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ABSTRACT 

This paper describes unification algorithms 
for fine-grained massively parallel comput
ers. The algorithms are based on a par
allel marker-passing scheme. The marker
p�sing scheme in our algorithms carry only 
bit-vectors, address pointers and values. Be
cause of their simplicity, our algorithms can 
be implemented on various architectures of 
massively parallel machines without loosing 
the inherent benefits of parallel computation. 
Also, we describe two augmentations of uni
fication algorithms such as multiple unifi
cation and fuzzy unification. Experimental 
results indicate that our algorithm attaines 
more than 500 unification per seconds (for 
DAGs of average depth of 4) and has a linear 
time-complexity. This leads to possible im
plementations of massively parallel natural 
l�guage parsing with full linguistic analy
sis. 

1. Introduction 
This paper describes unification algorithms using par
alle! marker-passing scheme. The purpose of this pa
p_er 1s to show parallel unification algorithms which are 
simple enough to be implemented by massively parallel 
machines, and have some novel features. 

Unification is a basic operation in computational lin
guistics. However, this operation is known to be com
putationally expensive, and thus is considered a major 
bottleneck in improving the performance of natural lan
�uage processing systems. A search for efficient algo
�thms has been conducted by many researchers involv
mg parallel algorithms such as [Yasuura, 19841. How
ever, theoretical lower-bound was shown by [Dwork 
et. al., 1984] that unifiability is log-space complete for 
P. This leads to [Knight, 1989] 's conclusion that use 
?f massively parallel machines will not significantly 
improve the speed of unification. Then, why do we 
propose a parallel unification? We have three major 
reasons. 

First, although theoretical limitation for speed up 
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bas been shown for full unification, parallelization of 
unification actually improves performance of the en
tire system. This improvement of performance is a 
clear benefit for practical natural language processing 
systems, in particular for tasks like spoken language 
processing where real-time processing is essential. In 
addition, we propose parallel unification algorithms 
which attained a time-complexity of o(D) where D 
is a depth of the deepest path in DAGs to be uni
fied. We achieved this by assuming all disjunctions 
are pre-expanded into several DAGs so that each pair 
of DAGs does not contain disjunctions, and so that 
higher parallelism can be maintained through out the 
unification process. This is a reasonable assumption 
when we implement unification on massively parallel 
machines, where the basic implementation strategy is a 
memory-intensive approach allowing time-complexity 
to be converted into space-complexity. Thus, although 
we do not discover faster full unification with disjunc
tion, we discovered a means to substantially speed up 
unification on the massively parallel machines. 

Second, we designed our algorithm for massively 
parallel machines where each processor has relatively 
low processing capability. We only require each pro
cessing unit to have some basic operations and the capa
bility to pass bit-markers, pointers to other processing 
units, and numeric values. This design decision aims at 
the accomplishment of two things - development of 
practical unification algorithms for massively parallel 
computers such as SNAP [Moldovan et. al. , 1989] and 
Connection Machine [Hillis, 1985], and development 
of algorithms for specialized unification hardware such 
as unification chips or unification co-processors. Func
tionalities of massively parallel machines· are severely 
limited due to the weak processing capability of each 
unit. Advantages of massively parallel machines for 
semantic processing, such as contextual priming, are 
widely recognized. However, in implementing seri
ous natural language parsers, unification operation is 
essential. Unfortunately, we have not seen any algo
rithm which assumes low processing capability of each 
processor in massively parallel machines. Although 
some machines support high-level language, such as 
C or lisp, automatic parallelization does not gu�an
tee efficiency of actual operations. Thus, designing 
unification algorithms for massively parallel machines 
has great impact on exploring maximum potential of 
these machines for natural language processing. One 
other reason is that, by assuming each processor has 



Figure 1 :  PU Class Nodes and PU s 

low computation power, our algorithms could be im
plementable as unification co-processor boards using 
numbers of less-powerful processors. A possibility for 
such a compact acceralator would be the clear benefit 
for the natural language community. 

Third, our algorithms can easily entail some novel 
features such as multiple unification and fuzzy uni
fication. These features have not been considered 
in past unification literature. It can also incorporate 
typed unification. Multiple unification is a unifica
tion between more than two trees or DAGs. Our al
gorithms enable this scheme without undermining its 
performance. Fuzzy unification allows unification of 
on-unifiable DAGs; but assigns a cost of violations. 
This would be useful for applications such as spoken 
language processing where handling of ungrammatical 
input is essential, because subtle ungrammaticalities 
can be overlooked. 

