Tong Ye


2024

pdf
Tram: A Token-level Retrieval-augmented Mechanism for Source Code Summarization
Tong Ye | Lingfei Wu | Tengfei Ma | Xuhong Zhang | Yangkai Du | Peiyu Liu | Shouling Ji | Wenhai Wang
Findings of the Association for Computational Linguistics: NAACL 2024

Automatically generating human-readable text describing the functionality of a program is the intent of source code summarization. Although neural language models achieve significant performance in this field, they are limited by their inability to access external knowledge. To address this limitation, an emerging trend is combining neural models with external knowledge through retrieval methods. Previous methods have relied on the sentence-level retrieval paradigm on the encoder side. However, this paradigm is coarse-grained, noise-filled and cannot directly take advantage of the high-quality retrieved summary tokens on the decoder side. In this paper, we propose a fine-grained Token-level retrieval-augmented mechanism (Tram) on the decoder side rather than the encoder side to enhance the performance of neural models and produce more low-frequency tokens in generating summaries. Furthermore, to overcome the challenge of token-level retrieval in capturing contextual code semantics, we also propose integrating code semantics into individual summary tokens. The results of extensive experiments and human evaluation show that our token-level retrieval-augmented approach significantly improves performance and is more interpretable.

2023

pdf
CP-BCS: Binary Code Summarization Guided by Control Flow Graph and Pseudo Code
Tong Ye | Lingfei Wu | Tengfei Ma | Xuhong Zhang | Yangkai Du | Peiyu Liu | Shouling Ji | Wenhai Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Automatically generating function summaries for binaries is an extremely valuable but challenging task, since it involves translating the execution behavior and semantics of the low-level language (assembly code) into human-readable natural language. However, most current works on understanding assembly code are oriented towards generating function names, which involve numerous abbreviations that make them still confusing. To bridge this gap, we focus on generating complete summaries for binary functions, especially for stripped binary (no symbol table and debug information in reality). To fully exploit the semantics of assembly code, we present a control flow graph and pseudo code guided binary code summarization framework called CP-BCS. CP-BCS utilizes a bidirectional instruction-level control flow graph and pseudo code that incorporates expert knowledge to learn the comprehensive binary function execution behavior and logic semantics. We evaluate CP-BCS on 3 different binary optimization levels (O1, O2, and O3) for 3 different computer architectures (X86, X64, and ARM). The evaluation results demonstrate CP-BCS is superior and significantly improves the efficiency of reverse engineering.