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Abstract This paper describes a natural language parsing algorithm for unrestricted text which uses a pr:obability-based scoring function to select the "best" parse of a sentence. The parser , Pearl , is a time-asynchronous bottom-up cha.rt parser with Earley-type  top-down prediction which pursues the highest-scoring theory in the chart, where the score of a theory represents the extent to which the context of the sentence predicts that interpretation . This parser differs from previous attempts at stochastic parsers in that it uses a richer form of conditional probabilities based on c6ntext to predict likelihood.  Pearl also provides a framework for incorporating the results of previous work in part-of-speech assignment , unknown word models , and other probabilistic models of linguistic features into one parsing tool , interleaving these techniques instead of using the traditional pipeline architecture . In preliminary tests , Pearl has been successful at resolving part-of-speech and word (in speech processing) ambiguity, determining categories for unknown words , and selecting correct parses first using a very loosely fitting covering grammar. 1 

Introduction All natural language grammars are ambiguous . Even t ightly fitting natural language grammars are ambiguous in some ways . Loosely fitting grammars , which are necessary for handling the variability and complexity of unrestricted text and speech , are worse. The standard technique for dealing with this ambiguity, pruning *-This ·work was partially supported by DARPA grant No. N0014-85-K0018 ,  ONR contract No. N00014-89-C-0l  71 by DARPA and AFOSR jointly under grant No. AFOSR-90-0066, and by ARO grant No. DAAL 03-89-C0031 PRI .  Special thanks to Carl Weir and Lynette Hirschman at Unisys for their valued input, guidance and support . 1 The gramm ar used for our experiments is the string grammar used in Unisys' PUNDIT natural language understanding system. 
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grammars by hand, i s  painful , time-consuming, and usually arbitrary. The solution which many people have proposed is to use stochastic models to train statistical grammars automatically from a large corpus .  Attempts in applying statistical techniques to natural language parsing have exhibited varying degrees of success. These successful and unsuccessful attempts have suggested to us that : • Stochastic techniques combined with traditional l inguistic theories can (and indeed must) provide a solution to the natural language understanding problem. • In order for stochastic techniques to . be effective, they must be applied with restraint (poor estimates of context are worse than none(S] ) .  • Interactive , interleaved architectures are preferable to pipeline architectures in NLU systems, because they use more of the ava.ilable · information in the decision-making process. We have constructed a stochastic parser , Pearl , whi�h is based on these ideas. The development of the Pearl par�er is an effort to combine the statistical models developed recently into a single tool which incorporates all of these models into the decision-making component of a parser. While we have only attempted to incorporate a few simple statistical models into this parser , Pearl is structured in a way which allows any number of syntactic, semantic, and other knowledge sources to contribute to parsing decisions . The current implementation of Pearl uses Church's part-of-speech assignment trigram model , a simple probabilistic unknown word model , and a con- . ditional probability model for grammar rules based on part-of-speech trigrams and parent rules .  By combining multiple knowledge sources and using a chart-parsing framework , Pearl attempts to handle a number of difficult problems. Pearl has the capability to parse word lattices , an ability which is useful in recognizing idioms in text processing, as well a.s in speech processing. The parser uses probabilistic training from a corpus to disambiguate between grammatically acceptable structures , such as determining prepo-
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si t. i on al ph rase at.Lach men 1. a 1 1 d  con.i 1 1 1 1 c t ion scope. F i
naJ ly ,  Pearl mai n t .ai ns  a we l l-formed subs t. r i ng table 
w i t. b in i t.s ch art . to a l low for part ia l  parse retrieva l .  Par
t i al parses are 1 1 se f'1 i l  both for error-message generation 
and for p roccssi ng 1 1 1 1 gra111 1 nat. i cal or i ncomplet.e _ sen
ten ces . 