2. Architecture, Representation and 
Notations 

2.1. Architecture 
We assume a parallel architecture where numbers of 
processing units are interconnected. The Processor 
Unit (PU) is a basic element of the system. It has its 
own processing capability and memory. This can be 
physical or logical, but, of course, we assume each 
unit is actually implemented as hardware. The Pro
cessor Unit Class (PUC) is a class of PUs which has 
several PUs as instances of the PUC. For each PUC, 
one PU is assigned to manage instances of the class. 
Figure 1 illustrates relations between PUCs and PUs. 
PUC-1 has instances PU�lA and PU-lB, and PUC,.2 
has instances PU-2A and PU-2B. This relation will be 
established when DAGs are loaded onto the unification 
co-processor. 

We assume each PU's memory is is composed of a bit 
markers register, value register, and pointer memory for 
fan-in connections, fan-out connections, and address 
registers. 
2.2. Represenation of Tree and DAGs 
Trees or DAGs are represented as PUs and their con
nections. Each arc and node is assigned to each PU. 
Figure 2 shows how trees and DAGs are represented 
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Figure 2: Representation of Nodes and Arcs 

using PUs. In Figure 2, PUs are represented as square. 
Lines represent directed arcs. PUs in the middle of arcs 
represent labels of arcs. Each PU is connected by an 
Arc-to type link. When mapping feature structures on 
PUs, all PUs representing tree-0 or DAG-0 are marked 
with a marker 0, and all PUs representing tree-1 or 
DAG-1 are marked with a marker 1 .  PUs representing 
values have a marker V, and that of features have a 
marker F. Root PU s have a marker R. 
2.3. Notations 
The following notations will be used in describing al
gorithms: 

PU(a,b, ... ,z) : PU with specific markers set. PU(l ,S,V) 
means that the PU has marker 1 ,  S, and V. N ega
tion can be used. For example, PU (1 ,S ,-V) means 
PU has marker 1 and S set, but not V. Unspecified 
markers are don't  care markers. Predicates can be 
used to specify conditions. 

&PU(a,b, ... ,z) : Address of PU which satisfies condi
tions specified. 

Propagate: Propagation of markers through Arc-to 
link forward, i.e. direction from root to edge. 

Back-Propagate: Propagation of markers through 
Arc-to link backward, i.e. direction from edge 
to root. This should not be confused with back
propagation in connectionist learning. 

P-Address: Variable which can. propagate or back
propagate an address of a PU. 

The following instruction set will be used: 

Propagate (Marker, Origin, Destination, Initial
action, Intermediate-action, Final-action): 
Propagate marker from origin to destination. Be
fore propagation starts, do initial-action. At each 
PU during propagation, do intermediate-action, 
and at the destination PU, do final-action. In some 
special cases, destination is specified as 1 .  This 
means that markers are propagated only for one 
traverse. 

Back-Propagate (Marker, Origin, Destination, 
Initial-action, Intermediate-action, Final
action): Back-propagation version of propagate 
instruction. 



Mark(Marker,PU): Set marker to PUs. When PU is 
not specified (i.e. Mark(V)), the mark operation 
is performed to a current PU. 

Set(Variable,Value) : Set operator set a value spec
ified in the second argument to the variable 
specified in the first argument. For example, 
Set(P-Address,&PU) sets an address of current 
PU to P-Address. 

Connect(Arc-type,Origin,Destination): Create link 
of arc-type between origin and destination. 

Other instructions such as Create-Node(a,b, ... ,z), 
ln(P-Address, From-Address), Equal(P-Address, 
&PU), and GLB-Search( ... ) will be explained in sec
tions where they are used. In some cases, if-then
else control sequence is used for ease of understand
ing. However, obviously, this can be implemented 
using logical bit-marker operations such as (AND 
1 2 4) followed by a propagation instruction, such 
as Propagate(P-Address,PU(4),PU(V) .. . . ). This case, 
(AND 1 2 4) is a logical operation that set marker 4 
when markers 1 and 2 exist. This instruction sequence 
should be read as: if there are PUs such that PU(l,2), 
then propagate(P-Address,PU{l ,2),PU(V) ... . ). 

