This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Chinese sequence labeling tasks are sensitive to word boundaries. Although pretrained language models (PLM) have achieved considerable success in these tasks, current PLMs rarely consider boundary information explicitly. An exception to this is BABERT, which incorporates unsupervised statistical boundary information into Chinese BERT’s pre-training objectives. Building upon this approach, we input supervised high-quality boundary information to enhance BABERT’s learning, developing a semi-supervised boundary-aware PLM. To assess PLMs’ ability to encode boundaries, we introduce a novel “Boundary Information Metric” that is both simple and effective. This metric allows comparison of different PLMs without task-specific fine-tuning. Experimental results on Chinese sequence labeling datasets demonstrate that the improved BABERT version outperforms the vanilla version, not only in these tasks but also in broader Chinese natural language understanding tasks. Additionally, our proposed metric offers a convenient and accurate means of evaluating PLMs’ boundary awareness.
Latest efforts on cross-lingual relation extraction (XRE) aggressively leverage the language-consistent structural features from the universal dependency (UD) resource, while they may largely suffer from biased transfer (e.g., either target-biased or source-biased) due to the inevitable linguistic disparity between languages. In this work, we investigate an unbiased UD- based XRE transfer by constructing a type of code-mixed UD forest. We first translate the sentence of the source language to the parallel target-side language, for both of which we parse the UD tree respectively. Then, we merge the source-/target-side UD structures as a unified code-mixed UD forest. With such forest features, the gaps of UD-based XRE between the training and predicting phases can be effectively closed. We conduct experiments on the ACE XRE benchmark datasets, where the results demonstrate that the proposed code-mixed UD forests help unbiased UD-based XRE transfer, with which we achieve significant XRE performance gains.
Dialogue-level dependency parsing has received insufficient attention, especially for Chinese. To this end, we draw on ideas from syntactic dependency and rhetorical structure theory (RST), developing a high-quality human-annotated corpus, which contains 850 dialogues and 199,803 dependencies. Considering that such tasks suffer from high annotation costs, we investigate zero-shot and few-shot scenarios. Based on an existing syntactic treebank, we adopt a signal-based method to transform seen syntactic dependencies into unseen ones between elementary discourse units (EDUs), where the signals are detected by masked language modeling. Besides, we apply single-view and multi-view data selection to access reliable pseudo-labeled instances. Experimental results show the effectiveness of these baselines. Moreover, we discuss several crucial points about our dataset and approach.
In this work, we investigate a more realistic unsupervised multimodal machine translation (UMMT) setup, inference-time image-free UMMT, where the model is trained with source-text image pairs, and tested with only source-text inputs. First, we represent the input images and texts with the visual and language scene graphs (SG), where such fine-grained vision-language features ensure a holistic understanding of the semantics. To enable pure-text input during inference, we devise a visual scene hallucination mechanism that dynamically generates pseudo visual SG from the given textual SG. Several SG-pivoting based learning objectives are introduced for unsupervised translation training. On the benchmark Multi30K data, our SG-based method outperforms the best-performing baseline by significant BLEU scores on the task and setup, helping yield translations with better completeness, relevance and fluency without relying on paired images. Further in-depth analyses reveal how our model advances in the task setting.
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images. Existing VSD work merely models the 2D geometrical vision features, thus inevitably falling prey to the problem of skewed spatial understanding of target objects. In this work, we investigate the incorporation of 3D scene features for VSD. With an external 3D scene extractor, we obtain the 3D objects and scene features for input images, based on which we construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes. Besides, we propose a scene subgraph selecting mechanism, sampling topologically-diverse subgraphs from Go3D-S2G, where the diverse local structure features are navigated to yield spatially-diversified text generation. Experimental results on two VSD datasets demonstrate that our framework outperforms the baselines significantly, especially improving on the cases with complex visual spatial relations. Meanwhile, our method can produce more spatially-diversified generation.
