Tie-Yan Liu


2023

pdf
Extract and Attend: Improving Entity Translation in Neural Machine Translation
Zixin Zeng | Rui Wang | Yichong Leng | Junliang Guo | Shufang Xie | Xu Tan | Tao Qin | Tie-Yan Liu
Findings of the Association for Computational Linguistics: ACL 2023

While Neural Machine Translation (NMT) has achieved great progress in recent years, it still suffers from inaccurate translation of entities (e.g., person/organization name, location), due to the lack of entity training instances. When we humans encounter an unknown entity during translation, we usually first look up in a dictionary and then organize the entity translation together with the translations of other parts to form a smooth target sentence. Inspired by this translation process, we propose an Extract-and-Attend approach to enhance entity translation in NMT, where the translation candidates of source entities are first extracted from a dictionary and then attended to by the NMT model to generate the target sentence. Specifically, the translation candidates are extracted by first detecting the entities in a source sentence and then translating the entities through looking up in a dictionary. Then, the extracted candidates are added as a prefix of the decoder input to be attended to by the decoder when generating the target sentence through self-attention. Experiments conducted on En-Zh and En-Ru demonstrate that the proposed method is effective on improving both the translation accuracy of entities and the overall translation quality, with up to 35% reduction on entity error rate and 0.85 gain on BLEU and 13.8 gain on COMET.

pdf
MolXPT: Wrapping Molecules with Text for Generative Pre-training
Zequn Liu | Wei Zhang | Yingce Xia | Lijun Wu | Shufang Xie | Tao Qin | Ming Zhang | Tie-Yan Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Generative pre-trained Transformer (GPT) has demonstrates its great success in natural language processing and related techniques have been adapted into molecular modeling. Considering that text is the most important record for scientific discovery, in this paper, we propose MolXPT, a unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text. Briefly, we detect the molecule names in each sequence and replace them to the corresponding SMILES. In this way, the SMILES could leverage the information from surrounding text, and vice versa. The above wrapped sequences, text sequences from PubMed and SMILES sequences from PubChem are all fed into a language model for pre-training. Experimental results demonstrate that MolXPT outperforms strong baselines of molecular property prediction on MoleculeNet, performs comparably to the best model in text-molecule translation while using less than half of its parameters, and enables zero-shot molecular generation without finetuning.

2022

pdf
ProphetChat: Enhancing Dialogue Generation with Simulation of Future Conversation
Chang Liu | Xu Tan | Chongyang Tao | Zhenxin Fu | Dongyan Zhao | Tie-Yan Liu | Rui Yan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Typical generative dialogue models utilize the dialogue history to generate the response. However, since one dialogue utterance can often be appropriately answered by multiple distinct responses, generating a desired response solely based on the historical information is not easy. Intuitively, if the chatbot can foresee in advance what the user would talk about (i.e., the dialogue future) after receiving its response, it could possibly provide a more informative response. Accordingly, we propose a novel dialogue generation framework named ProphetChat that utilizes the simulated dialogue futures in the inference phase to enhance response generation. To enable the chatbot to foresee the dialogue future, we design a beam-search-like roll-out strategy for dialogue future simulation using a typical dialogue generation model and a dialogue selector. With the simulated futures, we then utilize the ensemble of a history-to-response generator and a future-to-response generator to jointly generate a more informative response. Experiments on two popular open-domain dialogue datasets demonstrate that ProphetChat can generate better responses over strong baselines, which validates the advantages of incorporating the simulated dialogue futures.

