Manish Shrivastava

Also published as: Manish Srivastava


2024

pdf
TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu
Gopichand Kanumolu | Lokesh Madasu | Nirmal Surange | Manish Shrivastava
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available.

pdf
LastResort at SemEval-2024 Task 3: Exploring Multimodal Emotion Cause Pair Extraction as Sequence Labelling Task
Suyash Vardhan Mathur | Akshett Jindal | Hardik Mittal | Manish Shrivastava
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Conversation is the most natural form of human communication, where each utterance can range over a variety of possible emotions. While significant work has been done towards the detection of emotions in text, relatively little work has been done towards finding the cause of the said emotions, especially in multimodal settings. SemEval 2024 introduces the task of Multimodal Emotion Cause Analysis in Conversations, which aims to extract emotions reflected in individual utterances in a conversation involving multiple modalities (textual, audio, and visual modalities) along with the corresponding utterances that were the cause for the emotion. In this paper, we propose models that tackle this task as an utterance labeling and a sequence labeling problem and perform a comparative study of these models, involving baselines using different encoders, using BiLSTM for adding contextual information of the conversation, and finally adding a CRF layer to try to model the inter-dependencies between adjacent utterances more effectively. In the official leaderboard for the task, our architecture was ranked 8th, achieving an F1-score of 0.1759 on the leaderboard.

pdf
DaVinci at SemEval-2024 Task 9: Few-shot prompting GPT-3.5 for Unconventional Reasoning
Suyash Vardhan Mathur | Akshett Jindal | Manish Shrivastava
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

While significant work has been done in the field of NLP on vertical thinking, which involves primarily logical thinking, little work has been done towards lateral thinking, which involves looking at problems from an unconventional perspective defying existing conceptions and notions. Towards this direction, SemEval 2024 introduces the task of BRAINTEASER, which involves two types of questions – Sentence Puzzle and Word Puzzle that defy conventional common-sense reasoning and constraints. In this paper, we tackle both the questions using few-shot prompting on GPT-3.5 and gain insights regarding the difference in the nature of the two types of questions. Our prompting strategy placed us 26th on the leaderboard for the Sentence Puzzle and 15th on the Word Puzzle task.

pdf
Mast Kalandar at SemEval-2024 Task 8: On the Trail of Textual Origins: RoBERTa-BiLSTM Approach to Detect AI-Generated Text
Jainit Bafna | Hardik Mittal | Suyash Sethia | Manish Shrivastava | Radhika Mamidi
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Large Language Models (LLMs) have showcased impressive abilities in generating fluent responses to diverse user queries. However, concerns regarding the potential misuse ofsuch texts in journalism, educational, and academic contexts have surfaced. SemEval 2024introduces the task of Multigenerator, Multidomain, and Multilingual Black-Box MachineGenerated Text Detection, aiming to developautomated systems for identifying machinegenerated text and detecting potential misuse. In this paper, we i) propose a RoBERTaBiLSTM based classifier designed to classifytext into two categories: AI-generated or human ii) conduct a comparative study of ourmodel with baseline approaches to evaluate itseffectiveness. This paper contributes to the advancement of automatic text detection systemsin addressing the challenges posed by machinegenerated text misuse. Our architecture ranked46th on the official leaderboard with an accuracy of 80.83 among 125.

pdf
Maha Bhaashya at SemEval-2024 Task 6: Zero-Shot Multi-task Hallucination Detection
Patanjali Bhamidipati | Advaith Malladi | Manish Shrivastava | Radhika Mamidi
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

In recent studies, the extensive utilization oflarge language models has underscored the importance of robust evaluation methodologiesfor assessing text generation quality and relevance to specific tasks. This has revealeda prevalent issue known as hallucination, anemergent condition in the model where generated text lacks faithfulness to the source anddeviates from the evaluation criteria. In thisstudy, we formally define hallucination and propose a framework for its quantitative detectionin a zero-shot setting, leveraging our definitionand the assumption that model outputs entailtask and sample specific inputs. In detectinghallucinations, our solution achieves an accuracy of 0.78 in a model-aware setting and 0.61in a model-agnostic setting. Notably, our solution maintains computational efficiency, requiring far less computational resources than other SOTA approaches, aligning with the trendtowards lightweight and compressed models.

pdf
SemEval Task 1: Semantic Textual Relatedness for African and Asian Languages
Nedjma Ousidhoum | Shamsuddeen Hassan Muhammad | Mohamed Abdalla | Idris Abdulmumin | Ibrahim Said Ahmad | Sanchit Ahuja | Alham Fikri Aji | Vladimir Araujo | Meriem Beloucif | Christine De Kock | Oumaima Hourrane | Manish Shrivastava | Thamar Solorio | Nirmal Surange | Krishnapriya Vishnubhotla | Seid Muhie Yimam | Saif M. Mohammad
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia – regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks.

2023

pdf
Hindi Causal TimeBank: an Annotated Causal Event Corpus
Tanvi Kamble | Manish Shrivastava
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

Events and states have gained importance in NLP and information retrieval for being semantically rich temporal and spatial information indicators. Event causality helps us identify which events are necessary for another event to occur. The cause-effect event pairs can be relevant for multiple NLP tasks like question answering, summarization, etc. Multiple efforts have been made to identify causal events in documents but very little work has been done in this field in the Hindi language. We create an annotated corpus for detecting and classifying causal event relations on top of the Hindi Timebank (Goel et al., 2020), the ‘Hindi Causal Timebank’ (Hindi CTB). We introduce semantic causal relations like Purpose, Reason, and Enablement inspired from Bejan and Harabagiu (2008)’s annotation scheme and add some special cases particular to Hindi language.

pdf
A Survey of using Large Language Models for Generating Infrastructure as Code
Ganesh K. Srivatsa | Sabyasachi Mukhopadhyay | Ganesh Katrapati | Manish Shrivastava
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

Infrastructure as Code (IaC) is a revolutionary approach which has gained significant prominence in the Industry. IaC manages and provisions IT infrastructure using machinereadable code by enabling automation, consistency across the environments, reproducibility, version control, error reduction and enhancement in scalability. However, IaC orchestration is often a painstaking effort which requires specialised skills as well as a lot of manual effort. Automation of IaC is a necessity in the present conditions of the Industry and in this survey, we study the feasibility of applying Large Language Models (LLM) to address this problem. LLMs are large neural network-based models which have demonstrated significant language processing abilities and shown to be capable of following a range of instructions within a broad scope. Recently, they have also been adapted for code understanding and generation tasks successfully, which makes them a promising choice for the automatic generation of IaC configurations. In this survey, we delve into the details of IaC, usage of IaC in different platforms, their challenges, LLMs in terms of code-generation aspects and the importance of LLMs in IaC along with our own experiments. Finally, we conclude by presenting the challenges in this area and highlighting the scope for future research.

pdf
Event Annotation and Detection in Kannada-English Code-Mixed Social Media Data
Sumukh S | Abhinav Appidi | Manish Shrivastava
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Code-mixing (CM) is a frequently observed phenomenon on social media platforms in multilingual societies such as India. While the increase in code-mixed content on these platforms provides good amount of data for studying various aspects of code-mixing, the lack of automated text analysis tools makes such studies difficult. To overcome the same, tools such as language identifiers, Parts-of-Speech (POS) taggers and Named Entity Recognition (NER) for analysing code-mixed data have been developed. One such important tool is Event Detection, an important information retrieval task which can be used to identify critical facts occurring in the vast streams of unstructured text data available. While event detection from text is a hard problem on its own, social media data adds to it with its informal nature, and code-mixed (Kannada-English) data further complicates the problem due to its word-level mixing, lack of structure and incomplete information. In this work, we have tried to address this problem. We have proposed guidelines for the annotation of events in Kannada-English CM data and provided some baselines for the same with careful feature selection.

pdf
X-RiSAWOZ: High-Quality End-to-End Multilingual Dialogue Datasets and Few-shot Agents
Mehrad Moradshahi | Tianhao Shen | Kalika Bali | Monojit Choudhury | Gael de Chalendar | Anmol Goel | Sungkyun Kim | Prashant Kodali | Ponnurangam Kumaraguru | Nasredine Semmar | Sina Semnani | Jiwon Seo | Vivek Seshadri | Manish Shrivastava | Michael Sun | Aditya Yadavalli | Chaobin You | Deyi Xiong | Monica Lam
Findings of the Association for Computational Linguistics: ACL 2023

Task-oriented dialogue research has mainly focused on a few popular languages like English and Chinese, due to the high dataset creation cost for a new language. To reduce the cost, we apply manual editing to automatically translated data. We create a new multilingual benchmark, X-RiSAWOZ, by translating the Chinese RiSAWOZ to 4 languages: English, French, Hindi, Korean; and a code-mixed English-Hindi language.X-RiSAWOZ has more than 18,000 human-verified dialogue utterances for each language, and unlike most multilingual prior work, is an end-to-end dataset for building fully-functioning agents. The many difficulties we encountered in creating X-RiSAWOZ led us to develop a toolset to accelerate the post-editing of a new language dataset after translation. This toolset improves machine translation with a hybrid entity alignment technique that combines neural with dictionary-based methods, along with many automated and semi-automated validation checks. We establish strong baselines for X-RiSAWOZ by training dialogue agents in the zero- and few-shot settings where limited gold data is available in the target language. Our results suggest that our translation and post-editing methodology and toolset can be used to create new high-quality multilingual dialogue agents cost-effectively. Our dataset, code, and toolkit are released open-source.

pdf
PMIndiaSum: Multilingual and Cross-lingual Headline Summarization for Languages in India
Ashok Urlana | Pinzhen Chen | Zheng Zhao | Shay Cohen | Manish Shrivastava | Barry Haddow
Findings of the Association for Computational Linguistics: EMNLP 2023

This paper introduces PMIndiaSum, a multilingual and massively parallel summarization corpus focused on languages in India. Our corpus provides a training and testing ground for four language families, 14 languages, and the largest to date with 196 language pairs. We detail our construction workflow including data acquisition, processing, and quality assurance. Furthermore, we publish benchmarks for monolingual, cross-lingual, and multilingual summarization by fine-tuning, prompting, as well as translate-and-summarize. Experimental results confirm the crucial role of our data in aiding summarization between Indian languages. Our dataset is publicly available and can be freely modified and re-distributed.

pdf
LTRC at SemEval-2023 Task 6: Experiments with Ensemble Embeddings
Pavan Baswani | Hiranmai Sri Adibhatla | Manish Shrivastava
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

In this paper, we present our team’s involvement in Task 6: LegalEval: Understanding Legal Texts. The task comprised three subtasks, and we focus on subtask A: Rhetorical Roles prediction. Our approach included experimenting with pre-trained embeddings and refining them with statistical and neural classifiers. We provide a thorough examination ofour experiments, solutions, and analysis, culminating in our best-performing model and current progress. We achieved a micro F1 score of 0.6133 on the test data using fine-tuned LegalBERT embeddings.

pdf
Attention at SemEval-2023 Task 10: Explainable Detection of Online Sexism (EDOS)
Debashish Roy | Manish Shrivastava
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

In this paper, we have worked on explainability and understanding of the decisions made by models in the form of classification tasks. The task is divided into 3 subtasks. The first task consists of determining Binary Sexism Detection. The second task describes the Category of Sexism. The third task describes a more Fine-grained Category of Sexism. Our work explores solving these tasks as a classification problem by fine-tuning transformer-based architecture. We have performed several experiments with our architecture, including combining multiple transformers, using domain adaptive pretraining on the unlabelled dataset provided by Reddit and Gab, Joint learning, and taking different layers of transformers as input to a classification head. Our system (with the team name Attention’) was able to achieve a macro F1 score of 0.839 for task A, 0.5835 macro F1 score for task B and 0.3356 macro F1 score for task C at the Codalab SemEval Competition. Later we improved the accuracy of Task B to 0.6228 and Task C to 0.3693 in the test set.

