Julian Martin Eisenschlos


2023

pdf
WinoDict: Probing language models for in-context word acquisition
Julian Martin Eisenschlos | Jeremy R. Cole | Fangyu Liu | William W. Cohen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

We introduce a new in-context learning paradigm to measure Large Language Models’ (LLMs) ability to learn novel words during inference. In particular, we rewrite Winograd-style co-reference resolution problems by replacing the key concept word with a synthetic but plausible word that the model must understand to complete the task. Solving this task requires the model to make use of the dictionary definition of the new word given in the prompt. This benchmark addresses word acquisition, one important aspect of the diachronic degradation known to afflict LLMs. As LLMs are frozen in time at the moment they are trained, they are normally unable to reflect the way language changes over time. We show that the accuracy of LLMs compared to the original Winograd tasks decreases radically in our benchmark, thus identifying a limitation of current models and providing a benchmark to measure future improvements in LLMs ability to do in-context learning.

pdf
DiffQG: Generating Questions to Summarize Factual Changes
Jeremy R. Cole | Palak Jain | Julian Martin Eisenschlos | Michael J.Q. Zhang | Eunsol Choi | Bhuwan Dhingra
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Identifying the difference between two versions of the same article is useful to update knowledge bases and to understand how articles evolve. Paired texts occur naturally in diverse situations: reporters write similar news stories and maintainers of authoritative websites must keep their information up to date. We propose representing factual changes between paired documents as question-answer pairs, where the answer to the same question differs between two versions. We find that question-answer pairs can flexibly and concisely capture the updated contents. Provided with paired documents, annotators identify questions that are answered by one passage but answered differently or cannot be answered by the other. We release DiffQG which consists of 759 QA pairs and 1153 examples of paired passages with no factual change. These questions are intended to be both unambiguous and information-seeking and involve complex edits, pushing beyond the capabilities of current question generation and factual change detection systems. Our dataset summarizes the changes between two versions of the document as questions and answers, studying automatic update summarization in a novel way.

2022

pdf
Time-Aware Language Models as Temporal Knowledge Bases
Bhuwan Dhingra | Jeremy R. Cole | Julian Martin Eisenschlos | Daniel Gillick | Jacob Eisenstein | William W. Cohen
Transactions of the Association for Computational Linguistics, Volume 10

Many facts come with an expiration date, from the name of the President to the basketball team Lebron James plays for. However, most language models (LMs) are trained on snapshots of data collected at a specific moment in time. This can limit their utility, especially in the closed-book setting where the pretraining corpus must contain the facts the model should memorize. We introduce a diagnostic dataset aimed at probing LMs for factual knowledge that changes over time and highlight problems with LMs at either end of the spectrum—those trained on specific slices of temporal data, as well as those trained on a wide range of temporal data. To mitigate these problems, we propose a simple technique for jointly modeling text with its timestamp. This improves memorization of seen facts from the training time period, as well as calibration on predictions about unseen facts from future time periods. We also show that models trained with temporal context can be efficiently “refreshed” as new data arrives, without the need for retraining from scratch.