pdf
Revisiting Over-Smoothness in Text to Speech
Yi Ren | Xu Tan | Tao Qin | Zhou Zhao | Tie-Yan Liu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Non-autoregressive text to speech (NAR-TTS) models have attracted much attention from both academia and industry due to their fast generation speed. One limitation of NAR-TTS models is that they ignore the correlation in time and frequency domains while generating speech mel-spectrograms, and thus cause blurry and over-smoothed results. In this work, we revisit this over-smoothing problem from a novel perspective: the degree of over-smoothness is determined by the gap between the complexity of data distributions and the capability of modeling methods. Both simplifying data distributions and improving modeling methods can alleviate the problem. Accordingly, we first study methods reducing the complexity of data distributions. Then we conduct a comprehensive study on NAR-TTS models that use some advanced modeling methods. Based on these studies, we find that 1) methods that provide additional condition inputs reduce the complexity of data distributions to model, thus alleviating the over-smoothing problem and achieving better voice quality. 2) Among advanced modeling methods, Laplacian mixture loss performs well at modeling multimodal distributions and enjoys its simplicity, while GAN and Glow achieve the best voice quality while suffering from increased training or model complexity. 3) The two categories of methods can be combined to further alleviate the over-smoothness and improve the voice quality. 4) Our experiments on the multi-speaker dataset lead to similar conclusions as above and providing more variance information can reduce the difficulty of modeling the target data distribution and alleviate the requirements for model capacity.

pdf
Finding the Dominant Winning Ticket in Pre-Trained Language Models
Zhuocheng Gong | Di He | Yelong Shen | Tie-Yan Liu | Weizhu Chen | Dongyan Zhao | Ji-Rong Wen | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2022

The Lottery Ticket Hypothesis suggests that for any over-parameterized model, a small subnetwork exists to achieve competitive performance compared to the backbone architecture. In this paper, we study whether there is a winning lottery ticket for pre-trained language models, which allow the practitioners to fine-tune the parameters in the ticket but achieve good downstream performance. To achieve this, we regularize the fine-tuning process with L1 distance and explore the subnetwork structure (what we refer to as the “dominant winning ticket”). Empirically, we show that (a) the dominant winning ticket can achieve performance that is comparable with that of the full-parameter model, (b) the dominant winning ticket is transferable across different tasks, (c) and the dominant winning ticket has a natural structure within each parameter matrix. Strikingly, we find that a dominant winning ticket that takes up 0.05% of the parameters can already achieve satisfactory performance, indicating that the PLM is significantly reducible during fine-tuning.

pdf
A Study of Syntactic Multi-Modality in Non-Autoregressive Machine Translation
Kexun Zhang | Rui Wang | Xu Tan | Junliang Guo | Yi Ren | Tao Qin | Tie-Yan Liu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

It is difficult for non-autoregressive translation (NAT) models to capture the multi-modal distribution of target translations due to their conditional independence assumption, which is known as the “multi-modality problem”, including the lexical multi-modality and the syntactic multi-modality. While the first one has been well studied, the syntactic multi-modality brings severe challenges to the standard cross entropy (XE) loss in NAT and is understudied. In this paper, we conduct a systematic study on the syntactic multi-modality problem. Specifically, we decompose it into short- and long-range syntactic multi-modalities and evaluate several recent NAT algorithms with advanced loss functions on both carefully designed synthesized datasets and real datasets. We find that the Connectionist Temporal Classification (CTC) loss and the Order-Agnostic Cross Entropy (OAXE) loss can better handle short- and long-range syntactic multi-modalities respectively. Furthermore, we take the best of both and design a new loss function to better handle the complicated syntactic multi-modality in real-world datasets. To facilitate practical usage, we provide a guide to using different loss functions for different kinds of syntactic multi-modality.

