Xinyu Liu


2023

pdf
ESPVR: Entity Spans Position Visual Regions for Multimodal Named Entity Recognition
Xiujiao Li | Guanglu Sun | Xinyu Liu
Findings of the Association for Computational Linguistics: EMNLP 2023

Multimodal Named Entity Recognition (MNER) uses visual information to improve the performance of text-only Named Entity Recognition (NER). However, existing methods for acquiring local visual information suffer from certain limitations: (1) using an attention-based method to extract visual regions related to the text from visual regions obtained through convolutional architectures (e.g., ResNet), attention is distracted by the entire image, rather than being fully focused on the visual regions most relevant to the text; (2) using an object detection-based (e.g., Mask R-CNN) method to detect visual object regions related to the text, object detection has a limited range of recognition categories. Moreover, the visual regions obtained by object detection may not correspond to the entities in the text. In summary, the goal of these methods is not to extract the most relevant visual regions for the entities in the text. The visual regions obtained by these methods may be redundant or insufficient for the entities in the text. In this paper, we propose an Entity Spans Position Visual Regions (ESPVR) module to obtain the most relevant visual regions corresponding to the entities in the text. Experiments show that our proposed approach can achieve the SOTA on Twitter-2017 and competitive results on Twitter-2015.

2020

pdf
Showing Your Work Doesn’t Always Work
Raphael Tang | Jaejun Lee | Ji Xin | Xinyu Liu | Yaoliang Yu | Jimmy Lin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In natural language processing, a recently popular line of work explores how to best report the experimental results of neural networks. One exemplar publication, titled “Show Your Work: Improved Reporting of Experimental Results” (Dodge et al., 2019), advocates for reporting the expected validation effectiveness of the best-tuned model, with respect to the computational budget. In the present work, we critically examine this paper. As far as statistical generalizability is concerned, we find unspoken pitfalls and caveats with this approach. We analytically show that their estimator is biased and uses error-prone assumptions. We find that the estimator favors negative errors and yields poor bootstrapped confidence intervals. We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation. Our codebase is at https://github.com/castorini/meanmax.

2019

pdf
jhan014 at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media
Jiahui Han | Shengtan Wu | Xinyu Liu
Proceedings of the 13th International Workshop on Semantic Evaluation

In this paper, we present two methods to identify and categorize the offensive language in Twitter. In the first method, we establish a probabilistic model to evaluate the sentence offensiveness level and target level according to different sub-tasks. In the second method, we develop a deep neural network consisting of bidirectional recurrent layers with Gated Recurrent Unit (GRU) cells and fully connected layers. In the comparison of two methods, we find both method has its own advantages and drawbacks while they have similar accuracy.