Self-training has proven to be an effective approach for cross-domain tasks, and in this study, we explore its application to cross-domain constituency parsing. Traditional self-training methods rely on limited and potentially low-quality raw corpora. To overcome this limitation, we propose enhancing self-training with the large language model (LLM) to generate domain-specific raw corpora iteratively. For the constituency parsing, we introduce grammar rules that guide the LLM in generating raw corpora and establish criteria for selecting pseudo instances. Our experimental results demonstrate that self-training for constituency parsing, equipped with an LLM, outperforms traditional methods regardless of the LLM’s performance. Moreover, the combination of grammar rules and confidence criteria for pseudo-data selection yields the highest performance in the cross-domain constituency parsing.
An end-to-end speech-to-text (S2T) translation model is usually initialized from a pre-trained speech recognition encoder and a pre-trained text-to-text (T2T) translation decoder. Although this straightforward setting has been shown empirically successful, there do not exist clear answers to the research questions: 1) how are speech and text modalities fused in S2T model and 2) how to better fuse the two modalities? In this paper, we take the first step toward understanding the fusion of speech and text features in S2T model. We first design and release a 10GB linguistic probing benchmark, namely Speech-Senteval, to investigate the acoustic and linguistic behaviors of S2T models. Preliminary analysis reveals that the uppermost encoder layers of the S2T model can not learn linguistic knowledge efficiently, which is crucial for accurate translation. Based on the finding, we further propose a simple plug-in prompt-learning strategy on the uppermost encoder layers to broaden the abstract representation power of the encoder of S2T models. We call such a prompt-enhanced S2T model PromptST. Experimental results on four widely-used S2T datasets show that PromptST can deliver significant improvements over a strong baseline by capturing richer linguistic knowledge. Benchmarks, code, and scripts are freely available at https://github.com/ytf-philp/PromptST.
Recent works of opinion expression identification (OEI) rely heavily on the quality and scale of the manually-constructed training corpus, which could be extremely difficult to satisfy. Crowdsourcing is one practical solution for this problem, aiming to create a large-scale but quality-unguaranteed corpus. In this work, we investigate Chinese OEI with extremely-noisy crowdsourcing annotations, constructing a dataset at a very low cost. Following Zhang el al. (2021), we train the annotator-adapter model by regarding all annotations as gold-standard in terms of crowd annotators, and test the model by using a synthetic expert, which is a mixture of all annotators. As this annotator-mixture for testing is never modeled explicitly in the training phase, we propose to generate synthetic training samples by a pertinent mixup strategy to make the training and testing highly consistent. The simulation experiments on our constructed dataset show that crowdsourcing is highly promising for OEI, and our proposed annotator-mixup can further enhance the crowdsourcing modeling.
Pre-trained language models (PLMs) have shown great potentials in natural language processing (NLP) including rhetorical structure theory (RST) discourse parsing. Current PLMs are obtained by sentence-level pre-training, which is different from the basic processing unit, i.e. element discourse unit (EDU).To this end, we propose a second-stage EDU-level pre-training approach in this work, which presents two novel tasks to learn effective EDU representations continually based on well pre-trained language models. Concretely, the two tasks are (1) next EDU prediction (NEP) and (2) discourse marker prediction (DMP).We take a state-of-the-art transition-based neural parser as baseline, and adopt it with a light bi-gram EDU modification to effectively explore the EDU-level pre-trained EDU representation. Experimental results on a benckmark dataset show that our method is highly effective,leading a 2.1-point improvement in F1-score. All codes and pre-trained models will be released publicly to facilitate future studies.
Self-augmentation has received increasing research interest recently to improve named entity recognition (NER) performance in low-resource scenarios. Token substitution and mixup are two feasible heterogeneous self-augmentation techniques for NER that can achieve effective performance with certain specialized efforts. Noticeably, self-augmentation may introduce potentially noisy augmented data. Prior research has mainly resorted to heuristic rule-based constraints to reduce the noise for specific self-augmentation methods individually. In this paper, we revisit these two typical self-augmentation methods for NER, and propose a unified meta-reweighting strategy for them to achieve a natural integration. Our method is easily extensible, imposing little effort on a specific self-augmentation method. Experiments on different Chinese and English NER benchmarks show that our token substitution and mixup method, as well as their integration, can achieve effective performance improvement. Based on the meta-reweighting mechanism, we can enhance the advantages of the self-augmentation techniques without much extra effort.