pdf
TeleMelody: Lyric-to-Melody Generation with a Template-Based Two-Stage Method
Zeqian Ju | Peiling Lu | Xu Tan | Rui Wang | Chen Zhang | Songruoyao Wu | Kejun Zhang | Xiang-Yang Li | Tao Qin | Tie-Yan Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Lyric-to-melody generation is an important task in automatic songwriting. Previous lyric-to-melody generation systems usually adopt end-to-end models that directly generate melodies from lyrics, which suffer from several issues: 1) lack of paired lyric-melody training data; 2) lack of control on generated melodies. In this paper, we develop TeleMelody, a two-stage lyric-to-melody generation system with music template (e.g., tonality, chord progression, rhythm pattern, and cadence) to bridge the gap between lyrics and melodies (i.e., the system consists of a lyric-to-template module and a template-to-melody module). TeleMelody has two advantages. First, it is data efficient. The template-to-melody module is trained in a self-supervised way (i.e., the source template is extracted from the target melody) that does not need any lyric-melody paired data. The lyric-to-template module is made up of some rules and a lyric-to-rhythm model, which is trained with paired lyric-rhythm data that is easier to obtain than paired lyric-melody data. Second, it is controllable. The design of the template ensures that the generated melodies can be controlled by adjusting the musical elements in the template. Both subjective and objective experimental evaluations demonstrate that TeleMelody generates melodies with higher quality, better controllability, and less requirement on paired lyric-melody data than previous generation systems.

pdf
KGE-CL: Contrastive Learning of Tensor Decomposition Based Knowledge Graph Embeddings
Zhiping Luo | Wentao Xu | Weiqing Liu | Jiang Bian | Jian Yin | Tie-Yan Liu
Proceedings of the 29th International Conference on Computational Linguistics

Learning the embeddings of knowledge graphs (KG) is vital in artificial intelligence, and can benefit various downstream applications, such as recommendation and question answering. In recent years, many research efforts have been proposed for knowledge graph embedding (KGE). However, most previous KGE methods ignore the semantic similarity between the related entities and entity-relation couples in different triples since they separately optimize each triple with the scoring function. To address this problem, we propose a simple yet efficient contrastive learning framework for tensor decomposition based (TDB) KGE, which can shorten the semantic distance of the related entities and entity-relation couples in different triples and thus improve the performance of KGE. We evaluate our proposed method on three standard KGE datasets: WN18RR, FB15k-237 and YAGO3-10. Our method can yield some new state-of-the-art results, achieving 51.2% MRR, 46.8% Hits@1 on the WN18RR dataset, 37.8% MRR, 28.6% Hits@1 on FB15k-237 dataset, and 59.1% MRR, 51.8% Hits@1 on the YAGO3-10 dataset.

2021

pdf
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
Mingliang Zeng | Xu Tan | Rui Wang | Zeqian Ju | Tao Qin | Tie-Yan Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
FastCorrect 2: Fast Error Correction on Multiple Candidates for Automatic Speech Recognition
Yichong Leng | Xu Tan | Rui Wang | Linchen Zhu | Jin Xu | Wenjie Liu | Linquan Liu | Xiang-Yang Li | Tao Qin | Edward Lin | Tie-Yan Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Error correction is widely used in automatic speech recognition (ASR) to post-process the generated sentence, and can further reduce the word error rate (WER). Although multiple candidates are generated by an ASR system through beam search, current error correction approaches can only correct one sentence at a time, failing to leverage the voting effect from multiple candidates to better detect and correct error tokens. In this work, we propose FastCorrect 2, an error correction model that takes multiple ASR candidates as input for better correction accuracy. FastCorrect 2 adopts non-autoregressive generation for fast inference, which consists of an encoder that processes multiple source sentences and a decoder that generates the target sentence in parallel from the adjusted source sentence, where the adjustment is based on the predicted duration of each source token. However, there are some issues when handling multiple source sentences. First, it is non-trivial to leverage the voting effect from multiple source sentences since they usually vary in length. Thus, we propose a novel alignment algorithm to maximize the degree of token alignment among multiple sentences in terms of token and pronunciation similarity. Second, the decoder can only take one adjusted source sentence as input, while there are multiple source sentences. Thus, we develop a candidate predictor to detect the most suitable candidate for the decoder. Experiments on our inhouse dataset and AISHELL-1 show that FastCorrect 2 can further reduce the WER over the previous correction model with single candidate by 3.2% and 2.6%, demonstrating the effectiveness of leveraging multiple candidates in ASR error correction. FastCorrect 2 achieves better performance than the cascaded re-scoring and correction pipeline and can serve as a unified post-processing module for ASR.

