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Abstract

Following on research that resulted in the translation methodology known as the
<C,A>,T framework, the present paper reports on the further development and
implementation now referred to as CAT2. The basic philosophy is the creation of
separate grammars, in homogeneous notation, for multiple levels of linguistic
representation, and a means of describing relations between the levels. Each level
is represented as a derivation tree generated by a context-free grammar
augmented by feature lists. The translation relations are recursive tree-to-tree
mappings. The basic operation is unification, making CAT2 similar to unification-
based formalisms. As a development tool, it shares many characteristics of PATR-
II. The descriptive nature of the framework motivates the use of Prolog as the
implementation language. The report describes the CAT2 formalism and its
implementation. Some comparisons are made between CAT2 and similar
frameworks. An example is presented showing the basic strategy in analysis,
transfer, and generation. The conclusion is reached that although the system is still
in a primitive stage of development, it is already adequate for handling some
complex translation issues in a linguistically motivated way, and the simplicity of
its design allows for a controlled incremental refinement.



CAT2 - Implementing a Formalism for Multi-Lingual MT

One of the many major contributions of the EUROTRA MT project to the
scientific investigation of automatic translation is the instigation of parallel
research, both within the official EUROTRA community and in independent
centers. Examples of the latter include joint research projects in Stuttgart and
Berlin, the former applying MT concepts within the formalism of LFG (Kaplan &
Bresnan 1982; Netter & Wedekind 1986), and the latter within the GPSG
formalism (Gazdar, et al. 1985; Hauenschild & Busemann forthcoming). Here in
Saarbrücken we are extending both the implementation and the formalism of the
<C,A>,T framework (Arnold, et al. 1985,1986; Arnold & des Tombes 1987), the
predecessor of the current EUROTRA framework. We call our experimental
implementation, appropriately, CAT2.

The approach taken in CAT2 is similar to virtually all MT systems: posit levels of
representation between the source and target texts such that translations between
intermediate levels is simpler than a direct text-to-text translation. The levels
usually correspond to stages of syntactic and semantic analyses. What CAT2 offers
is a formalism for describing levels of representation and a means of relating
adjacent levels. That is, CAT2 is simply a formalism for describing grammars and
translators.

This very general formalism does not restrict or otherwise prescribe the number or
interpretation of levels of representation. In our research we work with three
levels: one based on surface syntactic structure, another on grammatical functions,
and a third on semantic role relations. We could instead choose a surface
structure/deep structure division. Furthermore, the formalism allows for either a
transfer-based or interlingual strategy. We prefer the former since it offers more
independent treatment of specific language pairs without a commitment to a single
"universal" representation.

Using Arnold (ibid) as a starting point, our goal is to make the ideas explicit and
precise by making a faithful and efficient implementation, changing the formalism
itself where appropriate. The major differences reflected in CAT2 over Arnold
are: (1) consistent treatment of the lexicon as structural rules, (2) the admission of
logic variables in all rule types, and (3) the elimination of constructor names as
formal properties of rules. These minor changes in principle are accompanied by a
major improvement in the space and time performance of the software.

Section 1 presents a brief description of the CAT2 formalism; Section 2 describes
the implementation and compares it to some existing formalisms. Section 3
illustrates the operation of CAT2 in analysis, transfer, and generation. Section 4
concludes with some directions for further research.

1.  THE FORMALISM

The CAT2 formalism is extremely simple, and correspondingly restrictive. As such
it is highly unlikely to be adequate for full-scale translation. Nevertheless we can
already achieve a great deal within the confines of the formalism, and its
simplicity allows for a controlled incremental refinement.

We retain the basic methodology as elaborated in Arnold (1987), i.e. the
development of a generating device G for each representational level L, and a
translation relation T between Ls:



(1) G1 G2 G n-1 Gn
                                                  I       I                         |                      |
                                               I      1T2      I      2T3            n-2Tn-1 I      n-1Tn      I

Texts    - - - >     L1     - - - >    L2    - - - >     ...     - - - >   Ln-1     - - - >     Ln    - - - >     TextT

The input is a source language text, and the output the target language text. Thus
one of the Ts is the transfer component, although transfer plays no privileged role
in this scheme; it is just another (very large) T relation. (Alternatively, some Gi
could generate a pivot structure; this possibility is not pursued here further.)

At present, we treat each G as a sentence-level generator, so the input text is a
string of "tokens" comprising a sentence; similarly for the output text. The initial
and final Ts are special cases, the former being realized by a parser and the latter
by a tree-to-string transducer.

