
Quasi-Destructive Graph Unification 
Hideto Tomabechi 

ATR Interpreting Telephony Carnegie Mellon University 
Research Laboratories* 109 EDSH, Pittsburgh, PA 1 5213-3890, USA 

Seika-cho, Sorakugun, Kyoto 6 19-02 JAPAN tomabech@a.nl.cs.cmu.edu 

ABSTRACT 

Graph unification is the most expensive part 
of unification-based grammar parsing. It of
ten takes over 90% of the total parsing time 
of a sentence. We focus on two speed-up 
e�ements in the design of unification algo
nthms: 1) elimination of excessive copying 
by only copying successful unifications, 2) 
Finding unification failures as soon as possi
ble. We have developed a scheme to attain 
these two criteria without expensive over
head through temporarily modifying graphs 
during unification to eliminate copying dur
ing unification. The temporary modification 
is invalidated in constant time and therefore 
unification can continue looking for a failur� 
�ithout the overhead associated with copy
mg. After a successful unification because 
the nodes are temporarily prepared for copy
ing, a fast copying can be performed with
out overhead for handling reentrancy, loops 
and variables. We found that parsing rel
atively long sentences (requiring about 500 
unifications during a parse) using our algo
�ithm is 100 to 200 percent faster than pars
mg the same sentences using Wroblewski 's 
algorithm. 

1. Motivation 

Graph unification is the most expensive part of 
unification-based grammar parsing systems. For ex
ample, in the three types of parsing systems currently 
�sed at A1R 1 , all of which use graph unification algo
n�hms based on [Wroblewski, 1987], unification oper
ations consume 85 to 90 percent of the total cpu time 
�evoted to a parse. The number of unification opera
t10ns per sentence tends to grow as the grammar gets 
larger and more complicated. An unavoidable paradox 
is that when the natural language system gets larger 
and the coverage of linguistic phenomena increases the 
writers of natural language grammars tend to rely more 
on deeper and more complex path equations (loops and 

*Visiting Research Scientist. Local email address: tomabech%atr-la.atr.co.jp@uunet.UU.NET 1�he three p�sing systems are based on: 1. Earley 's algonthm, 2. active chart parsing, 3. generalized LR parsing. 

1 64 

frequent reentrancy) to lessen the complexity of writ
ing the grammar. As a result, we have seen that the 
number of unification operations increases rapidly as 
the coverage of the grammar grows in contrast to the 
parsing algorithm itself which does not seem to grow so 
quickly. Thus, it makes sense to speed up the unifica
tion operations to improve the total speed performance 
of the natural language parsing system. 

Our original unification algorithm was based on 
[Wroblewski, 1987] which was chosen in 1988 as 
the then fastest algorithm available for our applica
tion (HPSG based unification grammar, three types of 
parsers (Earley, Tomita-LR, and active chart), unifica
tion with variables and loops2 combined with Kasper's 
([Kasper, 1987]) scheme for handling disjunctions). 
In designing the graph unification algorithm, we have 
made the following observation which influenced the 
basic design of the new algorithm described in this 
paper: 

Unification does not always succeed. 
As we will see from the data presented in a later sec
tion, when our parsing system operates with a rela
tively small grammar, about 60 percent of unifications 
attempted during a successful parse result in failure. 
If a unification fails, any computation performed and 
memory consumed during the unification is wasted. As 
the grammar size increases, the number of unification 
failures for each successful parse increases3 • Without 
completely rewriting the grammar and the parser, it 
seems difficult to shift any significant amount of the 
computational burden to the parser in order to reduce 
the number of unification failures4 • 

Another problem that we would like to address in 
our design, which seems to be well documented in the 
existing literature is that: 

Copying is an expensive operation. 
The copying of a node is a heavy burden to the parsing 
system. [Wroblewski, 1987] calls it a "computational 
sink". Copying is expensive in two ways: 1) it takes 

2Please refer to [Kogure, 1989] for trivial time modification of Wroblewski's algorithm to handle loops. 3We estimate over 80% of unifications to be failures in our large-scale speech-to-speech translation system under development. 4Of course, whether that will improve the overall performance is another question. 



time; 2) it takes space. Copying takes time essentially 
because the area in the random access memory needs to 
be dynamically allocated which is an expensive opera
tion. [Godden, 1990] calculates the computation time 
cost of copying to be about 67 % of total parsing time 
in his TIME parsing system. This time/space burden 
of copying is non-trivial when we consider the fact that 
creation of unnecessary copies will eventually trigger 
garbage collections more often (in a Lisp environment) 
which will also slow down the overall performance of 
the parsing system. In general, parsing systems are 
always short of memory space (such as large LR tables 
of Tomita-LR parsers and expanding tables and charts 
of Earley and active chart parsers5), and the marginal 
addition or subtraction of the amount of memory space 
consumed by other parts of the system often has critical 
effects on the performance of these systems. 

Considering the aforementioned problems, we pro
pose the following principles to be the desirable con
ditions for a fast graph unification algorithm: 

• Copying should be performed only for success
ful unifications. 

• Unification failures should be found as soon as 
possible. 

By way of definition we would like to categorize ex
cessive copying of dags into Over Copying and Early 
Copying. Our definition of over copying is the same as 
Wroblewski 's; however, our definition of early copying 
is slightly different. 