pdf
UniDrop: A Simple yet Effective Technique to Improve Transformer without Extra Cost
Zhen Wu | Lijun Wu | Qi Meng | Yingce Xia | Shufang Xie | Tao Qin | Xinyu Dai | Tie-Yan Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Transformer architecture achieves great success in abundant natural language processing tasks. The over-parameterization of the Transformer model has motivated plenty of works to alleviate its overfitting for superior performances. With some explorations, we find simple techniques such as dropout, can greatly boost model performance with a careful design. Therefore, in this paper, we integrate different dropout techniques into the training of Transformer models. Specifically, we propose an approach named UniDrop to unites three different dropout techniques from fine-grain to coarse-grain, i.e., feature dropout, structure dropout, and data dropout. Theoretically, we demonstrate that these three dropouts play different roles from regularization perspectives. Empirically, we conduct experiments on both neural machine translation and text classification benchmark datasets. Extensive results indicate that Transformer with UniDrop can achieve around 1.5 BLEU improvement on IWSLT14 translation tasks, and better accuracy for the classification even using strong pre-trained RoBERTa as backbone.

pdf
Less is More: Pretrain a Strong Siamese Encoder for Dense Text Retrieval Using a Weak Decoder
Shuqi Lu | Di He | Chenyan Xiong | Guolin Ke | Waleed Malik | Zhicheng Dou | Paul Bennett | Tie-Yan Liu | Arnold Overwijk
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at https://github.com/microsoft/SEED-Encoder/.

pdf
DeepRapper: Neural Rap Generation with Rhyme and Rhythm Modeling
Lanqing Xue | Kaitao Song | Duocai Wu | Xu Tan | Nevin L. Zhang | Tao Qin | Wei-Qiang Zhang | Tie-Yan Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Rap generation, which aims to produce lyrics and corresponding singing beats, needs to model both rhymes and rhythms. Previous works for rap generation focused on rhyming lyrics, but ignored rhythmic beats, which are important for rap performance. In this paper, we develop DeepRapper, a Transformer-based rap generation system that can model both rhymes and rhythms. Since there is no available rap datasets with rhythmic beats, we develop a data mining pipeline to collect a large-scale rap dataset, which includes a large number of rap songs with aligned lyrics and rhythmic beats. Second, we design a Transformer-based autoregressive language model which carefully models rhymes and rhythms. Specifically, we generate lyrics in the reverse order with rhyme representation and constraint for rhyme enhancement, and insert a beat symbol into lyrics for rhythm/beat modeling. To our knowledge, DeepRapper is the first system to generate rap with both rhymes and rhythms. Both objective and subjective evaluations demonstrate that DeepRapper generates creative and high-quality raps with rhymes and rhythms.

2020

pdf
A Study of Non-autoregressive Model for Sequence Generation
Yi Ren | Jinglin Liu | Xu Tan | Zhou Zhao | Sheng Zhao | Tie-Yan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Non-autoregressive (NAR) models generate all the tokens of a sequence in parallel, resulting in faster generation speed compared to their autoregressive (AR) counterparts but at the cost of lower accuracy. Different techniques including knowledge distillation and source-target alignment have been proposed to bridge the gap between AR and NAR models in various tasks such as neural machine translation (NMT), automatic speech recognition (ASR), and text to speech (TTS). With the help of those techniques, NAR models can catch up with the accuracy of AR models in some tasks but not in some others. In this work, we conduct a study to understand the difficulty of NAR sequence generation and try to answer: (1) Why NAR models can catch up with AR models in some tasks but not all? (2) Why techniques like knowledge distillation and source-target alignment can help NAR models. Since the main difference between AR and NAR models is that NAR models do not use dependency among target tokens while AR models do, intuitively the difficulty of NAR sequence generation heavily depends on the strongness of dependency among target tokens. To quantify such dependency, we propose an analysis model called CoMMA to characterize the difficulty of different NAR sequence generation tasks. We have several interesting findings: 1) Among the NMT, ASR and TTS tasks, ASR has the most target-token dependency while TTS has the least. 2) Knowledge distillation reduces the target-token dependency in target sequence and thus improves the accuracy of NAR models. 3) Source-target alignment constraint encourages dependency of a target token on source tokens and thus eases the training of NAR models.