pdf
IIIT HYD’s Submission for WMT23 Test-suite Task
Ananya Mukherjee | Manish Shrivastava
Proceedings of the Eighth Conference on Machine Translation

This paper summarizes the results of our test suite evaluation on 12 machine translation systems submitted at the Shared Task of the 8th Conference of Machine Translation (WMT23) for English-German (en-de) language pair. Our test suite covers five specific domains (entertainment, environment, health, science, legal) and spans five distinct writing styles (descriptive, judgments, narrative, reporting, technical-writing). We present our analysis through automatic evaluation methods, conducted with a focus on domain-specific and writing style-specific evaluations.

pdf
MEE4 and XLsim : IIIT HYD’s Submissions’ for WMT23 Metrics Shared Task
Ananya Mukherjee | Manish Shrivastava
Proceedings of the Eighth Conference on Machine Translation

This paper presents our contributions to the WMT2023 shared metrics task, consisting of two distinct evaluation approaches: a) Unsupervised Metric (MEE4) and b) Supervised Metric (XLSim). MEE4 represents an unsupervised, reference-based assessment metric that quantifies linguistic features, encompassing lexical, syntactic, semantic, morphological, and contextual similarities, leveraging embeddings. In contrast, XLsim is a supervised reference-based evaluation metric, employing a Siamese Architecture, which regresses on Direct Assessments (DA) from previous WMT News Translation shared tasks from 2017-2022. XLsim is trained using XLM-RoBERTa (base) on English-German reference and mt pairs with human scores.

pdf
PrecogIIITH@WASSA2023: Emotion Detection for Urdu-English Code-mixed Text
Bhaskara Hanuma Vedula | Prashant Kodali | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Code-mixing refers to the phenomenon of using two or more languages interchangeably within a speech or discourse context. This practice is particularly prevalent on social media platforms, and determining the embedded affects in a code-mixed sentence remains as a challenging problem. In this submission we describe our system for WASSA 2023 Shared Task on Emotion Detection in English-Urdu code-mixed text. In our system we implement a multiclass emotion detection model with label space of 11 emotions. Samples are code-mixed English-Urdu text, where Urdu is written in romanised form. Our submission is limited to one of the subtasks - Multi Class classification and we leverage transformer-based Multilingual Large Language Models (MLLMs), XLM-RoBERTa and Indic-BERT. We fine-tune MLLMs on the released data splits, with and without pre-processing steps (translation to english), for classifying texts into the appropriate emotion category. Our methods did not surpass the baseline, and our submission is ranked sixth overall.

pdf
The WEAVE 2.0 Corpus: Role Labelled Synthetic Chemical Procedures from Patents with Chemical Named Entities
Shubhangi Dutta | Manish Shrivastava | Prabhakar Bhimalapuram
Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation

pdf
Mukhyansh: A Headline Generation Dataset for Indic Languages
Lokesh Madasu | Gopichand Kanumolu | Nirmal Surange | Manish Shrivastava
Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation

pdf
Fine-grained Contract NER using instruction based mode
Hiranmai Adibhatla | Pavan Baswani | Manish Shrivastava
Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation

pdf
LTRC_IIITH’s 2023 Submission for Prompting Large Language Models as Explainable Metrics Task
Pavan Baswani | Ananya Mukherjee | Manish Shrivastava
Proceedings of the 4th Workshop on Evaluation and Comparison of NLP Systems

In this report, we share our contribution to the Eval4NLP Shared Task titled “Prompting Large Language Models as Explainable Metrics.” We build our prompts with a primary focus on effective prompting strategies, score-aggregation, and explainability for LLM-based metrics. We participated in the track for smaller models by submitting the scores along with their explanations. According to the Kendall correlation scores on the leaderboard, our MT evaluation submission ranks second-best, while our summarization evaluation submission ranks fourth, with only a 0.06 difference from the leading submission.

2022

pdf
Towards Fine-grained Classification of Climate Change related Social Media Text
Roopal Vaid | Kartikey Pant | Manish Shrivastava
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

With climate change becoming a cause of concern worldwide, it becomes essential to gauge people’s reactions. This can help educate and spread awareness about it and help leaders improve decision-making. This work explores the fine-grained classification and Stance detection of climate change-related social media text. Firstly, we create two datasets, ClimateStance and ClimateEng, consisting of 3777 tweets each, posted during the 2019 United Nations Framework Convention on Climate Change and comprehensively outline the dataset collection, annotation methodology, and dataset composition. Secondly, we propose the task of Climate Change stance detection based on our proposed ClimateStance dataset. Thirdly, we propose a fine-grained classification based on the ClimateEng dataset, classifying social media text into five categories: Disaster, Ocean/Water, Agriculture/Forestry, Politics, and General. We benchmark both the datasets for climate change stance detection and fine-grained classification using state-of-the-art methods in text classification. We also create a Reddit-based dataset for both the tasks, ClimateReddit, consisting of 6262 pseudo-labeled comments along with 329 manually annotated comments for the label. We then perform semi-supervised experiments for both the tasks and benchmark their results using the best-performing model for the supervised experiments. Lastly, we provide insights into the ClimateStance and ClimateReddit using part-of-speech tagging and named-entity recognition.

pdf
“Kanglish alli names!” Named Entity Recognition for Kannada-English Code-Mixed Social Media Data
Sumukh S | Manish Shrivastava
Proceedings of the Eighth Workshop on Noisy User-generated Text (W-NUT 2022)

Code-mixing (CM) is a frequently observed phenomenon on social media platforms in multilingual societies such as India. While the increase in code-mixed content on these platforms provides good amount of data for studying various aspects of code-mixing, the lack of automated text analysis tools makes such studies difficult. To overcome the same, tools such as language identifiers and parts of-speech (POS) taggers for analysing code-mixed data have been developed. One such tool is Named Entity Recognition (NER), an important Natural Language Processing (NLP) task, which is not only a subtask of Information Extraction, but is also needed for downstream NLP tasks such as semantic role labeling. While entity extraction from social media data is generally difficult due to its informal nature, code-mixed data further complicates the problem due to its informal, unstructured and incomplete information. In this work, we present the first ever corpus for Kannada-English code-mixed social media data with the corresponding named entity tags for NER. We provide strong baselines with machine learning classification models such as CRF, Bi-LSTM, and Bi-LSTM-CRF on our corpus with word, character, and lexical features.

pdf
Named Entity Recognition for Code-Mixed Kannada-English Social Media Data
Poojitha Nandigam | Abhinav Appidi | Manish Shrivastava
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Named Entity Recognition (NER) is a critical task in the field of Natural Language Processing (NLP) and is also a sub-task of Information Extraction. There has been a significant amount of work done in entity extraction and Named Entity Recognition for resource-rich languages. Entity extraction from code-mixed social media data like tweets from twitter complicates the problem due to its unstructured, informal, and incomplete information available in tweets. Here, we present work on NER in Kannada-English code-mixed social media corpus with corresponding named entity tags referring to Organisation (Org), Person (Pers), and Location (Loc). We experimented with machine learning classification models like Conditional Random Fields (CRF), Bi-LSTM, and Bi-LSTM-CRF models on our corpus.

pdf
SConE:Contextual Relevance based Significant CompoNent Extraction from Contracts
Hiranmai Adibhatla | Manish Shrivastava
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Automatic extraction of “significant” components of a legal contract, has the potential to simplify the end user’s comprehension. In essence, “significant” pieces of information have 1) information pertaining to material/practical details about a specific contract and 2) information that is novel or comes as a “surprise” for a specific type of contract. It indicates that the significance of a component may be defined at an individual contract level and at a contract-type level. A component, sentence, or paragraph, may be considered significant at a contract level if it contains contract-specific information (CSI), like names, dates, or currency terms. At a contract-type level, components that deviate significantly from the norm for the type may be considered significant (type-specific information (TSI)). In this paper, we present approaches to extract “significant” components from a contract at both these levels. We attempt to do this by identifying patterns in a pool of documents of the same kind. Consequently, in our approach, the solution is formulated in two parts: identifying CSI using a BERT-based contract-specific information extractor and identifying TSI by scoring sentences in a contract for their likelihood. In this paper, we even describe the annotated corpus of contract documents that we created as a first step toward the development of such a language-processing system. We also release a dataset of contract samples containing sentences belonging to CSI and TSI.

pdf
TeQuAD:Telugu Question Answering Dataset
Rakesh Vemula | Mani Nuthi | Manish Srivastava
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Recent state of the art models and new datasets have advanced many Natural Language Processing areas, especially, Machine Reading Comprehension tasks have improved with the help of datasets like SQuAD (Stanford Question Answering Dataset). But, large high quality datasets are still not a reality for low resource languages like Telugu to record progress in MRC. In this paper, we present a Telugu Question Answering Dataset - TeQuAD with the size of 82k parallel triples created by translating triples from the SQuAD. We also introduce a few methods to create similar Question Answering datasets for the low resource languages. Then, we present the performance of our models which outperform baseline models on Monolingual and Cross Lingual Machine Reading Comprehension (CLMRC) setups, the best of them resulting in an F1 score of 83 % and Exact Match (EM) score of 61 %.

pdf
TeSum: Human-Generated Abstractive Summarization Corpus for Telugu
Ashok Urlana | Nirmal Surange | Pavan Baswani | Priyanka Ravva | Manish Shrivastava
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Expert human annotation for summarization is definitely an expensive task, and can not be done on huge scales. But with this work, we show that even with a crowd sourced summary generation approach, quality can be controlled by aggressive expert informed filtering and sampling-based human evaluation. We propose a pipeline that crowd-sources summarization data and then aggressively filters the content via: automatic and partial expert evaluation. Using this pipeline we create a high-quality Telugu Abstractive Summarization dataset (TeSum) which we validate with sampling-based human evaluation. We also provide baseline numbers for various models commonly used for summarization. A number of recently released datasets for summarization, scraped the web-content relying on the assumption that summary is made available with the article by the publishers. While this assumption holds for multiple resources (or news-sites) in English, it should not be generalised across languages without thorough analysis and verification. Our analysis clearly shows that this assumption does not hold true for most Indian language news resources. We show that our proposed filtration pipeline can even be applied to these large-scale scraped datasets to extract better quality article-summary pairs.

pdf
HashSet - A Dataset For Hashtag Segmentation
Prashant Kodali | Akshala Bhatnagar | Naman Ahuja | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Hashtag segmentation is the task of breaking a hashtag into its constituent tokens. Hashtags often encode the essence of user-generated posts, along with information like topic and sentiment, which are useful in downstream tasks. Hashtags prioritize brevity and are written in unique ways - transliterating and mixing languages, spelling variations, creative named entities. Benchmark datasets used for the hashtag segmentation task - STAN, BOUN - are small and extracted from a single set of tweets. However, datasets should reflect the variations in writing styles of hashtags and account for domain and language specificity, failing which the results will misrepresent model performance. We argue that model performance should be assessed on a wider variety of hashtags, and datasets should be carefully curated. To this end, we propose HashSet, a dataset comprising of: a) 1.9k manually annotated dataset; b) 3.3M loosely supervised dataset. HashSet dataset is sampled from a different set of tweets when compared to existing datasets and provides an alternate distribution of hashtags to build and validate hashtag segmentation models. We analyze the performance of SOTA models for Hashtag Segmentation, and show that the proposed dataset provides an alternate set of hashtags to train and assess models.

pdf
Tesla at SemEval-2022 Task 4: Patronizing and Condescending Language Detection using Transformer-based Models with Data Augmentation
Sahil Bhatt | Manish Shrivastava
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our system for Task 4 of SemEval 2022: Patronizing and Condescending Language (PCL) Detection. For sub-task 1, where the objective is to classify a text as PCL or non-PCL, we use a T5 Model fine-tuned on the dataset. For sub-task 2, which is a multi-label classification problem, we use a RoBERTa model fine-tuned on the dataset. Given that the key challenge in this task is classification on an imbalanced dataset, our models rely on an augmented dataset that we generate using paraphrasing. We found that these two models yield the best results out of all the other approaches we tried.