3. Pseudo-Unification 
Pseudo-unification or tree-unification is a unification 
between trees [Tomita and Knight, 1988]. The ad
vantage of using pseudo-unification, instead of full
unification (or graph-unification), is that it can be im
plemented easier (less resource requirements and a sim
pler algorithm) and faster than full.:.unification. Yet, 
practically, pseudo-unification can cover a substantial 
range of linguistic phenomena. Actually, KBMT-89 
[Nirenberg et. al., 1989] (a knowledge-based ma
chine translation system based on LFG, and devel
oped at the Center for Machine Translation at Carnegie 
Mellon University) was implemented using pseudo-
unification. 
3.1. The Algorithm 
The algorithm which we describe in lhis section 
accounts for all non-disjunctive cases of pseudo
unification. Tree-0 and Tree- 1 �e unified (figure 3). 
Our algorithm for destructive tree unification consists 
of three parts: 

1 .  Shared Node Detection 
2. Failure Detection 
3 .  Merging 

3.1.1. Shared Node Detection 

The goal of the shared node detection stage, or the 
common feature detection stage, is to set S markers to 
all nodes that are shared between trees. Step 1 carry 
out this stage. 
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Figure 3(a) shows the initial state of trees loaded 
into a PU network. First of all, an address of a PUC 
of a root PU of the tree-0 is set to P-Address. Then, 
P-Address is propagated until it gets to a PU which has 
V marker set. During this propagation, Check-Shared 
is conducted at each PU which P-Address traverses 
through. &ISA(Root) returns an address of the PUC of 
the Root PU. By the same token, &ISA(PU-0) returns 
an address of the PUC of the PU-0. The result is shown 
in 3(b). All shared PUs are indicated by solid circles. 
Some important markers on each PU are shown in 
brackets, but some markers are ignored due to diagram 
space. 

3.1.2. Failure Detection 

Next, we would like to detect conflicts. We assume 
that if two different value units are linked to the PUs 
both under the same PUC, and the PU is a shared arc 
unit, then unification should fail. Step 2 and 3 carry 
out this stage. 

Back-Propagate starts from terminal nodes which 
are not shared. The purpose of this back-propagation 
is to identify pre-terminal PU s which are Arcs. In case 
of Figure 3, tree-0 and tree-I are unifiable. 

3.1.3. Merging 

Since unifiability is assured in the failure detection 
stage, all we need is to merge two trees. Step 4, 5, 6, 
and 7 carry out this stage. 

Back-propagation is used to search PUs which un
shared leaves should be connected to. Figure 3(c) 
indicate PUs involved in this process. Propagation 
starts from PU(l ,V,-S) and goes up until it meets a PU 
which is shared. These PUs are places where unshared 
branches should be connected. Next, propagate an ad
dress of ea'ch PUs for one traverse� Now, relevant PUs 
have an address of PUs which should be connected. 
Connect a PU with markers P-Address, 0, and B and 
a PU with markers P-Address, 1 ,  and T with Arc-to. 
Propagate marker O from PU with P-Address, 0, and 
B. As a result, we get a unified tree consisting of PUs 
marked with 0. 

4. Full-Unification 

Although pseudo-unification does quite a good job 
in most practical cases, there are cases where graph
unification is necessary. Lack of the re-entrance in 
the pseudo-unification forces grammar writers to sub
divide their grammar rules to cope with various cases 
of re-entrance because re-entrant structure must be ex
panded to trees. This section presents full-unification 
(destructive version). 



1 :  Propagate(P-Address, Root, PU(V), Set(P-Address,&ISA(Root)), Check-Shared, nil) 
Check-Shared: If there is a PU (PU-1), under the same PUC, such that PU(l ,In(P-Address, From-Addresses)), 
then Mark(S), Mark(S,PU-1), and Set(P-Address,&ISA(PU-0)), else abort propagation. 