pdf
SimulSpeech: End-to-End Simultaneous Speech to Text Translation
Yi Ren | Jinglin Liu | Xu Tan | Chen Zhang | Tao Qin | Zhou Zhao | Tie-Yan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this work, we develop SimulSpeech, an end-to-end simultaneous speech to text translation system which translates speech in source language to text in target language concurrently. SimulSpeech consists of a speech encoder, a speech segmenter and a text decoder, where 1) the segmenter builds upon the encoder and leverages a connectionist temporal classification (CTC) loss to split the input streaming speech in real time, 2) the encoder-decoder attention adopts a wait-k strategy for simultaneous translation. SimulSpeech is more challenging than previous cascaded systems (with simultaneous automatic speech recognition (ASR) and simultaneous neural machine translation (NMT)). We introduce two novel knowledge distillation methods to ensure the performance: 1) Attention-level knowledge distillation transfers the knowledge from the multiplication of the attention matrices of simultaneous NMT and ASR models to help the training of the attention mechanism in SimulSpeech; 2) Data-level knowledge distillation transfers the knowledge from the full-sentence NMT model and also reduces the complexity of data distribution to help on the optimization of SimulSpeech. Experiments on MuST-C English-Spanish and English-German spoken language translation datasets show that SimulSpeech achieves reasonable BLEU scores and lower delay compared to full-sentence end-to-end speech to text translation (without simultaneous translation), and better performance than the two-stage cascaded simultaneous translation model in terms of BLEU scores and translation delay.

pdf
SEEK: Segmented Embedding of Knowledge Graphs
Wentao Xu | Shun Zheng | Liang He | Bin Shao | Jian Yin | Tie-Yan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In recent years, knowledge graph embedding becomes a pretty hot research topic of artificial intelligence and plays increasingly vital roles in various downstream applications, such as recommendation and question answering. However, existing methods for knowledge graph embedding can not make a proper trade-off between the model complexity and the model expressiveness, which makes them still far from satisfactory. To mitigate this problem, we propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity. Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations. It is noteworthy that owing to the general and elegant design of scoring functions, our framework can incorporate many famous existing methods as special cases. Moreover, extensive experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework. Source codes and data can be found at https://github.com/Wentao-Xu/SEEK.

2019

pdf
Microsoft Research Asia’s Systems for WMT19
Yingce Xia | Xu Tan | Fei Tian | Fei Gao | Di He | Weicong Chen | Yang Fan | Linyuan Gong | Yichong Leng | Renqian Luo | Yiren Wang | Lijun Wu | Jinhua Zhu | Tao Qin | Tie-Yan Liu
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

We Microsoft Research Asia made submissions to 11 language directions in the WMT19 news translation tasks. We won the first place for 8 of the 11 directions and the second place for the other three. Our basic systems are built on Transformer, back translation and knowledge distillation. We integrate several of our rececent techniques to enhance the baseline systems: multi-agent dual learning (MADL), masked sequence-to-sequence pre-training (MASS), neural architecture optimization (NAO), and soft contextual data augmentation (SCA).

pdf
Multilingual Neural Machine Translation with Language Clustering
Xu Tan | Jiale Chen | Di He | Yingce Xia | Tao Qin | Tie-Yan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low-resource and zero-shot translation. Given there are thousands of languages in the world and some of them are very different, it is extremely burdensome to handle them all in a single model or use a separate model for each language pair. Therefore, given a fixed resource budget, e.g., the number of models, how to determine which languages should be supported by one model is critical to multilingual NMT, which, unfortunately, has been ignored by previous work. In this work, we develop a framework that clusters languages into different groups and trains one multilingual model for each cluster. We study two methods for language clustering: (1) using prior knowledge, where we cluster languages according to language family, and (2) using language embedding, in which we represent each language by an embedding vector and cluster them in the embedding space. In particular, we obtain the embedding vectors of all the languages by training a universal neural machine translation model. Our experiments on 23 languages show that the first clustering method is simple and easy to understand but leading to suboptimal translation accuracy, while the second method sufficiently captures the relationship among languages well and improves the translation accuracy for almost all the languages over baseline methods.