Boundary information is critical for various Chinese language processing tasks, such as word segmentation, part-of-speech tagging, and named entity recognition. Previous studies usually resorted to the use of a high-quality external lexicon, where lexicon items can offer explicit boundary information. However, to ensure the quality of the lexicon, great human effort is always necessary, which has been generally ignored. In this work, we suggest unsupervised statistical boundary information instead, and propose an architecture to encode the information directly into pre-trained language models, resulting in Boundary-Aware BERT (BABERT). We apply BABERT for feature induction of Chinese sequence labeling tasks. Experimental results on ten benchmarks of Chinese sequence labeling demonstrate that BABERT can provide consistent improvements on all datasets. In addition, our method can complement previous supervised lexicon exploration, where further improvements can be achieved when integrated with external lexicon information.
Image-to-text tasks such as open-ended image captioning and controllable image description have received extensive attention for decades. Here we advance this line of work further, presenting Visual Spatial Description (VSD), a new perspective for image-to-text toward spatial semantics. Given an image and two objects inside it, VSD aims to produce one description focusing on the spatial perspective between the two objects. Accordingly, we annotate a dataset manually to facilitate the investigation of the newly-introduced task, and then build several benchmark encoder-decoder models by using VL-BART and VL-T5 as backbones. In addition, we investigate visual spatial relationship classification (VSRC) information into our model by pipeline and end-to-end architectures. Finally, we conduct experiments on our benchmark dataset to evaluate all our models. Results show that our models are awe-inspiring, offering accurate and human-like spatial-oriented text descriptions. Besides, VSRC has great potential for VSD, and the joint end-to-end architecture is the better choice for their integration. We will make the dataset and codes publicly available for research purposes.
Conventional phrase grounding aims to localize noun phrases mentioned in a given caption to their corresponding image regions, which has achieved great success recently. Apparently, sole noun phrase grounding is not enough for cross-modal visual language understanding. Here we extend the task by considering pronouns as well. First, we construct a dataset of phrase grounding with both noun phrases and pronouns to image regions. Based on the dataset, we test the performance of phrase grounding by using a state-of-the-art literature model of this line. Then, we enhance the baseline grounding model with coreference information which should help our task potentially, modeling the coreference structures with graph convolutional networks. Experiments on our dataset, interestingly, show that pronouns are easier to ground than noun phrases, where the possible reason might be that these pronouns are much less ambiguous. Additionally, our final model with coreference information can significantly boost the grounding performance of both noun phrases and pronouns.
Successful Machine Learning based Named Entity Recognition models could fail on texts from some special domains, for instance, Chinese addresses and e-commerce titles, where requires adequate background knowledge. Such texts are also difficult for human annotators. In fact, we can obtain some potentially helpful information from correlated texts, which have some common entities, to help the text understanding. Then, one can easily reason out the correct answer by referencing correlated samples. In this paper, we suggest enhancing NER models with correlated samples. We draw correlated samples by the sparse BM25 retriever from large-scale in-domain unlabeled data. To explicitly simulate the human reasoning process, we perform a training-free entity type calibrating by majority voting. To capture correlation features in the training stage, we suggest to model correlated samples by the transformer-based multi-instance cross-encoder. Empirical results on datasets of the above two domains show the efficacy of our methods.
Word ordering is a constrained language generation task taking unordered words as input. Existing work uses linear models and neural networks for the task, yet pre-trained language models have not been studied in word ordering, let alone why they help. We use BART as an instance and show its effectiveness in the task. To explain why BART helps word ordering, we extend analysis with probing and empirically identify that syntactic dependency knowledge in BART is a reliable explanation. We also report performance gains with BART in the related partial tree linearization task, which readily extends our analysis.
Thanks to the strong representation learning capability of deep learning, especially pre-training techniques with language model loss, dependency parsing has achieved great performance boost in the in-domain scenario with abundant labeled training data for target domains. However, the parsing community has to face the more realistic setting where the parsing performance drops drastically when labeled data only exists for several fixed out-domains. In this work, we propose a novel model for multi-source cross-domain dependency parsing. The model consists of two components, i.e., a parameter generation network for distinguishing domain-specific features, and an adversarial network for learning domain-invariant representations. Experiments on a recently released NLPCC-2019 dataset for multi-domain dependency parsing show that our model can consistently improve cross-domain parsing performance by about 2 points in averaged labeled attachment accuracy (LAS) over strong BERT-enhanced baselines. Detailed analysis is conducted to gain more insights on contributions of the two components.
Domain adaption for word segmentation and POS tagging is a challenging problem for Chinese lexical processing. Self-training is one promising solution for it, which struggles to construct a set of high-quality pseudo training instances for the target domain. Previous work usually assumes a universal source-to-target adaption to collect such pseudo corpus, ignoring the different gaps from the target sentences to the source domain. In this work, we start from joint word segmentation and POS tagging, presenting a fine-grained domain adaption method to model the gaps accurately. We measure the gaps by one simple and intuitive metric, and adopt it to develop a pseudo target domain corpus based on fine-grained subdomains incrementally. A novel domain-mixed representation learning model is proposed accordingly to encode the multiple subdomains effectively. The whole process is performed progressively for both corpus construction and model training. Experimental results on a benchmark dataset show that our method can gain significant improvements over a vary of baselines. Extensive analyses are performed to show the advantages of our final domain adaption model as well.
Frame semantic parsing is a semantic analysis task based on FrameNet which has received great attention recently. The task usually involves three subtasks sequentially: (1) target identification, (2) frame classification and (3) semantic role labeling. The three subtasks are closely related while previous studies model them individually, which ignores their intern connections and meanwhile induces error propagation problem. In this work, we propose an end-to-end neural model to tackle the task jointly. Concretely, we exploit a graph-based method, regarding frame semantic parsing as a graph construction problem. All predicates and roles are treated as graph nodes, and their relations are taken as graph edges. Experiment results on two benchmark datasets of frame semantic parsing show that our method is highly competitive, resulting in better performance than pipeline models.
Opinion Role Labeling (ORL), aiming to identify the key roles of opinion, has received increasing interest. Unlike most of the previous works focusing on the English language, in this paper, we present the first work of Chinese ORL. We construct a Chinese dataset by manually translating and projecting annotations from a standard English MPQA dataset. Then, we investigate the effectiveness of cross-lingual transfer methods, including model transfer and corpus translation. We exploit multilingual BERT with Contextual Parameter Generator and Adapter methods to examine the potentials of unsupervised cross-lingual learning and our experiments and analyses for both bilingual and multilingual transfers establish a foundation for the future research of this task.
Research on overlapped and discontinuous named entity recognition (NER) has received increasing attention. The majority of previous work focuses on either overlapped or discontinuous entities. In this paper, we propose a novel span-based model that can recognize both overlapped and discontinuous entities jointly. The model includes two major steps. First, entity fragments are recognized by traversing over all possible text spans, thus, overlapped entities can be recognized. Second, we perform relation classification to judge whether a given pair of entity fragments to be overlapping or succession. In this way, we can recognize not only discontinuous entities, and meanwhile doubly check the overlapped entities. As a whole, our model can be regarded as a relation extraction paradigm essentially. Experimental results on multiple benchmark datasets (i.e., CLEF, GENIA and ACE05) show that our model is highly competitive for overlapped and discontinuous NER.
Crowdsourcing is regarded as one prospective solution for effective supervised learning, aiming to build large-scale annotated training data by crowd workers. Previous studies focus on reducing the influences from the noises of the crowdsourced annotations for supervised models. We take a different point in this work, regarding all crowdsourced annotations as gold-standard with respect to the individual annotators. In this way, we find that crowdsourcing could be highly similar to domain adaptation, and then the recent advances of cross-domain methods can be almost directly applied to crowdsourcing. Here we take named entity recognition (NER) as a study case, suggesting an annotator-aware representation learning model that inspired by the domain adaptation methods which attempt to capture effective domain-aware features. We investigate both unsupervised and supervised crowdsourcing learning, assuming that no or only small-scale expert annotations are available. Experimental results on a benchmark crowdsourced NER dataset show that our method is highly effective, leading to a new state-of-the-art performance. In addition, under the supervised setting, we can achieve impressive performance gains with only a very small scale of expert annotations.
Discourse representation tree structure (DRTS) parsing is a novel semantic parsing task which has been concerned most recently. State-of-the-art performance can be achieved by a neural sequence-to-sequence model, treating the tree construction as an incremental sequence generation problem. Structural information such as input syntax and the intermediate skeleton of the partial output has been ignored in the model, which could be potentially useful for the DRTS parsing. In this work, we propose a structural-aware model at both the encoder and decoder phase to integrate the structural information, where graph attention network (GAT) is exploited for effectively modeling. Experimental results on a benchmark dataset show that our proposed model is effective and can obtain the best performance in the literature.
Many efforts of research are devoted to semantic role labeling (SRL) which is crucial for natural language understanding. Supervised approaches have achieved impressing performances when large-scale corpora are available for resource-rich languages such as English. While for the low-resource languages with no annotated SRL dataset, it is still challenging to obtain competitive performances. Cross-lingual SRL is one promising way to address the problem, which has achieved great advances with the help of model transferring and annotation projection. In this paper, we propose a novel alternative based on corpus translation, constructing high-quality training datasets for the target languages from the source gold-standard SRL annotations. Experimental results on Universal Proposition Bank show that the translation-based method is highly effective, and the automatic pseudo datasets can improve the target-language SRL performances significantly.
In this paper, we present Chinese lexical fusion recognition, a new task which could be regarded as one kind of coreference recognition. First, we introduce the task in detail, showing the relationship with coreference recognition and differences from the existing tasks. Second, we propose an end-to-end model for the task, handling mentions as well as coreference relationship jointly. The model exploits the state-of-the-art contextualized BERT representations as an encoder, and is further enhanced with the sememe knowledge from HowNet by graph attention networks. We manually annotate a benchmark dataset for the task and then conduct experiments on it. Results demonstrate that our final model is effective and competitive for the task. Detailed analysis is offered for comprehensively understanding the new task and our proposed model.
Emotion detection in conversations (EDC) is to detect the emotion for each utterance in conversations that have multiple speakers. Different from the traditional non-conversational emotion detection, the model for EDC should be context-sensitive (e.g., understanding the whole conversation rather than one utterance) and speaker-sensitive (e.g., understanding which utterance belongs to which speaker). In this paper, we propose a transformer-based context- and speaker-sensitive model for EDC, namely HiTrans, which consists of two hierarchical transformers. We utilize BERT as the low-level transformer to generate local utterance representations, and feed them into another high-level transformer so that utterance representations could be sensitive to the global context of the conversation. Moreover, we exploit an auxiliary task to make our model speaker-sensitive, called pairwise utterance speaker verification (PUSV), which aims to classify whether two utterances belong to the same speaker. We evaluate our model on three benchmark datasets, namely EmoryNLP, MELD and IEMOCAP. Results show that our model outperforms previous state-of-the-art models.
Recent advances of multilingual word representations weaken the input divergences across languages, making cross-lingual transfer similar to the monolingual cross-domain and semi-supervised settings. Thus self-training, which is effective for these settings, could be possibly beneficial to cross-lingual as well. This paper presents the first comprehensive study for self-training in cross-lingual dependency parsing. Three instance selection strategies are investigated, where two of which are based on the baseline dependency parsing model, and the third one adopts an auxiliary cross-lingual POS tagging model as evidence. We conduct experiments on the universal dependencies for eleven languages. Results show that self-training can boost the dependency parsing performances on the target languages. In addition, the POS tagger assistant instance selection can achieve further improvements consistently. Detailed analysis is conducted to examine the potentiality of self-training in-depth.
Treebank translation is a promising method for cross-lingual transfer of syntactic dependency knowledge. The basic idea is to map dependency arcs from a source treebank to its target translation according to word alignments. This method, however, can suffer from imperfect alignment between source and target words. To address this problem, we investigate syntactic transfer by code mixing, translating only confident words in a source treebank. Cross-lingual word embeddings are leveraged for transferring syntactic knowledge to the target from the resulting code-mixed treebank. Experiments on University Dependency Treebanks show that code-mixed treebanks are more effective than translated treebanks, giving highly competitive performances among cross-lingual parsing methods.
Opinion role labeling (ORL) is an important task for fine-grained opinion mining, which identifies important opinion arguments such as holder and target for a given opinion trigger. The task is highly correlative with semantic role labeling (SRL), which identifies important semantic arguments such as agent and patient for a given predicate. As predicate agents and patients usually correspond to opinion holders and targets respectively, SRL could be valuable for ORL. In this work, we propose a simple and novel method to enhance ORL by utilizing SRL, presenting semantic-aware word representations which are learned from SRL. The representations are then fed into a baseline neural ORL model as basic inputs. We verify the proposed method on a benchmark MPQA corpus. Experimental results show that the proposed method is highly effective. In addition, we compare the method with two representative methods of SRL integration as well, finding that our method can outperform the two methods significantly, achieving 1.47% higher F-scores than the better one.
Syntax has been demonstrated highly effective in neural machine translation (NMT). Previous NMT models integrate syntax by representing 1-best tree outputs from a well-trained parsing system, e.g., the representative Tree-RNN and Tree-Linearization methods, which may suffer from error propagation. In this work, we propose a novel method to integrate source-side syntax implicitly for NMT. The basic idea is to use the intermediate hidden representations of a well-trained end-to-end dependency parser, which are referred to as syntax-aware word representations (SAWRs). Then, we simply concatenate such SAWRs with ordinary word embeddings to enhance basic NMT models. The method can be straightforwardly integrated into the widely-used sequence-to-sequence (Seq2Seq) NMT models. We start with a representative RNN-based Seq2Seq baseline system, and test the effectiveness of our proposed method on two benchmark datasets of the Chinese-English and English-Vietnamese translation tasks, respectively. Experimental results show that the proposed approach is able to bring significant BLEU score improvements on the two datasets compared with the baseline, 1.74 points for Chinese-English translation and 0.80 point for English-Vietnamese translation, respectively. In addition, the approach also outperforms the explicit Tree-RNN and Tree-Linearization methods.
Syntax has been a useful source of information for statistical RST discourse parsing. Under the neural setting, a common approach integrates syntax by a recursive neural network (RNN), requiring discrete output trees produced by a supervised syntax parser. In this paper, we propose an implicit syntax feature extraction approach, using hidden-layer vectors extracted from a neural syntax parser. In addition, we propose a simple transition-based model as the baseline, further enhancing it with dynamic oracle. Experiments on the standard dataset show that our baseline model with dynamic oracle is highly competitive. When implicit syntax features are integrated, we are able to obtain further improvements, better than using explicit Tree-RNN.
Neural networks have shown promising results for relation extraction. State-of-the-art models cast the task as an end-to-end problem, solved incrementally using a local classifier. Yet previous work using statistical models have demonstrated that global optimization can achieve better performances compared to local classification. We build a globally optimized neural model for end-to-end relation extraction, proposing novel LSTM features in order to better learn context representations. In addition, we present a novel method to integrate syntactic information to facilitate global learning, yet requiring little background on syntactic grammars thus being easy to extend. Experimental results show that our proposed model is highly effective, achieving the best performances on two standard benchmarks.
In this paper, we model the problem of disfluency detection using a transition-based framework, which incrementally constructs and labels the disfluency chunk of input sentences using a new transition system without syntax information. Compared with sequence labeling methods, it can capture non-local chunk-level features; compared with joint parsing and disfluency detection methods, it is free for noise in syntax. Experiments show that our model achieves state-of-the-art f-score of 87.5% on the commonly used English Switchboard test set, and a set of in-house annotated Chinese data.
We present a light-weight machine learning tool for NLP research. The package supports operations on both discrete and dense vectors, facilitating implementation of linear models as well as neural models. It provides several basic layers which mainly aims for single-layer linear and non-linear transformations. By using these layers, we can conveniently implement linear models and simple neural models. Besides, this package also integrates several complex layers by composing those basic layers, such as RNN, Attention Pooling, LSTM and gated RNN. Those complex layers can be used to implement deep neural models directly.
Sarcasm detection has been modeled as a binary document classification task, with rich features being defined manually over input documents. Traditional models employ discrete manual features to address the task, with much research effect being devoted to the design of effective feature templates. We investigate the use of neural network for tweet sarcasm detection, and compare the effects of the continuous automatic features with discrete manual features. In particular, we use a bi-directional gated recurrent neural network to capture syntactic and semantic information over tweets locally, and a pooling neural network to extract contextual features automatically from history tweets. Results show that neural features give improved accuracies for sarcasm detection, with different error distributions compared with discrete manual features.