Jn p re l i m i n ary t.cs t.s ,  Pearl  has shown promising re
su l  t.s i n  hand I i ng  pa rt-of-speech assignment , preposi
t ional p h rase at. t.ac l 1 1 nen t ,  an d unknown word catego
rization . Trai ned 0 1 1  a corpus of 1 1 00 sentences fr0111 
the Voyager d i rec t. ion-find i ng systern3 a.nd usi ng the 
str i 1 1 g  grammar fron1 the P UNDIT Language Under
stand ing Syst.ern , Pearl correctly parsed 35 out of 40 or 
88% of senten ces select.eel from Voyager sentences not 
used in the trai n i ng data. We will describe the details 
of this experiment l ater . 

In this paper , we will fi rst explain our contribu
tion to the stochast ic  models which are used in Pearl :  
a context-free grammar with context-sensitive condi
tioi1al probab-il it ies . Then , we wrll describe the parser's 
arch i tecture and the parsing algorithm. Finally, we 
wi l l  give the resu l ts of some exp'eriments we performed 
using Pearl which explore its capabil ities. 

Using Statistics to Parse 

Recent work i nvolving context-free and context
sensi t ive probabil istic grammars provide little hope for 
the success of processing unrestricted text using proba
bilistic techniques .  Works by Chitrao and Grishman[3] 
and by Sharman , J el inek , and· Mercer(14] exhibit ac
curacy rates lower than 50% using s-upervised train
ing. Supervised training for probabilistic CFGs re
quires parsed corpora, which is very costly in time and 
man-power[2] . 

In our i nvestigations, we have made two observations 
which attempt to explain the lack-lust.er performance 
of statistical parsing techniques: 

• Simple probabil istic CFGs provide general informa
tion about how likely a construct is going to appear 
anywhere in a sample of a language. This average 
l ikelihood is often a poor estimate of probability. 

• Parsing algorithms which accumulate probabilities 
of parse theories by simply multiplying them over
penalize infrequent constructs . 

Pearl avoids the first pitfall by using a context
sensitive conditional probab ility CFG , where context 
of a theory is determined by the theories which pre
dicted it and the part-of-speech sequences in the input 
sentence. To address the second issue, Pearl scores 
each theory by using the geometric mean of the con
textual conditional probabilities of all of the theories 
which have contr ibuted to that theory. This is equiva
lent to using the sum of the logs of these probabilities. 

2 Specia.l thanks to Victor Zue at MIT for the use of the 
speech d ata from MIT's Voyager system . 

CFG wit h context-sensit ive conditional 
probabilit ies 
Jn a very large parsed corp 1 1 s of Engl ish t.ex t ,  one 
fi n ds that the most. freq uently occurr ing noun phrase 
structure in the text is a noun phrase containing a 
determiner fol lowed by a noun .  Simple probabilistic 
CFCs dictate that. , given this information , "determiner 
noun" should be the most likely interpretation of a 
noun phrase. 

Now, consider only those noun phrases which oc
cur as subjects of a sentence. In a given corpus, you 
might find that pronouns occur just a5 frequently as 
"determiner noun" s in the subject position . This type 
of  information can ea5ily be captured by conditional 
probabitities. 

Finally, assume that the sentence begins with a pro
noun followed by a verb. In this case, it is quite clear 
that , while you can probably concoct a sentence which 
fits this description and does not have a pronoun for 
a subject , the first theory which you should pursue is 
one which makes this hypothesis. 

The context-sensitive conditional probabilities which 
Pearl uses take into account the immediate parent of 
a theory3 and the part-of-speech trigram centered at 
the beginning of the theory. 

