This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The task of sequential model editing is to fix erroneous knowledge in Pre-trained Language Models (PLMs) efficiently, precisely and continuously. Although existing methods can deal with a small number of modifications, these methods experience a performance decline or require additional annotated data, when the number of edits increases. In this paper, we propose a Retrieval Augmented Sequential Model Editing framework (RASE) that leverages factual information to enhance editing generalization and to guide the identification of edits by retrieving related facts from the fact-patch memory we constructed. Our main findings are: (i) State-of-the-art models can hardly correct massive mistakes stably and efficiently; (ii) Even if we scale up to thousands of edits, RASE can significantly enhance editing generalization and maintain consistent performance and efficiency; (iii) RASE can edit large-scale PLMs and increase the performance of different editors. Moreover, it can integrate with ChatGPT and further improve performance. Our code and data are available at: https://github.com/sev777/RASE.
Frame Identification (FI) is a fundamental and challenging task in frame semantic parsing. The task aims to find the exact frame evoked by a target word in a given sentence. It is generally regarded as a classification task in existing work, where frames are treated as discrete labels or represented using onehot embeddings. However, the valuable knowledge about frames is neglected. In this paper, we propose a Knowledge-Guided Frame Identification framework (KGFI) that integrates three types frame knowledge, including frame definitions, frame elements and frame-to-frame relations, to learn better frame representation, which guides the KGFI to jointly map target words and frames into the same embedding space and subsequently identify the best frame by calculating the dot-product similarity scores between the target word embedding and all of the frame embeddings. The extensive experimental results demonstrate KGFI significantly outperforms the state-of-the-art methods on two benchmark datasets.