This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large language models (LLMs) exhibit positional bias in how they use context, which especially affects listwise ranking. To address this, we propose permutation self-consistency, a form of self-consistency over the ranking list outputs of black-box LLMs. Our key idea is to marginalize out different list orders in the prompt to produce an order-independent ranking with less positional bias. First, given some input prompt, we repeatedly shuffle the list in the prompt and pass it through the LLM while holding the instructions the same. Next, we aggregate the resulting sample of rankings by computing the central ranking closest in distance to all of them, marginalizing out prompt order biases in the process. Theoretically, we prove the robustness of our method, showing convergence to the true ranking under random perturbations.Empirically, on five datasets in sorting and passage reranking, our approach improves scores from conventional inference by up to 34-52% for Mistral, 7-18% for GPT-3.5, 8-16% for LLaMA v2 (70B). Our code is at https://github.com/castorini/perm-sc.
While dense retrieval has been shown to be effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance labels are available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings (HyDE). Given a query, HyDE first zero-shot prompts an instruction-following language model (e.g., InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is “fake” and may contain hallucinations. Then, an unsupervised contrastively learned encoder (e.g., Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, from which similar real documents are retrieved based on vector similarity. This second step grounds the generated document to the actual corpus, with the encoder’s dense bottleneck filtering out the hallucinations. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers across various tasks (e.g. web search, QA, fact verification) and in non-English languages (e.g., sw, ko, ja, bn).
Question answering over knowledge bases is considered a difficult problem due to the challenge of generalizing to a wide variety of possible natural language questions. Additionally, the heterogeneity of knowledge base schema items between different knowledge bases often necessitates specialized training for different knowledge base question-answering (KBQA) datasets. To handle questions over diverse KBQA datasets with a unified training-free framework, we propose KB-BINDER, which for the first time enables few-shot in-context learning over KBQA tasks. Firstly, KB-BINDER leverages large language models like Codex to generate logical forms as the draft for a specific question by imitating a few demonstrations. Secondly, KB-BINDER grounds on the knowledge base to bind the generated draft to an executable one with BM25 score matching. The experimental results on four public heterogeneous KBQA datasets show that KB-BINDER can achieve a strong performance with only a few in-context demonstrations. Especially on GraphQA and 3-hop MetaQA, KB-BINDER can even outperform the state-of-the-art trained models. On GrailQA and WebQSP, our model is also on par with other fully-trained models. We believe KB-BINDER can serve as an important baseline for future research. We plan to release all the code and data. Our code is available at https://github.com/ltl3A87/KB-BINDER.
The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models’ capabilities to apply theorems to solve challenging science problems. TheoremQA is curated by domain experts containing 800 high-quality questions covering 350 theorems from Math, Physics, EE&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4’s capabilities to solve these problems are unparalleled, achieving an accuracy of 51% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of TheoremQA, we believe it can be used as a better benchmark to evaluate LLMs’ capabilities to solve challenging science problems.
The bi-encoder design of dense passage retriever (DPR) is a key factor to its success in open-domain question answering (QA), yet it is unclear how DPR’s question encoder and passage encoder individually contributes to overall performance, which we refer to as the encoder attribution problem. The problem is important as it helps us identify the factors that affect individual encoders to further improve overall performance. In this paper, we formulate our analysis under a probabilistic framework called encoder marginalization, where we quantify the contribution of a single encoder by marginalizing other variables. First, we find that the passage encoder contributes more than the question encoder to in-domain retrieval accuracy. Second, we demonstrate how to find the affecting factors for each encoder, where we train DPR with different amounts of data and use encoder marginalization to analyze the results. We find that positive passage overlap and corpus coverage of training data have big impacts on the passage encoder, while the question encoder is mainly affected by training sample complexity under this setting. Based on this framework, we can devise data-efficient training regimes: for example, we manage to train a passage encoder on SQuAD using 60% less training data without loss of accuracy.
Recent work has shown that dense passage retrieval techniques achieve better ranking accuracy in open-domain question answering compared to sparse retrieval techniques such as BM25, but at the cost of large space and memory requirements. In this paper, we analyze the redundancy present in encoded dense vectors and show that the default dimension of 768 is unnecessarily large. To improve space efficiency, we propose a simple unsupervised compression pipeline that consists of principal component analysis (PCA), product quantization, and hybrid search. We further investigate other supervised baselines and find surprisingly that unsupervised PCA outperforms them in some settings. We perform extensive experiments on five question answering datasets and demonstrate that our best pipeline achieves good accuracy–space trade-offs, for example, 48× compression with less than 3% drop in top-100 retrieval accuracy on average or 96× compression with less than 4% drop. Code and data are available at http://pyserini.io/.
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call “mDPR”. Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse–dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
This work describes the adaptation of a pretrained sequence-to-sequence model to the task of scientific claim verification in the biomedical domain. We propose a system called VerT5erini that exploits T5 for abstract retrieval, sentence selection, and label prediction, which are three critical sub-tasks of claim verification. We evaluate our pipeline on SciFACT, a newly curated dataset that requires models to not just predict the veracity of claims but also provide relevant sentences from a corpus of scientific literature that support the prediction. Empirically, our system outperforms a strong baseline in each of the three sub-tasks. We further show VerT5erini’s ability to generalize to two new datasets of COVID-19 claims using evidence from the CORD-19 corpus.