Meryem M’hamdi


2024

pdf
Leitner-Guided Memory Replay for Cross-lingual Continual Learning
Meryem M’hamdi | Jonathan May
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Cross-lingual continual learning aims to continuously fine-tune a downstream model on emerging data from new languages. One major challenge in cross-lingual continual learning is catastrophic forgetting: a stability-plasticity dilemma, where performance on previously seen languages decreases as the model learns to transfer to new languages. Experience replay, which revisits data from a fixed-size memory of old languages while training on new ones, is among the most successful approaches for solving this dilemma. Faced with the challenge of dynamically storing the memory with high-quality examples while complying with its fixed size limitations, we consider Leitner queuing, a human-inspired spaced-repetition technique, to determine what should be replayed at each phase of learning. Via a controlled set of quantitative and qualitative analyses across different memory strategies, we show that, just like humans, carefully picking informative examples to be prioritized in cross-lingual memory replay helps tame the stability-plasticity dilemma. Compared to vanilla and strong memory replay baselines, our Leitner-guided approach significantly and consistently decreases forgetting while maintaining accuracy across natural language understanding tasks, language orders, and languages.

2023

pdf
Cross-lingual Continual Learning
Meryem M’hamdi | Xiang Ren | Jonathan May
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The longstanding goal of multi-lingual learning has been to develop a universal cross-lingual model that can withstand the changes in multi-lingual data distributions. There has been a large amount of work to adapt such multi-lingual models to unseen target languages. However, the majority of work in this direction focuses on the standard one-hop transfer learning pipeline from source to target languages, whereas in realistic scenarios, new languages can be incorporated at any time in a sequential manner. In this paper, we present a principled Cross-lingual Continual Learning (CCL) evaluation paradigm, where we analyze different categories of approaches used to continually adapt to emerging data from different languages. We provide insights into what makes multilingual sequential learning particularly challenging. To surmount such challenges, we benchmark a representative set of cross-lingual continual learning algorithms and analyze their knowledge preservation, accumulation, and generalization capabilities compared to baselines on carefully curated datastreams. The implications of this analysis include a recipe for how to measure and balance different cross-lingual continual learning desiderata, which go beyond conventional transfer learning.

2021

pdf
X-METRA-ADA: Cross-lingual Meta-Transfer learning Adaptation to Natural Language Understanding and Question Answering
Meryem M’hamdi | Doo Soon Kim | Franck Dernoncourt | Trung Bui | Xiang Ren | Jonathan May
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Multilingual models, such as M-BERT and XLM-R, have gained increasing popularity, due to their zero-shot cross-lingual transfer learning capabilities. However, their generalization ability is still inconsistent for typologically diverse languages and across different benchmarks. Recently, meta-learning has garnered attention as a promising technique for enhancing transfer learning under low-resource scenarios: particularly for cross-lingual transfer in Natural Language Understanding (NLU). In this work, we propose X-METRA-ADA, a cross-lingual MEta-TRAnsfer learning ADAptation approach for NLU. Our approach adapts MAML, an optimization-based meta-learning approach, to learn to adapt to new languages. We extensively evaluate our framework on two challenging cross-lingual NLU tasks: multilingual task-oriented dialog and typologically diverse question answering. We show that our approach outperforms naive fine-tuning, reaching competitive performance on both tasks for most languages. Our analysis reveals that X-METRA-ADA can leverage limited data for faster adaptation.

2019

pdf
Contextualized Cross-Lingual Event Trigger Extraction with Minimal Resources
Meryem M’hamdi | Marjorie Freedman | Jonathan May
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Event trigger extraction is an information extraction task of practical utility, yet it is challenging due to the difficulty of disambiguating word sense meaning. Previous approaches rely extensively on hand-crafted language-specific features and are applied mainly to English for which annotated datasets and Natural Language Processing (NLP) tools are available. However, the availability of such resources varies from one language to another. Recently, contextualized Bidirectional Encoder Representations from Transformers (BERT) models have established state-of-the-art performance for a variety of NLP tasks. However, there has not been much effort in exploring language transfer using BERT for event extraction. In this work, we treat event trigger extraction as a sequence tagging problem and propose a cross-lingual framework for training it without any hand-crafted features. We experiment with different flavors of transfer learning from high-resourced to low-resourced languages and compare the performance of different multilingual embeddings for event trigger extraction. Our results show that training in a multilingual setting outperforms language-specific models for both English and Chinese. Our work is the first to experiment with two event architecture variants in a cross-lingual setting, to show the effectiveness of contextualized embeddings obtained using BERT, and to explore and analyze its performance on Arabic.

2018

pdf
Churn Intent Detection in Multilingual Chatbot Conversations and Social Media
Christian Abbet | Meryem M’hamdi | Athanasios Giannakopoulos | Robert West | Andreea Hossmann | Michael Baeriswyl | Claudiu Musat
Proceedings of the 22nd Conference on Computational Natural Language Learning

We propose a new method to detect when users express the intent to leave a service, also known as churn. While previous work focuses solely on social media, we show that this intent can be detected in chatbot conversations. As companies increasingly rely on chatbots they need an overview of potentially churny users. To this end, we crowdsource and publish a dataset of churn intent expressions in chatbot interactions in German and English. We show that classifiers trained on social media data can detect the same intent in the context of chatbots. We introduce a classification architecture that outperforms existing work on churn intent detection in social media. Moreover, we show that, using bilingual word embeddings, a system trained on combined English and German data outperforms monolingual approaches. As the only existing dataset is in English, we crowdsource and publish a novel dataset of German tweets. We thus underline the universal aspect of the problem, as examples of churn intent in English help us identify churn in German tweets and chatbot conversations.