For example, consider the sentence: 

My first love was named Pearl . 
(no subliminal propaganda intended) 

A theory which tries to interpret "love" as a verb will 
be scored based on the part-of.:.speech trigram "adjec
t ive verb verb" and the parent theory,. probably "S --1-

NP VP." A theory which interprets "love" as a noun 
will be scored based on the trigram "adjective noun 
verb." Although lexical probabilities favor "love" as 
a verb ,  the conditional probabilities will heavily favor 
"love" as a noun in this context.4 

Using the Geometric Mean of Theory 
Scores 

According to probability theory, the likelihood of two 
independent events occurring at the same t ime is the 
product of their individual probabilities. Previous sta
t istical parsing techniques apply this definition to the 
cooccurrence of two theories in a parse, and claim that 
the likelihood of the two theories being correct is the 
product of the probabilities of the two theories. 

3The parent of a theory is defined as a. theory with a 
CF rule which contains the left-hand side of the theory. 
For instance, if "S - NP VP" and "NP _. <let n" are two 
grammar rules, the first rule can be a parent of the second ,  
since the left-hand side of  the second "NP" occurs in the 
right-hand side of the first rule. 

4 1n fact ,  the part-of-speech tagging model which is also 
used in Pearl will heavily favor "love" as a noun. We ignore 
this behavior to demonstrate the benefits of the trigram 
conditioning. 
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This appl ication of probabil i ty theory ignores two v i tal observations a.bout the domain of statisti cal parsi ng :  • Two constructs occurring in the same sentence a.re not necessarily independent (and frequently are not) . If the independence assumption is violated , then the product of individual probabilities has no meaning with respect to the joint probabil ity of two events . • Since statistical parsing suffers from sparse data, probability estimates of low frequency events wil l  usually be inaccurate estimates. Extreme underestimates of the likelihood of low frequency events will produce misleading joint probability estimates . From these observations, we have determined that estimating joint probabilities of theories using individual probabilities is · too difficult with the available data. We have found that the geometric mean of these probability estimates provides an accurate assessment of a theory's viability. 
The Actual Theory Scoring Function In a departure from standard practice, and perhaps against 'better judgment , we will include a precise description of the theory scoring function used by Pearl. This scoring function tries to solve some of the problems noted in previous attempts at probabilistic parsing[3] [14]: • Theory scores should not depend on the length of the string which the theory spans. • Sparse data (zero-frequency events) and even zeroprobability events do occur� and should not result in zero scoring theories. • Theory scores should not discriminate against unlikely constructs when the context predicts them. The raw score of a theory, 0 is calculated by taking the product of the conditional probability of that theory's CFG rule given the context ( where context is a part-of-speech trigram and a parent theory 's rule) and the score of the trigram: SCraw (0) = P (rules l (PoP1P2) ,  ruleparent )sc(PoP1P2) Here, the score of a trigram is the product of the mutual information of the part-of-speech trigram, 5 PoP1P2 , and the lexical probability of the word at the location of P1 being assigned that part-of-speech P1 . 6 In the case of ambiguity (part-of-speech ambiguity or multiple parent theories) , the maximum value of this product is used. The score of a partial theory or a complete theory is the geometric mean of the raw scores of all of the theories which are contained in that theory. 

5The mutual information of a part-of-speech trigram, · d fi d t b 'P(PoPI P2) 1 · t pop1p2 , IS e ne o e P(poxp2 )P(pi ) , w 1ere x IS any par -of-speech. See [4] for further explanation. 
6 The trigram scoring function actually used by the parser is somewhat more complicated than this. 

