This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Emotion detection in textual data has received growing interest in recent years, as it is pivotal for developing empathetic human-computer interaction systems.This paper introduces a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions.Initially, we establish a baseline by training a transformer-based model for standard emotion classification, achieving state-of-the-art performance. We argue that not all misclassifications are of the same importance, as there are perceptual similarities among emotional classes.We thus redefine the emotion labeling problem by shifting it from a traditional classification model to an ordinal classification one, where discrete emotions are arranged in a sequential order according to their valence levels.Finally, we propose a method that performs ordinal classification in the two-dimensional emotion space, considering both valence and arousal scales.The results show that our approach not only preserves high accuracy in emotion prediction but also significantly reduces the magnitude of errors in cases of misclassification.
In this paper we present deep-learning models that submitted to the SemEval-2018 Task 1 competition: “Affect in Tweets”. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention mechanism. The attention mechanism improves the model performance and allows us to identify salient words in tweets, as well as gain insight into the models making them more interpretable. Our model utilizes a set of word2vec word embeddings trained on a large collection of 550 million Twitter messages, augmented by a set of word affective features. Due to the limited amount of task-specific training data, we opted for a transfer learning approach by pretraining the Bi-LSTMs on the dataset of Semeval 2017, Task 4A. The proposed approach ranked 1st in Subtask E “Multi-Label Emotion Classification”, 2nd in Subtask A “Emotion Intensity Regression” and achieved competitive results in other subtasks.
In this paper we present a deep-learning model that competed at SemEval-2018 Task 2 “Multilingual Emoji Prediction”. We participated in subtask A, in which we are called to predict the most likely associated emoji in English tweets. The proposed architecture relies on a Long Short-Term Memory network, augmented with an attention mechanism, that conditions the weight of each word, on a “context vector” which is taken as the aggregation of a tweet’s meaning. Moreover, we initialize the embedding layer of our model, with word2vec word embeddings, pretrained on a dataset of 550 million English tweets. Finally, our model does not rely on hand-crafted features or lexicons and is trained end-to-end with back-propagation. We ranked 2nd out of 48 teams.
In this paper we present two deep-learning systems that competed at SemEval-2018 Task 3 “Irony detection in English tweets”. We design and ensemble two independent models, based on recurrent neural networks (Bi-LSTM), which operate at the word and character level, in order to capture both the semantic and syntactic information in tweets. Our models are augmented with a self-attention mechanism, in order to identify the most informative words. The embedding layer of our word-level model is initialized with word2vec word embeddings, pretrained on a collection of 550 million English tweets. We did not utilize any handcrafted features, lexicons or external datasets as prior information and our models are trained end-to-end using back propagation on constrained data. Furthermore, we provide visualizations of tweets with annotations for the salient tokens of the attention layer that can help to interpret the inner workings of the proposed models. We ranked 2nd out of 42 teams in Subtask A and 2nd out of 31 teams in Subtask B. However, post-task-completion enhancements of our models achieve state-of-the-art results ranking 1st for both subtasks.