2: Back-Propagate(PT,PU(V,-S),1 ,nil,nil,Mark(PT)) 
3: If there is a PU such that PU(PT,S), then unification is a failure. 
4: Back-Propagate(P-Address,PU(l ,V,-S),PU(S), Set(P-Address, &PU(l ,V,-S)), nil, Mark(B,PU(S,P-Address))) 
5: Propagate(P-Address, PU(B), 1, Set(P-Address,&PU(B)), nil, Mark(1j) 
6: Connect(Arc-to, PU(P-Address,0,B), PU(P-Address, 1 ,n) 
7 :  Propagate(0, PU(0,B), PU(V), nil, Mark(0), Mark(0)) 

Table 1 :  Pseudo-Unification Algorithm 

4.1. The Algorithm 
In full-unification, we only need to add merging of 
arcs which is not covered in the pseudo-unification 
algorithm. 

1. Shared Node Detection Stage 
2. Failure Detection Stage 
3. Merging Stage 
4. Arc Merging Stage 

DAG-0 and DAG-1 are unified (figure 4). In figure 
4(a), shared nodes are detected and indicated by solid 
circles. Figure 4(b) and ( c) shows the merging stage. 
In figure 4(b) top and bottom PU s are marked and then 
merged in figure 4(c). Up to this point, we can sim
ply apply algorithms presented for pseudo-unification. 
However, in unifying DAGs, we must take into account 
the existence of unshared arcs which are in between 
shared PUs that are not handled in the merging stage 
in the pseudo-unification algorithm. An arc merging 
stage merges such arcs into the DAG. The algorithm 
presented here covers most of practical cases of non
disjunctive graph unification, but there are some cases 
which the algorithm does not provide correct result. 
However, even in such cases, a simple post-processing 
can modify the graph to provide correct results. 
4.1.1. Arc Merging 

The arc merging stage for the destructive graph unifi
cation is shown in table 2. For all nodes with marker F 
and 1 ,  but not S, propagate marker E. Propagation stops 
when it arrives at a node marked S. Back-Propagate 
P-Address until it arrives at a node with S. For all 
nodes which have S and P-Address, mark B.  Propa
gate marker B for one traverse, and mark destination 
node with T. Connect a node with markers P-Address, 
0, and B and a node with markers P-Address, I, and 
T with Arc-to. Propagate marker 0 from a node with 
P-Address, 0, and B .  

5.  Nondestructive Unification 
So far we have been discussing destructive unification 
algorithms where represented feature structures are de-
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stroyed in the process of unification. Obviously, this 
would be problematic because (I)  it destroys the orig
inal feature structure even when the feature structure 
needs to have its unifiability examined against more 
than one feature structure, and (2) destructive unifica
tion involves over-copying and early-copying [Wrob
lewski, 1988] 

In this section, we further extend algorithms pre
sented so far, and present a nondestructive graph uni
fication algorithm. To implement the nondestructive 
graph unification, new nodes and arcs need to be cre
ated by assigning them on empty PUs. Instead of 
passing only P-Address, as we have been using so far, 
we pass P-Address and N-Address (an address of the 
newly assigned PU). Given two DAGs, the algorithm 
in table 3 creates a new DAG as a result of unification. 

Figure 5, 6 and 7 show intermediate processes. 
DAG-0 and DAG-I are unified and result in DAG-2. 
Figure 5 is a state after the shared node is detected. 
Solid circles indicate PUs for shared nodes. In fig
ure 6, all unifiable branches of DAG-0 and DAG-I 
are merged to DAG-2 to create New DAG-2. In fig
ure 7 intermediate arcs are merged into DAG-2, and 
create Final DAG-2. One big difference between non
destructive graph unification and destructive unifica
tion is that, in nondestructive unification, new PUs are 
assigned when unifiable subgraphs from DAG-0 and 
DAG-1 are merged into DAG-2, whereas destructive 
unification is simply marked with O at the merging pro
cess. For this reason, Append-New-Node assigns a 
new PU for each node merged to DAG-2, and connects 
it to existing DAG-2 structure. Then, pointers to the 
merged PU in DAG-2 and an equivalent PU in DAG-0 
or DAG-1, are propagated so that the next PU can be 
connected to them. 

