Michael Regan


2024

pdf bib
MASSIVE Multilingual Abstract Meaning Representation: A Dataset and Baselines for Hallucination Detection
Michael Regan | Shira Wein | George Baker | Emilio Monti
Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024)

Abstract Meaning Representation (AMR) is a semantic formalism that captures the core meaning of an utterance. There has been substantial work developing AMR corpora in English and more recently across languages, though the limited size of existing datasets and the cost of collecting more annotations are prohibitive. With both engineering and scientific questions in mind, we introduce MASSIVE-AMR, a dataset with more than 84,000 text-to-graph annotations, currently the largest and most diverse of its kind: AMR graphs for 1,685 information-seeking utterances mapped to 50+ typologically diverse languages. We describe how we built our resource and its unique features before reporting on experiments using large language models for multilingual AMR and SPARQL parsing as well as applying AMRs for hallucination detection in the context of knowledge base question answering, with results shedding light on persistent issues using LLMs for structured parsing.

2023

pdf
How Good Is the Model in Model-in-the-loop Event Coreference Resolution Annotation?
Shafiuddin Rehan Ahmed | Abhijnan Nath | Michael Regan | Adam Pollins | Nikhil Krishnaswamy | James H. Martin
Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII)

Annotating cross-document event coreference links is a time-consuming and cognitively demanding task that can compromise annotation quality and efficiency. To address this, we propose a model-in-the-loop annotation approach for event coreference resolution, where a machine learning model suggests likely corefering event pairs only. We evaluate the effectiveness of this approach by first simulating the annotation process and then, using a novel annotator-centric Recall-Annotation effort trade-off metric, we compare the results of various underlying models and datasets. We finally present a method for obtaining 97% recall while substantially reducing the workload required by a fully manual annotation process.

2022

pdf
RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du | Zixuan Zhang | Sha Li | Pengfei Yu | Hongwei Wang | Tuan Lai | Xudong Lin | Ziqi Wang | Iris Liu | Ben Zhou | Haoyang Wen | Manling Li | Darryl Hannan | Jie Lei | Hyounghun Kim | Rotem Dror | Haoyu Wang | Michael Regan | Qi Zeng | Qing Lyu | Charles Yu | Carl Edwards | Xiaomeng Jin | Yizhu Jiao | Ghazaleh Kazeminejad | Zhenhailong Wang | Chris Callison-Burch | Mohit Bansal | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Martha Palmer | Heng Ji
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.

2020

pdf
Representing constructional metaphors
Pavlina Kalm | Michael Regan | Sook-kyung Lee | Chris Peverada | William Croft
Proceedings of the Second International Workshop on Designing Meaning Representations

This paper introduces a representation and annotation scheme for argument structure constructions that are used metaphorically with verbs in different semantic domains. We aim to contribute to the study of constructional metaphors which has received little attention in theoretical and computational linguistics. The proposed representation consists of a systematic mapping between the constructional and verbal event structures in two domains. It reveals the semantic motivations that lead to constructions being metaphorically extended. We demonstrate this representation on argument structure constructions with Transfer of Possession verbs and test the viability of this scheme with an annotation exercise.

2019

pdf bib
Cross-Linguistic Semantic Annotation: Reconciling the Language-Specific and the Universal
Jens E. L. Van Gysel | Meagan Vigus | Pavlina Kalm | Sook-kyung Lee | Michael Regan | William Croft
Proceedings of the First International Workshop on Designing Meaning Representations

Developers of cross-linguistic semantic annotation schemes face a number of issues not encountered in monolingual annotation. This paper discusses four such issues, related to the establishment of annotation labels, and the treatment of languages with more fine-grained, more coarse-grained, and cross-cutting categories. We propose that a lattice-like architecture of the annotation categories can adequately handle all four issues, and at the same time remain both intuitive for annotators and faithful to typological insights. This position is supported by a brief annotation experiment.

pdf
Event Structure Representation: Between Verbs and Argument Structure Constructions
Pavlina Kalm | Michael Regan | William Croft
Proceedings of the First International Workshop on Designing Meaning Representations

This paper proposes a novel representation of event structure by separating verbal semantics and the meaning of argument structure constructions that verbs occur in. Our model demonstrates how the two meaning representations interact. Our model thus effectively deals with various verb construals in different argument structure constructions, unlike purely verb-based approaches. However, unlike many constructionally-based approaches, we also provide a richer representation of the event structure evoked by the verb meaning.

