
Unification Algorithms for Massively Parallel Computers*
Hiroaki Kitano

Center for Machine Translation NEC Corporation
2- 1 1-5 Shibaura, Minato-ku

Tokyo, 108 Japan
Carnegie Mellon University
Pittsburgh, PA 15213 U.S .A.

hiroaki@cs.cm u.edu

ABSTRACT

This paper describes unification algorithms
for fine-grained massively parallel comput
ers. The algorithms are based on a par
allel marker-passing scheme. The marker
p�sing scheme in our algorithms carry only
bit-vectors, address pointers and values. Be
cause of their simplicity, our algorithms can
be implemented on various architectures of
massively parallel machines without loosing
the inherent benefits of parallel computation.
Also, we describe two augmentations of uni
fication algorithms such as multiple unifi
cation and fuzzy unification. Experimental
results indicate that our algorithm attaines
more than 500 unification per seconds (for
DAGs of average depth of 4) and has a linear
time-complexity. This leads to possible im
plementations of massively parallel natural
l�guage parsing with full linguistic analy
sis.

1. Introduction
This paper describes unification algorithms using par
alle! marker-passing scheme. The purpose of this pa
p_er 1s to show parallel unification algorithms which are
simple enough to be implemented by massively parallel
machines, and have some novel features.

Unification is a basic operation in computational lin
guistics. However, this operation is known to be com
putationally expensive, and thus is considered a major
bottleneck in improving the performance of natural lan
�uage processing systems. A search for efficient algo
�thms has been conducted by many researchers involv
mg parallel algorithms such as [Yasuura, 19841. How
ever, theoretical lower-bound was shown by [Dwork
et. al., 1984] that unifiability is log-space complete for
P. This leads to [Knight, 1989] 's conclusion that use
?f massively parallel machines will not significantly
improve the speed of unification. Then, why do we
propose a parallel unification? We have three major
reasons.

First, although theoretical limitation for speed up
*This work has been supported in part by the National

Science Foundation under grant MIP-90/09109.

1 72

bas been shown for full unification, parallelization of
unification actually improves performance of the en
tire system. This improvement of performance is a
clear benefit for practical natural language processing
systems, in particular for tasks like spoken language
processing where real-time processing is essential. In
addition, we propose parallel unification algorithms
which attained a time-complexity of o(D) where D
is a depth of the deepest path in DAGs to be uni
fied. We achieved this by assuming all disjunctions
are pre-expanded into several DAGs so that each pair
of DAGs does not contain disjunctions, and so that
higher parallelism can be maintained through out the
unification process. This is a reasonable assumption
when we implement unification on massively parallel
machines, where the basic implementation strategy is a
memory-intensive approach allowing time-complexity
to be converted into space-complexity. Thus, although
we do not discover faster full unification with disjunc
tion, we discovered a means to substantially speed up
unification on the massively parallel machines.

Second, we designed our algorithm for massively
parallel machines where each processor has relatively
low processing capability. We only require each pro
cessing unit to have some basic operations and the capa
bility to pass bit-markers, pointers to other processing
units, and numeric values. This design decision aims at
the accomplishment of two things - development of
practical unification algorithms for massively parallel
computers such as SNAP [Moldovan et. al. , 1989] and
Connection Machine [Hillis, 1985], and development
of algorithms for specialized unification hardware such
as unification chips or unification co-processors. Func
tionalities of massively parallel machines· are severely
limited due to the weak processing capability of each
unit. Advantages of massively parallel machines for
semantic processing, such as contextual priming, are
widely recognized. However, in implementing seri
ous natural language parsers, unification operation is
essential. Unfortunately, we have not seen any algo
rithm which assumes low processing capability of each
processor in massively parallel machines. Although
some machines support high-level language, such as
C or lisp, automatic parallelization does not gu�an
tee efficiency of actual operations. Thus, designing
unification algorithms for massively parallel machines
has great impact on exploring maximum potential of
these machines for natural language processing. One
other reason is that, by assuming each processor has

Figure 1 : PU Class Nodes and PU s

low computation power, our algorithms could be im
plementable as unification co-processor boards using
numbers of less-powerful processors. A possibility for
such a compact acceralator would be the clear benefit
for the natural language community.