6. Typed Unification 

The 'Ip-terms proposed in [Ait-Kaci, 1984] are similar 
to the feature structure, but the functor is retained. 
This provides a filter under ·unification because two 
feature structures with incompatible functors cannot 
be unified. When a conflict is detected, it is resolved 
by finding the greatest lower bound (GLB) of two items 



Tree-0 Tree-I DAG-0 DAG- I 
RO[O,F] R[S] 
A[O,F] A 

AN[S] CN[S] 

B E[S] D[S] E[S) DN[S] 
a EN[S] G 

B[O,F] B[l ,F] F 
a[O,V] ,B[O,V] a[l ,V] 

/3 (a) (a) Tree-0 Tree- I DAG-0 DAG-I 
RO[O,F,S] 

t 
R[S] 

A[O,F,S] A 
AN[S] CN[S) 

�l•�� B E[S] D[S) 
DN[S] 

a EN[S,B] G 
B[O,F,S] C[O,F] F 
a[O,V,S /3[0,V] a[l ,V,S 

/3 
(b) (b) Tree-0 Tree-I DAG-0 DAG-I 
Rl [l,F,S,9] R[S] 
A[l,F,S] A 

AN[S] 
B D[S] E[S] DN[S] 

B[O,F,S] a G 

a[O,V,S /3[0,V] a[l,V,S (c) (c) Tree-0 Tree- I DAG-0 DAG-I 
RO[O,F,S,B] R[S) 
A[O,F,S] A 

AN[S,B 
B D[S] E[S) DN[S,B 

B[O,F,S] 
a G[f,B] 

a[O,V,S ,B[O,V] a[l,V,S (d) (d) Tree-0 Tree- I 
Rl [l ,F ,S,9 ,BJ 

A l ,F,S 

B 

B[O,F,S] a 

a[O,V,S /3[0,V] a[l ,V,S (e) (e) 
Figure 3: Pseudo-Unification Figure 4: Graph Unification 
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DAG-0 DAG-1 
R[S] 
A 
AN[S] CN[S) 
B E[S] D[S] 

E[S] DN[S] 
EN[S) G 
F 

f3 

DAG-2 New DAG-2 
R[S] 

�

S] 

AN[S] e CN[S] 
E[S] 

EN[S] 

Figure 5: Nondestructive Graph Unification: Detect Shared Nodes 

DAG-0 DAG-1 
R[S] 
A 
AN[S,B CN[S) 
B[T] E[S] D[S] 

E[S] DN[S] 
EN[S,B] G 
F[T] 

f3 

DAG-2 New DAG.:2 
R[S) 

� 

R[S) 
C[S] 

AN[S,B]e CN[S] AN[S] 
D[S] E[S] B 

EN[S,B] er 

Figure 6: Nondestructive Graph Unification: Merge 
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DAG-0 DAG- 1 
R[S,B] 
A[T,BJ 
AN[S,T CN[S] 
B E[S] D[S] E[S) DN[S,B 
er EN[SJ G[T,B] 

F 

f3 

DAG-2 New DAG-2 
R[S,B] 

AN[Sr1 B 
a 

Figure 7: Nondestructive Graph Unification: Merge Internal Arcs 



8: Propagate(E,PU(F,1 ,-S),PU(S),nil,nil,Mark(E)) 
9: Back-Propagate(P-Address, PU(E), PU(S), Set(P-Address,&PU), Set(P-Address,&PU), Mark(B)) 
10: Propagate(P-Address, PU(B), 1, Set(P-Address,&PU), nil, Mark(T)) 
1 1 :  Connect(Arc-to, PU(P-Address,0,B), PU(P-Address,l ,T)) 
12: Propagate(0, PU(P-Address,0,B), PU(V), nil, Mark(0), Mark(0)) 

Table 2: Arc Merging Stage in Destructive Graph Unification 
1 :  Propagate(P-Address N-Address, Root, PU(V), Set(P-Address,&ISA(Root)) Set(N-Address,&ISA(New-Root)), 

Check-Shared, nil) 
Check-Shared: If there is a PU (PU-1), under the same PUC, such that PU(l ,In(P-Address,From-Addresses)), 
then Mark(S), Mark(S,PU-1), Set(P-Address,&ISA(PU-0)), Create-Node(2,S,N-Address), 
Connect(Arc-to,PU(N-Address),PU(2,S,N-Address)), and Set(N-Address,&PU(2,S,N-Address)), 
else abort propagation. 