• Over Copying: Two dags are created in order 
to create one new dag. - This typically happens 
when copies of two input dags are created prior 
to a destructive unification operation to build one 
new dag. ([Godden, 1990] calls such a unifica
tion: Eager Unification.). When two arcs point to 
the same node, over copying is often unavoidable 
with incremental copying schemes. 

• Early Copying: Copies are created prior to the 
failure of unification so that copies created since 
the beginning of the unification up to the point of 
failure are wasted. 

Wroblewski defines Early Copying as follows: "The 
argument dags are copied be/ore unification started. If 
the unification fails then some of the copying is wasted 
effort" and restricts early copying to cases that only 
apply to copies that are created prior to a unification. 
Restricting early copying to copies that are made prior 
to a unification leaves a number of wasted copies that 
are created during a unification up to the point of failure 
to be uncovered by either of the above definitions for 
excessive copying. We would like Early Copying to 

5For example, our phoneme-based generalized LR parser for speech input is always running on a swapping space because the LR table is too big. 

1 65 

mean all copies that are wasted due to a unification fail
ure whether these copies are created before or during 
the actual unification operations. 

Incremental copying has been accepted as an effec
tive method of minimizing over copying and eliminat
ing early copying as defined by Wroblewski. How
ever, while being effective in minimizing over copying 
(it over copies only in some ,cases of convergent arcs 
into one node), incremental copying is ineffective in 
eliminating early copying as we define it.6 Incremen
tal copying is ineffective in eliminating early copying 
because when a graph unification algorithm recurses 
for shared arcs (i.e. the arcs with labels that exist in 
both input graphs), each created unification operation 
recursing into each shared arc is independent of other 
recursive calls into other arcs. In other words, the re
cursive calls into shared arcs are non-deterministic and 
there is no way for one particular recursion in to a shared 
arc to know the result of future recursions into other 
shared arcs. Thus even if a particular recursion into 
one arc succeeds (with minimum over copying and no 
early copying in Wroblewski's sense), other arcs may 
eventually fail and thus the copies that are created in 
the successful arcs are all wasted. We consider it a 
drawback of incremental copying schemes that copies 
that are incrementally created up to the point of fail
ure get wasted. This problem will be particularly felt 
when we consider parallel implementations of incre
mental copying algorithms. Because each recursion 
into shared arcs is non-deterministic, parallel processes 
can be created to work concurrently on all arcs. In each 
of the parallell y created processes for each shared arc, 
another recursion may take place creating more paral
lel processes. While some parallel recursive call into 
some arc may take time (due to a large number of sub
arcs, etc.) another non-deterministic call to other arcs 
may proceed deeper and deeper creating a large num
ber of parallel processes. In the meantime, copies are 
incrementally created at different depths of subgraphs 
as long as the subgraphs of each of them are unified 
successfully. This way, when a failure is finally de
tected at some deep location in some subgraph, other 
numerous processes may have created a large number 
of copies that are wasted. Thus, early copying will be 
a significant problem when we consider parallelization 
of incremental copying unification algorithms. 

2. Our Scheme 

We would like to introduce an algorithm which ad
dresses the criteria for fast unification discussed in the 
previous sections. It also handles loops without over 
copying (without any additional schemes such as those 
introduced by [Kogure, 1989]). 

6'Early copying' will henceforth be used to refer to early copying as defined by us. 



As a data structure, a node "is represented. with eight 
fields: type, arc-list, comp-arc-list, forward, copy, 
co"mp-arc-mark, forward-mark, and copy-mark. Al
though this . number may seem high for a graph node 
data Structure, - the amount of memory consumed is 
nof significantly diffeJent from that consumed by other 
algorithms. Type can be represented by three bits; 
comp-arc-mark, forward-mark, and copy-mark can be 
represented by short integers (i.e. fixnums); and comp
are-list (justlike arc-list) is a mere collection of pointers 
to memory locations. Thus this additional information 
is trivial in terms of memory cells consumed and be
cause of this data structure the unification -algorithm 
itself can remain simple. 

NODE 
+---------------+ 
I type I 
+- --------------+ 

· I arc:- list 
+-------- . ------+ 
I comp-arc-list I 
+---------- �---+ 

I forward I 
+---------------+ 
I copy I 
+-- ---------- -+ 
I comp-arc·-mark - 1 

+-------- -- ---+ 
I forward-mark I 
+---------------+ 
I copy-mark I 
+---------------+ 

ARC 
+--- . -----------+ 
I label I 
+---------------+ 
I value I 
+------------- ·-+ 

Figure 1 :  Node and Arc Structures 

The represeritation for an arc is no different from that 
of other unification algorithms. Each arc has two fields 
for 'label' and 'value' .  'Label' is an atomic symbol 
which Jabels the arc, �d 'value' is a pointer to a node. 