It is tempting to consider using the CAT2 formalism in the treatment of both word
morphology and text structure. Although theoretically possible, no serious
experimentation has yet been undertaken in this direction.

1.1   Grammars

Each level L is represented in CAT2 as a standard derivation tree, generated by a
grammar G of augmented context-free rewrite rules, where each node in the tree
is a feature list of attribute/value pairs. Every terminal ("atomic") and nonterminal
("constructor") production in the grammar is expressed by rules in the following
form:

(2) ROOT.LEAVES

where ROOT is the root node of a local tree and LEAVES is a list of immediate
daughters under ROOT; each daughter is a root node corresponding to either an
atomic or constructor rule. For terminals, LEAVES is the empty list.

Feature lists are attribute/value pairs of the form:

(3) {al=vl,a2=v2, . . . ,an=vn}

where each ai is an atomic term and each vi is either atomic or itself a feature l is t .
They express such information as person, number, tense, frame, etc.

With each grammar is associated a distinguished feature. For the syntactic level,
this is the syntactic category; for the functional level, the grammatical function;
for the semantic level, the semantic role (e.g. agent, attribuant). The notation of
nodes in the grammar is:

(4) (DF,FL)

where DF is the value of the distinguished feature and FL is the feature list of
augmented features. For convenience, the following notational conventions are
adopted: (1) a node whose feature list is unspecified may be indicated by the
distinguished feature alone; (2) a node whose distinguished feature is unspecified
is indicated by '?' in the position of the distinguished feature.

Given this basic notation, we can write atomic rules as in (5) and constructor rules
as in (6):



(5)    a.    (verb,{lu=gone, stem=go,infl=en}).[ ]
        b.    (process,{lu=advise,participants=
                                                      {role1=sender,role2=receiver,role3=message}». [ ]
(6)   a.    (s,{mode=decl}).[(np,{per=P,num=N}), (vp,{per=P,num=N}) ]
        b.   (scomp,{cat=}).[ (pred,{cat=verb,frame={arg1=subj,arg2=pobj,pform=PF}}),
                                         (subj, {cat=np, case=nom},
                                         (pobj,{cat=pp,lu=PF}) ]

The syntactic atom in (5a) represents the verb entry for "gone", the past participle
of "go". The semantic rule in (5b) is an entry for the process "advise" which takes
the semantic roles sender, receiver, and message (in systemic grammar
terminology; cf. Halliday (1985), Steiner et al. (forthcoming)). The constructor
(6a) is a typical syntactic rule for a declarative sentence, while (6b) shows a
functional constructor for the sentence. Both illustrate the use of logical variables
within feature lists.

The two fundamental constructs within CAT2 being structures and feature lists,
the formalism supports two corresponding rule types: b-rules ("building rules"), as
in (5) and (6), and a-rules ("attribute rules") as in (7) below. The former are used
to express structural relations, the latter for feature relations, such as default
feature values, co-occurrence restrictions, or completeness and coherence tests. To
this end, a-rules are classified as "gentle" (need not be applicable), "strict" (must be
applicable), or "filter" (must not be applicable). An example of a gentle a-rule is
the following which assigns (by unification) the default feature {wh=no} to NPs
which are not already marked for {wh=yes}:

(7) (np,{wh=no}).[ * (?) ]

The set of notational devices in CAT2 is extended to include expressions of
optionality (^), Kleene star (*), disjunction (;), and sequencing (,) of nodes. For
example, the specification in (7) indicates zero or more arbitrary daughter nodes.
Within feature lists, we allow for the expression of inequality and strict equality of
feature values (but only within rule descriptions, not in representations).

1.2   Translators

Objects (=trees) at one level of representation Li are related to objects at an
adjacent level Li+1 by a translation relation (=t-rule) iTi+1, denoted as:

(8) Li  ==>  Li+1

iTi+l

For lexical transfer, e.g. English to German, the relation is expressed simply as an
atom-to-atom t-rule:

(9) (process,{Iu=go}).[ ]    =>    (process,{lu=gehen}). [ ]

By the principle of compositionality (i.e. that "translations of expressions are
normally related to the translations of their parts" (Arnold 1987)), the translation
relation recursively applies to subobjects within the object described by L. By
strict compositionality, we obtain:

(10) ROOTs.[  Os1, Os2, ..., Osn  ]  ==>  ROOTt.[  Ot1, Ot2, .., Otn  ]
                                                                                                                                   s T t

where for all i, 1<=i<=n



(11) Osi ==> Oti

                                                                                   sTt

Strict compositionality cannot always be maintained, by the nature of translational
equivalency, so the formalism allows for selectively marking subobjects for
translation and possible reordering. Thus we can express a relation such as:

(12) ROOTs.[  $l:Osl,  Os2,  $2:Os3  ]  ==>  ROOTt.[  $2,  $1   ]
                                                                                                                              s

T
t

in which the translations of Osl and Os3 are reordered in the target object, and Os2
disappears from the representation.

Translation relations do not always obtain between root-daughter descriptions of
depth one. For example, syntactic representations tend to have deep trees whereas
functional representations are somewhat flattened. So either the lefthand or
righthand side of the relation may describe arbitrarily deep structures, while still
maintaining (partial) compositionality.

The following t-rule is a typical example of such an operation:

(13) s . [    $1:np,    vp.[    $2:v,    $3:(^np)    ],    $4:(^pp)    ]
=>
scomp. [   $2, $1, $3, $4   ]

in which the VP node is deleted and the translations of its daughters become
sisters to the translations of the higher nodes.

Notice that because the translation relation is a (many-to-many) mapping of
objects to objects, we can in theory treat the rule as bi-directional; we simply
change '=>' to '<=>'. This has not been implemented but is a planned extension.
Note further that phrasal structures may be related to phrasal and/or atomic
structures, and vice versa.

2.  THE IMPLEMENTATION

Because of the declarative semantics of the formalism, we use Prolog as our
implementation language. This allows us to exploit unification as the principal
operation, and to use list structures for the representation of trees and feature lists.
It also entails a minimal difference between the formal specification and its
implementation.

Important in any such research is an adequate testing environment. For system
developers, Prolog is of course an excellent medium for rapid prototyping, in that
it allows us to easily make provisional changes to the formalism and test their
effects. For the linguists, we need facilities that provide for a convenient tool,
since grammars and translators are constantly undergoing modification. Response
times must also be within reasonable limits, although this is of secondary
importance; more efficient software and hardware can be used once the formalism
is shown to reach a certain adequacy in handling the MT problem. The Prolog
program can then be viewed as the logical specification of an MT machine.



2.1   System Description

At the system level, CAT2 consists of an Earley parser, a translator, an
input/output module, a rule compiler, and a command interpreter:

   user

      Command
   Interpreter

                                            Rule
                                       I/O           Parser                Translator               Compiler

Fig. 1    The CAT2 System

All user interactions with the system are through the command interpreter, for
which a command language is provided. The commands allow the user to load and
compile rules, input source sentences either from files or directly at the terminal,
and initiate the translation process. Online help information is provided for all
commands, and a variety of command switches may be set, such as turning on and
off the debugger and execution timer and setting the start symbol. Operating
system commands may be executed without leaving the command interpreter,
including calling the system editor.

The main utility of the command interpreter is in the maintenance of linguistic
objects. Objects are created when sentences are read in, and are simply the words
segmented into tokens. These string objects are parsed, creating tree objects,
which then become input for subsequent translations. The user controls which
objects are to be translated, and has commands to delete, save, reload, compare,
and display objects, the latter two in a variety of formats, the most usual being
graphic trees.

At the application level, the user writes rule compiler directives within the
grammar and translator files that define the parameters for each level of
representation (level name, type, and distinguished feature), demarcate the t-, b-,
and a-rules, and chain to other files, thereby simplifying the loading procedure
when many external files are involved.

The rules, whose syntax has been illustrated in Section 1, are converted to unit
clauses in which certain features (e.g. syntactic category and lexical value) become
clausal parameters, optimizing direct access. Particular attention has been given to
providing informative error messages during the compilation phase.

The parser uses an Earley algorithm in which the completer step is generalized to
include scanning (Kilbury 1985); i.e. scanning is completion of terminal rules.
During initialization, all atomic rules in the grammar file corresponding to the
input tokens are loaded into the parse chart. Tokens for which no atomic values
are found are immediately reported, saving the user from having to wait for a
parse only to find that, for example, the last word in the string is not in the
lexicon.



The translator operates by unifying an input object with the lefthand side of
available t-rules. On matching, any marked subobjects are recursively translated.
The translations of these subobjects are then reconstructed according to the
ordering specified on the righthand side of the t-rule. The target generator
validates this resulting structure, to which any corresponding a-rules are applied.
Target objects surviving this ordeal are saved as well-formed subobjects; those not
surviving are saved as ill-formed subobjects. Because Prolog backtracking is
applied at all stages in order to generate all possible solutions, these saved well-
and ill-formed subobjects can be repeatedly accessed, improving the overall
execution substantially.

2.2  Comparisons

As stated previously, the principal operation is unification, both in the sense of
Prolog term unification and in graph unification of features within feature lists.
A-rules, for example, whose structural configuration match that of the (sub)object
become applicable for feature list unification. Success or failure of unification
determines the outcome of the object depending on the classification of a-rule,
whether gentle, strict, or filter. This can render a grammar nonmonotonic, in that
the results are sensitive to a-rule ordering. The grammar writer must be aware of
this situation, but can also take advantage of it, for example, in specifying default
values (cf. Shieber (1986) for a general discussion of (non)monotonicity in
unification-based grammars).

The role of unification in CAT2 resembles somewhat that of other unification-
based formalisms such as LFG and FUG (Kay 1984). A major difference.
however, is that in the latter, feature sets make up the sole data structure, whereas
in CAT2 derivation trees are the primary data structure, feature sets being a
component of the nodes. (Here there is a strong resemblance to GPSG in which
the nodes in the phrase structure represent complex categories.) These two data
types cannot mix; i.e. one cannot assign a tree as value to some attribute, in
distinction to the unification-based approaches in which a "tree" is just another
feature set. This kind of correspondence is generally made via t-rules in CAT2, as
will be shown in Section 3.

As a tool for linguistic development, CAT2 shares many similarities to the PATR-
II family of formalisms (e.g. Karttunen's D-PATR (1986)), keeping in mind the
previous comments on unification-based formalisms, of which PATR-II is also an
example. Both include many of the same command level facilities, although
PATR-II offers an extensive windowing environment. Both have debugging
facilities to trace the parsing (and translation in CAT2), and both have appropriate
means of displaying results.

However, they differ in some fundamental respects. For one, PATR-II is based on
function application, making LISP a natural implementation language (but see
Hirsh (1987) on P-PATR, a Prolog-based implementation). More importantly, the
translation relations form an integral part of CAT2, as does the notion of levels of
representation. In PATR-II, all linguistic information (syntactic, semantic, etc.) is
integrated in a single grammar, whereas in CAT2 these may be kept separate. This
promotes modularity by allowing autonomous descriptions of constituent structure.
functional structure, semantic structure, etc., integrated via t-rules.

Currently, each translation is performed sequentially. That is, an input text is
translated to L1' producing a number of objects. These are then translated to L2,
and so on. This has the advantage of being able to develop each G independently



but has the disadvantage of overgeneration, since semantic information belonging
to a G. is not available to disambiguate the syntactic Gi. A line of research we
intend to pursue is similar to that taken by the Carnegie-Mellon University
machine translation project (Carbonell & Tomita 1987) in which the syntactic and
semantic grammars remain modularized knowledge sources but are precompiled
into a single large grammar. This grammar can then be further compiled to
produce efficient run-time code. This becomes somewhat more complex in our
case since integration is via the translation relations.

3.   OPERATION OF CAT2

One of the basic principles of MT is to simplify the transfer stage, if necessary at
the expense of analysis and/or synthesis. This makes sense when, given nine EEC
languages, we have nine complex monolingual components and 72 simple transfer
components, as opposed to nine simple monolingual and 72 complex transfer
components.

Actualising this principle entails, for example, reducing structural complexity by
featurizing verbal auxiliaries, articles, particles, and grammatical formatives. This
tends to normalize the monolingual structures at the interface levels, simplifying
transfer.

To illustrate, take the English sentence (14) as input to the translation process:

(14) We know that the government has made many mistakes.

The syntactic structure of (14), drastically simplified for the sake of illustration, is
shown in (15), much as it appears using CAT2's graphic tree displayer, where only
the distinguished feature is shown on the nodes and the lexical value on the leaves.
The actual object, of course, has much richer feature lists in the nodes, which can
also be displayed in a "long" format.

(15)                    s

np vp

n       v s

             subord         np                                   vp

                           art            n          aux       v                 np

                                                                               adj           n

we   know   that    the   government   has   made   many   mistakes

For simplicity, we translate this structure directly to a transfer level by using the
set of t-rules in (16). In the first t-rule, the subject and object (which happens to
be sentential) are made sisters to the verb. This same rule applies to the sentential
object by recursive t-rule application. The embedded subordinate conjunction and
verbal auxiliary are not translated. In the NP t-rule, the article is converted to a
feature for definiteness; a gentle a-rule (not shown) sets the default value
{def=none} in case no article was present. Nouns and verbs are translated to
"entity" and "process", respectively, and quantifying adjectives are made into



"modifier" structures.