pdf
Exploiting Monolingual Data at Scale for Neural Machine Translation
Lijun Wu | Yiren Wang | Yingce Xia | Tao Qin | Jianhuang Lai | Tie-Yan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

While target-side monolingual data has been proven to be very useful to improve neural machine translation (briefly, NMT) through back translation, source-side monolingual data is not well investigated. In this work, we study how to use both the source-side and target-side monolingual data for NMT, and propose an effective strategy leveraging both of them. First, we generate synthetic bitext by translating monolingual data from the two domains into the other domain using the models pretrained on genuine bitext. Next, a model is trained on a noised version of the concatenated synthetic bitext where each source sequence is randomly corrupted. Finally, the model is fine-tuned on the genuine bitext and a clean version of a subset of the synthetic bitext without adding any noise. Our approach achieves state-of-the-art results on WMT16, WMT17, WMT18 EnglishGerman translations and WMT19 GermanFrench translations, which demonstrate the effectiveness of our method. We also conduct a comprehensive study on how each part in the pipeline works.

pdf
Machine Translation With Weakly Paired Documents
Lijun Wu | Jinhua Zhu | Di He | Fei Gao | Tao Qin | Jianhuang Lai | Tie-Yan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Neural machine translation, which achieves near human-level performance in some languages, strongly relies on the large amounts of parallel sentences, which hinders its applicability to low-resource language pairs. Recent works explore the possibility of unsupervised machine translation with monolingual data only, leading to much lower accuracy compared with the supervised one. Observing that weakly paired bilingual documents are much easier to collect than bilingual sentences, e.g., from Wikipedia, news websites or books, in this paper, we investigate training translation models with weakly paired bilingual documents. Our approach contains two components. 1) We provide a simple approach to mine implicitly bilingual sentence pairs from document pairs which can then be used as supervised training signals. 2) We leverage the topic consistency of two weakly paired documents and learn the sentence translation model by constraining the word distribution-level alignments. We evaluate our method on weakly paired documents from Wikipedia on six tasks, the widely used WMT16 GermanEnglish, WMT13 SpanishEnglish and WMT16 RomanianEnglish translation tasks. We obtain 24.1/30.3, 28.1/27.6 and 30.1/27.6 BLEU points separately, outperforming previous results by more than 5 BLEU points in each direction and reducing the gap between unsupervised translation and supervised translation up to 50%.

pdf
Hint-Based Training for Non-Autoregressive Machine Translation
Zhuohan Li | Zi Lin | Di He | Fei Tian | Tao Qin | Liwei Wang | Tie-Yan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Due to the unparallelizable nature of the autoregressive factorization, AutoRegressive Translation (ART) models have to generate tokens sequentially during decoding and thus suffer from high inference latency. Non-AutoRegressive Translation (NART) models were proposed to reduce the inference time, but could only achieve inferior translation accuracy. In this paper, we proposed a novel approach to leveraging the hints from hidden states and word alignments to help the training of NART models. The results achieve significant improvement over previous NART models for the WMT14 En-De and De-En datasets and are even comparable to a strong LSTM-based ART baseline but one order of magnitude faster in inference.