pdf
Is My Model Using the Right Evidence? Systematic Probes for Examining Evidence-Based Tabular Reasoning
Vivek Gupta | Riyaz A. Bhat | Atreya Ghosal | Manish Shrivastava | Maneesh Singh | Vivek Srikumar
Transactions of the Association for Computational Linguistics, Volume 10

Neural models command state-of-the-art performance across NLP tasks, including ones involving “reasoning”. Models claiming to reason about the evidence presented to them should attend to the correct parts of the input while avoiding spurious patterns therein, be self-consistent in their predictions across inputs, and be immune to biases derived from their pre-training in a nuanced, context- sensitive fashion. Do the prevalent *BERT- family of models do so? In this paper, we study this question using the problem of reasoning on tabular data. Tabular inputs are especially well-suited for the study—they admit systematic probes targeting the properties listed above. Our experiments demonstrate that a RoBERTa-based model, representative of the current state-of-the-art, fails at reasoning on the following counts: it (a) ignores relevant parts of the evidence, (b) is over- sensitive to annotation artifacts, and (c) relies on the knowledge encoded in the pre-trained language model rather than the evidence presented in its tabular inputs. Finally, through inoculation experiments, we show that fine- tuning the model on perturbed data does not help it overcome the above challenges.

pdf
PreCogIIITH at HinglishEval : Leveraging Code-Mixing Metrics & Language Model Embeddings To Estimate Code-Mix Quality
Prashant Kodali | Tanmay Sachan | Akshay Goindani | Anmol Goel | Naman Ahuja | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the 15th International Conference on Natural Language Generation: Generation Challenges

Code-Mixing is a phenomenon of mixing two or more languages in a speech event and is prevalent in multilingual societies. Given the low-resource nature of Code-Mixing, machine generation of code-mixed text is a prevalent approach for data augmentation. However, evaluating the quality of such machine gen- erated code-mixed text is an open problem. In our submission to HinglishEval, a shared- task collocated with INLG2022, we attempt to build models factors that impact the quality of synthetically generated code-mix text by pre- dicting ratings for code-mix quality. Hingli- shEval Shared Task consists of two sub-tasks - a) Quality rating prediction); b) Disagree- ment prediction. We leverage popular code- mixed metrics and embeddings of multilin- gual large language models (MLLMs) as fea- tures, and train task specific MLP regression models. Our approach could not beat the baseline results. However, for Subtask-A our team ranked a close second on F-1 and Co- hen’s Kappa Score measures and first for Mean Squared Error measure. For Subtask-B our ap- proach ranked third for F1 score, and first for Mean Squared Error measure. Code of our submission can be accessed here.

pdf
SyMCoM - Syntactic Measure of Code Mixing A Study Of English-Hindi Code-Mixing
Prashant Kodali | Anmol Goel | Monojit Choudhury | Manish Shrivastava | Ponnurangam Kumaraguru
Findings of the Association for Computational Linguistics: ACL 2022

Code mixing is the linguistic phenomenon where bilingual speakers tend to switch between two or more languages in conversations. Recent work on code-mixing in computational settings has leveraged social media code mixed texts to train NLP models. For capturing the variety of code mixing in, and across corpus, Language ID (LID) tags based measures (CMI) have been proposed. Syntactical variety/patterns of code-mixing and their relationship vis-a-vis computational model’s performance is under explored. In this work, we investigate a collection of English(en)-Hindi(hi) code-mixed datasets from a syntactic lens to propose, SyMCoM, an indicator of syntactic variety in code-mixed text, with intuitive theoretical bounds. We train SoTA en-hi PoS tagger, accuracy of 93.4%, to reliably compute PoS tags on a corpus, and demonstrate the utility of SyMCoM by applying it on various syntactical categories on a collection of datasets, and compare datasets using the measure.

pdf
Leveraging Data Recasting to Enhance Tabular Reasoning
Aashna Jena | Vivek Gupta | Manish Shrivastava | Julian Eisenschlos
Findings of the Association for Computational Linguistics: EMNLP 2022

Creating challenging tabular inference data is essential for learning complex reasoning. Prior work has mostly relied on two data generation strategies. The first is human annotation, which yields linguistically diverse data but is difficult to scale. The second category for creation is synthetic generation, which is scalable and cost effective but lacks inventiveness. In this research, we present a framework for semi-automatically recasting existing tabular data to make use of the benefits of both approaches. We utilize our framework to build tabular NLI instances from five datasets that were initially intended for tasks like table2text creation, tabular Q/A, and semantic parsing. We demonstrate that recasted data could be used as evaluation benchmarks as well as augmentation data to enhance performance on tabular NLI tasks. Furthermore, we investigate the effectiveness of models trained on recasted data in the zero-shot scenario, and analyse trends in performance across different recasted datasets types.

pdf
LTRC @MuP 2022: Multi-Perspective Scientific Document Summarization Using Pre-trained Generation Models
Ashok Urlana | Nirmal Surange | Manish Shrivastava
Proceedings of the Third Workshop on Scholarly Document Processing

The MuP-2022 shared task focuses on multiperspective scientific document summarization. Given a scientific document, with multiple reference summaries, our goal was to develop a model that can produce a generic summary covering as many aspects of the document as covered by all of its reference summaries. This paper describes our best official model, a finetuned BART-large, along with a discussion on the challenges of this task and some of our unofficial models including SOTA generation models. Our submitted model out performedthe given, MuP 2022 shared task, baselines on ROUGE-2, ROUGE-L and average ROUGE F1-scores. Code of our submission can be ac- cessed here.

pdf
LTRC @ Causal News Corpus 2022: Extracting and Identifying Causal Elements using Adapters
Hiranmai Sri Adibhatla | Manish Shrivastava
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

Causality detection and identification is centered on identifying semantic and cognitive connections in a sentence. In this paper, we describe the effort of team LTRC for Causal News Corpus - Event Causality Shared Task 2022 at the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022). The shared task consisted of two subtasks: 1) identifying if a sentence contains a causality relation, and 2) identifying spans of text that correspond to cause, effect and signals. We fine-tuned transformer-based models with adapters for both subtasks. Our best-performing models obtained a binary F1 score of 0.853 on held-out data for subtask 1 and a macro F1 score of 0.032 on held-out data for subtask 2. Our approach is ranked third in subtask 1 and fourth in subtask 2. The paper describes our experiments, solutions, and analysis in detail.

pdf
Bilingual Tabular Inference: A Case Study on Indic Languages
Chaitanya Agarwal | Vivek Gupta | Anoop Kunchukuttan | Manish Shrivastava
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Existing research on Tabular Natural Language Inference (TNLI) exclusively examines the task in a monolingual setting where the tabular premise and hypothesis are in the same language. However, due to the uneven distribution of text resources on the web across languages, it is common to have the tabular premise in a high resource language and the hypothesis in a low resource language. As a result, we present the challenging task of bilingual Tabular Natural Language Inference (bTNLI), in which the tabular premise and a hypothesis over it are in two separate languages. We construct EI-InfoTabS: an English-Indic bTNLI dataset by translating the textual hypotheses of the English TNLI dataset InfoTabS into eleven major Indian languages. We thoroughly investigate how pre-trained multilingual models learn and perform on EI-InfoTabS. Our study shows that the performance on bTNLI can be close to its monolingual counterpart, with translate-train, translate-test and unified-train being strongly competitive baselines.

pdf
DocInfer: Document-level Natural Language Inference using Optimal Evidence Selection
Puneet Mathur | Gautam Kunapuli | Riyaz Bhat | Manish Shrivastava | Dinesh Manocha | Maneesh Singh
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present DocInfer - a novel, end-to-end Document-level Natural Language Inference model that builds a hierarchical document graph enriched through inter-sentence relations (topical, entity-based, concept-based), performs paragraph pruning using the novel SubGraph Pooling layer, followed by optimal evidence selection based on REINFORCE algorithm to identify the most important context sentences for a given hypothesis. Our evidence selection mechanism allows it to transcend the input length limitation of modern BERT-like Transformer models while presenting the entire evidence together for inferential reasoning. We show this is an important property needed to reason on large documents where the evidence may be fragmented and located arbitrarily far from each other. Extensive experiments on popular corpora - DocNLI, ContractNLI, and ConTRoL datasets, and our new proposed dataset called CaseHoldNLI on the task of legal judicial reasoning, demonstrate significant performance gains of 8-12% over SOTA methods. Our ablation studies validate the impact of our model. Performance improvement of 3-6% on annotation-scarce downstream tasks of fact verification, multiple-choice QA, and contract clause retrieval demonstrates the usefulness of DocInfer beyond primary NLI tasks.

pdf
Diverse Multi-Answer Retrieval with Determinantal Point Processes
Poojitha Nandigam | Nikhil Rayaprolu | Manish Shrivastava
Proceedings of the 29th International Conference on Computational Linguistics

Often questions provided to open-domain question answering systems are ambiguous. Traditional QA systems that provide a single answer are incapable of answering ambiguous questions since the question may be interpreted in several ways and may have multiple distinct answers. In this paper, we address multi-answer retrieval which entails retrieving passages that can capture majority of the diverse answers to the question. We propose a re-ranking based approach using Determinantal point processes utilizing BERT as kernels. Our method jointly considers query-passage relevance and passage-passage correlation to retrieve passages that are both query-relevant and diverse. Results demonstrate that our re-ranking technique outperforms state-of-the-art method on the AmbigQA dataset.

pdf
Unsupervised Embedding-based Metric for MT Evaluation with Improved Human Correlation
Ananya Mukherjee | Manish Shrivastava
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this paper, we describe our submission to the WMT22 metrics shared task. Our metric focuses on computing contextual and syntactic equivalences along with lexical, morphological, and semantic similarity. The intent is to capture the fluency and context of the MT outputs along with their adequacy. Fluency is captured using syntactic similarity and context is captured using sentence similarity leveraging sentence embeddings. The final sentence translation score is the weighted combination of three similarity scores: a) Syntactic Similarity b) Lexical, Morphological and Semantic Similarity, and c) Contextual Similarity. This paper outlines two improved versions of MEE i.e., MEE2 and MEE4. Additionally, we report our experiments on language pairs of en-de, en-ru and zh-en from WMT17-19 testset and further depict the correlation with human assessments.

pdf
REUSE: REference-free UnSupervised Quality Estimation Metric
Ananya Mukherjee | Manish Shrivastava
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper describes our submission to the WMT2022 shared metrics task. Our unsupervised metric estimates the translation quality at chunk-level and sentence-level. Source and target sentence chunks are retrieved by using a multi-lingual chunker. The chunk-level similarity is computed by leveraging BERT contextual word embeddings and sentence similarity scores are calculated by leveraging sentence embeddings of Language-Agnostic BERT models. The final quality estimation score is obtained by mean pooling the chunk-level and sentence-level similarity scores. This paper outlines our experiments and also reports the correlation with human judgements for en-de, en-ru and zh-en language pairs of WMT17, WMT18 and WMT19 test sets.