Theory Length Independence ]'h is  scor ing funct ion , al though heu r istic in derivation , prov ides a. method for evaluat ing the value of a theory, regard less · of i t.s length . When a ru le is first predicted (Earleysty le ) ,  its score is just  its raw score , which represents how much the context. pred icts it. However, when the parse process hypothesizes interpreta.t.ions of the sentence which reinforce this theory, the geometri c mean of a.I I  of the ra.w scores of the rule 's subtree is ·used , representing the .overall li-kelihood of the theory given the context of the sentence. L ow-frequency Events  Although some statistical natural language applications employ ·backing-off estimation techniques(l2] (5J to handle low-frequency evei1ts, Pearl uses a very simple estimation technique , reluctantly attributed to Church[8] . This technique estimates the probability of an event by adding 0 .5 to every frequency count.7 Low-scoring theories will be predicted by the Earley-style parser. And ,  if no other hypothesis is suggested , these theories will be pursued . If a high scoring theory advances a theory with a very low raw score, the resulting theory's score will be the geometric mean of all of the raw scores of theories contained in that theory, and thus will be much higher than the low-scoring theory's score. Example of Scoring Function As an example of how the conditional-probability-based scoring function handles ambiguity, consider the sentence Fruit flies like a banana. in the domain of insect studies. Lexical probabilities should indicate that the word "flies" is more likely to be a plural noun than an active verb. This information is incorporated in the trigram scores. However, when the interpretation S --+ . NP VP is proposed , two possible NPs will be parsed, NP --+ noun (fruit) and NP --+ noun noun (fruit flies) . Since this sentence is syntactically ambiguous, if the first hypothesis is tested first, the parser will interpret this sentence incorrectly. However, this will not happen in this domain. Since "fruit flies" is a common idiom in insect studies , the score of its trigram ,  noun noun verb , will be much greater than the score of the trigram, noun verb verb . Thus, not only will the lexical probability of the word "flies/verb" be lower than that of "flies/noun," but also the raw score of "NP --+ noun (fruit)" will be lower than 
7 We are not deliberately avoiding using all probability estimation techniques, only those backing-off techniques which use independence assumptions that frequently provide misleading information when applied to natural language. 
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that of "NP - noun noun ( fru i t  fl i es ) , " beca 1 1 se of the 
d i  fferen t. ial between t. he tr igram scores . 

So,  " N P  ----;. noun J l O U ll "  wi l l  be used fi rsi. t.o adva 1 1 ce 
t.h e  "S ----;. . N P  VP" nde.  Fmther ,  even i f  t. h ;) parser 
advances hoth NP hypotheses , the "S -'- N P  . VP" 
ru le  usi i1g  "N P ----;. noun noun'' wi l l  have a h igher score 
than the "S - N P  . VP" ru le  using "NP - noun . "  

Interleaved Architecture in Pearl 
The i nterleaved architectu re implemented in Pearl pro
vi des many ad vantages over the  trad i t ional pipeline 
architectur e ,  but it also introduces cer t.a.i n  risks. De
cisions a.bout word and  pa.rt-of-speech amhigu ity can 
be delayed until syntactic processing can disambiguate 
them .  And,  using the appropriate score combination 
functions,  the scoring of ambiguous choices can direct 
the parser towards the most likely interpretation effi
ciei1tl/ . · · 

· ·  . 
. Howe�er, with these delayed decisions comes a vastly 
�nla.rged search space . The effectiveness of the parser 
depends on a mc:1jority of.the theories having very low 
scores based on either 1,mlikely syntactic  structures or 
low scoring input (such. as ' iow scores from a speech 
reGognizer or low lexical probabil ity) . In exp.eriments 
we have performed , this has been the case . . 

The Parsing Algorithm 
Pearl is a time-a.synchronous bottom-up chart parser 
with Earley-type top-down prediction . The signifi
cant difference between Pearl and non-probabilistic 
bottom-up parsers is th�t instead of completely gener
ating all grarnmatical interpretatiops of a word string , 
Pearl , pursues the N highe�t-scoring incomplete theo
ries iii the chart at ea.eh· pass. However, Pearl . parses without pruning. Although it is only advancing the N 
highest-scoring incomplete theories , it retains the lower 
scoring theories in its· agenda.. If the h igher scoring 
theories do not generate viable alternatives , the lower 
scoring theories· may be used on subsequent passes . 