pdf
Unsupervised Pivot Translation for Distant Languages
Yichong Leng | Xu Tan | Tao Qin | Xiang-Yang Li | Tie-Yan Liu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Unsupervised neural machine translation (NMT) has attracted a lot of attention recently. While state-of-the-art methods for unsupervised translation usually perform well between similar languages (e.g., English-German translation), they perform poorly between distant languages, because unsupervised alignment does not work well for distant languages. In this work, we introduce unsupervised pivot translation for distant languages, which translates a language to a distant language through multiple hops, and the unsupervised translation on each hop is relatively easier than the original direct translation. We propose a learning to route (LTR) method to choose the translation path between the source and target languages. LTR is trained on language pairs whose best translation path is available and is applied on the unseen language pairs for path selection. Experiments on 20 languages and 294 distant language pairs demonstrate the advantages of the unsupervised pivot translation for distant languages, as well as the effectiveness of the proposed LTR for path selection. Specifically, in the best case, LTR achieves an improvement of 5.58 BLEU points over the conventional direct unsupervised method.

pdf
Soft Contextual Data Augmentation for Neural Machine Translation
Fei Gao | Jinhua Zhu | Lijun Wu | Yingce Xia | Tao Qin | Xueqi Cheng | Wengang Zhou | Tie-Yan Liu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

While data augmentation is an important trick to boost the accuracy of deep learning methods in computer vision tasks, its study in natural language tasks is still very limited. In this paper, we present a novel data augmentation method for neural machine translation. Different from previous augmentation methods that randomly drop, swap or replace words with other words in a sentence, we softly augment a randomly chosen word in a sentence by its contextual mixture of multiple related words. More accurately, we replace the one-hot representation of a word by a distribution (provided by a language model) over the vocabulary, i.e., replacing the embedding of this word by a weighted combination of multiple semantically similar words. Since the weights of those words depend on the contextual information of the word to be replaced,the newly generated sentences capture much richer information than previous augmentation methods. Experimental results on both small scale and large scale machine translation data sets demonstrate the superiority of our method over strong baselines.

pdf
Depth Growing for Neural Machine Translation
Lijun Wu | Yiren Wang | Yingce Xia | Fei Tian | Fei Gao | Tao Qin | Jianhuang Lai | Tie-Yan Liu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

While very deep neural networks have shown effectiveness for computer vision and text classification applications, how to increase the network depth of the neural machine translation (NMT) models for better translation quality remains a challenging problem. Directly stacking more blocks to the NMT model results in no improvement and even drop in performance. In this work, we propose an effective two-stage approach with three specially designed components to construct deeper NMT models, which result in significant improvements over the strong Transformer baselines on WMT14 EnglishGerman and EnglishFrench translation tasks.

2018

pdf
Efficient Sequence Learning with Group Recurrent Networks
Fei Gao | Lijun Wu | Li Zhao | Tao Qin | Xueqi Cheng | Tie-Yan Liu
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Recurrent neural networks have achieved state-of-the-art results in many artificial intelligence tasks, such as language modeling, neural machine translation, speech recognition and so on. One of the key factors to these successes is big models. However, training such big models usually takes days or even weeks of time even if using tens of GPU cards. In this paper, we propose an efficient architecture to improve the efficiency of such RNN model training, which adopts the group strategy for recurrent layers, while exploiting the representation rearrangement strategy between layers as well as time steps. To demonstrate the advantages of our models, we conduct experiments on several datasets and tasks. The results show that our architecture achieves comparable or better accuracy comparing with baselines, with a much smaller number of parameters and at a much lower computational cost.

pdf
Dense Information Flow for Neural Machine Translation
Yanyao Shen | Xu Tan | Di He | Tao Qin | Tie-Yan Liu
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Recently, neural machine translation has achieved remarkable progress by introducing well-designed deep neural networks into its encoder-decoder framework. From the optimization perspective, residual connections are adopted to improve learning performance for both encoder and decoder in most of these deep architectures, and advanced attention connections are applied as well. Inspired by the success of the DenseNet model in computer vision problems, in this paper, we propose a densely connected NMT architecture (DenseNMT) that is able to train more efficiently for NMT. The proposed DenseNMT not only allows dense connection in creating new features for both encoder and decoder, but also uses the dense attention structure to improve attention quality. Our experiments on multiple datasets show that DenseNMT structure is more competitive and efficient.