2021

pdf
A3-108 Machine Translation System for LoResMT Shared Task @MT Summit 2021 Conference
Saumitra Yadav | Manish Shrivastava
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

In this paper, we describe our submissions for LoResMT Shared Task @MT Summit 2021 Conference. We built statistical translation systems in each direction for English ⇐⇒ Marathi language pair. This paper outlines initial baseline experiments with various tokenization schemes to train models. Using optimal tokenization scheme we create synthetic data and further train augmented dataset to create more statistical models. Also, we reorder English to match Marathi syntax to further train another set of baseline and data augmented models using various tokenization schemes. We report configuration of the submitted systems and results produced by them.

pdf
Topic Shift Detection for Mixed Initiative Response
Rachna Konigari | Saurabh Ramola | Vijay Vardhan Alluri | Manish Shrivastava
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Topic diversion occurs frequently with engaging open-domain dialogue systems like virtual assistants. The balance between staying on topic and rectifying the topic drift is important for a good collaborative system. In this paper, we present a model which uses a fine-tuned XLNet-base to classify the utterances pertaining to the major topic of conversation and those which are not, with a precision of 84%. We propose a preliminary study, classifying utterances into major, minor and off-topics, which further extends into a system initiative for diversion rectification. A case study was conducted where a system initiative is emulated as a response to the user going off-topic, mimicking a common occurrence of mixed initiative present in natural human-human conversation. This task of classifying utterances into those which belong to the major theme or not, would also help us in identification of relevant sentences for tasks like dialogue summarization and information extraction from conversations.

pdf
SimpleNER Sentence Simplification System for GEM 2021
K V Aditya Srivatsa | Monil Gokani | Manish Shrivastava
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

This paper describes SimpleNER, a model developed for the sentence simplification task at GEM-2021. Our system is a monolingual Seq2Seq Transformer architecture that uses control tokens pre-pended to the data, allowing the model to shape the generated simplifications according to user desired attributes. Additionally, we show that NER-tagging the training data before use helps stabilize the effect of the control tokens and significantly improves the overall performance of the system. We also employ pretrained embeddings to reduce data sparsity and allow the model to produce more generalizable outputs.

pdf
Volta at SemEval-2021 Task 9: Statement Verification and Evidence Finding with Tables using TAPAS and Transfer Learning
Devansh Gautam | Kshitij Gupta | Manish Shrivastava
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Tables are widely used in various kinds of documents to present information concisely. Understanding tables is a challenging problem that requires an understanding of language and table structure, along with numerical and logical reasoning. In this paper, we present our systems to solve Task 9 of SemEval-2021: Statement Verification and Evidence Finding with Tables (SEM-TAB-FACTS). The task consists of two subtasks: (A) Given a table and a statement, predicting whether the table supports the statement and (B) Predicting which cells in the table provide evidence for/against the statement. We fine-tune TAPAS (a model which extends BERT’s architecture to capture tabular structure) for both the subtasks as it has shown state-of-the-art performance in various table understanding tasks. In subtask A, we evaluate how transfer learning and standardizing tables to have a single header row improves TAPAS’ performance. In subtask B, we evaluate how different fine-tuning strategies can improve TAPAS’ performance. Our systems achieve an F1 score of 67.34 in subtask A three-way classification, 72.89 in subtask A two-way classification, and 62.95 in subtask B.

pdf
Translate and Classify: Improving Sequence Level Classification for English-Hindi Code-Mixed Data
Devansh Gautam | Kshitij Gupta | Manish Shrivastava
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

Code-mixing is a common phenomenon in multilingual societies around the world and is especially common in social media texts. Traditional NLP systems, usually trained on monolingual corpora, do not perform well on code-mixed texts. Training specialized models for code-switched texts is difficult due to the lack of large-scale datasets. Translating code-mixed data into standard languages like English could improve performance on various code-mixed tasks since we can use transfer learning from state-of-the-art English models for processing the translated data. This paper focuses on two sequence-level classification tasks for English-Hindi code mixed texts, which are part of the GLUECoS benchmark - Natural Language Inference and Sentiment Analysis. We propose using various pre-trained models that have been fine-tuned for similar English-only tasks and have shown state-of-the-art performance. We further fine-tune these models on the translated code-mixed datasets and achieve state-of-the-art performance in both tasks. To translate English-Hindi code-mixed data to English, we use mBART, a pre-trained multilingual sequence-to-sequence model that has shown competitive performance on various low-resource machine translation pairs and has also shown performance gains in languages that were not in its pre-training corpus.

pdf
CoMeT: Towards Code-Mixed Translation Using Parallel Monolingual Sentences
Devansh Gautam | Prashant Kodali | Kshitij Gupta | Anmol Goel | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

Code-mixed languages are very popular in multilingual societies around the world, yet the resources lag behind to enable robust systems on such languages. A major contributing factor is the informal nature of these languages which makes it difficult to collect code-mixed data. In this paper, we propose our system for Task 1 of CACLS 2021 to generate a machine translation system for English to Hinglish in a supervised setting. Translating in the given direction can help expand the set of resources for several tasks by translating valuable datasets from high resource languages. We propose to use mBART, a pre-trained multilingual sequence-to-sequence model, and fully utilize the pre-training of the model by transliterating the roman Hindi words in the code-mixed sentences to Devanagri script. We evaluate how expanding the input by concatenating Hindi translations of the English sentences improves mBART’s performance. Our system gives a BLEU score of 12.22 on test set. Further, we perform a detailed error analysis of our proposed systems and explore the limitations of the provided dataset and metrics.

pdf
Enhancing Aspect Extraction for Hindi
Arghya Bhattacharya | Alok Debnath | Manish Shrivastava
Proceedings of the 4th Workshop on e-Commerce and NLP

Aspect extraction is not a well-explored topic in Hindi, with only one corpus having been developed for the task. In this paper, we discuss the merits of the existing corpus in terms of quality, size, sparsity, and performance in aspect extraction tasks using established models. To provide a better baseline corpus for aspect extraction, we translate the SemEval 2014 aspect-based sentiment analysis dataset and annotate the aspects in that data. We provide rigorous guidelines and a replicable methodology for this task. We quantitatively evaluate the translations and annotations using inter-annotator agreement scores. We also evaluate our dataset using state-of-the-art neural aspect extraction models in both monolingual and multilingual settings and show that the models perform far better on our corpus than on the existing Hindi dataset. With this, we establish our corpus as the gold-standard aspect extraction dataset in Hindi.

pdf
A Dynamic Head Importance Computation Mechanism for Neural Machine Translation
Akshay Goindani | Manish Shrivastava
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Multiple parallel attention mechanisms that use multiple attention heads facilitate greater performance of the Transformer model for various applications e.g., Neural Machine Translation (NMT), text classification. In multi-head attention mechanism, different heads attend to different parts of the input. However, the limitation is that multiple heads might attend to the same part of the input, resulting in multiple heads being redundant. Thus, the model resources are under-utilized. One approach to avoid this is to prune least important heads based on certain importance score. In this work, we focus on designing a Dynamic Head Importance Computation Mechanism (DHICM) to dynamically calculate the importance of a head with respect to the input. Our insight is to design an additional attention layer together with multi-head attention, and utilize the outputs of the multi-head attention along with the input, to compute the importance for each head. Additionally, we add an extra loss function to prevent the model from assigning same score to all heads, to identify more important heads and improvise performance. We analyzed performance of DHICM for NMT with different languages. Experiments on different datasets show that DHICM outperforms traditional Transformer-based approach by large margin, especially, when less training data is available.

pdf
The Effect of Pretraining on Extractive Summarization for Scientific Documents
Yash Gupta | Pawan Sasanka Ammanamanchi | Shikha Bordia | Arjun Manoharan | Deepak Mittal | Ramakanth Pasunuru | Manish Shrivastava | Maneesh Singh | Mohit Bansal | Preethi Jyothi
Proceedings of the Second Workshop on Scholarly Document Processing

Large pretrained models have seen enormous success in extractive summarization tasks. In this work, we investigate the influence of pretraining on a BERT-based extractive summarization system for scientific documents. We derive significant performance improvements using an intermediate pretraining step that leverages existing summarization datasets and report state-of-the-art results on a recently released scientific summarization dataset, SciTLDR. We systematically analyze the intermediate pretraining step by varying the size and domain of the pretraining corpus, changing the length of the input sequence in the target task and varying target tasks. We also investigate how intermediate pretraining interacts with contextualized word embeddings trained on different domains.

pdf
A3-108 Machine Translation System for Similar Language Translation Shared Task 2021
Saumitra Yadav | Manish Shrivastava
Proceedings of the Sixth Conference on Machine Translation

In this paper, we describe our submissions for the Similar Language Translation Shared Task 2021. We built 3 systems in each direction for the Tamil ⇐⇒ Telugu language pair. This paper outlines experiments with various tokenization schemes to train statistical models. We also report the configuration of the submitted systems and results produced by them.

2020

pdf
NoEl: An Annotated Corpus for Noun Ellipsis in English
Payal Khullar | Kushal Majmundar | Manish Shrivastava
Proceedings of the Twelfth Language Resources and Evaluation Conference

Ellipsis resolution has been identified as an important step to improve the accuracy of mainstream Natural Language Processing (NLP) tasks such as information retrieval, event extraction, dialog systems, etc. Previous computational work on ellipsis resolution has focused on one type of ellipsis, namely Verb Phrase Ellipsis (VPE) and a few other related phenomenon. We extend the study of ellipsis by presenting the No(oun)El(lipsis) corpus - an annotated corpus for noun ellipsis and closely related phenomenon using the first hundred movies of Cornell Movie Dialogs Dataset. The annotations are carried out in a standoff annotation scheme that encodes the position of the licensor, the antecedent boundary, and Part-of-Speech (POS) tags of the licensor and antecedent modifier. Our corpus has 946 instances of exophoric and endophoric noun ellipsis, making it the biggest resource of noun ellipsis in English, to the best of our knowledge. We present a statistical study of our corpus with novel insights on the distribution of noun ellipsis, its licensors and antecedents. Finally, we perform the tasks of detection and resolution of noun ellipsis with different classifiers trained on our corpus and report baseline results.

pdf
SCAR: Sentence Compression using Autoencoders for Reconstruction
Chanakya Malireddy | Tirth Maniar | Manish Shrivastava
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Sentence compression is the task of shortening a sentence while retaining its meaning. Most methods proposed for this task rely on labeled or paired corpora (containing pairs of verbose and compressed sentences), which is often expensive to collect. To overcome this limitation, we present a novel unsupervised deep learning framework (SCAR) for deletion-based sentence compression. SCAR is primarily composed of two encoder-decoder pairs: a compressor and a reconstructor. The compressor masks the input, and the reconstructor tries to regenerate it. The model is entirely trained on unlabeled data and does not require additional inputs such as explicit syntactic information or optimal compression length. SCAR’s merit lies in the novel Linkage Loss function, which correlates the compressor and its effect on reconstruction, guiding it to drop inferable tokens. SCAR achieves higher ROUGE scores on benchmark datasets than the existing state-of-the-art methods and baselines. We also conduct a user study to demonstrate the application of our model as a text highlighting system. Using our model to underscore salient information facilitates speed-reading and reduces the time required to skim a document.

pdf
A Simple and Effective Dependency Parser for Telugu
Sneha Nallani | Manish Shrivastava | Dipti Sharma
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

We present a simple and effective dependency parser for Telugu, a morphologically rich, free word order language. We propose to replace the rich linguistic feature templates used in the past approaches with a minimal feature function using contextual vector representations. We train a BERT model on the Telugu Wikipedia data and use vector representations from this model to train the parser. Each sentence token is associated with a vector representing the token in the context of that sentence and the feature vectors are constructed by concatenating two token representations from the stack and one from the buffer. We put the feature representations through a feedforward network and train with a greedy transition based approach. The resulting parser has a very simple architecture with minimal feature engineering and achieves state-of-the-art results for Telugu.

pdf
A Multi-Dimensional View of Aggression when voicing Opinion
Arjit Srivastava | Avijit Vajpayee | Syed Sarfaraz Akhtar | Naman Jain | Vinay Singh | Manish Shrivastava
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying

The advent of social media has immensely proliferated the amount of opinions and arguments voiced on the internet. These virtual debates often present cases of aggression. While research has been focused largely on analyzing aggression and stance in isolation from each other, this work is the first attempt to gain an extensive and fine-grained understanding of patterns of aggression and figurative language use when voicing opinion. We present a Hindi-English code-mixed dataset of opinion on the politico-social issue of ‘2016 India banknote demonetisation‘ and annotate it across multiple dimensions such as aggression, hate speech, emotion arousal and figurative language usage (such as sarcasm/irony, metaphors/similes, puns/word-play).

pdf
AbuseAnalyzer: Abuse Detection, Severity and Target Prediction for Gab Posts
Mohit Chandra | Ashwin Pathak | Eesha Dutta | Paryul Jain | Manish Gupta | Manish Shrivastava | Ponnurangam Kumaraguru
Proceedings of the 28th International Conference on Computational Linguistics

While extensive popularity of online social media platforms has made information dissemination faster, it has also resulted in widespread online abuse of different types like hate speech, offensive language, sexist and racist opinions, etc. Detection and curtailment of such abusive content is critical for avoiding its psychological impact on victim communities, and thereby preventing hate crimes. Previous works have focused on classifying user posts into various forms of abusive behavior. But there has hardly been any focus on estimating the severity of abuse and the target. In this paper, we present a first of the kind dataset with 7,601 posts from Gab which looks at online abuse from the perspective of presence of abuse, severity and target of abusive behavior. We also propose a system to address these tasks, obtaining an accuracy of ∼80% for abuse presence, ∼82% for abuse target prediction, and ∼65% for abuse severity prediction.

pdf
Creation of Corpus and analysis in Code-Mixed Kannada-English Twitter data for Emotion Prediction
Abhinav Reddy Appidi | Vamshi Krishna Srirangam | Darsi Suhas | Manish Shrivastava
Proceedings of the 28th International Conference on Computational Linguistics

Emotion prediction is a critical task in the field of Natural Language Processing (NLP). There has been a significant amount of work done in emotion prediction for resource-rich languages. There has been work done on code-mixed social media corpus but not on emotion prediction of Kannada-English code-mixed Twitter data. In this paper, we analyze the problem of emotion prediction on corpus obtained from code-mixed Kannada-English extracted from Twitter annotated with their respective ‘Emotion’ for each tweet. We experimented with machine learning prediction models using features like Character N-Grams, Word N-Grams, Repetitive characters, and others on SVM and LSTM on our corpus, which resulted in an accuracy of 30% and 32% respectively.

pdf bib
The WEAVE Corpus: Annotating Synthetic Chemical Procedures in Patents with Chemical Named Entities
Ravindra Nittala | Manish Shrivastava
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

The Modern pharmaceutical industry depends on the iterative design of novel synthetic routes for drugs while not infringing on existing intellectual property rights. Such a design process calls for analyzing many existing synthetic chemical reactions and planning the synthesis of novel chemicals. These procedures have been historically available in unstructured raw text form in publications and patents. To facilitate automated synthetic chemical reactions analysis and design the novel synthetic reactions using Natural Language Processing (NLP) methods, we introduce a Named Entity Recognition (NER) dataset of the Examples section in 180 full-text patent documents with 5188 synthetic procedures annotated by domain experts. All the chemical entities which are part of the synthetic discourse were annotated with suitable class labels. We present the second-largest chemical NER corpus with 100,129 annotations and the highest IAA value of 98.73% (F-measure) on a 45 document subset. We discuss this new resource in detail and highlight some specific challenges in annotating synthetic chemical procedures with chemical named entities. We make the corpus available to the community to promote further research and development of downstream NLP systems applications. We also provide baseline results for the NER model to the community to improve on.

pdf
Creation of Corpus and Analysis in Code-Mixed Kannada-English Social Media Data for POS Tagging
Abhinav Reddy Appidi | Vamshi Krishna Srirangam | Darsi Suhas | Manish Shrivastava
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

Part-of-Speech (POS) is one of the essential tasks for many Natural Language Processing (NLP) applications. There has been a significant amount of work done in POS tagging for resource-rich languages. POS tagging is an essential phase of text analysis in understanding the semantics and context of language. These tags are useful for higher-level tasks such as building parse trees, which can be used for Named Entity Recognition, Coreference resolution, Sentiment Analysis, and Question Answering. There has been work done on code-mixed social media corpus but not on POS tagging of Kannada-English code-mixed data. Here, we present Kannada-English code- mixed social media corpus annotated with corresponding POS tags. We also experimented with machine learning classification models CRF, Bi-LSTM, and Bi-LSTM-CRF models on our corpus.

pdf
Improving Passage Re-Ranking with Word N-Gram Aware Coattention Encoder
Chaitanya Alaparthi | Manish Shrivastava
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

In text matching applications, coattentions have proved to be highly effective attention mechanisms. Coattention enables the learning to attend based on computing word level affinity scores between two texts. In this paper, we propose two improvements to coattention mechanism in the context of passage ranking (re-ranking). First, we extend the coattention mechanism by applying it across all word n-grams of query and passage. We show that these word n-gram coattentions can capture local context in query and passage to better judge the relevance between them. Second, we further improve the model performance by proposing a query based attention pooling on passage encodings. We evaluate these two methods on MSMARCO passage re-ranking task. The experiment results shows that these two methods resulted in a relative increase of 8.04% in Mean Reciprocal Rank @10 (MRR@10) compared to the naive coattention mechanism. At the time of writing this paper, our methods are the best non transformer model on MS MARCO passage re-ranking task and are competitive to BERT base while only having less than 10% of the parameters.

pdf
Finding The Right One and Resolving it
Payal Khullar | Arghya Bhattacharya | Manish Shrivastava
Proceedings of the 24th Conference on Computational Natural Language Learning

One-anaphora has figured prominently in theoretical linguistic literature, but computational linguistics research on the phenomenon is sparse. Not only that, the long standing linguistic controversy between the determinative and the nominal anaphoric element one has propagated in the limited body of computational work on one-anaphora resolution, making this task harder than it is. In the present paper, we resolve this by drawing from an adequate linguistic analysis of the word one in different syntactic environments - once again highlighting the significance of linguistic theory in Natural Language Processing (NLP) tasks. We prepare an annotated corpus marking actual instances of one-anaphora with their textual antecedents, and use the annotations to experiment with state-of-the art neural models for one-anaphora resolution. Apart from presenting a strong neural baseline for this task, we contribute a gold-standard corpus, which is, to the best of our knowledge, the biggest resource on one-anaphora till date.

pdf
A3-108 Machine Translation System for Similar Language Translation Shared Task 2020
Saumitra Yadav | Manish Shrivastava
Proceedings of the Fifth Conference on Machine Translation

In this paper, we describe our submissions for Similar Language Translation Shared Task 2020. We built 12 systems in each direction for Hindi⇐⇒Marathi language pair. This paper outlines initial baseline experiments with various tokenization schemes to train statistical models. Using optimal tokenization scheme among these we created synthetic source side text with back translation. And prune synthetic text with language model scores. This synthetic data was then used along with training data in various settings to build translation models. We also report configuration of the submitted systems and results produced by them.

pdf bib
Hindi TimeBank: An ISO-TimeML Annotated Reference Corpus
Pranav Goel | Suhan Prabhu | Alok Debnath | Priyank Modi | Manish Shrivastava
Proceedings of the 16th Joint ACL-ISO Workshop on Interoperable Semantic Annotation

ISO-TimeML is an international standard for multilingual event annotation, detection, categorization and linking. In this paper, we present the Hindi TimeBank, an ISO-TimeML annotated reference corpus for the detection and classification of events, states and time expressions, and the links between them. Based on contemporary developments in Hindi event recognition, we propose language independent and language-specific deviations from the ISO-TimeML guidelines, but preserve the schema. These deviations include the inclusion of annotator confidence, and an independent mechanism of identifying and annotating states such as copulars and existentials) With this paper, we present an open-source corpus, the Hindi TimeBank. The Hindi TimeBank is a 1,000 article dataset, with over 25,000 events, 3,500 states and 2,000 time expressions. We analyze the dataset in detail and provide a class-wise distribution of events, states and time expressions. Our guidelines and dataset are backed by high average inter-annotator agreement scores.

pdf
Detection and Annotation of Events in Kannada
Suhan Prabhu | Ujwal Narayan | Alok Debnath | Sumukh S | Manish Shrivastava
Proceedings of the 16th Joint ACL-ISO Workshop on Interoperable Semantic Annotation

In this paper, we provide the basic guidelines towards the detection and linguistic analysis of events in Kannada. Kannada is a morphologically rich, resource poor Dravidian language spoken in southern India. As most information retrieval and extraction tasks are resource intensive, very little work has been done on Kannada NLP, with almost no efforts in discourse analysis and dataset creation for representing events or other semantic annotations in the text. In this paper, we linguistically analyze what constitutes an event in this language, the challenges faced with discourse level annotation and representation due to the rich derivational morphology of the language that allows free word order, numerous multi-word expressions, adverbial participle constructions and constraints on subject-verb relations. Therefore, this paper is one of the first attempts at a large scale discourse level annotation for Kannada, which can be used for semantic annotation and corpus development for other tasks in the language.

pdf
SIS@IIITH at SemEval-2020 Task 8: An Overview of Simple Text Classification Methods for Meme Analysis
Sravani Boinepelli | Manish Shrivastava | Vasudeva Varma
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Memes are steadily taking over the feeds of the public on social media. There is always the threat of malicious users on the internet posting offensive content, even through memes. Hence, the automatic detection of offensive images/memes is imperative along with detection of offensive text. However, this is a much more complex task as it involves both visual cues as well as language understanding and cultural/context knowledge. This paper describes our approach to the task of SemEval-2020 Task 8: Memotion Analysis. We chose to participate only in Task A which dealt with Sentiment Classification, which we formulated as a text classification problem. Through our experiments, we explored multiple training models to evaluate the performance of simple text classification algorithms on the raw text obtained after running OCR on meme images. Our submitted model achieved an accuracy of 72.69% and exceeded the existing baseline’s Macro F1 score by 8% on the official test dataset. Apart from describing our official submission, we shall elucidate how different classification models respond to this task.

pdf
Subtl.ai at the FinSBD-2 task: Document Structure Identification by Paying Attention
Abhishek Arora | Aman Khullar | Sarath Chandra Pakala | Vishnu Ramesh | Manish Shrivastava
Proceedings of the Second Workshop on Financial Technology and Natural Language Processing

pdf
Word Embeddings as Tuples of Feature Probabilities
Siddharth Bhat | Alok Debnath | Souvik Banerjee | Manish Shrivastava
Proceedings of the 5th Workshop on Representation Learning for NLP

In this paper, we provide an alternate perspective on word representations, by reinterpreting the dimensions of the vector space of a word embedding as a collection of features. In this reinterpretation, every component of the word vector is normalized against all the word vectors in the vocabulary. This idea now allows us to view each vector as an n-tuple (akin to a fuzzy set), where n is the dimensionality of the word representation and each element represents the probability of the word possessing a feature. Indeed, this representation enables the use fuzzy set theoretic operations, such as union, intersection and difference. Unlike previous attempts, we show that this representation of words provides a notion of similarity which is inherently asymmetric and hence closer to human similarity judgements. We compare the performance of this representation with various benchmarks, and explore some of the unique properties including function word detection, detection of polysemous words, and some insight into the interpretability provided by set theoretic operations.

pdf
A Fully Expanded Dependency Treebank for Telugu
Sneha Nallani | Manish Shrivastava | Dipti Sharma
Proceedings of the WILDRE5– 5th Workshop on Indian Language Data: Resources and Evaluation

Treebanks are an essential resource for syntactic parsing. The available Paninian dependency treebank(s) for Telugu is annotated only with inter-chunk dependency relations and not all words of a sentence are part of the parse tree. In this paper, we automatically annotate the intra-chunk dependencies in the treebank using a Shift-Reduce parser based on Context Free Grammar rules for Telugu chunks. We also propose a few additional intra-chunk dependency relations for Telugu apart from the ones used in Hindi treebank. Annotating intra-chunk dependencies finally provides a complete parse tree for every sentence in the treebank. Having a fully expanded treebank is crucial for developing end to end parsers which produce complete trees. We present a fully expanded dependency treebank for Telugu consisting of 3220 sentences. In this paper, we also convert the treebank annotated with Anncorra part-of-speech tagset to the latest BIS tagset. The BIS tagset is a hierarchical tagset adopted as a unified part-of-speech standard across all Indian Languages. The final treebank is made publicly available.

2019

pdf
A3-108 Machine Translation System for LoResMT 2019
Saumitra Yadav | Vandan Mujadia | Manish Shrivastava
Proceedings of the 2nd Workshop on Technologies for MT of Low Resource Languages

pdf bib
Answering Naturally: Factoid to Full length Answer Generation
Vaishali Pal | Manish Shrivastava | Irshad Bhat
Proceedings of the 2nd Workshop on New Frontiers in Summarization

In recent years, the task of Question Answering over passages, also pitched as a reading comprehension, has evolved into a very active research area. A reading comprehension system extracts a span of text, comprising of named entities, dates, small phrases, etc., which serve as the answer to a given question. However, these spans of text would result in an unnatural reading experience in a conversational system. Usually, dialogue systems solve this issue by using template-based language generation. These systems, though adequate for a domain specific task, are too restrictive and predefined for a domain independent system. In order to present the user with a more conversational experience, we propose a pointer generator based full-length answer generator which can be used with most QA systems. Our system generates a full length answer given a question and the extracted factoid/span answer without relying on the passage from where the answer was extracted. We also present a dataset of 315000 question, factoid answer and full length answer triples. We have evaluated our system using ROUGE-1,2,L and BLEU and achieved 74.05 BLEU score and 86.25 Rogue-L score.

pdf
Predicting Algorithm Classes for Programming Word Problems
Vinayak Athavale | Aayush Naik | Rajas Vanjape | Manish Shrivastava
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

We introduce the task of algorithm class prediction for programming word problems. A programming word problem is a problem written in natural language, which can be solved using an algorithm or a program. We define classes of various programming word problems which correspond to the class of algorithms required to solve the problem. We present four new datasets for this task, two multiclass datasets with 550 and 1159 problems each and two multilabel datasets having 3737 and 3960 problems each. We pose the problem as a text classification problem and train neural network and non-neural network based models on this task. Our best performing classifier gets an accuracy of 62.7 percent for the multiclass case on the five class classification dataset, Codeforces Multiclass-5 (CFMC5). We also do some human-level analysis and compare human performance with that of our text classification models. Our best classifier has an accuracy only 9 percent lower than that of a human on this task. To the best of our knowledge, these are the first reported results on such a task. We make our code and datasets publicly available.

pdf
A Pregroup Representation of Word Order Alternation Using Hindi Syntax
Alok Debnath | Manish Shrivastava
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

Pregroup calculus has been used for the representation of free word order languages (Sanskrit and Hungarian), using a construction called precyclicity. However, restricted word order alternation has not been handled before. This paper aims at introducing and formally expressing three methods of representing word order alternation in the pregroup representation of any language. This paper describes the word order alternation patterns of Hindi, and creates a basic pregroup representation for the language. In doing so, the shortcoming of correct reductions for ungrammatical sentences due to the current apparatus is highlighted, and the aforementioned methods are invoked for a grammatically accurate representation of restricted word order alternation. The replicability of these methods is explained in the representation of adverbs and prepositional phrases in English.

pdf
Corpus Creation and Analysis for Named Entity Recognition in Telugu-English Code-Mixed Social Media Data
Vamshi Krishna Srirangam | Appidi Abhinav Reddy | Vinay Singh | Manish Shrivastava
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Named Entity Recognition(NER) is one of the important tasks in Natural Language Processing(NLP) and also is a subtask of Information Extraction. In this paper we present our work on NER in Telugu-English code-mixed social media data. Code-Mixing, a progeny of multilingualism is a way in which multilingual people express themselves on social media by using linguistics units from different languages within a sentence or speech context. Entity Extraction from social media data such as tweets(twitter) is in general difficult due to its informal nature, code-mixed data further complicates the problem due to its informal, unstructured and incomplete information. We present a Telugu-English code-mixed corpus with the corresponding named entity tags. The named entities used to tag data are Person(‘Per’), Organization(‘Org’) and Location(‘Loc’). We experimented with the machine learning models Conditional Random Fields(CRFs), Decision Trees and BiLSTMs on our corpus which resulted in a F1-score of 0.96, 0.94 and 0.95 respectively.

pdf
De-Mixing Sentiment from Code-Mixed Text
Yash Kumar Lal | Vaibhav Kumar | Mrinal Dhar | Manish Shrivastava | Philipp Koehn
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Code-mixing is the phenomenon of mixing the vocabulary and syntax of multiple languages in the same sentence. It is an increasingly common occurrence in today’s multilingual society and poses a big challenge when encountered in different downstream tasks. In this paper, we present a hybrid architecture for the task of Sentiment Analysis of English-Hindi code-mixed data. Our method consists of three components, each seeking to alleviate different issues. We first generate subword level representations for the sentences using a CNN architecture. The generated representations are used as inputs to a Dual Encoder Network which consists of two different BiLSTMs - the Collective and Specific Encoder. The Collective Encoder captures the overall sentiment of the sentence, while the Specific Encoder utilizes an attention mechanism in order to focus on individual sentiment-bearing sub-words. This, combined with a Feature Network consisting of orthographic features and specially trained word embeddings, achieves state-of-the-art results - 83.54% accuracy and 0.827 F1 score - on a benchmark dataset.

pdf
Incorporating Sub-Word Level Information in Language Invariant Neural Event Detection
Suhan Prabhu | Pranav Goel | Alok Debnath | Manish Shrivastava
Proceedings of the 16th International Conference on Natural Language Processing

Detection of TimeML events in text have traditionally been done on corpora such as TimeBanks. However, deep learning methods have not been applied to these corpora, because these datasets seldom contain more than 10,000 event mentions. Traditional architectures revolve around highly feature engineered, language specific statistical models. In this paper, we present a Language Invariant Neural Event Detection (ALINED) architecture. ALINED uses an aggregation of both sub-word level features as well as lexical and structural information. This is achieved by combining convolution over character embeddings, with recurrent layers over contextual word embeddings. We find that our model extracts relevant features for event span identification without relying on language specific features. We compare the performance of our language invariant model to the current state-of-the-art in English, Spanish, Italian and French. We outperform the F1-score of the state of the art in English by 1.65 points. We achieve F1-scores of 84.96, 80.87 and 74.81 on Spanish, Italian and French respectively which is comparable to the current states of the art for these languages. We also introduce the automatic annotation of events in Hindi, a low resource language, with an F1-Score of 77.13.

pdf
Event Centric Entity Linking for Hindi News Articles: A Knowledge Graph Based Approach
Pranav Goel | Suhan Prabhu | Alok Debnath | Manish Shrivastava
Proceedings of the 16th International Conference on Natural Language Processing

We describe the development of a knowledge graph from an event annotated corpus by presenting a pipeline that identifies and extracts the relations between entities and events from Hindi news articles. Due to the semantic implications of argument identification for events in Hindi, we use a combined syntactic argument and semantic role identification methodology. To the best of our knowledge, no other architecture exists for this purpose. The extracted combined role information is incorporated in a knowledge graph that can be queried via subgraph extraction for basic questions. The architectures presented in this paper can be used for participant extraction and event-entity linking in most Indo-Aryan languages, due to similar syntactic and semantic properties of event arguments.

pdf
Kunji : A Resource Management System for Higher Productivity in Computer Aided Translation Tools
Priyank Gupta | Manish Shrivastava | Dipti Misra Sharma | Rashid Ahmad
Proceedings of the 16th International Conference on Natural Language Processing

Complex NLP applications, such as machine translation systems, utilize various kinds of resources namely lexical, multiword, domain dictionaries, maps and rules etc. Similarly, translators working on Computer Aided Translation workbenches, also require help from various kinds of resources - glossaries, terminologies, concordances and translation memory in the workbenches in order to increase their productivity. Additionally, translators have to look away from the workbenches for linguistic resources like Named Entities, Multiwords, lexical and lexeme dictionaries in order to get help, as the available resources like concordances, terminologies and glossaries are often not enough. In this paper we present Kunji, a resource management system for translation workbenches and MT modules. This system can be easily integrated in translation workbenches and can also be used as a management tool for resources for MT systems. The described resource management system has been integrated in a translation workbench Transzaar. We also study the impact of providing this resource management system along with linguistic resources on the productivity of translators for English-Hindi language pair. When the linguistic resources like lexeme, NER and MWE dictionaries were made available to translators in addition to their regular translation memories, concordances and terminologies, their productivity increased by 15.61%.

pdf
Using Syntax to Resolve NPE in English
Payal Khullar | Allen Antony | Manish Shrivastava
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

This paper describes a novel, syntax-based system for automatic detection and resolution of Noun Phrase Ellipsis (NPE) in English. The system takes in free input English text, detects the site of nominal elision, and if present, selects potential antecedent candidates. The rules are built using the syntactic information on ellipsis and its antecedent discussed in previous theoretical linguistics literature on NPE. Additionally, we prepare a curated dataset of 337 sentences from well-known, reliable sources, containing positive and negative samples of NPE. We split this dataset into two parts, and use one part to refine our rules and the other to test the performance of our final system. We get an F1-score of 76.47% for detection and 70.27% for NPE resolution on the testset. To the best of our knowledge, ours is the first system that detects and resolves NPE in English. The curated dataset used for this task, albeit small, covers a wide variety of NPE cases and will be made public for future work.

pdf
FERMI at SemEval-2019 Task 5: Using Sentence embeddings to Identify Hate Speech Against Immigrants and Women in Twitter
Vijayasaradhi Indurthi | Bakhtiyar Syed | Manish Shrivastava | Nikhil Chakravartula | Manish Gupta | Vasudeva Varma
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes our system (Fermi) for Task 5 of SemEval-2019: HatEval: Multilingual Detection of Hate Speech Against Immigrants and Women on Twitter. We participated in the subtask A for English and ranked first in the evaluation on the test set. We evaluate the quality of multiple sentence embeddings and explore multiple training models to evaluate the performance of simple yet effective embedding-ML combination algorithms. Our team - Fermi’s model achieved an accuracy of 65.00% for English language in task A. Our models, which use pretrained Universal Encoder sentence embeddings for transforming the input and SVM (with RBF kernel) for classification, scored first position (among 68) in the leaderboard on the test set for Subtask A in English language. In this paper we provide a detailed description of the approach, as well as the results obtained in the task.

pdf
Fermi at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media using Sentence Embeddings
Vijayasaradhi Indurthi | Bakhtiyar Syed | Manish Shrivastava | Manish Gupta | Vasudeva Varma
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes our system (Fermi) for Task 6: OffensEval: Identifying and Categorizing Offensive Language in Social Media of SemEval-2019. We participated in all the three sub-tasks within Task 6. We evaluate multiple sentence embeddings in conjunction with various supervised machine learning algorithms and evaluate the performance of simple yet effective embedding-ML combination algorithms. Our team Fermi’s model achieved an F1-score of 64.40%, 62.00% and 62.60% for sub-task A, B and C respectively on the official leaderboard. Our model for sub-task C which uses pre-trained ELMo embeddings for transforming the input and uses SVM (RBF kernel) for training, scored third position on the official leaderboard. Through the paper we provide a detailed description of the approach, as well as the results obtained for the task.

pdf
Fermi at SemEval-2019 Task 8: An elementary but effective approach to Question Discernment in Community QA Forums
Bakhtiyar Syed | Vijayasaradhi Indurthi | Manish Shrivastava | Manish Gupta | Vasudeva Varma
Proceedings of the 13th International Workshop on Semantic Evaluation

Online Community Question Answering Forums (cQA) have gained massive popularity within recent years. The rise in users for such forums have led to the increase in the need for automated evaluation for question comprehension and fact evaluation of the answers provided by various participants in the forum. Our team, Fermi, participated in sub-task A of Task 8 at SemEval 2019 - which tackles the first problem in the pipeline of factual evaluation in cQA forums, i.e., deciding whether a posed question asks for a factual information, an opinion/advice or is just socializing. This information is highly useful in segregating factual questions from non-factual ones which highly helps in organizing the questions into useful categories and trims down the problem space for the next task in the pipeline for fact evaluation among the available answers. Our system uses the embeddings obtained from Universal Sentence Encoder combined with XGBoost for the classification sub-task A. We also evaluate other combinations of embeddings and off-the-shelf machine learning algorithms to demonstrate the efficacy of the various representations and their combinations. Our results across the evaluation test set gave an accuracy of 84% and received the first position in the final standings judged by the organizers.

2018

pdf
Too Many Questions? What Can We Do? : Multiple Question Span Detection
Prathyusha Danda | Brij Mohan Lal Srivastava | Manish Shrivastava
Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation

pdf
BoWLer: A neural approach to extractive text summarization
Pranav Dhakras | Manish Shrivastava
Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation

pdf
Universal Dependency Parsing for Hindi-English Code-Switching
Irshad Bhat | Riyaz A. Bhat | Manish Shrivastava | Dipti Sharma
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Code-switching is a phenomenon of mixing grammatical structures of two or more languages under varied social constraints. The code-switching data differ so radically from the benchmark corpora used in NLP community that the application of standard technologies to these data degrades their performance sharply. Unlike standard corpora, these data often need to go through additional processes such as language identification, normalization and/or back-transliteration for their efficient processing. In this paper, we investigate these indispensable processes and other problems associated with syntactic parsing of code-switching data and propose methods to mitigate their effects. In particular, we study dependency parsing of code-switching data of Hindi and English multilingual speakers from Twitter. We present a treebank of Hindi-English code-switching tweets under Universal Dependencies scheme and propose a neural stacking model for parsing that efficiently leverages the part-of-speech tag and syntactic tree annotations in the code-switching treebank and the preexisting Hindi and English treebanks. We also present normalization and back-transliteration models with a decoding process tailored for code-switching data. Results show that our neural stacking parser is 1.5% LAS points better than the augmented parsing model and 3.8% LAS points better than the one which uses first-best normalization and/or back-transliteration.

pdf
Corpus Creation and Emotion Prediction for Hindi-English Code-Mixed Social Media Text
Deepanshu Vijay | Aditya Bohra | Vinay Singh | Syed Sarfaraz Akhtar | Manish Shrivastava
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

Emotion Prediction is a Natural Language Processing (NLP) task dealing with detection and classification of emotions in various monolingual and bilingual texts. While some work has been done on code-mixed social media text and in emotion prediction separately, our work is the first attempt which aims at identifying the emotion associated with Hindi-English code-mixed social media text. In this paper, we analyze the problem of emotion identification in code-mixed content and present a Hindi-English code-mixed corpus extracted from twitter and annotated with the associated emotion. For every tweet in the dataset, we annotate the source language of all the words present, and also the causal language of the expressed emotion. Finally, we propose a supervised classification system which uses various machine learning techniques for detecting the emotion associated with the text using a variety of character level, word level, and lexicon based features.

pdf
Twitter corpus of Resource-Scarce Languages for Sentiment Analysis and Multilingual Emoji Prediction
Nurendra Choudhary | Rajat Singh | Vijjini Anvesh Rao | Manish Shrivastava
Proceedings of the 27th International Conference on Computational Linguistics

In this paper, we leverage social media platforms such as twitter for developing corpus across multiple languages. The corpus creation methodology is applicable for resource-scarce languages provided the speakers of that particular language are active users on social media platforms. We present an approach to extract social media microblogs such as tweets (Twitter). In this paper, we create corpus for multilingual sentiment analysis and emoji prediction in Hindi, Bengali and Telugu. Further, we perform and analyze multiple NLP tasks utilizing the corpus to get interesting observations.

pdf
Deep Learning methods for Semantic Role Labeling in Indian Languages
Aishwary Gupta | Akshay Pawale | Manish Shrivastava
Proceedings of the 15th International Conference on Natural Language Processing

pdf
“Is This A Joke?”: A Large Humor Classification Dataset
Faraz Faruqi | Manish Shrivastava
Proceedings of the 15th International Conference on Natural Language Processing

pdf
Exploring Chunk Based Templates for Generating a subset of English Text
Nikhilesh Bhatnagar | Manish Shrivastava | Radhika Mamidi
Proceedings of ACL 2018, Student Research Workshop

Natural Language Generation (NLG) is a research task which addresses the automatic generation of natural language text representative of an input non-linguistic collection of knowledge. In this paper, we address the task of the generation of grammatical sentences in an isolated context given a partial bag-of-words which the generated sentence must contain. We view the task as a search problem (a problem of choice) involving combinations of smaller chunk based templates extracted from a training corpus to construct a complete sentence. To achieve that, we propose a fitness function which we use in conjunction with an evolutionary algorithm as the search procedure to arrive at a potentially grammatical sentence (modeled by the fitness score) which satisfies the input constraints.

pdf
Automatic Question Generation using Relative Pronouns and Adverbs
Payal Khullar | Konigari Rachna | Mukul Hase | Manish Shrivastava
Proceedings of ACL 2018, Student Research Workshop

This paper presents a system that automatically generates multiple, natural language questions using relative pronouns and relative adverbs from complex English sentences. Our system is syntax-based, runs on dependency parse information of a single-sentence input, and achieves high accuracy in terms of syntactic correctness, semantic adequacy, fluency and uniqueness. One of the key advantages of our system, in comparison with other rule-based approaches, is that we nearly eliminate the chances of getting a wrong wh-word in the generated question, by fetching the requisite wh-word from the input sentence itself. Depending upon the input, we generate both factoid and descriptive type questions. To the best of our information, the exploitation of wh-pronouns and wh-adverbs to generate questions is novel in the Automatic Question Generation task.

pdf
A Dataset of Hindi-English Code-Mixed Social Media Text for Hate Speech Detection
Aditya Bohra | Deepanshu Vijay | Vinay Singh | Syed Sarfaraz Akhtar | Manish Shrivastava
Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media

Hate speech detection in social media texts is an important Natural language Processing task, which has several crucial applications like sentiment analysis, investigating cyberbullying and examining socio-political controversies. While relevant research has been done independently on code-mixed social media texts and hate speech detection, our work is the first attempt in detecting hate speech in Hindi-English code-mixed social media text. In this paper, we analyze the problem of hate speech detection in code-mixed texts and present a Hindi-English code-mixed dataset consisting of tweets posted online on Twitter. The tweets are annotated with the language at word level and the class they belong to (Hate Speech or Normal Speech). We also propose a supervised classification system for detecting hate speech in the text using various character level, word level, and lexicon based features.

pdf
Named Entity Recognition for Hindi-English Code-Mixed Social Media Text
Vinay Singh | Deepanshu Vijay | Syed Sarfaraz Akhtar | Manish Shrivastava
Proceedings of the Seventh Named Entities Workshop

Named Entity Recognition (NER) is a major task in the field of Natural Language Processing (NLP), and also is a sub-task of Information Extraction. The challenge of NER for tweets lie in the insufficient information available in a tweet. There has been a significant amount of work done related to entity extraction, but only for resource rich languages and domains such as newswire. Entity extraction is, in general, a challenging task for such an informal text, and code-mixed text further complicates the process with it’s unstructured and incomplete information. We propose experiments with different machine learning classification algorithms with word, character and lexical features. The algorithms we experimented with are Decision tree, Long Short-Term Memory (LSTM), and Conditional Random Field (CRF). In this paper, we present a corpus for NER in Hindi-English Code-Mixed along with extensive experiments on our machine learning models which achieved the best f1-score of 0.95 with both CRF and LSTM.

pdf
Transliteration Better than Translation? Answering Code-mixed Questions over a Knowledge Base
Vishal Gupta | Manoj Chinnakotla | Manish Shrivastava
Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching

Humans can learn multiple languages. If they know a fact in one language, they can answer a question in another language they understand. They can also answer Code-mix (CM) questions: questions which contain both languages. This behavior is attributed to the unique learning ability of humans. Our task aims to study if machines can achieve this. We demonstrate how effectively a machine can answer CM questions. In this work, we adopt a two phase approach: candidate generation and candidate re-ranking to answer questions. We propose a Triplet-Siamese-Hybrid CNN (TSHCNN) to re-rank candidate answers. We show experiments on the SimpleQuestions dataset. Our network is trained only on English questions provided in this dataset and noisy Hindi translations of these questions and can answer English-Hindi CM questions effectively without the need of translation into English. Back-transliterated CM questions outperform their lexical and sentence level translated counterparts by 5% & 35% in accuracy respectively, highlighting the efficacy of our approach in a resource constrained setting.

pdf
Gold Corpus for Telegraphic Summarization
Chanakya Malireddy | Srivenkata N M Somisetty | Manish Shrivastava
Proceedings of the First Workshop on Linguistic Resources for Natural Language Processing

Most extractive summarization techniques operate by ranking all the source sentences and then select the top ranked sentences as the summary. Such methods are known to produce good summaries, especially when applied to news articles and scientific texts. However, they don’t fare so well when applied to texts such as fictional narratives, which don’t have a single central or recurrent theme. This is because usually the information or plot of the story is spread across several sentences. In this paper, we discuss a different summarization technique called Telegraphic Summarization. Here, we don’t select whole sentences, rather pick short segments of text spread across sentences, as the summary. We have tailored a set of guidelines to create such summaries and, using the same, annotate a gold corpus of 200 English short stories.

pdf
Enabling Code-Mixed Translation: Parallel Corpus Creation and MT Augmentation Approach
Mrinal Dhar | Vaibhav Kumar | Manish Shrivastava
Proceedings of the First Workshop on Linguistic Resources for Natural Language Processing

Code-mixing, use of two or more languages in a single sentence, is ubiquitous; generated by multi-lingual speakers across the world. The phenomenon presents itself prominently in social media discourse. Consequently, there is a growing need for translating code-mixed hybrid language into standard languages. However, due to the lack of gold parallel data, existing machine translation systems fail to properly translate code-mixed text. In an effort to initiate the task of machine translation of code-mixed content, we present a newly created parallel corpus of code-mixed English-Hindi and English. We selected previously available English-Hindi code-mixed data as a starting point for the creation of our parallel corpus. We then chose 4 human translators, fluent in both English and Hindi, for translating the 6088 code-mixed English-Hindi sentences to English. With the help of the created parallel corpus, we analyzed the structure of English-Hindi code-mixed data and present a technique to augment run-of-the-mill machine translation (MT) approaches that can help achieve superior translations without the need for specially designed translation systems. We present an augmentation pipeline for existing MT approaches, like Phrase Based MT (Moses) and Neural MT, to improve the translation of code-mixed text. The augmentation pipeline is presented as a pre-processing step and can be plugged with any existing MT system, which we demonstrate by improving translations done by systems like Moses, Google Neural Machine Translation System (NMTS) and Bing Translator for English-Hindi code-mixed content.

pdf
Degree based Classification of Harmful Speech using Twitter Data
Sanjana Sharma | Saksham Agrawal | Manish Shrivastava
Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)

Harmful speech has various forms and it has been plaguing the social media in different ways. If we need to crackdown different degrees of hate speech and abusive behavior amongst it, the classification needs to be based on complex ramifications which needs to be defined and hold accountable for, other than racist, sexist or against some particular group and community. This paper primarily describes how we created an ontological classification of harmful speech based on degree of hateful intent and used it to annotate twitter data accordingly. The key contribution of this paper is the new dataset of tweets we created based on ontological classes and degrees of harmful speech found in the text. We also propose supervised classification system for recognizing these respective harmful speech classes in the texts hence. This serves as a preliminary work to lay down foundation on defining different classes of harmful speech and subsequent work will be done in making it’s automatic detection more robust and efficient.

pdf
Aggression Detection on Social Media Text Using Deep Neural Networks
Vinay Singh | Aman Varshney | Syed Sarfaraz Akhtar | Deepanshu Vijay | Manish Shrivastava
Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)

