numerator of any division. During the recognition, this allows us to decide whether the expression to be parsed is the numerator of a division or not. In particular, the new terminals i and l mark the beginning and the end of any complex numerator, respectively, and the terminal kl. is the simple numerator.
- ICIIOII _,

s ill +) (ill l L E' E T F -r F" posiaon

0 ,1 15 116 .. I 2 4 3 9 SP

I ICC 110
(HOR
(ANY

2 r2 r2 r2 r2 HOR
3 17 15 116 .. 12 13 VER
4 r4 r4 r4 r4 HOR
5 ,1 15 116 .. 14 2 4 3 9 HOR
6 r6 r6 r6 r6 HOR
7 rlO rlO rlO rlO VE.R
8 ,1 15 16 .. 15 2 4 3 HOR
9 r8 r8 r8 r8 VE.R

10 17 s5 16 .. I I 4 3 9 HOR
1 1 rl rl rl rl HOR
12 r3 r3 r3 r3 HOR
13 r7 r7 t7 HOR
14 110 116 HOR
15 110 117 HOR

16 r5 r5 r5 r5 HOR

17 r9 r9 r9 r9 VER Figure 4. 1 . pLR parsing table for arithmetic expressions
A trace for the acceptance of the following patterns can be easily constructed

{ id + idl
id + id

i!i.
kJ. + id id

AN IMPLEMENTATION The general methodology to parse pLR languages is the following: I. Define a general data structure to represent the twodimensional symbolic pictures. II. Define the positional relations and operators meant to relate objects in the patterns, and construct the pLR positional grammar, if possible, to describe the language. III. Convert the general data structure into the input to the parser as defined in Section 3.

IV. Construct the parser. Point I requires a general data structure to represent the original symbolic picture input. This can be a matrix of symbols, or an iconic index, i. e., an analogous linear representation based on the projections of the symbols: the 2-D string as defined in [6], or, for high dimensional symbolic patterns, the Gen_string, [1 1] . As the whole parsing model presented is extensible to the n-D case (n >2) just considering positional relations and operators for the n-dimensional space, �e will make use of the Gen_string iconic index. The characteristics of it and the algorithms to derive it from a high dimensional pattern are given in [1 1]. In the proposed implementation, each element of the Gen_string is a - token. A lexical analyzer to construct such a Gen_string can be obtained by using the same actions described above, but allowing the elements of the general data structure (another Gen_string) to be elementary items or pixels. Point II requires the construction of the pLR linear positional grammar along with the positional operators. Point III requires routines for the conversion of the general data structure into an array of tokens w, a starting index in w, SP, and an association list Q of positions and tokens. In particular the list Q must be implemented such that the positional operators can be executed efficiently. Finally, Point IV requires the construction of the parser. As a result of Theorem 7. 1 in[9] , this can be done by translating the positional LR grammar into an LR grammar with actions and then by using the tool Yacc, [20] . As an example of the construction given in that Theorem, let us consider the the positional LR grammar for the arithmetic expressions. The resulting LR context free grammar with actions is:
(1) E := E + {HOR() } T (2) E := T (3) T := T' F
(4) T := F (5) F := ({ HOR() } E) (HOR() } (6) F := id {HOR() } (7) T':= T' F '
(8) T':= F ' (9) F ':= !. {HOR() } E l { VER() } (1 0) F ':= kJ. (VER() }

An implementation by Yacc for this grammar, using rhe Gen_string representation, has been developed at the Department of Computer Science of the University of Pittsburgh. The implementation consists of the following: The function get _gs(): the Gen_string representing a two-dimensional arithmetic expression is stored in a global data structure "gs". The Gen_string can be taken from a database or derived from the original pattern. The function gs _ir(): the Gen_string is converted into an internal representation (data structure "spg", and others). The functions read_hor() and read_ver(): the spatial operators HOR and VER are implemented, respectively.

241

The yacc specifications for the grammar. the functions read_hor() and read_ ver() are insened in the rules as actions. Both of them update a global variable "current" used by the function yylex() to select the next token to be par�ed. In the following, the results of the execu·tion of such specifications are given. Note that the array "spg" represents the set of tokens occurring in the expression . while the values of "cumnt" give the order in which the tokens are parsed. For each token spg[i] , the (x, y) coordinates are also given (the list
Q). In this implementation x represents the column index in left-right progression, and y the row index in top-down progres�ion. Case 1