The parsing algorithm begins with the input word 
lattice . An n x n cha.rt is allocated , where n is the 
length of the longest word string in the lattice. Lexical 
rules for the input word lattice are inserted into the 
chart . Using Earley-type prediction , a sentence is pre..: 

dieted at the beginning of the sentence , and all of the 
theories which are predicted by that initial sentence . 
are inserted into the chart .  These incomplete theo
ries a.re scored according to the context�sensltive con
dit ional probabilities and the trigram part-of-speech 
model .  The incomplete theories a.re tested in order by 
score , until N theories a.re advanced .8 The resulting 
advanced theories are scored and predicted for, and 
the new incomplete predicted theories are scored and 

8 We believe that N depends OJI the  perplexity of the 
gramm ar used , but  for the string grammar used for our 
experiments we used N =3. For the purposes of training, a 
higher N should be used i n  order t.o generate more parses. 

added to the chart . Th is_ process cont i nues u n ti l an 
comp lete parse tree is det ermined , or u n ti l  the parser 
decides ,  heurist i cal ly, t.hat. it should not cont. i 11 1 1 e .  The 
heuristics vve used for determi n ing that no parse ca.n 
be foun d  for an inpu t are based on the h ighest scor ing 
incomplete theory in the cha.rt , the number of passes 
the parser has made; and the size of the chart . ·  

Pearl's Capabi lities 

Besides using statistical methods to gi.1 ide the· parser 
through the parsirig sea.rch space , Pearl also performs 
other functions which are crucial to robustly processing 
u nrestricted natural language text and speech . Handling Unknown Words . Pea:rl uses a very sim:.. 

ple probabilistic unknown ·word model to hypothesize 
categories · for unknown words. When word which is 
unknown to the system's lexicon , the word is assumed 
to be any one of the open · class categories .  The lexical 
probability given a category is the probabi l ity of ' that 
category �c�urring in the training corpus . Idiom Processing and Lattice Parsing _ Since the 
parsing search space can be simplified by recognizing 
i dioms , Pearl allows the input string to include idioms 
that span more than one word in the sentence. This is 
accomplished by viewing the input sentence as a word 
lattice instead of a word string. '  Since idiOms tend to be 
unambiguous with respect to pa.rt-of-speech, they are 
generally favored over processing the individual words 
that make up the idiom, since the scores of rules con
taining the words will tend to be )ess than 1 ,  while 
a syntactically appropriate, unambiguous id1om will 
have a score of close to 1 .  

The abi lity to parse a sentence with multiple word 
hypotheses . and word boundary hypotheses makes 
Pearl very useful in the domain of s·poken language 
processing. By delaying decisions about \vord selection 
but maintaining scoring information from a. speech rec
ognizer , the parser cari use grammatical information in 
word selection without slowing the spe.ech recognition 
process. Because of Pearl 's . interleaved architecture, 
one could easily incorporate scoring information from 
a · speech recognizer into the set of scoring functions 
used in the parser . Pearl could also provide feedback 
to the speech recognizer about the grammaticality of 
fragment hypotheses to guide the recognizer's search. Partial Parses The ma.in advantage of cha.rt-based 
parsing over other parsing algorithms is th3:t the parser 
can also recognize well-formed substrings within the 
sentence in the course of pursuing a complete parse . 
Pearl takes full advantage of this characteristic . Once 
Pearl is given the input sentence , it awaits instructions 
as to what type of parse should be attempted for this 
input .  A standard parser automatically attempts to 
produce a sentence (S) spanning the entire input string. 
However, if this fails , the semantic interpreter might be 
able to derive some meaning from the sentence if given 
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non-overlapp ing noun ,  verb ,  and preposi tional phrases . If a sentence fai ls to parse , requests for partial parses of the input string can be made by specifying a range which the parse t ree shou l d  cover and the category (NP, VP, etc . ) . The ability to produce partial parses allows the system to handle mu lt i p le sen tence inputs .  In both speech and text processing, it is d ifficult to know where the end of a sentence is .  For instance, one cannot reliably determine when a speaker terminates a sentence in free speech . And in text processing, abbreviations and quoted expressions produce ambiguity about sentence termination . When this ambiguity exists, Pearl can be queried for partial parse trees for the given input , where the goal category is a sentence. Thus, if the word strin'g is actually two complete sentences, the parser can return this information. However , if the word string is only one sentence; then a complete parse tree is returned at little extra cost . 
Trainability · One of the major advantages of the probabilistic parsers is trainability. The conditional probabilities used by Pearl are estimated by using frequencies from a large corpus of parsed sentenc�s. The parsed sentences must be parsed using the grammar formalism which the Pearl will use. Assuming the grammar is not recursive in an unconstrained way, the parser can be trained in an unsupervised mode. This is accomplished by running the parser without the scoring functions , and generating many parse trees for each sentence. Previous work9 has demonstrated that the correct information from these parse trees will be reinforced, while the incorrect substructure will not. Multiple passes of re-training using frequency data from the previous pass should cause the frequency tables to converge to a stable state. This hypothesis has not yet been tested. 1 0  An ·alternative to  completely unsupervised training is to take a parsed corpus for any domain of the same language using the same grammar, and use the frequency data from that corpus as the initial training material for the new corpus . This approach should serve only to minimize the number of unsupervised passes required for the frequency data to converge. 

Preliminary Evaluation While we have not yet done extensive testing of all of the capabilities of Pearl , we performed some simple tests to determine if its performance is at least consistent with the premises upon which it is based. The test sentences used for this evaluation are not from the 9This is an unpublished result , reportedly due to Fujisaki at IBM Japan. 
10 In fact, for certain grammars ,  the frequency tables may not converge at all, or they may converge to zero, with the grammar generating no parses for the entire corpus. This is a worst-case scenario which we do not anticipate happening. 

t raining data on wh i ch t . l i c  parser was trained . Us ing  Pearl 's context-free gra mmar ,  these t .est sen t.cnces produced an average of (5L1 parses per  sentence ,  w i th  some sente1� ces procluc i  1 1 g  ove r 100 parses . 
U nknown Word Part-of-speech 
Assignrnent To· determine how Pear l l 1 an d Jes 1 1 1 1 kn0\vn  words,  we removed five words from t.he lexicon ,  i, kno·w: tee, describe, and station, and tr ied to parse the 40 sample sentences using the sim ple unknown word model previously described . In this test ,  the pron01m ,  i, was assigned the correct part-of-speech 9 of 10 times i t. occurred in the test sentences. The nouns, tee and station, were correctly tagged 4 of 5 times . And the verbs, know and describe, were correctly tagged 3 of :3 times . 

pronoun 90% noun 80% verb . 1 00% overa l l  89% 
Figure 1 :  Performance on Unknown Words in Test Sentences 

While this accuracy is expected for unknown words in isolation, based on the accuracy of the part-ofspeech tagging model , the performance is expected to · degrade for sequences of unknown words. 
Prepositional Phrase Attachment Accurately determining prepositional phrase attachment in general is a difficult and weli-documented problem. However, based on experience with several . different domains, we have found prepositional phra:5e attachment to be a domain-specific phenomenon for which training can be very helpful .  For. instance, in the direction-finding domain , from and to prep.ositional phrases generally attach to the preceding verb and not to any noun phrase . This tendency is captured in the training process for Pearl and is used to guide the parser to the more likely attachment with respect · to the domain . This · does not mean that Pearl will get the correct parse when the less l ikely att�chment is correct; in fact ,  Pearl will invariably get 'this case wrong. However , based on the premise that this is the less likely attachment ,  th is will produce more correct analyses than incorrect .  And,  using a more sophisticated statistical model , this performance can easily be improved . Pearl 's performance on prepositional phrase attachment was very high (54/.55 or 98 .2% correct) .  The reason the accuracy rate was so high is that the directionfinding domain is very consistent in i t 's use of individual prepositions. The accuracy rate is not expected to be as high in other domains, al though it certainly 
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shou l d  be h igher than 50% and we wou l d  expect i t  to 
be great.er t.han 75 % ,  a.I t.hough we have not. performed 
a11y r igoro 1 1 s t.cst.s on other domains to verify this .  

P repos i t.io11 from 
A C C I I  racy Ha.Le n (1 

to 

F igme 2 :  Acc u racy Rate for Preposi tional Phrase At
tach mcnt, by Preposition 

Overall Parsing Accuracy 
The 40 test sentences were parsed by Pearl and the _ 
h ighest scoring parse for each sentence was compared 
to the correct parse produced by PUNDIT. Of these 40 
sentences , Pearl produced parse trees for 38 of them, 
and :35 of these parse trees were equivalent to the cor
rect parse produced by Pundit ,  for an overall accuracy 
rate of 88%.  

l'vlany of the test sentences were not difficult to  parse 
for existing parsers, but most had some grammatical 
ambigui ty which would produce mul tiple parses. In 
fact, on 2 of the 3 sentences which were incorrectly 
pai·sed , Pearl produced the correct parse as well ,  but 
the correct parse did not have the highest score. 

Of the two sentences which did not parse , one used 
passive voice, which only occurred in one sentence in 
the training corpus . While tl�e other sentence, 
How can I get from caf e  sushi to Cambridge 
C ity Hospital by walking 

did not produce a parse for the entire word string, it 
could be processed using Pearl 's partial parsing capa
bility. By accessing the chart  produced by the failed 
parse attempt , · the parser can find a parsed sentence 
containing the first eleven words, and a prepositional 
phrase containing the final two words. This informa
tion could be used to interpret the sentence properly. 

Future Work 

The Pearl parser. takes advantage of domain-dependent 
information to select the most appropriate interpreta
tion of an input. However , the statistical measure used 
to dis.ambiguate these interpretations is sensitive to 
certain attributes of the grammatical formalism used,  
as well as to the part-of-speech categories used to la
bel lexical entries. All of the experiments performed on 
Pearl thus far have been using one grammar, one part.
of-speech tag set , and one domain (because of avai-1-
ability constraints) .  Future experiments are planned 
to evaluate Pearl 's performance on different domains, 
as well as on a general corpus of Engl ish , and on dif
ferent grammars, including a grammar derived from a 
manually parsed corpus. 

Future work should also investigate Pearl 's perfor
mance on speech data. By incorporating the speech 
recogn i zer 's acoustic score i nto the parser 's scoring 

fu nction , one cou l d  i nvestigate the parser 's a:bi ] i ty to 
select the appropriate word strings from an N-best. l i st 
of a speech recogn i zer's out.pu t. . . · · 

Conclusion 
The probabil ist ic parser which we have described pro
vides a platform for exploiting the useful i nforma
tion ma.de available by statisti cal models in a manner 
which is consistent with existing grammar formalisms 
and parser designs . Pearl can be trained to use any 
context-free grammar , accompanied by the appropri
ate t raining material . And, the parsing . algorithm is 
very similar to a standard bottom-up algorithm, with 
the exception of using theory scores to order the search . 

More thorough testing is necessary to measure _ 
Pearl 's performance in terms of parsing accuracy, pa.rt.
of-speech assignment ,  unknown word categorizat ion , · 
idiom processing capabilities ,  and even word selection 
in speech processing. With - the exception of word se
lection , preliminary tests show Pearl performs · these 
tasks with a high degree of accuracy. But , in the ab
sence of precise performance estimates , we still ptopose 
that the architectm;e of this parser is preferable to tra
ditional pipeline architectures .  Only by using an inter
leaved architecture can a speech recognizer efficiently · 
make use of corriplex grammatic-al information to select 
from among hypothesized words . 
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