Zhitao He


2024

pdf
Zero-Shot Cross-Lingual Document-Level Event Causality Identification with Heterogeneous Graph Contrastive Transfer Learning
Zhitao He | Pengfei Cao | Zhuoran Jin | Yubo Chen | Kang Liu | Zhiqiang Zhang | Mengshu Sun | Jun Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Event Causality Identification (ECI) refers to the detection of causal relations between events in texts. However, most existing studies focus on sentence-level ECI with high-resource languages, leaving more challenging document-level ECI (DECI) with low-resource languages under-explored. In this paper, we propose a Heterogeneous Graph Interaction Model with Multi-granularity Contrastive Transfer Learning (GIMC) for zero-shot cross-lingual document-level ECI. Specifically, we introduce a heterogeneous graph interaction network to model the long-distance dependencies between events that are scattered over a document. Then, to improve cross-lingual transferability of causal knowledge learned from the source language, we propose a multi-granularity contrastive transfer learning module to align the causal representations across languages. Extensive experiments show our framework outperforms the previous state-of-the-art model by 9.4% and 8.2% of average F1 score on monolingual and multilingual scenarios respectively. Notably, in the multilingual scenario, our zero-shot framework even exceeds GPT-3.5 with few-shot learning by 24.3% in overall performance.

2023

pdf
LEGO: A Multi-agent Collaborative Framework with Role-playing and Iterative Feedback for Causality Explanation Generation
Zhitao He | Pengfei Cao | Yubo Chen | Kang Liu | Ruopeng Li | Mengshu Sun | Jun Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Causality Explanation Generation refers to generate an explanation in natural language given an initial cause-effect pair. It demands rigorous explicit rationales to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized, making it challenging for large language models since they are often suffering from spurious causal associations when they encounter the content that does not exist in their memory. In this work, we introduce LEGO, a Multi-agent Collaborative Framework with Role-playing and Iterative Feedback for causality explanation generation. Specifically, we treat LLM as character malleable LEGO block and utilize role-playing to assign specific roles to five LLMs. We firstly devise a Fine-grained World Knowledge Integration Module to augment information about tasks for alleviating the phenomenon of spurious causal associations. Then, we leverage an Iterative Feedback and Refinement Module to improve the generated explanation by multi-aspect feedback. Extensive experiments on widely used WIKIWHY and e-CARE datasets show the superiority of our multi-agent framework in terms of reasoning about the causality among cause and effect.

pdf
Alignment Precedes Fusion: Open-Vocabulary Named Entity Recognition as Context-Type Semantic Matching
Zhuoran Jin | Pengfei Cao | Zhitao He | Yubo Chen | Kang Liu | Jun Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Despite the significant progress in developing named entity recognition models, scaling to novel-emerging types still remains challenging in real-world scenarios. Continual learning and zero-shot learning approaches have been explored to handle novel-emerging types with less human supervision, but they have not been as successfully adopted as supervised approaches. Meanwhile, humans possess a much larger vocabulary size than these approaches and have the ability to learn the alignment between entities and concepts effortlessly through natural supervision. In this paper, we consider a more realistic and challenging setting called open-vocabulary named entity recognition (OVNER) to imitate human-level ability. OVNER aims to recognize entities in novel types by their textual names or descriptions. Specifically, we formulate OVNER as a semantic matching task and propose a novel and scalable two-stage method called Context-Type SemAntiC Alignment and FusiOn (CACAO). In the pre-training stage, we adopt Dual-Encoder for context-type semantic alignment and pre-train Dual-Encoder on 80M context-type pairs which are easily accessible through natural supervision. In the fine-tuning stage, we use Cross-Encoder for context-type semantic fusion and fine-tune Cross-Encoder on base types with human supervision. Experimental results show that our method outperforms the previous state-of-the-art methods on three challenging OVNER benchmarks by 9.7%, 9.5%, and 1.8% F1-score of novel types. Moreover, CACAO also demonstrates its flexible transfer ability in cross-domain NER.

2022

pdf
CogKGE: A Knowledge Graph Embedding Toolkit and Benchmark for Representing Multi-source and Heterogeneous Knowledge
Zhuoran Jin | Tianyi Men | Hongbang Yuan | Zhitao He | Dianbo Sui | Chenhao Wang | Zhipeng Xue | Yubo Chen | Jun Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

In this paper, we propose CogKGE, a knowledge graph embedding (KGE) toolkit, which aims to represent multi-source and heterogeneous knowledge. For multi-source knowledge, unlike existing methods that mainly focus on entity-centric knowledge, CogKGE also supports the representations of event-centric, commonsense and linguistic knowledge. For heterogeneous knowledge, besides structured triple facts, CogKGE leverages additional unstructured information, such as text descriptions, node types and temporal information, to enhance the meaning of embeddings. Designing CogKGE aims to provide a unified programming framework for KGE tasks and a series of knowledge representations for downstream tasks. As a research framework, CogKGE consists of five parts, including core, data, model, knowledge and adapter module. As a knowledge discovery toolkit, CogKGE provides pre-trained embedders to discover new facts, cluster entities and check facts. Furthermore, we construct two benchmark datasets for further research on multi-source heterogeneous KGE tasks: EventKG240K and CogNet360K. We also release an online system to discover knowledge visually. Source code, datasets and pre-trained embeddings are publicly available at GitHub, with a short instruction video.