pdf
CRAFT Shared Tasks 2019 Overview — Integrated Structure, Semantics, and Coreference
William Baumgartner | Michael Bada | Sampo Pyysalo | Manuel R. Ciosici | Negacy Hailu | Harrison Pielke-Lombardo | Michael Regan | Lawrence Hunter
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks

As part of the BioNLP Open Shared Tasks 2019, the CRAFT Shared Tasks 2019 provides a platform to gauge the state of the art for three fundamental language processing tasks — dependency parse construction, coreference resolution, and ontology concept identification — over full-text biomedical articles. The structural annotation task requires the automatic generation of dependency parses for each sentence of an article given only the article text. The coreference resolution task focuses on linking coreferring base noun phrase mentions into chains using the symmetrical and transitive identity relation. The ontology concept annotation task involves the identification of concept mentions within text using the classes of ten distinct ontologies in the biomedical domain, both unmodified and augmented with extension classes. This paper provides an overview of each task, including descriptions of the data provided to participants and the evaluation metrics used, and discusses participant results relative to baseline performances for each of the three tasks.

2018

pdf
AMR Beyond the Sentence: the Multi-sentence AMR corpus
Tim O’Gorman | Michael Regan | Kira Griffitt | Ulf Hermjakob | Kevin Knight | Martha Palmer
Proceedings of the 27th International Conference on Computational Linguistics

There are few corpora that endeavor to represent the semantic content of entire documents. We present a corpus that accomplishes one way of capturing document level semantics, by annotating coreference and similar phenomena (bridging and implicit roles) on top of gold Abstract Meaning Representations of sentence-level semantics. We present a new corpus of this annotation, with analysis of its quality, alongside a plausible baseline for comparison. It is hoped that this Multi-Sentence AMR corpus (MS-AMR) may become a feasible method for developing rich representations of document meaning, useful for tasks such as information extraction and question answering.

pdf bib
A Rich Annotation Scheme for Mental Events
William Croft | Pavlína Pešková | Michael Regan | Sook-kyung Lee
Proceedings of the Workshop Events and Stories in the News 2018

We present a rich annotation scheme for the structure of mental events. Mental events are those in which the verb describes a mental state or process, usually oriented towards an external situation. While physical events have been described in detail and there are numerous studies of their semantic analysis and annotation, mental events are less thoroughly studied. The annotation scheme proposed here is based on decompositional analyses in the semantic and typological linguistic literature. The scheme was applied to the news corpus from the 2016 Events workshop, and error analysis of the test annotation provides suggestions for refinement and clarification of the annotation scheme.

pdf
Annotation of Tense and Aspect Semantics for Sentential AMR
Lucia Donatelli | Michael Regan | William Croft | Nathan Schneider
Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018)

Although English grammar encodes a number of semantic contrasts with tense and aspect marking, these semantics are currently ignored by Abstract Meaning Representation (AMR) annotations. This paper extends sentence-level AMR to include a coarse-grained treatment of tense and aspect semantics. The proposed framework augments the representation of finite predications to include a four-way temporal distinction (event time before, up to, at, or after speech time) and several aspectual distinctions (including static vs. dynamic, habitual vs. episodic, and telic vs. atelic). This will enable AMR to be used for NLP tasks and applications that require sophisticated reasoning about time and event structure.

2017

pdf
Integrating Decompositional Event Structures into Storylines
William Croft | Pavlína Pešková | Michael Regan
Proceedings of the Events and Stories in the News Workshop

Storyline research links together events in stories and specifies shared participants in those stories. In these analyses, an atomic event is assumed to be a single clause headed by a single verb. However, many analyses of verbal semantics assume a decompositional analysis of events expressed in single clauses. We present a formalization of a decompositional analysis of events in which each participant in a clausal event has their own temporally extended subevent, and the subevents are related through causal and other interactions. This decomposition allows us to represent storylines as an evolving set of interactions between participants over time.

2016

pdf bib
Annotation of causal and aspectual structure of events in RED: a preliminary report
William Croft | Pavlina Pešková | Michael Regan
Proceedings of the Fourth Workshop on Events