Zhao Wang
2022
Rethinking Multi-Modal Alignment in Multi-Choice VideoQA from Feature and Sample Perspectives
Shaoning Xiao
|
Long Chen
|
Kaifeng Gao
|
Zhao Wang
|
Yi Yang
|
Zhimeng Zhang
|
Jun Xiao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Reasoning about causal and temporal event relations in videos is a new destination of Video Question Answering (VideoQA). The major stumbling block to achieve this purpose is the semantic gap between language and video since they are at different levels of abstraction. Existing efforts mainly focus on designing sophisticated architectures while utilizing frame- or object-level visual representations. In this paper, we reconsider the multi-modal alignment problem in VideoQA from feature and sample perspectives to achieve better performance. From the view of feature, we break down the video into trajectories and first leverage trajectory feature in VideoQA to enhance the alignment between two modalities. Moreover, we adopt a heterogeneous graph architecture and design a hierarchical framework to align both trajectory-level and frame-level visual feature with language feature. In addition, we found that VideoQA models are largely dependent on languagepriors and always neglect visual-language interactions. Thus, two effective yet portable training augmentation strategies are designed to strengthen the cross-modal correspondence ability of our model from the view of sample. Extensive results show that our method outperforms all the state-of the-art models on the challenging NExT-QA benchmark.
2021
Enhancing Model Robustness and Fairness with Causality: A Regularization Approach
Zhao Wang
|
Kai Shu
|
Aron Culotta
Proceedings of the First Workshop on Causal Inference and NLP
Recent work has raised concerns on the risk of spurious correlations and unintended biases in statistical machine learning models that threaten model robustness and fairness. In this paper, we propose a simple and intuitive regularization approach to integrate causal knowledge during model training and build a robust and fair model by emphasizing causal features and de-emphasizing spurious features. Specifically, we first manually identify causal and spurious features with principles inspired from the counterfactual framework of causal inference. Then, we propose a regularization approach to penalize causal and spurious features separately. By adjusting the strength of the penalty for each type of feature, we build a predictive model that relies more on causal features and less on non-causal features. We conduct experiments to evaluate model robustness and fairness on three datasets with multiple metrics. Empirical results show that the new models built with causal awareness significantly improve model robustness with respect to counterfactual texts and model fairness with respect to sensitive attributes.
2020
Identifying Spurious Correlations for Robust Text Classification
Zhao Wang
|
Aron Culotta
Findings of the Association for Computational Linguistics: EMNLP 2020
The predictions of text classifiers are often driven by spurious correlations – e.g., the term “Spielberg” correlates with positively reviewed movies, even though the term itself does not semantically convey a positive sentiment. In this paper, we propose a method to distinguish spurious and genuine correlations in text classification. We treat this as a supervised classification problem, using features derived from treatment effect estimators to distinguish spurious correlations from “genuine” ones. Due to the generic nature of these features and their small dimensionality, we find that the approach works well even with limited training examples, and that it is possible to transport the word classifier to new domains. Experiments on four datasets (sentiment classification and toxicity detection) suggest that using this approach to inform feature selection also leads to more robust classification, as measured by improved worst-case accuracy on the samples affected by spurious correlations.
Search
Co-authors
- Aron Culotta 2
- Kai Shu 1
- Shaoning Xiao 1
- Long Chen 1
- Kaifeng Gao 1
- show all...