(16) s.[ ^subord, $1:np, vp.[ ^aux, $2:v, $3 ]]
     =>
    (?,{cat=s}).[ $2, $1, $3 ]

    np. [ ^ (art,{def=D}), $1:<^adj), $2:n ]
    =>
    (?,{cat=np,def=D}).[ $2, $1 ]

    (n,{stem=LU}).[ ] => (entity,{cat=n, lu=LU}). [ ]
    (v,<stem=LU}). [ ] => (process,{cat=v, lu=LU}). [ ]
    (adj,{type=quant,stem=LU}).[]=> modifier,[(quant,<cat=adj, lu=LU})]

The result is the normalized form shown in (17), assuming a very simple target
grammar shown in (18):

(17) ?

   process    processor  phenomenon

            entity     process     agent               effected

                                           entity           entity       modifier

                            quant

know we         make government   mistake     many

(18) (?).[    (process,{participants=<role1=R1,role2=R2})),
^ (?,{role=R1}),
^ (?,{role=R2}) ]

(.?).[    entity,    *modifier    ]
(process,{lu=know,participants={role1=agent,role2=affected}}). [ ]
(process,{Iu=know,participants={role1=processor,role2=phenomenon}}).[ ]
(process,{Iu=make,participants={role1=agent,role2=effected}}). [ ]
(entity,{lu=we}).[ ]
(entity,{Iu=government}).[ ]

In the ideal case, such as this one, transfer structures are isomorphic between
levels, so that translation is performed strictly compositionally. Translation into
German, for example, will yield:

(19) ?

   process    processor  phenomenon

            entity     process     agent               effected

                                           entity           entity       modifier

                            quant

wissen      wir     machen Regierung   Fehler         viele



This example points out a typical case of lexical ambiguity. The verb "know"
translates as "kennen" (persons) and "wissen" (facts). If we take the strong but
plausible position that semantic roles are maintained across levels, then we need
only the two very simple atomic t-rules in (20) to correctly select the second
reading of "know" and reject the first:

(20) (process,{lu=know,participants=P}). [ ]    =>    (process,{lu=kennen,participants=P}) [ ]
(process,lu=know,participants=Q}). [ ]    =>    (process,{lu=wissen,participants=Q}). [ ]

To effect generation, we basically turn the t-rules around so that articles,
auxiliaries, and other necessary lexical items are restored. These appear on the
righthand sides of t-rules, as in:

(21) (?,{cat=np,def=D}).[ $1:entity, $2:(^modifier) ]
=>
np. [ ^ (art,{def=D}), $2, $1 ]

The resulting constituent structure has the form shown in (22); a final stage would
take the terminal elements in the tree and display them as in (23), capitalizing the
first word in the string and inserting final punctuation:

(22) s

np                                                  vp

   n           v                                                     s

                      punct      subord            np                                                      vp

                                                  art          n                         np                               v             aux

                                                                                            adj            n

wir wissen ,    dass die Regierung viele Fehler gemacht hat

(23) Wir wissen, dass die Regierung viele Fehler gemacht hat.

4.   FURTHER RESEARCH

CAT2 as an MT system is still in its primitive stages, although the implementation
is such that we can comfortably test reasonably complex linguistic phenomena in
all stages of analysis, transfer, and synthesis. At present, we are concentrating on
the German monolingual components, which consist of a lexicon of some 1500
words with 30-50 grammar rules at each level and about 40 t-rules. Components
for French and English are underway, along with the respective transfer
components.

With respect to the system software, we are currently using C-Prolog, because of
its high portability to other installations. To improve performance we are
investigating conversion to a compilable Prolog and interfacing to an external
lexical DBMS. We are also rewriting the parsing algorithm to take advantage of
logic-based parsers (Matsumoto, et al. 1983; Okunishi, et al. 1987).

Linguistically,   we can express some  interesting  phenomena  like  certain   long



distance dependencies, control, and raising. A degree of disambiguation has been
achieved using valency information, semantic roles and semantic features
(Zelinsky-Wibbelt forthcoming). We have yet to develop efficient strategies for
phenomena such as coordination and ellipsis. Complex translation problems such
as idioms and paraphrase have to be worked out. Furthermore, intersentential
phenomena such as pronoun resolution have not yet been dealt with. All of these
areas are of course on our research agenda. Nevertheless, at present we can
investigate a wide range of MT issues within a theoretically attractive formalism.
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