Third, our algorithms can easily entail some novel
features such as multiple unification and fuzzy uni
fication. These features have not been considered
in past unification literature. It can also incorporate
typed unification. Multiple unification is a unifica
tion between more than two trees or DAGs. Our al
gorithms enable this scheme without undermining its
performance. Fuzzy unification allows unification of
on-unifiable DAGs; but assigns a cost of violations.
This would be useful for applications such as spoken
language processing where handling of ungrammatical
input is essential, because subtle ungrammaticalities
can be overlooked.

2. Architecture, Representation and
Notations

2.1. Architecture
We assume a parallel architecture where numbers of
processing units are interconnected. The Processor
Unit (PU) is a basic element of the system. It has its
own processing capability and memory. This can be
physical or logical, but, of course, we assume each
unit is actually implemented as hardware. The Pro
cessor Unit Class (PUC) is a class of PUs which has
several PUs as instances of the PUC. For each PUC,
one PU is assigned to manage instances of the class.
Figure 1 illustrates relations between PUCs and PUs.
PUC-1 has instances PU�lA and PU-lB, and PUC,.2
has instances PU-2A and PU-2B. This relation will be
established when DAGs are loaded onto the unification
co-processor.

We assume each PU's memory is is composed of a bit
markers register, value register, and pointer memory for
fan-in connections, fan-out connections, and address
registers.
2.2. Represenation of Tree and DAGs
Trees or DAGs are represented as PUs and their con
nections. Each arc and node is assigned to each PU.
Figure 2 shows how trees and DAGs are represented

1 73

((A (B a lpha)
(C b et a)))

beta

Figure 2: Representation of Nodes and Arcs

using PUs. In Figure 2, PUs are represented as square.
Lines represent directed arcs. PUs in the middle of arcs
represent labels of arcs. Each PU is connected by an
Arc-to type link. When mapping feature structures on
PUs, all PUs representing tree-0 or DAG-0 are marked
with a marker 0, and all PUs representing tree-1 or
DAG-1 are marked with a marker 1 . PUs representing
values have a marker V, and that of features have a
marker F. Root PU s have a marker R.
2.3. Notations
The following notations will be used in describing al
gorithms:

PU(a,b, ... ,z) : PU with specific markers set. PU(l ,S,V)
means that the PU has marker 1 , S, and V. N ega
tion can be used. For example, PU (1 ,S ,-V) means
PU has marker 1 and S set, but not V. Unspecified
markers are don't care markers. Predicates can be
used to specify conditions.

&PU(a,b, ... ,z) : Address of PU which satisfies condi
tions specified.

Propagate: Propagation of markers through Arc-to
link forward, i.e. direction from root to edge.

Back-Propagate: Propagation of markers through
Arc-to link backward, i.e. direction from edge
to root. This should not be confused with back
propagation in connectionist learning.

P-Address: Variable which can. propagate or back
propagate an address of a PU.

The following instruction set will be used:

Propagate (Marker, Origin, Destination, Initial
action, Intermediate-action, Final-action):
Propagate marker from origin to destination. Be
fore propagation starts, do initial-action. At each
PU during propagation, do intermediate-action,
and at the destination PU, do final-action. In some
special cases, destination is specified as 1 . This
means that markers are propagated only for one
traverse.

Back-Propagate (Marker, Origin, Destination,
Initial-action, Intermediate-action, Final
action): Back-propagation version of propagate
instruction.

Mark(Marker,PU): Set marker to PUs. When PU is
not specified (i.e. Mark(V)), the mark operation
is performed to a current PU.

Set(Variable,Value) : Set operator set a value spec
ified in the second argument to the variable
specified in the first argument. For example,
Set(P-Address,&PU) sets an address of current
PU to P-Address.

Connect(Arc-type,Origin,Destination): Create link
of arc-type between origin and destination.

Other instructions such as Create-Node(a,b, ... ,z),
ln(P-Address, From-Address), Equal(P-Address,
&PU), and GLB-Search(...) will be explained in sec
tions where they are used. In some cases, if-then
else control sequence is used for ease of understand
ing. However, obviously, this can be implemented
using logical bit-marker operations such as (AND
1 2 4) followed by a propagation instruction, such
as Propagate(P-Address,PU(4),PU(V)). This case,
(AND 1 2 4) is a logical operation that set marker 4
when markers 1 and 2 exist. This instruction sequence
should be read as: if there are PUs such that PU(l,2),
then propagate(P-Address,PU{l ,2),PU(V)).

3. Pseudo-Unification
Pseudo-unification or tree-unification is a unification
between trees [Tomita and Knight, 1988]. The ad
vantage of using pseudo-unification, instead of full
unification (or graph-unification), is that it can be im
plemented easier (less resource requirements and a sim
pler algorithm) and faster than full.:.unification. Yet,
practically, pseudo-unification can cover a substantial
range of linguistic phenomena. Actually, KBMT-89
[Nirenberg et. al., 1989] (a knowledge-based ma
chine translation system based on LFG, and devel
oped at the Center for Machine Translation at Carnegie
Mellon University) was implemented using pseudo-
unification.
3.1. The Algorithm
The algorithm which we describe in lhis section
accounts for all non-disjunctive cases of pseudo
unification. Tree-0 and Tree- 1 �e unified (figure 3).
Our algorithm for destructive tree unification consists
of three parts:

1 . Shared Node Detection
2. Failure Detection
3 . Merging

3.1.1. Shared Node Detection

The goal of the shared node detection stage, or the
common feature detection stage, is to set S markers to
all nodes that are shared between trees. Step 1 carry
out this stage.

1 74

Figure 3(a) shows the initial state of trees loaded
into a PU network. First of all, an address of a PUC
of a root PU of the tree-0 is set to P-Address. Then,
P-Address is propagated until it gets to a PU which has
V marker set. During this propagation, Check-Shared
is conducted at each PU which P-Address traverses
through. &ISA(Root) returns an address of the PUC of
the Root PU. By the same token, &ISA(PU-0) returns
an address of the PUC of the PU-0. The result is shown
in 3(b). All shared PUs are indicated by solid circles.
Some important markers on each PU are shown in
brackets, but some markers are ignored due to diagram
space.

3.1.2. Failure Detection

Next, we would like to detect conflicts. We assume
that if two different value units are linked to the PUs
both under the same PUC, and the PU is a shared arc
unit, then unification should fail. Step 2 and 3 carry
out this stage.

Back-Propagate starts from terminal nodes which
are not shared. The purpose of this back-propagation
is to identify pre-terminal PU s which are Arcs. In case
of Figure 3, tree-0 and tree-I are unifiable.

3.1.3. Merging

Since unifiability is assured in the failure detection
stage, all we need is to merge two trees. Step 4, 5, 6,
and 7 carry out this stage.

Back-propagation is used to search PUs which un
shared leaves should be connected to. Figure 3(c)
indicate PUs involved in this process. Propagation
starts from PU(l ,V,-S) and goes up until it meets a PU
which is shared. These PUs are places where unshared
branches should be connected. Next, propagate an ad
dress of ea'ch PUs for one traverse� Now, relevant PUs
have an address of PUs which should be connected.
Connect a PU with markers P-Address, 0, and B and
a PU with markers P-Address, 1 , and T with Arc-to.
Propagate marker O from PU with P-Address, 0, and
B. As a result, we get a unified tree consisting of PUs
marked with 0.

4. Full-Unification

Although pseudo-unification does quite a good job
in most practical cases, there are cases where graph
unification is necessary. Lack of the re-entrance in
the pseudo-unification forces grammar writers to sub
divide their grammar rules to cope with various cases
of re-entrance because re-entrant structure must be ex
panded to trees. This section presents full-unification
(destructive version).

1 : Propagate(P-Address, Root, PU(V), Set(P-Address,&ISA(Root)), Check-Shared, nil)
Check-Shared: If there is a PU (PU-1), under the same PUC, such that PU(l ,In(P-Address, From-Addresses)),
then Mark(S), Mark(S,PU-1), and Set(P-Address,&ISA(PU-0)), else abort propagation.

2: Back-Propagate(PT,PU(V,-S),1 ,nil,nil,Mark(PT))
3: If there is a PU such that PU(PT,S), then unification is a failure.
4: Back-Propagate(P-Address,PU(l ,V,-S),PU(S), Set(P-Address, &PU(l ,V,-S)), nil, Mark(B,PU(S,P-Address)))
5: Propagate(P-Address, PU(B), 1, Set(P-Address,&PU(B)), nil, Mark(1j)
6: Connect(Arc-to, PU(P-Address,0,B), PU(P-Address, 1 ,n)
7 : Propagate(0, PU(0,B), PU(V), nil, Mark(0), Mark(0))

Table 1 : Pseudo-Unification Algorithm

4.1. The Algorithm
In full-unification, we only need to add merging of
arcs which is not covered in the pseudo-unification
algorithm.

1. Shared Node Detection Stage
2. Failure Detection Stage
3. Merging Stage
4. Arc Merging Stage

DAG-0 and DAG-1 are unified (figure 4). In figure
4(a), shared nodes are detected and indicated by solid
circles. Figure 4(b) and (c) shows the merging stage.
In figure 4(b) top and bottom PU s are marked and then
merged in figure 4(c). Up to this point, we can sim
ply apply algorithms presented for pseudo-unification.
However, in unifying DAGs, we must take into account
the existence of unshared arcs which are in between
shared PUs that are not handled in the merging stage
in the pseudo-unification algorithm. An arc merging
stage merges such arcs into the DAG. The algorithm
presented here covers most of practical cases of non
disjunctive graph unification, but there are some cases
which the algorithm does not provide correct result.
However, even in such cases, a simple post-processing
can modify the graph to provide correct results.
4.1.1. Arc Merging

The arc merging stage for the destructive graph unifi
cation is shown in table 2. For all nodes with marker F
and 1 , but not S, propagate marker E. Propagation stops
when it arrives at a node marked S. Back-Propagate
P-Address until it arrives at a node with S. For all
nodes which have S and P-Address, mark B. Propa
gate marker B for one traverse, and mark destination
node with T. Connect a node with markers P-Address,
0, and B and a node with markers P-Address, I, and
T with Arc-to. Propagate marker 0 from a node with
P-Address, 0, and B .

5. Nondestructive Unification
So far we have been discussing destructive unification
algorithms where represented feature structures are de-

1 75

stroyed in the process of unification. Obviously, this
would be problematic because (I) it destroys the orig
inal feature structure even when the feature structure
needs to have its unifiability examined against more
than one feature structure, and (2) destructive unifica
tion involves over-copying and early-copying [Wrob
lewski, 1988]

In this section, we further extend algorithms pre
sented so far, and present a nondestructive graph uni
fication algorithm. To implement the nondestructive
graph unification, new nodes and arcs need to be cre
ated by assigning them on empty PUs. Instead of
passing only P-Address, as we have been using so far,
we pass P-Address and N-Address (an address of the
newly assigned PU). Given two DAGs, the algorithm
in table 3 creates a new DAG as a result of unification.

Figure 5, 6 and 7 show intermediate processes.
DAG-0 and DAG-I are unified and result in DAG-2.
Figure 5 is a state after the shared node is detected.
Solid circles indicate PUs for shared nodes. In fig
ure 6, all unifiable branches of DAG-0 and DAG-I
are merged to DAG-2 to create New DAG-2. In fig
ure 7 intermediate arcs are merged into DAG-2, and
create Final DAG-2. One big difference between non
destructive graph unification and destructive unifica
tion is that, in nondestructive unification, new PUs are
assigned when unifiable subgraphs from DAG-0 and
DAG-1 are merged into DAG-2, whereas destructive
unification is simply marked with O at the merging pro
cess. For this reason, Append-New-Node assigns a
new PU for each node merged to DAG-2, and connects
it to existing DAG-2 structure. Then, pointers to the
merged PU in DAG-2 and an equivalent PU in DAG-0
or DAG-1, are propagated so that the next PU can be
connected to them.

6. Typed Unification

The 'Ip-terms proposed in [Ait-Kaci, 1984] are similar
to the feature structure, but the functor is retained.
This provides a filter under ·unification because two
feature structures with incompatible functors cannot
be unified. When a conflict is detected, it is resolved
by finding the greatest lower bound (GLB) of two items

Tree-0 Tree-I DAG-0 DAG- I
RO[O,F] R[S]
A[O,F] A

AN[S] CN[S]

B E[S] D[S] E[S) DN[S]
a EN[S] G

B[O,F] B[l ,F] F
a[O,V] ,B[O,V] a[l ,V]

/3 (a) (a) Tree-0 Tree- I DAG-0 DAG-I
RO[O,F,S]

t
R[S]

A[O,F,S] A
AN[S] CN[S)

�l•�� B E[S] D[S)
DN[S]

a EN[S,B] G
B[O,F,S] C[O,F] F
a[O,V,S /3[0,V] a[l ,V,S

/3
(b) (b) Tree-0 Tree-I DAG-0 DAG-I
Rl [l,F,S,9] R[S]
A[l,F,S] A

AN[S]
B D[S] E[S] DN[S]

B[O,F,S] a G

a[O,V,S /3[0,V] a[l,V,S (c) (c) Tree-0 Tree- I DAG-0 DAG-I
RO[O,F,S,B] R[S)
A[O,F,S] A

AN[S,B
B D[S] E[S) DN[S,B

B[O,F,S]
a G[f,B]

a[O,V,S ,B[O,V] a[l,V,S (d) (d) Tree-0 Tree- I
Rl [l ,F ,S,9 ,BJ

A l ,F,S

B

B[O,F,S] a

a[O,V,S /3[0,V] a[l ,V,S (e) (e)
Figure 3: Pseudo-Unification Figure 4: Graph Unification

1 76

DAG-0 DAG-1
R[S]
A
AN[S] CN[S)
B E[S] D[S]

E[S] DN[S]
EN[S) G
F

f3

DAG-2 New DAG-2
R[S]

�

S]

AN[S] e CN[S]
E[S]

EN[S]

Figure 5: Nondestructive Graph Unification: Detect Shared Nodes

DAG-0 DAG-1
R[S]
A
AN[S,B CN[S)
B[T] E[S] D[S]

E[S] DN[S]
EN[S,B] G
F[T]

f3

DAG-2 New DAG.:2
R[S)

�

R[S)
C[S]

AN[S,B]e CN[S] AN[S]
D[S] E[S] B

EN[S,B] er

Figure 6: Nondestructive Graph Unification: Merge

1 77

DAG-0 DAG- 1
R[S,B]
A[T,BJ
AN[S,T CN[S]
B E[S] D[S] E[S) DN[S,B
er EN[SJ G[T,B]

F

f3

DAG-2 New DAG-2
R[S,B]

AN[Sr1 B
a

Figure 7: Nondestructive Graph Unification: Merge Internal Arcs

8: Propagate(E,PU(F,1 ,-S),PU(S),nil,nil,Mark(E))
9: Back-Propagate(P-Address, PU(E), PU(S), Set(P-Address,&PU), Set(P-Address,&PU), Mark(B))
10: Propagate(P-Address, PU(B), 1, Set(P-Address,&PU), nil, Mark(T))
1 1 : Connect(Arc-to, PU(P-Address,0,B), PU(P-Address,l ,T))
12: Propagate(0, PU(P-Address,0,B), PU(V), nil, Mark(0), Mark(0))

Table 2: Arc Merging Stage in Destructive Graph Unification
1 : Propagate(P-Address N-Address, Root, PU(V), Set(P-Address,&ISA(Root)) Set(N-Address,&ISA(New-Root)),

Check-Shared, nil)
Check-Shared: If there is a PU (PU-1), under the same PUC, such that PU(l ,In(P-Address,From-Addresses)),
then Mark(S), Mark(S,PU-1), Set(P-Address,&ISA(PU-0)), Create-Node(2,S,N-Address),
Connect(Arc-to,PU(N-Address),PU(2,S,N-Address)), and Set(N-Address,&PU(2,S,N-Address)),
else abort propagation.

2: Back-Propagate(PT,PU(V,-S),1 ,nil,nil,Mark(PT))
3: If there is a PU such that PU(PT,S), then unification is failure.
4: Back-Propagate(P-Address, PU(l ,V,-S), PU(S), Set(P-Address,&PU(l ,V,-S)), nil, Mark(B,PU(S,P-Address)))
5: Propagate(P-Address, PU(B), 1 , Set(P-Address,&PU(B)), nil, Mark(T))
6: Propagate(P-Address N-Address, PU(B), PU(V), Set(P-Address,&PU(2,P-Address), Append-New-Nodes, nil)

Append-New-Nodes: If a cuurent PU is PU(0,-S) or PU(l ,-S),
then Create-Node(2,N-Address), Connect(Arc-to,PU(P-Address),PU(2,N-Address)),
Set(N-Address,&PU(2,N-Address)), and Set(P-Address,&PU(2,P-Address)),
else abort propagation.

7 : Propagate(E, PU(F,1 ,-S), PU(S), nil, nil, Mark(E))
8: Back-Propagate(P-Address, PU(E), PU(S), Set(P-Address,&PU), Set(P-Address,&PU), Mark(B))
9: Propagate(P-Address, PU(B), 1 , Set(P-Address,&PU), nil, Mark(T)}
10: Propagate(P-Address N-Address, PU(B), PU(E), Set(P-Address,&PU(2,P-Address), Append-New-Nodes,

Connect(Arc-to,N-Address,PU))
Table 3 : Non-destructive Graph Unification Algorithm

in the taxonomic hierarchy. One way of implementing
this scheme is to incorporate a search of hierarchy at
the shared node detection. Perform the instructions
shown in table 4 immediately after the shared node
detection stage:

GLB-Search is a special instruction where propa
gation of markers start from nodes with V markers
set but not S markers, and P-Address is propagated
through ISA hierarchy downward. At each PU during
the traversal, the current PU's address is set to GLB
Address, and it is propagated through ISA link upward.
When GLB-Address arrives at a PU with V marker set
but not S marker, it means there are GLB between the
origin PU and the destination PU. Now, GLB-Search is
conducted backwards, starting from the previous des
tination PU. This gives an address of the GLB PU to
the originated PU. Thus, both PUs have an addres of
the GLB PU. When one PU (PU-a) is under the other
PU's (PU-b) ISA hierarchy, a GLB PU should be PU
a. Using the same mechanism, an address of PU-a is
given to both PUs. However, this time GLB-Address
propagation is not involved since GLB-PU itself is a
destination PU. At the merging stage, PUs represent
ing GLB should be merged instead of PUs in DAG-0
or DAG-I (when GLB is one of the PU in DAG-0 or
DAG-1 , the PU in these DAGs can be merged). This

1 78

can be done by using pointers to the GLB PUs propa
gated to PUs in DAG-0 and DAG-1 . This mechanism
enables typed unification.

7. Augmenting Unification
7 .1. Fuzzy Unification
Traditionally, unification has been a logical operation,
and thus, its failure resulted in hard rejection. We pro
pose an alternative scheme called a fuzzy unification
or a soft rejection unification. Contrary to the tradi
tional unification which only returns nil when failed, a
new unification scheme returns a partially unified fea
ture structure and a value which indicates the degree
of failure. In the soft rejection unification, each arc
is assigned with a value which is accumulated when
unification in its subgraph was failed. Meanings of the
value can vary depending upon application and spe
cific implementation. It can be a cost of violation or a
probability measure of which violation will happen.

Unification operation with such property is signifi
cant for many applications which require robust pars
ing. For example, speech input processing requires in
tegrated processing of a speech recognition module and
linguistic parsing in order to limit the scope of search
(reduce perplexity) which in tum improves recognition

Typed 1 : GLB-Search(P-Address GLB-Address, PU(V,-S), PU(V), Set(P-Address,&PU) Set(GLB-Address,&PU),
Set(GLB-Address,&PU), nil)

Typed 2: GLB-Search(P-Address GLB-Address, PU(V,-S,P-Address), PU(V), Set(P-Address,&PU)
Set(GLB-Address,&PU), Set(GLB-Address,&PU), nil)

Typed 3: Mark(S, PU(Equal(P-Address,&PU)))

Table 4: Type Checking in Typed Unification

rate. While spoken language inherently involves erro
neous sentences, use of the traditional hard-rejection
type unification cannot be applied as it is - parsing
needs to proceed even with minor syntactic failures.
Some relaxation techniques have been proposed for
detecting and overlooking minor errors by allowing
some of the constraints to be ignored. However, tradi
tional relaxation methods require multiple unification
operations to check against sets of constraint equations,
resulting in substantial overhead against conventional
unification-based parsing. In addition, these relaxation
methods did not assign weights or the probability that
certain violations will happen. This would have ad
verse effects in reducing perplexity, because all possi
ble errors are granted or predicted with equal weights.
Since the likelihood of certain violations happening can
be statistically obtained, providing a priori probabil
ity of such violations would help improve recognition
rate.

For example, in a sentence John want to attend the
conference. Although John and want cause violation
in the third-person-present-singular constraint, we do
not want that parse to be aborted since its semantics can
be easily recovered in a post-processing. However, we
want to add a cost to such parse so that if a speech
recognition module provided two word hypotheses of
want and wants. John wants . . . would be selected as a
most probable hypothesis.

This extension is. trivial in our algorithm. The failure
detection stage is revised as seen in table 5.

ADD-value adds values of markers at the root node.
Alternatively, more sophisticated computation, instead
of ADD, can be used to determine the degree of unifi
ability.

7.2. Multiple Unification

Traditionally, unification has been defined as an oper
ation between between two DAGs; it takes two DAGs
and returns a unified DAG or nil when failed. We
extend this notion and propose multiple unification -
unification of more than two DAGs. This extension
would benefit processing of linguistic analysis which
uses N'-branching trees where N > 2. Although such N
branching trees have been commonly used in liguistic
analysis, unification operations to directly handle these
analyses have not been proposed. Multiple-unification
would unify feature structures propagated from each

1 79

branch of trees simultaneously, and result in a consid
erable reduction in computational cost. This would
benefit, particularly, parsing of Japanese where each
case-marked NP can be subcategorized by VP at the
top-level.

In our algorithm, multiple-unification is handled
simply by assigning M markers for each tree or DAG
identification where binary unification uses only mark
ers O and 1 . The algorithm itself should be changed by
re-locating the failure detection stage to the end of the
entire process, so that all merging is completed when
failure detection is performed:

1. Shared Node Detection Stage
2. Merging Stage
3. Arc Merging Stage
4. Failure Detection Stage

Since unifiability of DAGs must be tested for all
combinations, it is more efficient to merge first rather
than to test unifiability N (N-1)/2 times before the merg
ing stage.

8. Efficiency of the Algorithm

8.1. A Brief Complexity Analysis

The algorithm is efficient. Let's assume that we have
DAGs with N nodes, depth D and width W. Shared
node detection stage requires . propagation of markers
from roots to each value node. Since this can be done
in parallel, computational cost is approximately D x
(P + CSH) whereas P is a time required for propa
gation of a marker for one depth, and CSH is a cost
for detecting wether two nodes has a same PUC. In
the failure detection stage, back-propagation of mark
ers for one travarsal backward is requried. The cost is
P. The merging stage requires 2 x D x P + P at worst
cases. The arc merging state costs 3 x D x P+ P at worst
cases. Thus, in total, 6 x D x P + 3 x P + C + CSH x D
is the computational cost of the full unification in our
algorithm with 2N-1 processors. Thus, in rough esti
mation, a complexity of the algorithm is of order of
O(D). When the number of processors (M) is less than
2N-1 , efficiency might degrade depending upon allo
cation of nodes onto processors. If we can allocate
nodes in a same path to one processor, we only require

2: Back-Propagate(PT, PU(V,-S), 1 , nil, nil, Mark(P'I))
3: If there is a PU with PT and S, then Back-Propagate(Value, PU(PT,S), PU(R), nil, nil, ADD-Values)

Table 5: The failure detection stage of the fuzzy unification

W processors to maintain the efficiency close to the es
timation above. This is because a marker-propagation
in the same path is sequential. However, W processor
condition may degrade its efficiency due to synchro
nization required for marker-propagation at arc merg
ing and branching crossing processor boundary. The
worst case of W processor condition is 0(D :N), but, of
course, this can be easily avoided by designing mem
ory allocation optimally. When unification failed, then
the computational cost is D x P (cost for shared node
detection) and P (cost for failure detection). Let S be
a success rate of the unification (which is usually be
tween 40% to 20%), expected computational costs will
be: S x (D x (6 x P + CSH) + 3 x P + C) + (1 - S) x
(D x (P + CSH) + P)

8.2. Experimental Results

We have implemented our algorithms on a simulator
for a fine-grained parallel machine which assumes ac
tual computation time for each instruction. To unify
the DAGs shown in figure 4, the destructive graph
unification took 1957 micro seconds (510 unification
per second). The rate of performance degradation is
about 330 micro seconds for each additional depth.

Table 6 shows numbers of each instruction exe
cuted, and computational cost in one example of the
unification operation. Statistics clearly show that the
shared node detection stage is the most computation
ally expensive. Particularly, the extensive numbers of
address propoagation and bit check operation are two
major causes of the computational cost. The estimated
time for propagating an address for one traverse is set
to 15 micro seconds, which can be reduced to 3 micro
seconds on SNAP architecture, thus attining substantial
speed up. Algorithms described in this paper has been
implemented on the SNAP massively parallel computer
as a part of the joint project between Carnegie Mellon
University and University of Southern California.

9. Conclusion

This paper described unification algorithms using
marker-passing. We only assumed passing of bit
markers, pointers to PUs, and values. Operations re
quired for our unification algorithms are simple and
easily implementable in massively parallel machines
which use numbers of processing units with a rela
tively low-processing capability. Actually, operations
and marker-passing schemes assumed in this paper are
readily available in actual massively parallel machines
such as SNAP [Moldovan et. al., 1989] .

1 80

The algorithms are simple. It requires passing of
bit-markers and addresses to PUs for conventional uni
fications. Despite its simplicity, our algorithms cover
all non-disjunctive cases of unification of trees and
most practical cases of unification of graphs. How
ever, investigations should be conducted to identify
a class of graphs which our algorithms can and can
not handle. Should a class of graphs which can be
handled by our algorithms cover a class of graphs ap
pearing in natural language processing, our algorithms
can be a very powerful scheme of parallel unification
processing. Typed-unification, originally proposed by
[Ait-Kaci, 1984] , can be naturally incorporated in our
algorithms since our algorithms are based on marker
passing which is originally proposed for an intersection
search. Conformity with lattice search is obvious.

The algorithms are efficient on massively parallel
machines. Even in nondestructive_graph unification, it
requires only nine propagations and back-propagations
and some checking instructions. For the graphs with
depth D, unification should be done at 6 x D x P +
3 x P + C + CSH x D whereas P is a time required
for propagation of a marker for one arc traverse, C is
a total cost of condition checks, and CSH is a total
cost for detecting whether two nodes has a same PUC.
Thus, the complexity is of orderof O(D). The processor
requirement is linear to the size of graphs. This simple
estimation indicates that our algorithm would be fast
enough for practical applications.

Novel features such as multiple-unification and
fuzzy unification adds new dimensions to our unifi
cation algorithms. Also, our unification algorithms are
easily augmented for typed unification. In practical
cases, needs for unification of more than two feature
structures are commonly observed, yet this has not
been proposed in the past. Use of multiple-unification
reduces the amount of copying and thereby improves
performance. Fuzzy unification would be a very use
ful concept for applications such as spoken language
processing. Instead of rejecting at the detection of
unification failure, the fuzzy unification adds a cost
of violation in such cases, and allows processing of
violated hypotheses to proceed. Where application
domains inevitably involve ungrammatical inputs, the
fuzzy-unification would be a powerful extension to the
traditional unification approach.

Acknowledgement

The author would like to thank Hitoshi Iida, Hideto
Tomabechi, Dan Moldovan, and members of the SNAP

Propagate Propagate Bit Address Store Time
Stage Markers Address Check Check Address (micro-seconds)
Shared Node Detection 0 74 157 15 0 1778
Failure Detection 1 0 4 0 0 30
Merge 0 2 14 0 2 108
Internal Arc Merge 0 2 8 0 2 78
Total 1 78 183 15 4 1994

Table 6: Number of Instructions at each stage of unification

project for discussions, and Masaru Tomita and Jaime
Carbonell for their supports.

References
[Ait-Kaci, 1984] Ait-Kaci, H., A Lattice Theoretic Approach to Computation Based on a Calculus of Partially Ordered Type Structures, Ph.D. Thesis, Uni

versity of Pennsylvania, 1984.
[Dwork et. al., 1984] Dwork, C., Kanellakis, P. and

Mitchell, J., "On the Sequential Nature of Unifica
tion," Journal of Logic Programming, vol. 1, 1984.

[Hillis, 1985] Hillis, D., The Connection Machine,
The MIT Press, Cambridge, 1985.

[Knight, 1989] Kevin, K., "Unification: A Multi
Disciplinary Survey," ACM Computing Surveys, Vol. 21 , Number 1 , 1989.

[Moldovan et. al., 1989] Moldovan, D., Lee, W., and
. Lin, C., SNAP: A Marker-Propagation Architecture for Knowledge Processing, University of Southern
California Technical Report CENG 89-10, 1989.

[Nirenberg et. al., 1989] Nirenberg, S. (Ed.), Knowledge-Based Machine Translation, Center for
Machine Translation Project Report, Carnegie Mel
lon University, 1989.

[Pollard and Sag, 1987] Pollard, C. and Sag, I., An Information-based Syntax and Semantics, Volume
1 ., Chicago University Press, 1987.

[Tomita and Knight, 1988] Tomita, M. and Kevin, K.,
"Pseudo-Unification and Full Unification," CMU
CMT-88-MEMO, 1988.

[Wroblewski, 1988] Wroblewski, D., "Nondestruc
tive Graph Unification," in Proceedings of AAAl-88,
1988.

[Yasuura, 1984] Yasuura, H., "On Parallel Computa
tional Complexity of Unification," in Proceedings of the International Conference on Fifth Generation Computer Systems, 1984.

1 81