pdf
Double Path Networks for Sequence to Sequence Learning
Kaitao Song | Xu Tan | Di He | Jianfeng Lu | Tao Qin | Tie-Yan Liu
Proceedings of the 27th International Conference on Computational Linguistics

Encoder-decoder based Sequence to Sequence learning (S2S) has made remarkable progress in recent years. Different network architectures have been used in the encoder/decoder. Among them, Convolutional Neural Networks (CNN) and Self Attention Networks (SAN) are the prominent ones. The two architectures achieve similar performances but use very different ways to encode and decode context: CNN use convolutional layers to focus on the local connectivity of the sequence, while SAN uses self-attention layers to focus on global semantics. In this work we propose Double Path Networks for Sequence to Sequence learning (DPN-S2S), which leverage the advantages of both models by using double path information fusion. During the encoding step, we develop a double path architecture to maintain the information coming from different paths with convolutional layers and self-attention layers separately. To effectively use the encoded context, we develop a gated attention fusion module and use it to automatically pick up the information needed during the decoding step, which is also a double path network. By deeply integrating the two paths, both types of information are combined and well exploited. Experiments show that our proposed method can significantly improve the performance of sequence to sequence learning over state-of-the-art systems.

pdf
Beyond Error Propagation in Neural Machine Translation: Characteristics of Language Also Matter
Lijun Wu | Xu Tan | Di He | Fei Tian | Tao Qin | Jianhuang Lai | Tie-Yan Liu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Neural machine translation usually adopts autoregressive models and suffers from exposure bias as well as the consequent error propagation problem. Many previous works have discussed the relationship between error propagation and the accuracy drop (i.e., the left part of the translated sentence is often better than its right part in left-to-right decoding models) problem. In this paper, we conduct a series of analyses to deeply understand this problem and get several interesting findings. (1) The role of error propagation on accuracy drop is overstated in the literature, although it indeed contributes to the accuracy drop problem. (2) Characteristics of a language play a more important role in causing the accuracy drop: the left part of the translation result in a right-branching language (e.g., English) is more likely to be more accurate than its right part, while the right part is more accurate for a left-branching language (e.g., Japanese). Our discoveries are confirmed on different model structures including Transformer and RNN, and in other sequence generation tasks such as text summarization.

pdf
A Study of Reinforcement Learning for Neural Machine Translation
Lijun Wu | Fei Tian | Tao Qin | Jianhuang Lai | Tie-Yan Liu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Recent studies have shown that reinforcement learning (RL) is an effective approach for improving the performance of neural machine translation (NMT) system. However, due to its instability, successfully RL training is challenging, especially in real-world systems where deep models and large datasets are leveraged. In this paper, taking several large-scale translation tasks as testbeds, we conduct a systematic study on how to train better NMT models using reinforcement learning. We provide a comprehensive comparison of several important factors (e.g., baseline reward, reward shaping) in RL training. Furthermore, to fill in the gap that it remains unclear whether RL is still beneficial when monolingual data is used, we propose a new method to leverage RL to further boost the performance of NMT systems trained with source/target monolingual data. By integrating all our findings, we obtain competitive results on WMT14 English-German, WMT17 English-Chinese, and WMT17 Chinese-English translation tasks, especially setting a state-of-the-art performance on WMT17 Chinese-English translation task.

2016

pdf
Solving Verbal Questions in IQ Test by Knowledge-Powered Word Embedding
Huazheng Wang | Fei Tian | Bin Gao | Chengjieren Zhu | Jiang Bian | Tie-Yan Liu
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2014

pdf
Co-learning of Word Representations and Morpheme Representations
Siyu Qiu | Qing Cui | Jiang Bian | Bin Gao | Tie-Yan Liu
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf
A Probabilistic Model for Learning Multi-Prototype Word Embeddings
Fei Tian | Hanjun Dai | Jiang Bian | Bin Gao | Rui Zhang | Enhong Chen | Tie-Yan Liu
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers