This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The increasing use of AI chatbots as conversation partners for second-language learners highlights the importance of providing effective feedback. To ensure a successful learning experience, it is essential for researchers and practitioners to understand the optimal timing, methods of delivery, and types of feedback that are most beneficial to learners. Synchronous grammar corrective feedback (CF) has been shown to be more effective than asynchronous methods in online writing tasks. Additionally, self-correction by language learners has proven more beneficial than teacher-provided correction, particularly for spoken language skills and non-novice learners. However, existing language-learning AI chatbots often lack synchronous CF and self-correction capabilities. To address this, we propose a synchronous conversational corrective feedback (CCF) method, which allows self-correction and provides metalinguistic explanations (ME). Our study suggests that in chatbot-driven language-learning tools, corrective feedback is more effectively delivered through means other than the social chatbot, such as a GUI interface. Furthermore, we found that guided self-correction offers a superior learning experience compared to providing explicit corrections, particularly for learners with high learning motivation or lower linguistic ability.
Artificial intelligence chatbots are the vanguard in technology-based intervention to change people’s behavior. To develop intervention chatbots, the first step is to understand natural language conversation strategies in human conversation. This work introduces an intervention conversation dataset collected from a real-world physical activity intervention program for women. We designed comprehensive annotation schemes in four dimensions (domain, strategy, social exchange, and task-focused exchange) and annotated a subset of dialogs. We built a strategy classifier with context information to detect strategies from both trainers and participants based on the annotation. To understand how human intervention induces effective behavior changes, we analyzed the relationships between the intervention strategies and the participants’ changes in the barrier and social support for physical activity. We also analyzed how participant’s baseline weight correlates to the amount of occurrence of the corresponding strategy. This work lays the foundation for developing a personalized physical activity intervention chatbot.
Open-domain dialog systems have a user-centric goal: to provide humans with an engaging conversation experience. User engagement is one of the most important metrics for evaluating open-domain dialog systems, and could also be used as real-time feedback to benefit dialog policy learning. Existing work on detecting user disengagement typically requires hand-labeling many dialog samples. We propose HERALD, an efficient annotation framework that reframes the training data annotation process as a denoising problem. Specifically, instead of manually labeling training samples, we first use a set of labeling heuristics to label training samples automatically. We then denoise the weakly labeled data using the Shapley algorithm. Finally, we use the denoised data to train a user engagement detector. Our experiments show that HERALD improves annotation efficiency significantly and achieves 86% user disengagement detection accuracy in two dialog corpora.