Qingwei Lin


2024

pdf
SELF-GUARD: Empower the LLM to Safeguard Itself
Zezhong Wang | Fangkai Yang | Lu Wang | Pu Zhao | Hongru Wang | Liang Chen | Qingwei Lin | Kam-Fai Wong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

With the increasing risk posed by jailbreak attacks, recent studies have investigated various methods to improve the safety of large language models (LLMs), mainly falling into two strategies: safety training and safeguards. Safety training involves fine-tuning the LLM with adversarial samples, which activate the LLM’s capabilities against jailbreak. However, it is not always effective in countering new attacks and often leads to potential performance degradation. Safeguards, on the other hand, are methods using additional models to filter harmful content from the LLM’s response. Nevertheless, they can only reduce a limited amount of harmful output and introduce extra computational costs. Given the distinct strengths and weaknesses of both, we combine them to balance out their flaws and propose a more effective method called Self-Guard.Specifically, we train the LLM to review its responses for any harmful content and append a [harmful] or [harmless] tag to the end of the response. In this way, Self-Guard possesses the advantages of safety training, leveraging the powerful capabilities of the LLMs themselves to detect harmfulness. Besides that, it gains flexibility like safeguards, making the safety check target the output side, which makes the system less vulnerable to attack updates. Experimental results indicate that our Self-Guard can effectively defend against jailbreak attacks and will not cause LLMs’ performance degradation.

2023

pdf
MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation
Jiazhan Feng | Qingfeng Sun | Can Xu | Pu Zhao | Yaming Yang | Chongyang Tao | Dongyan Zhao | Qingwei Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to facilitate multi-modal conversation better. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open domain. To build an engaging dialogue system with this dataset, we propose and normalize two response prediction tasks based on retrieval and generative scenarios. In addition, we build two baselines for the above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset is available in https://github.com/victorsungo/MMDialog.

pdf
Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering
Fangkai Yang | Pu Zhao | Zezhong Wang | Lu Wang | Bo Qiao | Jue Zhang | Mohit Garg | Qingwei Lin | Saravan Rajmohan | Dongmei Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average due to its lack of specific domain knowledge. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, centered around Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, an area not extensively covered in general LLMs, making it well-suited for evaluating methods aiming to enhance LLMs’ domain-specific capabilities. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our method outperforms the commonly used LLM with retrieval methods. We make our source code and sample data available at: https://aka.ms/Microsoft_QA.