The central n_otion of our algorithm is the depen
dency of the representational content on the global 
timing clock (or the global counter for the current 
generation of unification algorithms). - This scheme 
was used in [Wroblewski, 1987] to_ invalidate the copy 
field of a node after one unification by incrementing a 
global counter. This is an extremely cheap operation 
but has the power to invalidate the copy fields of all 
nodes in the system simultaneously. In our algorithm, 
this dependency of the content of fields on global tim
ing is adopted for arc lists, . forwarding pointers, and 
copy pointers·. Thus any modification made, such as 
adding forwarding links, copy links or arcs during one 
iop-level unification (unifyO) to any node in memory 
can _be invalidated by one increment operation on the 
global timing _counter. During unification (in unifyl) 
and copying after a successful unification, the global 
timing ID for a specific field can be checked by compar
ing the content of mark fields with the global counter 

value and if they match then the content is respected, 
· if not it is simply ignored. Thus the whole operation is 
a trivial addition to the original destruc.tive unification 
algorithm (Pereira's and Wroblewski's unifyl). · 

We have two kinds of arc lists 1) arc-list and comp
are-list. Arc-list contains the arcs that are permanent 
(i.e., usual graph arcs) and comp-arc-list contains arcs 
that are only valid during one graph unification oper
ation. We also have two kin_ds of forwarding links , 
i.e., permanent and temporary. A permanent forward
ing link is the usual forwarding link found in other 
algorithms ([Pereira, 1985] , [Wroblewski, 1987], eic). 
Temporary forwarding links are links ihai are only valid 
during one unification. The currency of the temporary 
links is_ determined by matching the content of the_mark 
field for the links with the global counter and if they 
match then the content of this field is respected7 • As 
in [Pereira, 1985], we have three types of nodes: 1) 
:atomic, 2) :bottom8 , and 3) :complex. :atomic type 
nodes represent atomic symbol values (such as Noun)� 
:bottom type nodes are variables · and :complex type 
nodes are nodes that have arcs coming out- of them. 
Arcs are stored in the arc-list field. The atomic value 
is also stored in the arc-list if the node type is :atomic. 
:bottom nodes succeed in unifying with any nodes and 
the result of unification takes the type and the value 
of the node that the :bottom node was. unified with. 
:atomic nodes succeed in unifying with :bottom nodes 
or :atomic nodes with the same value (stored in the 
arc-list). Unification of an :atomic node with a :corn- _ 
plex node immediately fails. :complex nodes succeed 
in unifying with :bottom nodes or with :complex nodes 
whose subgraphs all unify. Arc values are always nodes 
and never symbolic values because the :atomic and 
:bottom nodes may be pointed to by multiple arcs (just 
as in structure sharing of :complex nodes) depending 
on grammar constraints, and we do not want arcs to 
contain terminal atomic values. 

Below is our algorithm: 

funct ion UNIFY-DAG { dagl , dag2 ) ; , ,  toplevel . 
RESULT : == catch with tag ' UNIFY-FAIL 

call ing UN IFYO ( dagl , dag2 ) 
increment * unify-global-counter* ; ;  starts from 1 0  

return RESULT ; 
end; 

funct ion UNIFY0 { dagl , dag2 ) ; 
i f  ' * T *  == UNIFYl ( dagl , dag2 ) ; 

then COPY : == COPY-DAG-WI TH-COMP -ARCS { dagl } ; 7In terms of forwarding links, we do not have a separate field for temporary forwarding links; instead, .we designate the integer value 9 to represent a permanent forwarding link. We start incrementing the global counter from 10  so whenever the forward-mark is not 9 the integer value must equal the global counter value to respect the forwarding link. 8Bottom is called leaf in Pereira's algorithm. 

1 66 



return COPY;  
end ; 

funct ion UN IFYl ( dagl -underef , dag2-underef ) ; 
DAGl : == DEREFERENCE-DAG ( dagl-underef ) ; 
DAG2 DAG ( dag2-und�re f ) ; 

i f  ( DAGl == DAG2 ) i . e . , ' eq '  relation 
then return ' * T * ;  

return COPY;  
else  i f  ( DAG . type = =  :·bottom} 

COPY : == CREAT�-NODE ( ) ; 
·cOPY ._type . : == : bottom; 
DAG . copy : == · COPY ;  
DAG . copy-mark 

: == *unify-global-counter * ;  
return COPY;  

else  if  ( DAGl . type = =  : bottom} ; ;  variable 
then FORWARD-DAG ( DAG1 , DAG2 , : temporary ) ; 

return ' *T * ;  

else ·  COPY : == CREATENODE ( ) ; 
COPY . type : == : complex ;  
for a l l  AR.C in  DAG . arc- list do 

NEWARC : == COPY-ARC-AND-COMP-ARC (ARC) ; 
push NEWARC into COPY . arc-list ; else  if  ( DAG2 . type == : bottom) 

then _FORWARD-DAG ( DAG2 , DAG1 , . : temporary ) ; if  ( DAG . comp-arc- list is  non-empty 
/ return ' *T * ;  

e l s e  if  ( DAGl . type : atomic • and 
DAG2 . type == : atomic )  

then 
if ( DAGl . arc-list == DAG2 . arc-list ) 

; ; ; contains atomic values 
then FORWARD-DAG (DAG2 , DAG1 ,  

: temporary ) ; 
return ' *T * ;  

else  throw with keyword ' UNIFY-FAIL;  
; ; ;  return directly to unify-dag 

( throw/catch construct ) 
else ·  if  ( DAGl . type == : atomic 

or DAG2 . type == : atomic)  
then -throw with ke·yword ' UNIFY-FAIL;  

else  NEW : == COMPLEMENTARCS ( DAG2 , DAG1 ) ;  
SHARED : == INTERSECTARCS (DAGl j DAG2 ) ; 

end ; 

for each ARC in SHARED do 
RESULT : == UNIFYl (destination of  the 

shared arc for dagl , 
destination of the 

shared arc for dag2 ) ; 
i f  (RESULT =/= ' *T * ) 

throw with keyword ' UN IFY-FAIL ; 
I f  (the recurs ive calls  to UNIFYl 

success fully returned for all 
shared arcs ) 

, , ,  this check i s  actually unnecessary 
then 

FORWARD-DAG (DAG2 , DAG1 ,  : temporary ) ; 
DAGl . comp-arc-mark : == 

*unify-global-counter * ;  
DAGl . comp-arc-list NEW 
return ' *T * ;  

function COPY-DAG-WITH-COMP-ARCS ( dag-underef ) ; 
DAG : == DEREFERENCE-DAG (dag-underef ) ;  
i f  ( DAG . copy is  non-empty 

and 
DAG . copy-mark == *unify-global-counter * )  

then return the content o f  DAG . copy;  
; ; ;  i . e .  existing copy 

e l se if (DAG . type == : atomic )  
COPY : == CREATE-NODE ( ) ; 
COPY . type : ==· : atomic ;  
COPY . arc- l ist : == DAG . arc- list ; 

; ; ;  this is an atomic value 
DAG . copy : == COPY; 
DAG . copy-mark 

* 0n{fy-global-counter* ; 

1 67 

end; 

and 
DAG . comp-arc-mark 

*unify-global-counter* ) 
then 

for all COMP-ARC in 
'- DAG . comp-arc-list do 

NEWARC : == 

COPY-ARC-AND-COMP-ARC ( COMP-ARC ) ; 
push NEWARC i_nto °COPY . arc-list ;  

DAG . copy : == COPY 
DAG rc6py-mark *uni fy-global-counter * ;  
return COPY;  

function COPY-ARC-AND-COMP-ARC ( input-arc ) 
LABEL label of  input-arc ; 
VALUE : == COPY-DAG-WITH-COMP-ARCS 

( value of  input-ar� ) ;  
return a new arc with LABEL and VALUE ;  
end ; 

The functions Complementarcs(dagl ,dag2) and Inter
sectarcs(dagl ,dag2) are the same as in Wroblewski's ·algorithm and retum the set-difference (the arcs with 
labels that exist in dagl but not in dag2) and intersec
tion (the arcs with labels that exist bpth in dagl and 
dag2) respectively. Dereference-dag(dag) recursively 
traverses the forwarding link to return the forwarded 
node. In doing -so, it checks the forward-mark of the 
node and if the forward-mark value is 9 . (9 represents 
a permanent forwarding link) or its· value matches the 
currenf value of *unify-global-counter*, then the func-

. tion returns the forwarded node; otherwise it simply 
returns the input node. Forward(dagl , :dag2, :forward:7 
type) puts (the pointer to) dag2 in the forward field of 
dagl .  If the keyword in the function call is :temporary, 

· the current value of the *unify-global-counter* is writ
ten in the forward-mark field of dagl .  If the keyword 
is :permanent, 9 is written in the forward-mark field of 
dag 1 .  Our algorithm itself does not require any perma-
· nent forwarding; however, the functionality is added 
because the grammar reader module that reads the path 
equation specifications into dag feature�structures uses 
permanent forwarding to m�rge the additional gram
matical specifications into a graph structure9 • The tern-

9We have been using Wroblewski 's algorithm for the uni
fication part of the parser and thus usage of (permanent) 



porary forwarding links are necessary to handle reen
trancy and loops. As soon as unification (at any level 
of recursion through shared arcs) sue:c;eeds, a tempo
rary forwarding link is made from dag2 to dag 1 ( dag 1 
to dag2 if dagl is of type :bottom). Thus, during unifi
cation, a node already unified by other recursive calls 
to unify 1 within the same unify0 call has a temporary 
forwarding link from dag2 to dag·l (or dagl to dag2). 
As a result, if this node becomes an input argument 
node, dereferencing the node causes dag 1 and dag2 
to become the same node and unification immediately 
succeeds. Thus a subgraph below an already unified 
node will not be checked more than once even if an 
argument graph has a loop. Also, during copying done 
subsequently to a successful unification, two arcs con
verging into the same node will not cause over copying 
simply because if a node already has a copy then the 
copy is returned. For example, as a case ·that may cause 
over copies in other schemes for dag2 convergent arcs, 
let us consider the case when the destination node has 
a corresponding node in dagl and only one of the con
·vergent arcs -has a corresponding arc in dagl .  This 
destination node is already temporarily forwarded to 
the node in dagl (since the unification check was suc
cessful prior to copying). Once a copy is created for 
the corresponding dag 1 node and recorded 1n the copy 
field of dagl ,  every time a convergent arc in dag2 that 
needs to be copied points to its destination node, deref
erencing the node returns the corresponding node in 
dagl and since a copy of it already exists, this copy is 
returned. Thus no duplicate copy is created1 0  � 

As we just saw, the algorithm itself is simple. The 
basic control structure of the unification is similar to 
Pereira's and Wroblewski's unifyl .  The essential dif
ference between our unify 1 and the previous ones is 
that our unifyl is non-destructive. It is because the 
complementarcs(dag2,dagl) are added to the comp
are-list of dagl and not into the arc-list of dagl .  Thus, 
· as soon as we increment the global counter, the changes 
made to dagl (i.e., addition of complement arcs into 
C()mp-arc-list) vanish. As long as the comp-arc-mark 
value matches that of the global counter the content of 
the comp-arc-list can be considered a part of arc-list 
and therefore, dagl is the result of unification. Hence 
the name quasi-destructive graph unification. In order 
to create a copy for subsequent use we only need to 

forwarding links is used by the grammar reader module. 
10<;::opying of dag2 arcs happens for arcs that exist in dag2 

but not in dagl (i.e., Complementarcs(dag2,dagl)). Such 
arcs are pushed to the comp-arc.a.list of dagl during unify! 
and are copied into the arc-list of the copy during subsequent 
copying. If there is a loop or a convergence in arcs in dagl 
or in arcs in dag2 that_ do not have corresponding arcs in 
dagl ,  then the mechanism is even simpler than the one dis
cussed here. A copy is made once, and the same copy is 
simply returned every time another convergent arc points to 
the original node. It is because arcs are copied only from 
either dag 1 or dag2. 

1 68 

make a copy of dagl before we increment the global 
counter while respecting the content of the comp-arc
list of dagl .  

- Thus instead of calling other unification functions 
(such as unify2 of Wroblewski) for incrementally cre
ating a copy node during a unification, we only need -
to create a copy after ·unification� Thus, .  if unifica
tion fails no copies are made at all (as in [Karttunen, 
1986] 's scheme). Because unification . that recurses 
into shared arcs carries qo burden of incremental copy� 
ing (i.e., it simply checks if nodes are compatible), as 
the depth of unification increases (i.e., the graph gets 
larger) the speed-up of our method should get conspic
uous if a unification eventually fails. if all unifica
tions during a parse are going to be successful, our 
algorithm should be as fast as or slightly slower than 
Wroblewski's algorithm1 1 • Since a _parse that does not 
fail on a single unification is unrealistic, the gain from 
o·ur scheme should depend on the amount of unification 
failures that occur during a unification. As th� number 
off ailures per parse increases and the graphs that failed 
get larger, the speed-up from our algorithm should be
come more apparent. Therefore, the characteristics of 
our _algorithm seem c:lesirable. In the next section, we 
will see the actual results of experiments which com
par:e . our unification algorithm to Wroblewski 's algo
rithm (slightly modified to handle variables and ·1oops 
that are required by our HPSG based grammar). 

3. Experiments 

'Unifs '  represents the total number of unifications 
during a parse (the number of calls to the top-level 
'unify-dag', and not 'unifyl '). 'USrate' represents the 
ratio of successful unifications to the· total number of 
unifications. We parsed each sentence three times on 
a Symbolics 3620 using both unification methods and 
took the- shortest elapsed time for both methods ('T' 
represents our scheme, 'W' represents Wroblewski 's 
algorithm with .a modification to -handle loops' and 
variables12). _ Data structures are the same for both 

' . 
11 It may be slightly slower; because our unification re-

curses twice on a graph: once to unify and once to copy, 
whereas in incremental unification schemes copying is per
formed during the same recursion as unifying. Additio·nal 
bookkeeping for incremental · copying_ during unify2 may 
slightly offset this, however. 

12Loops can be handled in Wroblewski's algorithm by 
checking whetfier an arc with the same label already exists 
when arcs are added to. a node. And if such an arc already 
exists, we destructively unify the node which is the destina
tion of the existing arc with the node which is. the destination 
of the arc being added. If such an arc do�s not exist, we 
simply add the arc. · ([Kogure, 1989]). Thus, loops can be 
handled very cheaply in Wroblewski's algorithm. H_andling 
variables in Wroblewski's algorithm is basically the same as 
in our algorithm (i.e., Pereira's scheme), and the addition of 



sent # - Unifs USrate Elapsed time ( sec t  Num of  Copies Num of  Conses . 
T w T w T w 

1 6 0 . 5  1 .  0 6 6  1 . 113  85  107  1231  · 1 4 5 1 , 
2 1 0 1  0 . 3 5  1 . 8 97 . 2 . 8 9 9  1 4 1 8  2 2 8 5  1 5 1 6 6  2 3 8 3 6  
3 24 0 . 33 1 . 2 0 6  · 1 .  2 90 1 2 9  2 2 0  1 7 3 4  . 2 6 4 4  
4 7 1  0 . 4 1  3 . 3 4 9  4- . 1 02 ' 1 63 5  2 1 5 1  1 7 13 3  2 2 9 4 3  
5 3 0 5  0 . 3 9  12 . 1 5 1  1 7 . 30 9  5 5 2 9  9 0 92 5 7 4 0 5  9 3 0 3 5  
6 5 9  0 . 3 8  1 . 2 5 4  1 .  6 0 1  6 0 8  9 9 7  6873  1 0 7 ,63  
7 6 0 . 3 8 1 . 0 1 6  1 . 03 0  8 5  1 0 7  1 1 7 5  1 3 9 5  
8 8 1  0 . 3 9  3 . 4 9 9  4 . 4 52 1 7 8 0  2 4 0 6  1 8 7 1 8  2 4 978  
9 4 8 0 0 . 3 8 1 8 . 4 02 3 4 . 653  94_6 6  1 5 7 5 6  · 9 69 8 5  1 672 1 1  
1 0  5 5 5  0 . 3 9 2 6 . 933 4 7 . 22 4  . 1 1 7 8 9  1 8 822 1 1 9 6 2 9  1 8 99 97 
1 1  1 0 9  0 . 4 0 4 . 5 92 5 . 4 33 " 2 0 4 7  2 9 1 3  2 1 8 7 1  3 0 5 3 1  
1 2  4 2 8  · O . 3 8 13 . 72 8  2 4 . 3 5 0  7 933 133 63 8 1 5 3 6  1 3 5 8 0 8  
13  5 5 9  0 . 3 8 1 5 . 4 8 0  4 2 . 3 5 7  9 9 7 6  1 7 7 4 1 1 02 4 e 9  1 8 0 1 6 9  
1 4  52  0 . 3 8 1 . 97 7  2 . 4 1 0  7 4 5  94 1 8272  1 0 2 92 
1 5  7 7  0 . 3 9  3 .  5 7 4  . 4 . 68 8  1 5, 90  2 1 3 7  1 69 4 6  224 1 6  
1 6  7 7  0 . 3 9  3 . 65 8  4 .  4 3 1  1 5 90 2 1 3 7  1 6 9 4 3  224 1 3  

Figure 2 :  Comparison of  our algorithm with Wroblewski's · 

unification algorithms· ( cxc·ept for additional fields .for 
a f!Ode in our algorithm, Le., comp-arc-list, comp-arc
mark, and forward-mark).- Same functions are used to 
interface with Barley's parser and the same subfunc
tions are used wherever possible (such as creation and 
access of arcs) to minimize the differences that are not 
purely algorithmic. 'Number of copies ' represents the 
number of nodes created during each parse (and does 
not include the number of arc structures that are cre
ated during a parse). 'Number of conses' represents the 
amount of structure words consed during a parse. This · 
number represents the real comparison of the amount 
of space being consumed by each unification algorithm · 
(including added fields for nodes in our algorithm and 
arcs that are created in b_oth algorithms). 

We used Barley's parsing algorithm for the experi
ment. The Japanese grammar is based on HPSG anal
ysis ([Pollard and Sag, 1987]) coverjng phenomena 
such as coordination, case adjunction, adjuncts, con:. 
trol, slash categories, zero-pronouns, interrogatives, 
WH constructs, and some pragmatics (speaker, hearer 
relations, politeness, etc.) ([Yoshimoto and Kogure; 
1989]). The· grammar covers many of the important 
linguistic phenomena in conversational Japanese. The 
grammar graphs which are converted from the. path 
equations contain 2324 nodes. We used 16 sentences 
from a sample telephone conversation dialog which 
range from very short sentences (one word, i.e., iie 
'no') to relatively long ones (such as soredehakochi
rakarasochiraniiourokuyoushiwoookuriitasliimasu 'In 
that case, we [speaker] will send you [hearer] the reg
istration fotm. ). Thus, the number of unifications per 
sentence varied widely (from 6 to over 500). 

this functionality can be ignored in terms of comparison to 
our algorithm. Our algorithm does not require any additional 
scheme to handle loops in input dags. 

1 69 

4. Discussion: 

4.1. Comparison to Other Approaches 

The control structure of our algorithm is identical to 
that of [Pereira, 1985] . However, instead of stor-
. ing changes to the argument dags in the environment 
we store the changes - in the dags themselves non
destructively. Because we do not use the environment, 
the log(d) overhead (where d is the nurriber of nodes 
in a dag) associated with Pereira's scheme that is re
quired during nod� access (to assemble the whole dag 
from the skeleton and the updates in the environment) 
is avoided in our· scheme. We share the principle of 
storing changes in a restorable way with [Karttunen, 
1986] 's reversible unification and copy graphs only 

, after a successful unification. Karttunen originally 
introduced this scheme in order to replace the less 
efficient structure-sharing implementations ([Pereira, 
1985], [Karttunen and Kay, 1985]) .  In Karttunen's 
method13 , whenever a destructive change is about to 
be made, the attribute value pairs14 stored in the body 
of the node are saved into an array. The dag node struc-

. ture itself is also saved in another array. These values 
are-restored after the top level unification is completed. 
(A copy is made prior to the restoration operation if 
the unification was a successful one.) The difference 
between Karttunen's method and ours is that iri our al
gorithm, one increment to the global counter can invali
date all the changes made-to nodes, while in Karttunen 's 
algorithm each node in the. entire argument graph that · 
has been destructively modified must be restored sep-

13The discussion of Kartunnen 's method is based on the 
D-�ATR implementation on Xerox machines ([Karttunen, 
1986]). 

141.e., arc structures: 'label' and 'value' pairs in our 
vocabulary. 



arately by retrieving the attribute-values saved in an 
array and resetting the values into the dag strµcture 
skeltons saved · in another array. In both Karttunen 's 
and our algorithm, there will be a non-destructive (re
versible; and quasi-destructive) saving of intersection 
arcs that may be wasted when a subgraph of a partic
ular node ·successfully unifies but the final unification 
fails due to a failure in some other part of the argument 
graphs. This is not a problem in our method because the 
temporary change made to a node is performed as push
ing pointers into already' existing structures (nodes) and 
it does not require entire I y new structures to be created 
and dynamically allocated memory (which was neces
sary for the copy (create-node) operation).15 [Godden, 
1990] presents a method of using lazy evaluation in 
unification which seems to be one successful . actual
ization of [Karttunen and Kay, 1985h lazy evaluation 
idea. One question about lazy evaluation is that the ef
fici�ncy of lazy evaluation varies depending upon the 
particular hardware and ·prograniming language envi
ronment. For example, in CommonLisp, to attain a 
lazy evaluation, as soon as a function is delayed, a clo
sure (or a structure) needs to be created receiving a dy-
namic allocation of memory (just as fo cr�ting a copy 
node). Thus, there is a shift of memory and associated 
computation consumed from making copies to making 
closures. In · terms of memory cells saved, although 
the lazy scheme may reduce the total number of copies 
created, if we corisider the memory consumed to create 
closures, the saving may be �ignificantly canceled. In 
terms of speed, since delayed evaluation requires addi
tional bookkeeping, how schemes such as the one in
troduced by [Godden, 1990] would compare with non
lazy incremental copying schemes is an open question. 
Unfortunately' Godden offers a comparison of his algo
rithm- with one that uses a full copying method

.
(i.e. his 

Eager Copying) which is already significantly slower 
than ·Wroblewski's algorithm. H:owever, no compari
son is offered with prevailing_unification schemes such 
as Wroblewski 's. With the complexity for lazy evalu
ation and the memory consumed for delayed closures 
added, it is hard to estimate whether lazy unification 
runs considerably faster than Wroblewski 's incremen
tal copying scheme. 

Finally, when we consider parallelization of unifi
cation algorithms, it seems that . the quasi-destructive 
unification scheme is more suitable for parallelization 

15 Although, in Karttunen 's method it may become rather 
expensive if the arrays require resizing during the sav.ing op
eration of the subgraphs. This is another characteristic of 
Kartunnen 's method that two arrays �eed to be originally al
located memory. If the allocated arrays are too big then we 
will be wasting the unused cells, if it is too small, then there 
will be array resizing operations during unification which can 
be costly. Because amount of destructive operations during 
unifications vary significantly sentence to sentence, deter
mining the ideal initial array size for Kartunnen 's method is 
not trivial. 

1 70 

than the past methods. Whert we parallelize graph uni-
. fication, the concurrent recursive calls into shared arcs 
should 1:)e the element contributing to the speed up. On 
the other hand, that may require synchronization be� 
tween parallel recursive processes which in tum may 
undermine the speed up .element due to parallelization. 
Also, concurrently accessing shared data (i.e., global 
variables, etc.) causes lockiunlock synchronization on 
the global memory location and that also undermines 
the effect of parallelization. These two problems s�m 
particularly applicable to incremental copying schemes 
(such as [Wroblewski, 1987] and [Godden, 1990]) be- . 
cause there may be multiple simultaneous write opera
tions on a copy when recursive calls to the shared arcs at 
each level return successfully. Our algorithm does not 
suffer from this simultaneous write lock/unlock prob
lem because there will be no write operation to a node 
during unification checks (i.e., no writing is performed 
until the unification of entire argument dags actually 
succeeds 16) .  

In terms of simultaneous writes to shared global · 
variaqles, Both structure sharing schemes and the re
versible unification seem vulnerable to this problem 
because values are stored into global data and the con
current processes must lock and unlock. these global 
locations every time they access the data. For exam
ple, Karturinen 's reversible unification scheme requires 
two global arrays to store the original feature-value 
pairs · and the dag node cells. When parallel recursive 
unification calls into shared arcs are performed· and 
node values are saved into the arrays concurrently, the 
processes need to be queued (lock/unlock synchroniza
tion) to access the arrays17 • The same problem wUl be 
caused during writes to 'copying environments ' in the 
lazy unification scheme. Our algorithm does not suffer 
from simultaneous writes to global shared variable �im
ply because 1) no saving is.performed at all 2) changes 
are local. Instead of saving original values, changes 
are recorded distributedly (locally) into each node that 

161n our current parallel implementation ([Tomabechi and 
Fujioka, ms]), · the quasi-des·tructive addition of intersection 
arcs to a node does not occur until all parallel recursive 
calls into subgraphs succeed. This can be performed with
out any harm because 1) any addition to tlie comp-arc-list is 
harmless until actual copying is performed after a success- . 
fol unification; 2) additions to comp-arc-list are performed 
only once per node and therefore, this will not cause the . 
lock/unlock problem due to multiple simultaneous write op
erations. · H�wever, the addition of temporary forwarding 
links needs to wait until the top-level unification success
fully returns. 

17Depending on parallel machine architectures and oper
ating system implementations, simultaneous read/read and 
read/write may not be problems, however, simultaneous 
write/write is normally inherently problematic and needs to 
be synchronized. Simultaneous write/write into· save arrays 
is inevitable if we parallelize Kartunnen 's scheme because 
writing to arrays (i.e., both feature-value pair array .and the 
dag cell array) must occur during the save operation. 



is being quasi-destructively modified. Therefore, there 
will be no-global shared data associated-with the saving 
of original dag values. Changes are simply nullified by , 
the increment on the global counter and therefore no 
saving operation is necessary. Overall, we have seen in 
our experiments (reported in [Tomabechi and Fujioka, 
ms]) that our algorithm recorded about .75 percent of 
effective parallelization rate (meaning that the 75 per
cent of unifications into shared arcs were parallelly per
formed both horizontally -and vertically) ([Tomabechi 
and Fujioka, msJ 1 8). 

5. Conclusion 

The algorithm introduced in this paper runs signifi
cantly faster than Wroblewski's algorithm using Bar
ley's parser and an HPSG based grammar developed 
at A1R. The gain comes from the fact that our algo-
rithm does not create any over copies or early copies. 
In Wroblewski 's algorithm, although over copies are 
essentially avoided, early copies (by our definition) 
are a significant problem because ah.out 60 percent of 
unifications result in failure in a successful parse in 
our sample parses. The additi.onal set-difference oper
ation required for incremental copying during unify2 
may also be contributing to the slower speed of Wrob
lewski 's algorithm. Given that our sample grammar is 
relatively small, we would expect that the difference 
in the performance between the incremental copying 
schemes and ours will expand. as the grammar size 
increases and both the number of failures1 9  and the 
size of the wasted subgraphs of failed unifications be
come larger. Since our algorithm is essentially paral
lel, parallelization is one logical choice to pursue fur
ther speedup. Parallel processes can be continuously 
created as unifyl rectirses deeper and deeper without 
creating any copies by simply looking for a possible 
failure of the unification (and preparing for successive 
copying in case unification succeeds). So far, we have 
completed a preliminary implementation on a shared 
memory parallel hardware with about 75 percent of 
effective parallelization· rate. With the simplicity of 
our algorithm and the ease of implementing it (com
pared to both incremental copying scherries and lazy 
schemes), combined with the demonstrated speed . of 
the algorithm, the algorithm could be a viable alter
native to existing_ unification algorithms used in the 
existing parsing schemes as well as a part of future 
parsing systems. 

18Please refer to this paper for detail of parallel . quasidestructive unification algorithm and experiments using the_ · algorithm. 
19For example, in our large-scale speech-to-speech tran·slation system under development, the USrate is estimated to be under 20%, i.e., over 80% of unifications are estimated to be failures. 

1 71 

ACKNOWLEDGMENTS 

The author would like to thank Aldra Kurematsu, 
Tsuyoshi Morimoto, Hitoshi Iida, Osamu . Furuse, 
Masaaki Nagata, Toshiyuki Takezawa and other mem
bers of A1R. Thanks are also due to Margalit Zablu
dowski for comments on the final version of this paper 
and Takako Fujioka for assistance in implementing the 
parallel version of our algorithm. 

Appendix: Implementation 

The unification algorithms, Earley parser and the · 
HPSG path equation to graph converter ptograms are 
implemented in Common Lisp on a Symbolics ma
chine . . The preliminary parallel version of our uni
fication algorithm· is currently implemented on a Se
quent Symmetry closely coupled shared-memory par
allel machine with 15  CPUs running Allegro CLiP 
parallel CommonLisp based ort a micro-tasking par
allelism using light-�eight processes. 

References 
[Godden, 1990] Godden, K. "LazyUnification" InProceedings of ACL-90. 1990. [Karttunen, 1986] Karttunen, L Development Environment for Unification-Based Grammars. ,Report CSLI-86-61 .  Center for the Study of  Language and_Information, 1986. [Karttunen, 1986] Karttunen, L .. "D-PATR: A Development Environment for Unification-Based-Grammars". In Proceedings of COLING-86. -1986. [Karttunen and Kay� 1985] Karttunen, L. and Kay, M. "Structure Sharing with Binary Trees". In Proceedings of ACL-85. 1985. [K.asper, i987] Kasper, R. "A Unification M�thod for DisjunctiveFeatur�Descriptions". InProceedingsof ACL-87. 1987. [Kogure, 1989] Kogure, K.' A Study on Feature Structures and Unification.ATR TechnicalReport. TR-1-0032. 1988. [Pereira, )985] Pereira, F. "A Structure-Sharing Represen.tation for Unification-Based Grammar Formalisms". In . Proceedings of ACL-85. 1985. [Pollard and Sag, 1987] Pollard, . C. and Sag, A. . Information-based Syntax and Semantics. Vof 1, CSU, " 1987. [Tomabech·i and Fujioka, ms] Parallel Quasi-Destructive Graph Unification. Manuscript (in print as ATR Technical Report). [Yoshimoto and Kogure, 1989] Yoshimoto, K. and Kogure, K. Japanese Sentence Analysis by means of Phrase Structure _Grammar. ATR Technical Report. TR-1-0049. 1989. [Wroblewski, 1987] Wroblewski, D/'Nondestructive Graph Unification" In Proceedings of AAAl87. 1987. 