2: Back-Propagate(PT,PU(V,-S),1 ,nil,nil,Mark(PT)) 
3: If there is a PU such that PU(PT,S), then unification is failure. 
4: Back-Propagate(P-Address, PU(l ,V,-S), PU(S), Set(P-Address,&PU(l ,V,-S)), nil, Mark(B,PU(S,P-Address))) 
5: Propagate(P-Address, PU(B), 1 ,  Set(P-Address,&PU(B)), nil, Mark(T)) 
6: Propagate(P-Address N-Address, PU(B), PU(V), Set(P-Address,&PU(2,P-Address), Append-New-Nodes, nil) 

Append-New-Nodes: If a cuurent PU is PU(0,-S) or PU(l ,-S), 
then Create-Node(2,N-Address), Connect(Arc-to,PU(P-Address),PU(2,N-Address)), 
Set(N-Address,&PU(2,N-Address)), and Set(P-Address,&PU(2,P-Address)), 
else abort propagation. 

7 :  Propagate(E, PU(F,1 ,-S), PU(S), nil, nil, Mark(E)) 
8: Back-Propagate(P-Address, PU(E), PU(S), Set(P-Address,&PU), Set(P-Address,&PU), Mark(B)) 
9: Propagate(P-Address, PU(B), 1 ,  Set(P-Address,&PU), nil, Mark(T)} 
10: Propagate(P-Address N-Address, PU(B), PU(E), Set(P-Address,&PU(2,P-Address), Append-New-Nodes, 

Connect(Arc-to,N-Address,PU)) 
Table 3 :  Non-destructive Graph Unification Algorithm 

in the taxonomic hierarchy. One way of implementing 
this scheme is to incorporate a search of hierarchy at 
the shared node detection. Perform the instructions 
shown in table 4 immediately after the shared node 
detection stage: 

GLB-Search is a special instruction where propa
gation of markers start from nodes with V markers 
set but not S markers, and P-Address is propagated 
through ISA hierarchy downward. At each PU during 
the traversal, the current PU's address is set to GLB
Address, and it is propagated through ISA link upward. 
When GLB-Address arrives at a PU with V marker set 
but not S marker, it means there are GLB between the 
origin PU and the destination PU. Now, GLB-Search is 
conducted backwards, starting from the previous des
tination PU. This gives an address of the GLB PU to 
the originated PU. Thus, both PUs have an addres of 
the GLB PU. When one PU (PU-a) is under the other 
PU's (PU-b) ISA hierarchy, a GLB PU should be PU
a. Using the same mechanism, an address of PU-a is 
given to both PUs. However, this time GLB-Address 
propagation is not involved since GLB-PU itself is a 
destination PU. At the merging stage, PUs represent
ing GLB should be merged instead of PUs in DAG-0 
or DAG-I (when GLB is one of the PU in DAG-0 or 
DAG-1 ,  the PU in these DAGs can be merged). This 
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can be done by using pointers to the GLB PUs propa
gated to PUs in DAG-0 and DAG-1 .  This mechanism 
enables typed unification. 

7. Augmenting Unification 
7 .1. Fuzzy Unification 
Traditionally, unification has been a logical operation, 
and thus, its failure resulted in hard rejection. We pro
pose an alternative scheme called a fuzzy unification 
or a soft rejection unification. Contrary to the tradi
tional unification which only returns nil when failed, a 
new unification scheme returns a partially unified fea
ture structure and a value which indicates the degree 
of failure. In the soft rejection unification, each arc 
is assigned with a value which is accumulated when 
unification in its subgraph was failed. Meanings of the 
value can vary depending upon application and spe
cific implementation. It can be a cost of violation or a 
probability measure of which violation will happen. 

Unification operation with such property is signifi
cant for many applications which require robust pars
ing. For example, speech input processing requires in
tegrated processing of a speech recognition module and 
linguistic parsing in order to limit the scope of search 
(reduce perplexity) which in tum improves recognition 



Typed 1 :  GLB-Search( P-Address GLB-Address, PU(V,-S), PU(V), Set(P-Address,&PU) Set(GLB-Address,&PU), 
Set(GLB-Address,&PU), nil) 

Typed 2: GLB-Search( P-Address GLB-Address, PU(V,-S,P-Address), PU(V), Set(P-Address,&PU) 
Set(GLB-Address,&PU), Set(GLB-Address,&PU), nil) 

Typed 3: Mark( S, PU(Equal(P-Address,&PU))) 

Table 4: Type Checking in Typed Unification 

rate. While spoken language inherently involves erro
neous sentences, use of the traditional hard-rejection
type unification cannot be applied as it is - parsing 
needs to proceed even with minor syntactic failures. 
Some relaxation techniques have been proposed for 
detecting and overlooking minor errors by allowing 
some of the constraints to be ignored. However, tradi
tional relaxation methods require multiple unification 
operations to check against sets of constraint equations, 
resulting in substantial overhead against conventional 
unification-based parsing. In addition, these relaxation 
methods did not assign weights or the probability that 
certain violations will happen. This would have ad
verse effects in reducing perplexity, because all possi
ble errors are granted or predicted with equal weights. 
Since the likelihood of certain violations happening can 
be statistically obtained, providing a priori probabil
ity of such violations would help improve recognition 
rate. 

For example, in a sentence John want to attend the 
conference. Although John and want cause violation 
in the third-person-present-singular constraint, we do 
not want that parse to be aborted since its semantics can 
be easily recovered in a post-processing. However, we 
want to add a cost to such parse so that if a speech 
recognition module provided two word hypotheses of 
want and wants. John wants . . .  would be selected as a 
most probable hypothesis. 

This extension is. trivial in our algorithm. The failure 
detection stage is revised as seen in table 5. 

ADD-value adds values of markers at the root node. 
Alternatively, more sophisticated computation, instead 
of ADD, can be used to determine the degree of unifi
ability. 

7.2. Multiple Unification 

Traditionally, unification has been defined as an oper
ation between between two DAGs; it takes two DAGs 
and returns a unified DAG or nil when failed. We 
extend this notion and propose multiple unification -
unification of more than two DAGs. This extension 
would benefit processing of linguistic analysis which 
uses N'-branching trees where N > 2. Although such N
branching trees have been commonly used in liguistic 
analysis, unification operations to directly handle these 
analyses have not been proposed. Multiple-unification 
would unify feature structures propagated from each 
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branch of trees simultaneously, and result in a consid
erable reduction in computational cost. This would 
benefit, particularly, parsing of Japanese where each 
case-marked NP can be subcategorized by VP at the 
top-level. 

In our algorithm, multiple-unification is handled 
simply by assigning M markers for each tree or DAG 
identification where binary unification uses only mark
ers O and 1 .  The algorithm itself should be changed by 
re-locating the failure detection stage to the end of the 
entire process, so that all merging is completed when 
failure detection is performed: 

1. Shared Node Detection Stage 
2. Merging Stage 
3. Arc Merging Stage 
4. Failure Detection Stage 

Since unifiability of DAGs must be tested for all 
combinations, it is more efficient to merge first rather 
than to test unifiability N (N-1 )/2 times before the merg
ing stage. 

8. Efficiency of the Algorithm 

8.1. A Brief Complexity Analysis 

The algorithm is efficient. Let's assume that we have 
DAGs with N nodes, depth D and width W. Shared 
node detection stage requires . propagation of markers 
from roots to each value node. Since this can be done 
in parallel, computational cost is approximately D x 
( P + CSH ) whereas P is a time required for propa
gation of a marker for one depth, and CSH is a cost 
for detecting wether two nodes has a same PUC. In 
the failure detection stage, back-propagation of mark
ers for one travarsal backward is requried. The cost is 
P. The merging stage requires 2 x D x P + P at worst 
cases. The arc merging state costs 3 x D x P+ P at worst 
cases. Thus, in total, 6 x D x P + 3 x P + C + CSH x D 
is the computational cost of the full unification in our 
algorithm with 2N-1 processors. Thus, in rough esti
mation, a complexity of the algorithm is of order of 
O(D). When the number of processors (M) is less than 
2N-1 ,  efficiency might degrade depending upon allo
cation of nodes onto processors. If we can allocate 
nodes in a same path to one processor, we only require 



2: Back-Propagate(PT, PU(V,-S), 1 ,  nil, nil, Mark(P'I)) 
3: If there is a PU with PT and S, then Back-Propagate(Value, PU(PT,S), PU(R), nil, nil, ADD-Values) 

Table 5: The failure detection stage of the fuzzy unification 

W processors to maintain the efficiency close to the es
timation above. This is because a marker-propagation 
in the same path is sequential. However, W processor 
condition may degrade its efficiency due to synchro
nization required for marker-propagation at arc merg
ing and branching crossing processor boundary. The 
worst case of W processor condition is 0( D :N), but, of 
course, this can be easily avoided by designing mem
ory allocation optimally. When unification failed, then 
the computational cost is D x P (cost for shared node 
detection) and P (cost for failure detection). Let S be 
a success rate of the unification (which is usually be
tween 40% to 20% ), expected computational costs will 
be: S x (D x (6 x P + CSH) + 3 x P + C) + (1 - S) x 
(D x (P + CSH) + P) 

8.2. Experimental Results 

We have implemented our algorithms on a simulator 
for a fine-grained parallel machine which assumes ac
tual computation time for each instruction. To unify 
the DAGs shown in figure 4, the destructive graph 
unification took 1957 micro seconds (510 unification 
per second). The rate of performance degradation is 
about 330 micro seconds for each additional depth. 

Table 6 shows numbers of each instruction exe
cuted, and computational cost in one example of the 
unification operation. Statistics clearly show that the 
shared node detection stage is the most computation
ally expensive. Particularly, the extensive numbers of 
address propoagation and bit check operation are two 
major causes of the computational cost. The estimated 
time for propagating an address for one traverse is set 
to 15 micro seconds, which can be reduced to 3 micro 
seconds on SNAP architecture, thus attining substantial 
speed up. Algorithms described in this paper has been 
implemented on the SNAP massively parallel computer 
as a part of the joint project between Carnegie Mellon 
University and University of Southern California. 

9. Conclusion 

This paper described unification algorithms using 
marker-passing. We only assumed passing of bit
markers, pointers to PUs, and values. Operations re
quired for our unification algorithms are simple and 
easily implementable in massively parallel machines 
which use numbers of processing units with a rela
tively low-processing capability. Actually, operations 
and marker-passing schemes assumed in this paper are 
readily available in actual massively parallel machines 
such as SNAP [Moldovan et. al., 1989] . 
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The algorithms are simple. It requires passing of 
bit-markers and addresses to PUs for conventional uni
fications. Despite its simplicity, our algorithms cover 
all non-disjunctive cases of unification of trees and 
most practical cases of unification of graphs. How
ever, investigations should be conducted to identify 
a class of graphs which our algorithms can and can
not handle. Should a class of graphs which can be 
handled by our algorithms cover a class of graphs ap
pearing in natural language processing, our algorithms 
can be a very powerful scheme of parallel unification 
processing. Typed-unification, originally proposed by 
[Ait-Kaci, 1984] , can be naturally incorporated in our 
algorithms since our algorithms are based on marker
passing which is originally proposed for an intersection 
search. Conformity with lattice search is obvious. 

The algorithms are efficient on massively parallel 
machines. Even in nondestructive_graph unification, it 
requires only nine propagations and back-propagations 
and some checking instructions. For the graphs with 
depth D, unification should be done at 6 x D x P + 
3 x P + C + CSH x D whereas P is a time required 
for propagation of a marker for one arc traverse, C is 
a total cost of condition checks, and CSH is a total 
cost for detecting whether two nodes has a same PUC. 
Thus, the complexity is of orderof O(D). The processor 
requirement is linear to the size of graphs. This simple 
estimation indicates that our algorithm would be fast 
enough for practical applications. 

Novel features such as multiple-unification and 
fuzzy unification adds new dimensions to our unifi
cation algorithms. Also, our unification algorithms are 
easily augmented for typed unification. In practical 
cases, needs for unification of more than two feature 
structures are commonly observed, yet this has not 
been proposed in the past. Use of multiple-unification 
reduces the amount of copying and thereby improves 
performance. Fuzzy unification would be a very use
ful concept for applications such as spoken language 
processing. Instead of rejecting at the detection of 
unification failure, the fuzzy unification adds a cost 
of violation in such cases, and allows processing of 
violated hypotheses to proceed. Where application 
domains inevitably involve ungrammatical inputs, the 
fuzzy-unification would be a powerful extension to the 
traditional unification approach. 
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Propagate Propagate Bit Address Store Time 
Stage Markers Address Check Check Address (micro-seconds) 
Shared Node Detection 0 74 157 15 0 1778 
Failure Detection 1 0 4 0 0 30 
Merge 0 2 14 0 2 108 
Internal Arc Merge 0 2 8 0 2 78 
Total 1 78 183 15 4 1994 

Table 6: Number of Instructions at each stage of unification 
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