In the past few years, bully and aggressive posts on social media have grown significantly, causing serious consequences for victims/users of all demographics. Majority of the work in this field has been done for English only. In this paper, we introduce a deep learning based classification system for Facebook posts and comments of Hindi-English Code-Mixed text to detect the aggressive behaviour of/towards users. Our work focuses on text from users majorly in the Indian Subcontinent. The dataset that we used for our models is provided by TRAC-1in their shared task. Our classification model assigns each Facebook post/comment to one of the three predefined categories: “Overtly Aggressive”, “Covertly Aggressive” and “Non-Aggressive”. We experimented with 6 classification models and our CNN model on a 10 K-fold cross-validation gave the best result with the prediction accuracy of 73.2%.

pdf
Retrieve and Re-rank: A Simple and Effective IR Approach to Simple Question Answering over Knowledge Graphs
Vishal Gupta | Manoj Chinnakotla | Manish Shrivastava
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)

SimpleQuestions is a commonly used benchmark for single-factoid question answering (QA) over Knowledge Graphs (KG). Existing QA systems rely on various components to solve different sub-tasks of the problem (such as entity detection, entity linking, relation prediction and evidence integration). In this work, we propose a different approach to the problem and present an information retrieval style solution for it. We adopt a two-phase approach: candidate generation and candidate re-ranking to answer questions. We propose a Triplet-Siamese-Hybrid CNN (TSHCNN) to re-rank candidate answers. Our approach achieves an accuracy of 80% which sets a new state-of-the-art on the SimpleQuestions dataset.

pdf
Humor Detection in English-Hindi Code-Mixed Social Media Content : Corpus and Baseline System
Ankush Khandelwal | Sahil Swami | Syed S. Akhtar | Manish Shrivastava
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf
Word Similarity Datasets for Indian Languages: Annotation and Baseline Systems
Syed Sarfaraz Akhtar | Arihant Gupta | Avijit Vajpayee | Arjit Srivastava | Manish Shrivastava
Proceedings of the 11th Linguistic Annotation Workshop

With the advent of word representations, word similarity tasks are becoming increasing popular as an evaluation metric for the quality of the representations. In this paper, we present manually annotated monolingual word similarity datasets of six Indian languages - Urdu, Telugu, Marathi, Punjabi, Tamil and Gujarati. These languages are most spoken Indian languages worldwide after Hindi and Bengali. For the construction of these datasets, our approach relies on translation and re-annotation of word similarity datasets of English. We also present baseline scores for word representation models using state-of-the-art techniques for Urdu, Telugu and Marathi by evaluating them on newly created word similarity datasets.

pdf
Beyond Word2Vec: Embedding Words and Phrases in Same Vector Space
Vijay Prakash Dwivedi | Manish Shrivastava
Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017)

pdf
End to End Dialog System for Telugu
Prathyusha Danda | Prathyusha Jwalapuram | Manish Shrivastava
Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017)

pdf
Transition-Based Deep Input Linearization
Ratish Puduppully | Yue Zhang | Manish Shrivastava
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Traditional methods for deep NLG adopt pipeline approaches comprising stages such as constructing syntactic input, predicting function words, linearizing the syntactic input and generating the surface forms. Though easier to visualize, pipeline approaches suffer from error propagation. In addition, information available across modules cannot be leveraged by all modules. We construct a transition-based model to jointly perform linearization, function word prediction and morphological generation, which considerably improves upon the accuracy compared to a pipelined baseline system. On a standard deep input linearization shared task, our system achieves the best results reported so far.

pdf
Joining Hands: Exploiting Monolingual Treebanks for Parsing of Code-mixing Data
Irshad Bhat | Riyaz A. Bhat | Manish Shrivastava | Dipti Sharma
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

In this paper, we propose efficient and less resource-intensive strategies for parsing of code-mixed data. These strategies are not constrained by in-domain annotations, rather they leverage pre-existing monolingual annotated resources for training. We show that these methods can produce significantly better results as compared to an informed baseline. Due to lack of an evaluation set for code-mixed structures, we also present a data set of 450 Hindi and English code-mixed tweets of Hindi multilingual speakers for evaluation.

pdf
Exploiting Morphological Regularities in Distributional Word Representations
Arihant Gupta | Syed Sarfaraz Akhtar | Avijit Vajpayee | Arjit Srivastava | Madan Gopal Jhanwar | Manish Shrivastava
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We present an unsupervised, language agnostic approach for exploiting morphological regularities present in high dimensional vector spaces. We propose a novel method for generating embeddings of words from their morphological variants using morphological transformation operators. We evaluate this approach on MSR word analogy test set with an accuracy of 85% which is 12% higher than the previous best known system.

pdf
Injecting Word Embeddings with Another Language’s Resource : An Application of Bilingual Embeddings
Prakhar Pandey | Vikram Pudi | Manish Shrivastava
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Word embeddings learned from text corpus can be improved by injecting knowledge from external resources, while at the same time also specializing them for similarity or relatedness. These knowledge resources (like WordNet, Paraphrase Database) may not exist for all languages. In this work we introduce a method to inject word embeddings of a language with knowledge resource of another language by leveraging bilingual embeddings. First we improve word embeddings of German, Italian, French and Spanish using resources of English and test them on variety of word similarity tasks. Then we demonstrate the utility of our method by creating improved embeddings for Urdu and Telugu languages using Hindi WordNet, beating the previously established baseline for Urdu.

pdf
Deep Neural Network based system for solving Arithmetic Word problems
Purvanshi Mehta | Pruthwik Mishra | Vinayak Athavale | Manish Shrivastava | Dipti Sharma
Proceedings of the IJCNLP 2017, System Demonstrations

This paper presents DILTON a system which solves simple arithmetic word problems. DILTON uses a Deep Neural based model to solve math word problems. DILTON divides the question into two parts - worldstate and query. The worldstate and the query are processed separately in two different networks and finally, the networks are merged to predict the final operation. We report the first deep learning approach for the prediction of operation between two numbers. DILTON learns to predict operations with 88.81% accuracy in a corpus of primary school questions.

2016

pdf
Together we stand: Siamese Networks for Similar Question Retrieval
Arpita Das | Harish Yenala | Manoj Chinnakotla | Manish Shrivastava
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Transition-Based Syntactic Linearization with Lookahead Features
Ratish Puduppully | Yue Zhang | Manish Shrivastava
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf
Shallow Parsing Pipeline - Hindi-English Code-Mixed Social Media Text
Arnav Sharma | Sakshi Gupta | Raveesh Motlani | Piyush Bansal | Manish Shrivastava | Radhika Mamidi | Dipti M. Sharma
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf
Kathaa: A Visual Programming Framework for NLP Applications
Sharada Prasanna Mohanty | Nehal J Wani | Manish Srivastava | Dipti Misra Sharma
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

pdf bib
Kathaa : NLP Systems as Edge-Labeled Directed Acyclic MultiGraphs
Sharada Mohanty | Nehal J Wani | Manish Srivastava | Dipti Sharma
Proceedings of the Third International Workshop on Worldwide Language Service Infrastructure and Second Workshop on Open Infrastructures and Analysis Frameworks for Human Language Technologies (WLSI/OIAF4HLT2016)

We present Kathaa, an Open Source web-based Visual Programming Framework for Natural Language Processing (NLP) Systems. Kathaa supports the design, execution and analysis of complex NLP systems by visually connecting NLP components from an easily extensible Module Library. It models NLP systems an edge-labeled Directed Acyclic MultiGraph, and lets the user use publicly co-created modules in their own NLP applications irrespective of their technical proficiency in Natural Language Processing. Kathaa exposes an intuitive web based Interface for the users to interact with and modify complex NLP Systems; and a precise Module definition API to allow easy integration of new state of the art NLP components. Kathaa enables researchers to publish their services in a standardized format to enable the masses to use their services out of the box. The vision of this work is to pave the way for a system like Kathaa, to be the Lego blocks of NLP Research and Applications. As a practical use case we use Kathaa to visually implement the Sampark Hindi-Panjabi Machine Translation Pipeline and the Sampark Hindi-Urdu Machine Translation Pipeline, to demonstrate the fact that Kathaa can handle really complex NLP systems while still being intuitive for the end user.

pdf
Towards Deep Learning in Hindi NER: An approach to tackle the Labelled Data Sparsity
Vinayak Athavale | Shreenivas Bharadwaj | Monik Pamecha | Ameya Prabhu | Manish Shrivastava
Proceedings of the 13th International Conference on Natural Language Processing

pdf
Vaidya: A Spoken Dialog System for Health Domain
Prathyusha Danda | Brij Mohan Lal Srivastava | Manish Shrivastava
Proceedings of the 13th International Conference on Natural Language Processing

pdf
Hand in Glove: Deep Feature Fusion Network Architectures for Answer Quality Prediction in Community Question Answering
Sai Praneeth Suggu | Kushwanth Naga Goutham | Manoj K. Chinnakotla | Manish Shrivastava
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Community Question Answering (cQA) forums have become a popular medium for soliciting direct answers to specific questions of users from experts or other experienced users on a given topic. However, for a given question, users sometimes have to sift through a large number of low-quality or irrelevant answers to find out the answer which satisfies their information need. To alleviate this, the problem of Answer Quality Prediction (AQP) aims to predict the quality of an answer posted in response to a forum question. Current AQP systems either learn models using - a) various hand-crafted features (HCF) or b) Deep Learning (DL) techniques which automatically learn the required feature representations. In this paper, we propose a novel approach for AQP known as - “Deep Feature Fusion Network (DFFN)” which combines the advantages of both hand-crafted features and deep learning based systems. Given a question-answer pair along with its metadata, the DFFN architecture independently - a) learns features from the Deep Neural Network (DNN) and b) computes hand-crafted features using various external resources and then combines them using a fully connected neural network trained to predict the final answer quality. DFFN is end-end differentiable and trained as a single system. We propose two different DFFN architectures which vary mainly in the way they model the input question/answer pair - DFFN-CNN uses a Convolutional Neural Network (CNN) and DFFN-BLNA uses a Bi-directional LSTM with Neural Attention (BLNA). Both these proposed variants of DFFN (DFFN-CNN and DFFN-BLNA) achieve state-of-the-art performance on the standard SemEval-2015 and SemEval-2016 benchmark datasets and outperforms baseline approaches which individually employ either HCF or DL based techniques alone.

pdf
Towards Sub-Word Level Compositions for Sentiment Analysis of Hindi-English Code Mixed Text
Aditya Joshi | Ameya Prabhu | Manish Shrivastava | Vasudeva Varma
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Sentiment analysis (SA) using code-mixed data from social media has several applications in opinion mining ranging from customer satisfaction to social campaign analysis in multilingual societies. Advances in this area are impeded by the lack of a suitable annotated dataset. We introduce a Hindi-English (Hi-En) code-mixed dataset for sentiment analysis and perform empirical analysis comparing the suitability and performance of various state-of-the-art SA methods in social media. In this paper, we introduce learning sub-word level representations in our LSTM (Subword-LSTM) architecture instead of character-level or word-level representations. This linguistic prior in our architecture enables us to learn the information about sentiment value of important morphemes. This also seems to work well in highly noisy text containing misspellings as shown in our experiments which is demonstrated in morpheme-level feature maps learned by our model. Also, we hypothesize that encoding this linguistic prior in the Subword-LSTM architecture leads to the superior performance. Our system attains accuracy 4-5% greater than traditional approaches on our dataset, and also outperforms the available system for sentiment analysis in Hi-En code-mixed text by 18%.

2014

pdf
Do not do processing, when you can look up: Towards a Discrimination Net for WSD
Diptesh Kanojia | Pushpak Bhattacharyya | Raj Dabre | Siddhartha Gunti | Manish Shrivastava
Proceedings of the Seventh Global Wordnet Conference

pdf
PaCMan : Parallel Corpus Management Workbench
Diptesh Kanojia | Manish Shrivastava | Raj Dabre | Pushpak Bhattacharyya
Proceedings of the 11th International Conference on Natural Language Processing

2006

pdf
Morphological Richness Offsets Resource Demand – Experiences in Constructing a POS Tagger for Hindi
Smriti Singh | Kuhoo Gupta | Manish Shrivastava | Pushpak Bhattacharyya
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions

Search
Co-authors