This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Knowledge-enhanced pre-trained language models (KEPLMs) leverage relation triples from knowledge graphs (KGs) and integrate these external data sources into language models via self-supervised learning. Previous works treat knowledge enhancement as two independent operations, i.e., knowledge injection and knowledge integration. In this paper, we propose to learn Knowledge-Enhanced language representations with Hierarchical Reinforcement Learning (KEHRL), which jointly addresses the problems of detecting positions for knowledge injection and integrating external knowledge into the model in order to avoid injecting inaccurate or irrelevant knowledge. Specifically, a high-level reinforcement learning (RL) agent utilizes both internal and prior knowledge to iteratively detect essential positions in texts for knowledge injection, which filters out less meaningful entities to avoid diverting the knowledge learning direction. Once the entity positions are selected, a relevant triple filtration module is triggered to perform low-level RL to dynamically refine the triples associated with polysemic entities through binary-valued actions. Experiments validate KEHRL’s effectiveness in probing factual knowledge and enhancing the model’s performance on various natural language understanding tasks.
KEPLMs are pre-trained models that utilize external knowledge to enhance language understanding. Previous language models facilitated knowledge acquisition by incorporating knowledge-related pre-training tasks learned from relation triples in knowledge graphs. However, these models do not prioritize learning embeddings for entity-related tokens. Updating all parameters in KEPLM is computationally demanding. This paper introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models. We observe that text corpora contain entities that follow a long-tail distribution, where some are suboptimally optimized and hinder the pre-training process. To tackle this, we employ a robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable information. Moreover, updating a small subset of neurons in the feed-forward networks (FFNs) that store factual knowledge is both sufficient and efficient. Specifically, we utilize dynamic knowledge routing to identify knowledge paths in FFNs and selectively update parameters during pre-training. Experimental results show that TRELM achieves at least a 50% reduction in pre-training time and outperforms other KEPLMs in knowledge probing tasks and multiple knowledge-aware language understanding tasks.
Cross-lingual representation learning transfers knowledge from resource-rich data to resource-scarce ones to improve the semantic understanding abilities of different languages. However, previous works rely on shallow unsupervised data generated by token surface matching, regardless of the global context-aware semantics of the surrounding text tokens. In this paper, we propose an Unsupervised Pseudo Semantic Data Augmentation (UniPSDA) mechanism for cross-lingual natural language understanding to enrich the training data without human interventions. Specifically, to retrieve the tokens with similar meanings for the semantic data augmentation across different languages, we propose a sequential clustering process in 3 stages: within a single language, across multiple languages of a language family, and across languages from multiple language families. Meanwhile, considering the multi-lingual knowledge infusion with context-aware semantics while alleviating computation burden, we directly replace the key constituents of the sentences with the above-learned multi-lingual family knowledge, viewed as pseudo-semantic. The infusion process is further optimized via three de-biasing techniques without introducing any neural parameters. Extensive experiments demonstrate that our model consistently improves the performance on general zero-shot cross-lingual natural language understanding tasks, including sequence classification, information extraction, and question answering.
Reasoning is a distinctive human capacity, enabling us to address complex problems by breaking them down into a series of manageable cognitive steps. Yet, complex logical reasoning is still cumbersome for language models. Based on the dual process theory in cognitive science, we are the first to unravel the cognitive reasoning abilities of language models. Our framework employs an iterative methodology to construct a Cognitive Tree (CogTree). The root node of this tree represents the initial query, while the leaf nodes consist of straightforward questions that can be answered directly. This construction involves two main components: the implicit extraction module (referred to as the intuitive system) and the explicit reasoning module (referred to as the reflective system). The intuitive system rapidly generates multiple responses by utilizing in-context examples, while the reflective system scores these responses using comparative learning. The scores guide the intuitive system in its subsequent generation step.Our experimental results on two popular and challenging reasoning tasks indicate that it is possible to achieve a performance level comparable to that of GPT-3.5 (with 175B parameters), using a significantly smaller language model that contains fewer parameters (<=7B) than 5% of GPT-3.5.