Case 2

get�sl : the input Gen_string is equivalent to (99 + 501) * . ..!.Q. 6 2 spg[O] = '"D" spg[l] = "f' spg[2] = "99" spg[3] = "+" spg[4] = "6" spg(5] = "50 1 " spg[6] = "l'.' spg[7] = "* " spg[8] = " 1 O" spg[9] = "2"

x = l x = 2 x = 3 x = 3 x = 4 x = 5 x = 6 x = 7 x = 7

y = 1 y = 1 y = l y = 2-y = 1 y = l y = 2 y = l y = 2
current = 1 2 3 5 6 4 7 8 9 0 . . . the result is �> 500
get�s2: the input Gen_string is equivalent to

8
m

-2

spg[O] = '"O" spg[l] = "(" spg[2] = "�" spg[3] = "5." spg[4] = "2" spg[5] = ")" spg[6] = "-" spg[7] = "2"

x = l y = 2 x = 2 y = l x = 2 y = 2 x = 2 y = 3 x = 3 y = 2 x = 4 y = 2 x = 5 y = 2
current = 2 1 3 4 5 6 7 0 ... the result is -> 2

CONCLUSIONS In this paper we constructed a parser for · a subclass of symbolic · pictorial languages. We showed that this class contains the context-free string languages and th�t a complex language like the two-dimensional arithmetic expression language can be parsed by the proposed model. - W � � showed that this class has a real nice property: the posStbility to be parsed in a very simple way by using an existing tool.

At the moment we are investigating the extension of 1,miversal parsers like Earl�y•s ([1 3]) and Tomita's ([36]) algorithms by applying the same technique used for extending the LR parser. Moreover we are considering applications of the model proposed to graphics and to · visual languages
([7, 12, 19, 34]). In the future we intend to extend the subclass of pictorial languages parseable by constructing more powerful parsers. A first approach regards the extension of the concept of symbol to an N-Attaching Point Entity as defined in [14] . · A second approach regards instead the possibility to have more than one positional relation between two symbols. In this way a symbol can be connected to non-adjacent symbols, too.

REF�RENCE_S . [1] A . V . Aho, R . Sethi, . . and J:'D. Ullman, Compilers, princi
ples, techniques, and tools, Addison Wesiey, 1985.' [2] H.G. Barrow and J.R. Popplestone, "Relational Descriptions in picture processing," Machine Intelligence, vol. 6, pp. 377-396, 197 1 .

[3] N.S. Chang and K.S. Fu, "Parallel Parsing of Tree Languages for Syntactic Pancm Recognition," Pattern
Recognition, vol. 1 1 , no. 3, pp. 2 13-222, 1979. [4] S.-K. Chang, "A Method for the Structural Analysis of Two · Dimensional Mathematical Expressions, ' ' I nforma-
tion Sciences, vol. 2, pp. 253-272, 1970. [5] S.-K. Chang, "Picture Processing Grammar and its Applications," Information Sciences, vol. 3, pp. 121_- 148, 197 1 . [6] S.-K. Chang, Q.Y. Shi, and C.W. Yan, "Iconic Indexing by 2-D strings," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. PAMI-6, no. 4, pp. 475-484, July 1984. [7] S.-K. Chang, M.J. Tauber, B. Yu, and J.S. Yu, "A Visual Language Compiler," IEEE Transactions on Software
Engineering, vol. 15, no. 5, pp. 506-525, 1989. [8] M.B. Clowes, "Pictorial Relationships - A Syntactic Approach, ' ' Machine Intelligence, vol. 4, Amer. Elsevier, New York, 1969. [9] G. Costagliola and S.-K. Chang, "Parsing Linear Pictorial Languages by Syntax-Directed Scanning,' ' submitted to
JACM.

[10] G. Costagliola and S.-K. Chang, "DR PARSERS: a generalization of LR parsers," Proc. of 1990 IEEE Workshop
on Visual Languages, pp. 174- 180, Skokie, Illinois, USA, October 4-6. (1 1] G. Costagliola, G. Tonora, and T. Arndt, "A Unifying Approach to Iconic Indexing for 2-D and -3-D SGenes,' ' to
appear in IEEE Transactions on Knowledge and Data
Engineering. (12] C. Crimi, A. Guercio, G. Pacini, G. Tonora, and _ _ M.

242

Tucci, '' Automating Visual Language Generation, ' ' IEEE
Transactions on Software E,rzgineering, vol. 16 , . no. 10, pp. 1 122- 1 1 35, October 1990.

[1 3] I. Earley, "An Efficient Context-Free Parsing Algo
rithm," Communications of the ACM, vol. 13 , pp. 94- 102,
1970.