Knowledge-Enhanced Pre-trained Language Models (KEPLMs) improve the performance of various downstream NLP tasks by injecting knowledge facts from large-scale Knowledge Graphs (KGs). However, existing methods for pre-training KEPLMs with relational triples are difficult to be adapted to close domains due to the lack of sufficient domain graph semantics. In this paper, we propose a Knowledge-enhanced language representation learning framework for various closed domains (KANGAROO) via capturing the implicit graph structure among the entities. Specifically, since the entity coverage rates of closed-domain KGs can be relatively low and may exhibit the global sparsity phenomenon for knowledge injection, we consider not only the shallow relational representations of triples but also the hyperbolic embeddings of deep hierarchical entity-class structures for effective knowledge fusion. Moreover, as two closed-domain entities under the same entity-class often havel locally dense neighbor subgraphs counted by max point biconnected component, we further propose a data augmentation strategy based on contrastive learning over subgraphs to construct hard negative samples of higher quality. It makes the underlying KELPMs better distinguish the semantics of these neighboring entities to further complement the global semantic sparsity. In the experiments, we evaluate KANGAROO over various knowledge-aware and general NLP tasks in both full and few-shot learning settings, outperforming various KEPLM training paradigms performance in closed-domains significantly.
Distant supervision assumes that any sentence containing the same entity pairs reflects identical relationships. Previous works of distantly supervised relation extraction (DSRE) task generally focus on sentence-level or bag-level de-noising techniques independently, neglecting the explicit interaction with cross levels. In this paper, we propose a hierarchical contrastive learning Framework for Distantly Supervised relation extraction (HiCLRE) to reduce noisy sentences, which integrate the global structural information and local fine-grained interaction. Specifically, we propose a three-level hierarchical learning framework to interact with cross levels, generating the de-noising context-aware representations via adapting the existing multi-head self-attention, named Multi-Granularity Recontextualization. Meanwhile, pseudo positive samples are also provided in the specific level for contrastive learning via a dynamic gradient-based data augmentation strategy, named Dynamic Gradient Adversarial Perturbation. Experiments demonstrate that HiCLRE significantly outperforms strong baselines in various mainstream DSRE datasets.
Recently, knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge bases, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. In this paper, we revisit and advance the development of Chinese natural language understanding with a series of novel Chinese KEPLMs released in various parameter sizes, namely CKBERT (Chinese knowledge-enhanced BERT). Specifically, both relational and linguistic knowledge is effectively injected into CKBERT based on two novel pre-training tasks, i.e., linguistic-aware masked language modeling and contrastive multi-hop relation modeling. Based on the above two pre-training paradigms and our in-house implemented TorchAccelerator, we have pre-trained base (110M), large (345M) and huge (1.3B) versions of CKBERT efficiently on GPU clusters. Experiments demonstrate that CKBERT consistently outperforms strong baselines for Chinese over various benchmark NLP tasks and in terms of different model sizes.
Recently, the performance of Pre-trained Language Models (PLMs) has been significantly improved by injecting knowledge facts to enhance their abilities of language understanding. For medical domains, the background knowledge sources are especially useful, due to the massive medical terms and their complicated relations are difficult to understand in text. In this work, we introduce SMedBERT, a medical PLM trained on large-scale medical corpora, incorporating deep structured semantic knowledge from neighbours of linked-entity. In SMedBERT, the mention-neighbour hybrid attention is proposed to learn heterogeneous-entity information, which infuses the semantic representations of entity types into the homogeneous neighbouring entity structure. Apart from knowledge integration as external features, we propose to employ the neighbors of linked-entities in the knowledge graph as additional global contexts of text mentions, allowing them to communicate via shared neighbors, thus enrich their semantic representations. Experiments demonstrate that SMedBERT significantly outperforms strong baselines in various knowledge-intensive Chinese medical tasks. It also improves the performance of other tasks such as question answering, question matching and natural language inference.
The hypernymy detection task has been addressed under various frameworks. Previously, the design of unsupervised hypernymy scores has been extensively studied. In contrast, supervised classifiers, especially distributional models, leverage the global contexts of terms to make predictions, but are more likely to suffer from “lexical memorization”. In this work, we revisit supervised distributional models for hypernymy detection. Rather than taking embeddings of two terms as classification inputs, we introduce a representation learning framework named Bidirectional Residual Relation Embeddings (BiRRE). In this model, a term pair is represented by a BiRRE vector as features for hypernymy classification, which models the possibility of a term being mapped to another in the embedding space by hypernymy relations. A Latent Projection Model with Negative Regularization (LPMNR) is proposed to simulate how hypernyms and hyponyms are generated by neural language models, and to generate BiRRE vectors based on bidirectional residuals of projections. Experiments verify BiRRE outperforms strong baselines over various evaluation frameworks.
Pre-trained neural language models bring significant improvement for various NLP tasks, by fine-tuning the models on task-specific training sets. During fine-tuning, the parameters are initialized from pre-trained models directly, which ignores how the learning process of similar NLP tasks in different domains is correlated and mutually reinforced. In this paper, we propose an effective learning procedure named Meta Fine-Tuning (MFT), serving as a meta-learner to solve a group of similar NLP tasks for neural language models. Instead of simply multi-task training over all the datasets, MFT only learns from typical instances of various domains to acquire highly transferable knowledge. It further encourages the language model to encode domain-invariant representations by optimizing a series of novel domain corruption loss functions. After MFT, the model can be fine-tuned for each domain with better parameter initializations and higher generalization ability. We implement MFT upon BERT to solve several multi-domain text mining tasks. Experimental results confirm the effectiveness of MFT and its usefulness for few-shot learning.
Lexical relations describe how meanings of terms relate to each other. Typical examples include hypernymy, synonymy, meronymy, etc. Automatic distinction of lexical relations is vital for NLP applications, and also challenging due to the lack of contextual signals to discriminate between such relations. In this work, we present a neural representation learning model to distinguish lexical relations among term pairs based on Hyperspherical Relation Embeddings (SphereRE). Rather than learning embeddings for individual terms, the model learns representations of relation triples by mapping them to the hyperspherical embedding space, where relation triples of different lexical relations are well separated. Experiments over several benchmarks confirm SphereRE outperforms state-of-the-arts.
The state-of-the-art methods for relation classification are primarily based on deep neural net- works. This kind of supervised learning method suffers from not only limited training data, but also the large number of low-frequency relations in specific domains. In this paper, we propose the task of exploratory relation classification for domain knowledge harvesting. The goal is to learn a classifier on pre-defined relations and discover new relations expressed in texts. A dynamically structured neural network is introduced to classify entity pairs to a continuously expanded relation set. We further propose the similarity sensitive Chinese restaurant process to discover new relations. Experiments conducted on a large corpus show the effectiveness of our neural network, while new relations are discovered with high precision and recall.
Finding the correct hypernyms for entities is essential for taxonomy learning, fine-grained entity categorization, query understanding, etc. Due to the flexibility of the Chinese language, it is challenging to identify hypernyms in Chinese accurately. Rather than extracting hypernyms from texts, in this paper, we present a transductive learning approach to establish mappings from entities to hypernyms in the embedding space directly. It combines linear and non-linear embedding projection models, with the capacity of encoding arbitrary language-specific rules. Experiments on real-world datasets illustrate that our approach outperforms previous methods for Chinese hypernym prediction.
A taxonomy is a semantic hierarchy, consisting of concepts linked by is-a relations. While a large number of taxonomies have been constructed from human-compiled resources (e.g., Wikipedia), learning taxonomies from text corpora has received a growing interest and is essential for long-tailed and domain-specific knowledge acquisition. In this paper, we overview recent advances on taxonomy construction from free texts, reorganizing relevant subtasks into a complete framework. We also overview resources for evaluation and discuss challenges for future research.
User generated categories (UGCs) are short texts that reflect how people describe and organize entities, expressing rich semantic relations implicitly. While most methods on UGC relation extraction are based on pattern matching in English circumstances, learning relations from Chinese UGCs poses different challenges due to the flexibility of expressions. In this paper, we present a weakly supervised learning framework to harvest relations from Chinese UGCs. We identify is-a relations via word embedding based projection and inference, extract non-taxonomic relations and their category patterns by graph mining. We conduct experiments on Chinese Wikipedia and achieve high accuracy, outperforming state-of-the-art methods.
Hypernym-hyponym (“is-a”) relations are key components in taxonomies, object hierarchies and knowledge graphs. While there is abundant research on is-a relation extraction in English, it still remains a challenge to identify such relations from Chinese knowledge sources accurately due to the flexibility of language expression. In this paper, we introduce a weakly supervised framework to extract Chinese is-a relations from user generated categories. It employs piecewise linear projection models trained on a Chinese taxonomy and an iterative learning algorithm to update models incrementally. A pattern-based relation selection method is proposed to prevent “semantic drift” in the learning process using bi-criteria optimization. Experimental results illustrate that the proposed approach outperforms state-of-the-art methods.