[14] I. Feder, "Plex Languages," Information Sciences, vol. 3,
pp. 225-241 , 197 1 .

[1 5] M . Aasinski, ' 'Characteristics of edNLC-Graph Grammar
for Syntactic Pattern Recognition," Computer Vision Graphics and Image Processing, vol. 47, pp. 1-2 1 , 1989.

[1 6] K.S. Fu, Syntactic Methods in Pattern Recognition,
Academic Press, New York and London, 1974.

[17] K.S. Fu, Syntactic Pattern Recognition and Applications,
Prentice Hall, Inc. Englewood Cliffs, N.I. , 1982.

[1 8] K.S. Fu and B.K. Bhargava. "Tree Systems for Syntactic
Pattern Recognition," IEEE Trans. Comput. , vol. C-22
(12) , pp. 1089- 1099, 1973.

[19] E.J. Golin and S.P. Reiss, "The Specification of Visual
Language Syntax," Proc. of 1989 IEEE Workshop on Visual Languages, pp. 105- 1 10, Rome/Italy, October 4-6.

[20] S.C. Johnson, "Yacc: Yet Another Compiler-Compiler," tech. rep., Bell Laboratories, 1974.
[21] C.Y. Li, T. Kawashima, T. Yamamoto, and Y. Aoki,

' ' Attribute Expansive Graph Grammar for Pattern
Description and its Problem-reduction Based Process
ing," Trans. IEICE, vol. E-7 1 (4), pp. 43 1 -440, Japan,
1988.

[22] S .Y. Lu and K.S. Fu, "Error-correcting Tree Automata
for Syntactic Pattern Recognition," IEEE Trans. Comput., vol. C-27, pp. 1040- 1053, 1978.

[23] D.L. Milgram and A. Rosenfeld, "Array Automata and
Array Grammars,," Information Processing , vol. 7 1 , pp.
69-74, North-Holland Publ., Amsterdam, 1972.

[24] R. Narasimhan, "Syntax-directed Interpretation of
Classes of Pictures," Comm. ACM, vol. 9, pp. 166- 173,
1966.

[25] K. I. Peng, T. Yamamoto, and Y. Aoki, "A New Parsing
Scheme for Plex Grammars," Pattern Recognition, vol.
23 , no. 3/4, pp. 393-402, 1990.

[26] J. L. Pfaltz, "Web Grammars and Picture Description," Comput. Graphics Image Processing, vol. 1 , pp. 193-220,
1972.

[27] J. L. Pfaltz and A. Rosenfeld, "Web Grammars," Proc. of First Int. Joint Conf. Artif Intell., pp. 609-619, Wash
ington, DC, May 1969.

[28] A. Rosenfeld, Picture languages: Formal Models for Picture Recognition, Academic Press, New York, San
Francisco and London, 1979.

[29] A. Rosenfeld and D. L. Milgram, ' 'Web Automata and
Web Grammars," Machine Intelligence, vol. 7, pp. 307-
324, 1972.

[30] W.C. Rounds, "Context Free Grammars on Trees," Proc. of 10th Symp. Switching and Automata Theory, p. 143,
1969.

[3 1] A.C. Shaw, "A Formal Picture Description Scheme as a
, Basic for Picture Processing Systems," Information and Control, vol. 14, pp. 9-52, 1969.

[32] Q.Y. Shi and K.S. Fu, "Efficient and Error-correcting
Parsing of (attributed and stochastic) Tree Grammars," Information Sciences, vol. 26, pp. 159- 188, 1982.

[33] Q. Y. Shi and K.S. Fu, ' 'Parsing and Translation of Attri
buted Expansive Graph Languages for Scene Analysis, ' ' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-5, pp. 472-485, 1983.

[34] N.C. Shu, Visual Programming, Van Nostrand Reinhold
Company, 1988.

[35] G. Siromoney, R. Siromoney, and K. Krithivasan, "Array
Grammars and Kolam," Comput. Graphics and Image Processing, vol. 3, pp. 63-82, 1974.

[36] M. Tomita, Efficient Parsing for Natural Languages,
Kluwer Academic Publishers, Boston, MA, 1985.

[37] M. Tomita, ' 'Parsing 2-Dimensional Languages, ' ' Proceedings of the International Workshop on Parsing Technologies, pp. 414-424, Pittsburgh, PA. Carnegie Mel
lon, 28-3 1 August 1989.

[38] P.S.P. Wang, ' 'Recognition of Two-Dimensional Pat
terns," Proc. Assoc. Comput. Mach. Nat. Conf, pp. 484-
489, 1977.

243

